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Abstract. Let D ≥ 1 be an integer. In the Enright-Howe-Wallach classifica-
tion list of the unitary highest weight modules of S̃pin(2, D+1), the (nontrivial)
Wallach representations in Case II, Case III, and the mirror of Case III are spe-
cial in the sense that they are precisely the ones that can be realized by the
Hilbert space of bound states for a generalized hydrogen atom in dimension D .
It has been shown recently that each of these special Wallach representations can
be realized as the space of L2 -sections of a canonical hermitian bundle over the
punctured RD . Here a simple algebraic characterization of these special Wallach
representations is found.
Mathematics Subject Index 2000: 81R05, 22E70,
Keywords and phrases: Kepler Problem, Harish-Chandra Modules.

1. Introduction

The generalized hydrogen atoms, discovered in the late 60s by McIntosh and
Cisneros [6] and independently by Zwanziger [12], are hypothetic atoms where the
nucleus carries both electric and magnetic charges. Their extension to dimension
five were obtained by Iwai [5] in the early 90s, their construction and preliminary
analysis in all dimensions higher than or equal to three were given about two years
ago by this author [7], and their extension to dimensions one and two will be given
in appendix A of this paper.

The main purpose here is to elaborate on the representation theoretical
aspect of the generalized hydrogen atoms on the one hand and to give a simple
algebraic characterization of a special family of Wallach representations on the
other hand. The message I wish to convey to mathematical physicists is that
the generalized hydrogen atoms are mathematically beautiful, and the message I
wish to convey to mathematicians is that, for the (spin-)conformal group of the
(compactified) Minkowski spaces, the Wallach representations in Case II, Case III,
and the mirror of Case III from the classification list of Ref. [3] admit a very
simple algebraic characterization.

For readers who are only interested in mathematics, theorems 1 and 2 below
are our main mathematical results, theorem 3 below can be skipped, and any
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paragraph involving the phrases such as “generalized hydrogen atoms” or “MICZ-
Kepler problems” can be ignored; for example, the entire appendix A can be
ignored. In other word, this is a mathematical paper which is rigorous by the
current mathematical standard, but it is motivated by physical problems and it
enhances our understanding of the physical models.

To state the main results, we need to first recall some basic facts and
introduce some notations.

1.1. Pseudo-orthogonal groups. Let p , q be nonnegative integers such that
p + q ≥ 2. Denote by xµ the µ-th standard coordinate for Rp,q , and by η the
standard indefinite metric tensor whose coordinate matrix [ηµν ] with respect to
the standard basis of Rp,q is diag(1, · · · , 1︸ ︷︷ ︸

p

,−1, · · · − 1︸ ︷︷ ︸
q

). As usual, we use [ηµν ]

to denote the inverse of [ηµν ] , O(p, q) to denote the set of endomorphisms of
Rp,q which preserve the quadratic form η , and O+(p, q) to denote the connected
component of O(p, q) containing the identity. Note that it is customary to write
O(0, q) as O(q) and O(p, 0) as O(p). The followings are some basic topological
facts about the pseudo-orthogonal groups:

Proposition 1.1. 1) O(p) is compact and has two connected components.

2) In the case both p and q are nonzero, O(p, q) is non-compact and has
four connected components. In fact, the inclusion map O(p) × O(q) → O(p, q) is
a homotopic equivalence.

3) The inclusion map O+(p) × O+(q) → O+(p, q) is a homotopic equiva-
lence. In fact, O+(p)×O+(q) is a maximum compact subgroup of O+(p, q).

Let Cp,q be the Clifford algebra over C generated by Xµ ’s subject to
relations

XµXν +XνXµ = −2ηµν .

Let Mµν := i
4
(XµXν −XνXµ), then one can check that these M ’s satisfy

the following commutation relations:

[Mαβ,Mγδ] = −i (ηβγMαδ − ηαγMβδ − ηβδMαγ + ηαδMβγ) .

We use Spin(p) to denote the nontrivial double cover of SO(p), and Spin(2, q)
to denote the nontrivial double cover of O+(2, q) such that the inverse image of
SO(2)× SO(q) under the covering map is

Spin(2)×Z2 Spin(q) :=
Spin(2)× Spin(q)

(g1, g2) ∼ (−g1,−g2)
.

Note that Spin(2, q) defined here is connected. We use S̃pin(2, q) to denote the
unique double cover of Spin(2, q) such that the inverse image of Spin(2)×Z2Spin(q)
under the covering map is Spin(2)× Spin(q).

1.2. Main Mathematical Results. Let G be one of the following real Lie
groups: Spin(2n), Spin(2n+1), Spin(2, 2n), S̃pin(2, 2n+1). We use g0 to denote
the Lie algebra of G and g the complexification of g0 . In case G is non-compact,
we use K to denote a maximal compact subgroup of G .
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When G is compact, the representations of G are all unitarizable (hence
reducible); moreover, an irreducible representation of G is precisely a finite di-
mensional highest weight modules of g with half integral weights.

When G is non-compact, the (continuous) representations of G are not
always unitarizable. It is known that a nontrivial unitarizable module of G
must be infinite dimensional. By a fundamental theorem of Harish-Chandra1, the
irreducible unitary representations of G are in one-one correspondence with the
irreducible unitary (g, K)-modules. Recall that a representation of G is called a
highest weight representation if its underlying (g, K)-module is a highest weight g-
module. It is known from the definitions and preceding quoted theorem of Harish-
Chandra that a highest weight representation of G is an irreducible representation
of G . While the unitary highest weight representations of G has been classified
in Refs. [10, 11, 3], a classification list for unitary irreducible representations of G
is still missing in general. Please note that a representation of G is sometime also
called a G-module.

The following problem arises naturally from the construction and analysis
of the generalized hydrogen atoms.

Problem 1.2. Classify all unitary highest weight representations of G subject
to the following representation relations in the universal enveloping algebra of g0 :
{Mµλ,M

λ
ν} = aηµν , i.e.,

MµλM
λ

ν +Mλ
νMµλ = aηµν (1.1)

where a is a representation-dependent real number, and Mλ
ν = ηλδMδν .

It is not hard to see that a is completely determined by the value of the
Casimir operator c2 of g0 in a given representation. In the case when G is
non-compact, Eq. (1.1) should be understood as an identity for operators on
the underlying (g, K)-module. Hereafter we shall call Eq. (1.1) the (quadratic)
representation relations.

Remark 1.3. In the compact case, the representation relations appear first in
the preliminary study of the dynamical symmetry of the generalized MICZ-Kepler
problems [7]; and in the non-compact case, the representation relations appear
first in the study of MICZ-Kepler problems [2], and more recently in the refined
study of the dynamical symmetry of the generalized MICZ-Kepler problems [9, 8].

Throughout this paper, we adopt this practice in physics: the Lie algebra
generators act as hermitian operators in all unitary representations.

The main mathematical results of this paper are summarized in the follow-
ing two theorems.

Theorem 1. Let n > 0 be an integer.

1) An irreducible unitary module of Spin(2n + 1) satisfies Eq. (1.1) ⇔ it
is either the trivial representation or the fundamental spin representation.

2) An irreducible unitary module of Spin(2n) satisfies Eq. (1.1) ⇔ it is a
Young power of a fundamental spin representation.

1See, for example, Theorem 7 on page 71 of Ref. [1]



700 Meng

Theorem 2. Let n > 0 be an integer.

1) A unitary highest weight module of S̃pin(2, 2n+1) satisfies Eq. (1.1) ⇔
it is either the trivial one or the one with highest weight2

(−(n+ µ− 1

2
), µ, · · · , µ)

for µ = 0 or 1/2.

2) A unitary highest weight module of Spin(2, 2n) satisfies Eq. (1.1) ⇔ it
is either the trivial one or the one with highest weight

(−(n+ |µ| − 1), |µ|, · · · , |µ|, µ)

for some half integer µ.

Remark 1.4. The representations characterized in part 1) are precisely the
Wallach representations in Case II (µ = 0) and Case III (µ = 1/2) on page 128
of Ref. [3]. The representations characterized in part 2) are precisely the Wallach
representations in Case II (µ = 0), Case III (µ < 0) and the mirror of Case III (µ >
0) on page 125 of Ref. [3]. In the Enright-Howe-Wallach classification diagram
for the unitary highest weight modules, there are two reduction points in Case II
and one reduction point in Case III; the nontrivial representations characterized
here always sit on the first reduction point, and the trivial representation (in Case
II only) always sits on the 2nd reduction point. In other word, the nontrivial
representations characterized here are precisely those boundary Wallach points in
Case II, Case III and the mirror of Case III (see, page 101, Ref. [3]):

r
0

r
A(λ0)

the boundary Wallach point�����9 -

The following subsection is about a corollary of Theorem 2 for the general-
ized hydrogen atoms and can be safely ignored for readers who are only interested
in mathematics.

1.3. Main corollary for the generalized hydrogen atoms. Let D ≥ 1 be
an integer, µ be a half integer if D is even and be 0 or 1/2 if D is odd. To fix the
terminology in this paper, by the generalized hydrogen atom in dimension D with
magnetic charge µ we mean the hypothetic atom in dimension D whose coulomb
problem is the D -dimensional (quantum) MICZ-Kepler problem with magnetic
charge µ in the sense of Ref. [7].

For the convenience of the readers, here we will give a quick review of the
D -dimensional (quantum) MICZ-Kepler problems. We assume D ≥ 3 and leave
the case D = 1 or 2 to appendix A.

Let RD
∗ be the punctured D -space (i.e., RD with the origin removed),

SD−1 be the unit sphere: {~r | |~r| = 1} . As we know, there is a canonical principal
Spin(D−1)-bundle Spin(D) → SD−1 with a canonical connection3. Via the natural

2Unlike the case in part 2) of this theorem, a representation here cannot descend to a
representation of Spin(2, 2n + 1).

3The connection form is Prso(D−1)(g−1 dg), where g−1 dg is the Maurer-Cartan form and
Prso(D−1) is the orthogonal projection from so(D) onto so(D − 1).
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retraction map RD
∗ → SD−1 , we get a canonical principal Spin(D−1)-bundle with

a canonical connection over RD
∗ . By choosing the representation of so(D−1) with

highest weight (|µ|, · · · , |µ|, µ), we get an associated hermitian vector bundle with
an hermitian connection on Riemannian manifold (RD

∗ ; dx2
1 + · · ·+ dx2

D).

This bundle is denoted by S2µ and it is our analogue of the Dirac monopole
with magnetic charge µ . By definition, the D -dimensional MICZ-Kepler problem
with magnetic charge µ is defined to be the quantum mechanical system on RD

∗
for which the wave-functions are sections of S2µ and the hamiltonian is

H =

 −1
2
∆µ + µ2+(n−1)|µ|

2r2 − 1
r

if D = 2n+ 1

−1
2
∆µ + (n−1)µ

2r2 − 1
r

if D = 2n

(1.2)

where ∆µ is the standard Laplace operator ∂2
1 + · · ·+ ∂2

D twisted by S2µ .

Physically it is interesting to find all square integrable eigen-sections of
H . It has been shown in Refs. [9, 8] that the linear span of the square integrable
eigen-sections of H is a unitary highest weight Harish-Chandra module with highest
weight

(−
(
D − 1

2
+ |µ|

)
, |µ|, · · · , |µ|, µ).

Recall that, the Hilbert space completion of this linear span is called the Hilbert
space of bound states of the D -dimensional generalized hydrogen atom with mag-
netic charge µ ; so, in view of the fundamental theorem of Harish-Chandra we
quoted earlier, it is a nontrivial unitary highest weight representation of
S̃pin(2, D + 1).

It has been shown in Refs. [9, 8] that such a unitary highest weight represen-

tation of S̃pin(2, D+1) has a very explicit geometric realization. To describe it, we
let dDx be the Lebesgue measure on RD . The Hilbert space of square integrable
(with respect to dDx) sections of S2µ (denoted by L2(S2µ)), being identified with
the twisted Hilbert space of bound states of the D -dimensional generalized hydro-
gen atom with magnetic charge µ , turns out to be the representation space. To
describe the unitary action of S̃pin(2, D+1) on L2(S2µ), we just need to describe
the infinitesimal action on C∞(S2µ); for that purpose, it suffices to describe how
Mα,0 (1 ≤ α ≤ D), MD+1,0 and M−1,0 act as differential operators: they act
as i

√
r∇α

√
r , 1

2

(√
r∆µ

√
r + r − c

r

)
and 1

2

(√
r∆µ

√
r − r − c

r

)
respectively. For

example, for ψ ∈ C∞(S2µ), we have

(Mα,0 · ψ)(r,Ω) = i
√
r∇α

(√
rψ(r,Ω)

)
.

Therefore, together with the results in appendix A, we have the following
corollary of Theorem 2 for the generalized hydrogen atoms.

Theorem 3. Let D ≥ 1 be an integer.

1) The Hilbert space of bound states of a D -dimensional generalized hy-
drogen atom always forms a nontrivial unitary highest weight representation of
S̃pin(2, D + 1).

2) A nontrivial unitary highest weight representation of S̃pin(2, D+ 1) can
be realized by the Hilbert space of bound states of a D -dimensional generalized
hydrogen atom ⇔ it satisfies the quadratic representation relations.
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Therefore, the Hilbert spaces of bound states for D -dimensional generalized hy-
drogen atoms realize precisely the nontrivial Wallach points for S̃pin(2, D + 1)
listed in Case II, Case III and the mirror of Case III on page 127 (when D is odd),
and on page 125 (when D is even) in Ref. [3]. Note that when D is odd, the
mirror of Case III is Case Ip with p = D+1

2
; when D is odd, Case III = the mirror

of Case III.

We end this subsection with the following concluding remark.

Remark 1.5. The interesting families of representations of S̃pin(2, D+1) form
the following descending chain:

{admissible irreps} ⊃ {unirreps} ⊃ {H.WT. unitary reps} ⊃ {Wallach
reps} ⊃ {nontrivial Wallach reps of type II, type III or mirror of type III}.

For the bottom family of representations in this chain, combining the results
from Refs. [9, 8], one can reach the following conclusions:

1) The members of this family can be precisely realized as the Hilbert space
of bound states for generalized hydrogen atoms in dimension D ;

2) Each member of this family can be realized as the Hilbert space of L2 -
sections of a canonical hermitian bundle over RD

∗ equipped with a canonical her-
mitian connection;

3) This family can be characterized by a canonical finite set of quadratic

relations among the infinitesimal generators of S̃pin(2, D + 1).

1.4. Outline of the paper. As a warm up, we will first give a proof of Theorem
1 in section 2, the idea is essentially taken from the appendix of Ref. [7] and the
arguments are purely algebraic. Then we prove Theorem 2 by similar arguments
in section 3. I would like to thank Qi You for simplifying the proof of part 2) of
Theorem 1 and the referee for his/her careful reading of the manuscript.

2. Proof of Theorem 1

We will follow the approach in the appendix of Ref. [7]. The idea is to find a
convenient Cartan basis and then rewrite the representation relations in terms
of these Cartan basis elements. We start with the proof of part 1) because it is
technically simpler. The proof of part 2) is similar, but technically is a bit more
involved.

2.1. Part 1). We assume that n ≥ 1. To continue, a digression on Lie algebra
so(2n + 1) is needed. Recall that the root space of so(2n + 1) is Rn . Let ei be
the vector in Rn whose i-th entry is 1 and all other entries are zero. The positive
roots are ei ± ej with 1 ≤ i < j ≤ n and ek with 1 ≤ k ≤ n . Following Ref. [4],
we choose the following Cartan basis for so(2n+ 1):

Hi = M2i−1,2i 1 ≤ i ≤ n
Eηej+η′ek = 1

2
(M2j−1,2k−1 + iηM2j,2k−1 + iη′M2j−1,2k − ηη′M2j,2k)

for j < k
Eηej = 1√

2
(M2j−1,2n+1 + iηM2j,2n+1) for j ≤ n

where η, η′ ∈ {1,−1} . For convenience, we also use the same expression above to
define Eηej+η′ek when j > k , then we have

Eηej+η′ek = −Eη′ek+ηej
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for j 6= k .

We are interested in unitary representations, i.e., representations such that
each Mij acts as an hermitian operator, or equivalently, each Hi act as an hermi-
tian operator, and

(Eα)† = E−α.

Let |Ω〉 = |λ1 · · ·λn〉 be the highest weight state of a unitary representation
for which the representation relations hold. So Hi|Ω〉 = λi|Ω〉 and Eα|Ω〉 = 0 if
α is a positive root. Since

[Eei−ej , E−ei+ej ] = Hi −Hj, [Eei , E−ei ] = Hi, (2.1)

by the unitarity, we conclude that

λ1 ≥ · · · ≥ λn ≥ 0. (2.2)

Since {Eei , E−ei , Hi} span the Lie algebra of su(2), and the orbit of |Ω〉 under
the action of the universal enveloping algebra of this su(2) is a highest weight
representation with |Ω〉 as its highest weight state, we conclude that λi is a half
integer. A similar argument shows that λi − λj is always an integer.

⇒ : The representation relations say that, for 1 ≤ j ≤ n+ 1, we have

〈Ω|
∑

k

(M2j−1,k)
2|Ω〉 = c, (2.3)

where c is a constant independent of j . Since
∑

k(M2j−1,k)
2 = H2

j +
Hj

2
+ 1

2

∑
i6=j ({E−ej−ei , Eej+ei}+ {E−ej+ei , Eej−ei})

+1
2
((E−ej)2 + (Eej)2) + E−ejEej

+
∑

i6=j (E−ej−eiE−ej+ei + Eej+eiEej−ei) for 1 ≤ j ≤ n,∑
k(M2n+1,k)

2 =
∑

i{Eei , E−ei},

We have 

λ2
1 + (n− 1

2
)λ1 = c

λ2
2 + (n− 1

2
)λ2 + (λ1 − λ2) = c

λ2
3 + (n− 1

2
)λ3 + (λ1 + λ2 − 2λ3) = c

...
λ2

n + (n− 1
2
)λn + (λ1 + · · ·+ λn−1 − (n− 1)λn) = c∑

λi = c.

(2.4)

Subtracting 2nd identity from the 1st identity, we have

(λ1 − λ2)(λ1 + λ2 + n− 3

2
) = 0.

So λ1 = λ2 = λ if n ≥ 2. Assume n ≥ 3, subtracting the 3rd identity from the
1st identity, we have

(λ− λ3)(λ+ λ2 + n− 5

2
) = 0.

So λ3 = λ if n ≥ 3. By repeating this argument (n− 1) times, we get λ1 = · · · =
λn = λ . Then |Ω〉 = |λ · · ·λ〉 .
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By equating the 1st identity with the last identity, we have

λ2 =
1

2
λ,

then λ = 0 or 1/2. The case that λ = 0 corresponds to the trivial representation
and the case that λ = 1/2 corresponds to the fundamental spin representation.

⇐ : The representation relations are trivially true in the former case, and can be
checked easily by using Clifford algebra in the later case: Mjk ∝ XjXk , so

{Mjk,Mkl} ∝ XjXkXkXl +XkXlXjXk ∝ −XjXl −XlXj = 2δjl.

End of the proof of part 1) of Theorem 1.

2.2. Part 2). It is trivial when n = 1. So we assume that n ≥ 2. To continue,
a digression on Lie algebra so(2n) is needed. Recall that the root space of so(2n)
is Rn . Let ei be the vector in Rn whose i-th entry is 1 and all other entries are
zero. The positive roots are ei ± ej with 1 ≤ i < j ≤ n . Following Ref. [4], we
choose the following Cartan basis for so(2n):

Hi = M2i−1,2i 1 ≤ i ≤ n
Eηej+η′ek = 1

2
(M2j−1,2k−1 + iηM2j,2k−1 + iη′M2j−1,2k − ηη′M2j,2k)

for j < k

where η, η′ ∈ {1,−1} . For convenience, we also use the same expression above to
define Eηej+η′ek for j > k , then we have

Eηej+η′ek = −Eη′ek+ηej

for j 6= k .

Let |Ω〉 = |λ1 · · ·λn〉 be the highest weight state of a unitary representation
for which the representation relations hold. So Hi|Ω〉 = λi|Ω〉 and Eα|Ω〉 = 0 if
α is a positive root.

Since

[Eei±ej , E−ei∓ej ] = Hi ±Hj, (2.5)

by the unitarity, we conclude that

λ1 ≥ · · · ≥ λn−1 ≥ |λn|. (2.6)

Since {Eei+ej , E−ei−ej , 1
2
(Hi+Hj)} span the Lie algebra of su(2), we conclude that

λi−λj is an integer. A similar argument shows that λi +λj is an integer. So λi ’s
are half integers.

⇒ : The representation relations say that, for 1 ≤ j ≤ n , we have

〈Ω|
∑

k

(M2j−1,k)
2|Ω〉 = c, (2.7)

where c is a constant independent of j . Since∑
k

(M2j−1,k)
2 = H2

j +
1

2

∑
i6=j

({E−ej−ei , Eej+ei}+ {E−ej+ei , Eej−ei})
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+
∑
i6=j

(E−ej−eiE−ej+ei + Eej+eiEej−ei) ,

we have 

λ2
1 + (n− 1)λ1 = c

λ2
2 + (n− 1)λ2 + (λ1 − λ2) = c

λ2
3 + (n− 1)λ3 + (λ1 + λ2 − 2λ3) = c

...
λ2

n + (n− 1)λn + (λ1 + · · ·+ λn−1 − (n− 1)λn) = c.

(2.8)

Subtracting the 2nd identity from the 1st identity, we have

(λ1 − λ2)(λ1 + λ2 + n− 2) = 0.

So if λ1 = |λ2| if n = 2, and λ1 = λ2 = λ if n > 2. Assume n ≥ 3, subtracting
the 3rd identity from the 1st identity, we have

(λ− λ3)(λ+ λ2 + n− 3) = 0.

So if λ = |λ3| if n = 3, and λ3 = λ if n > 3. By repeating this argument (n− 1)
times, we get λ1 = · · · = λn−1 = λ and λ = |λn| . Then the representation must
be a Young power of a fundamental spin representation.

⇐ : We need to prove that the representation relations (i.e., Eq. (1.1)) hold for
any Young power of a fundamental spin representation. The proof is broken into
three steps, with the last one being significantly simplified by Qi You.

Step one. We may assume the representation is s2µ
+ for some non-negative

half integer µ . That is because there exists a g ∈ Pin(2n) such that the action
by g on s2µ

− ⊕ s2µ
+ produces a vector space isomorphism: s2µ

− → s2µ
+ , moreover,

gM1,kg
−1 = −M1,k and gMj,kg

−1 = Mj,k for 1 < j < k ; consequently, the
representation relations are invariant under the (adjoint) action by g .

Step two. For any i < j , relation∑
k

{Mi,k,Mj,k} = 0 (2.9)

hold for s2µ
+ .

Proof. It suffice to prove the statement in the case i = 1 and j = 2; that is
because, for any i′ < j′ , there is an element in g ∈ Spin(2n) such that

g
∑

k

{M1,k,M2,k}g−1 =
∑

k

{Mi′,k,Mj′,k}.

Next we observe that∑
k

{M1,k,M2,k} =
2

i
(O† − O)

where
O =

∑
i6=1

E−e1−eiE−e1+ei .
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Consequently, we can finish the proof by showing that

O|Λ〉 = 0 (2.10)

for any |Λ〉 ∈ s2µ
+ . But that is OK because of the following easy facts:

[O, E−α] = 0 for any positive root α,
E−e1+ei|Ω〉 = 0 where |Ω〉 = |µ · · ·µ︸ ︷︷ ︸

n

〉,

and the fact that |Λ〉 is a linear combination of the states created from |Ω〉 by
some E−α ’s with α being positive roots.

Step three. For any j , relation∑
k

(Mj,k)
2 − 1

n
c2 = 0 (2.11)

hold for s2µ
+ . In fact, it suffices to show that relation∑

k

(M1,k)
2 − 1

n
c2 = 0 (2.12)

hold for s2µ
+ .

Proof. Observe that4

[Mab,
∑

k

(M1,k)
2 − 1

n
c2] = −iηb1

∑
k

{Mak,M1k}+ iηa1

∑
k

{Mbk,M1k}

= 0 on s2µ
+ by step two above.

Therefore, it suffices to show that(∑
k

(M1,k)
2 − 1

n
c2

)
|Ω〉 = 0. (2.13)

But that is not hard, because∑
k

(M1,k)
2 − 1

n
c2 = O1 + O† + O

= O1 on s2µ
+ by Eq. (2.10).

= 0 on |Ω〉 by a straight forward calculation,

where

O1 = H2
1 −

c2
n

+
1

2

∑
i6=1

({E−e1−ei , Ee1+ei}+ {E−e1+ei , Ee1−ei}) .

Steps two and three together say that the representation relations hold in
s2µ
+ , hence also hold in s2µ

− by step one.

End of the proof of part 2) of Theorem 1.

4The much simplified proof presented here is due to this key observation by Qi You.
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3. Proof of Theorem 2

The proof of theorem 2 is similar to that of theorem 1, but technically more
involved. Again, we start with the proof of part 1). Although a straightforward
proof does exist, to make the proof shorter, we use results from both Refs. [9, 8]
and appendix A.

3.1. Part 1). We assume that n ≥ 1. To continue, a digression on Lie algebra
so(2, 2n + 1) is needed. Recall that the root space of so(2, 2n + 1) is Rn+1 . Let
ei be the vector in Rn+1 whose i-th entry is 1 and all other entries are zero. The
positive roots are ei ± ej with 0 ≤ i < j ≤ n and ek with 0 ≤ k ≤ n .

Following Ref. [4], we choose the following Cartan basis for so(2, 2n+ 1):


H0 = M−1,0,
Hi = −M2i−1,2i 1 ≤ i ≤ n,

Eηej+η′ek = 1
2
(M2j−1,2k−1 + iηM2j,2k−1 + iη′M2j−1,2k − ηη′M2j,2k)

for 0 ≤ j < k ≤ n,
Eηej = 1√

2
(M2j−1,2n+1 + iηM2j,2n+1) for 0 ≤ j ≤ n,

where η, η′ ∈ {1,−1} . For convenience, we also use the same expression above to
define Eηej+η′ek for j > k , then we have

Eηej+η′ek = −Eη′ek+ηej

for j 6= k .

Let |Ω〉 = |λ0λ1 · · ·λn〉 be the highest weigh state of a unitary representa-
tion for which the representation relations hold. So Hi|Ω〉 = λi|Ω〉 and Eα|Ω〉 = 0
if α is a positive root.

Since
[Ee0+ei , E−e0−ei ] = −H0 −Hi, [Ee0−ei , E−e0+ei ] = −H0 +Hi,

[Eei+ej , E−ei−ej ] = Hi +Hj, [Eei−ej , E−ei+ej ] = Hi −Hj,
[Eηei , Eη′ej ] = −iEηei+η′ej , [Eei , E−ei ] = Hi, [Ee0 , E−e0 ] = −H0,

by unitarity, we conclude that

−λ0 ≥ λ1 ≥ · · · ≥ λn ≥ 0. (3.1)

For i 6= 0, {Eei , E−ei , Hi} span the Lie algebra of su(2), then λi must be a half
integer. A similar argument shows that λi − λj is an integer for 0 < i < j ≤ n .

⇒ : The representation relations say that


〈Ω| −

∑
M−1,kM

k
−1|Ω〉 = c,

〈Ω|
∑
M2j−1,kM

k
2j−1|Ω〉 = c for j = 1, 2, · · · , n+ 1,

(3.2)
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where c is a constant. Since

∑
M−1,kM

k
−1 = −H2

0 − H0

2
+ 1

2

∑
i6=0 ({E−e0−ei , Ee0+ei}+ {E−e0+ei , Ee0−ei})

+1
2
((E−e0)2 + (Ee0)2) + E−e0Ee0

+
∑

i6=0 (E−e0−eiE−e0+ei + Ee0+eiEe0−ei) ,∑
M2j−1,kM

k
2j−1 = H2

j +
Hj

2
+ 1

2

∑
i6=0,j ({E−ej−ei , Eej+ei}+ {E−ej+ei , Eej−ei})

+1
2
((E−ej)2 + (Eej)2) + E−ejEej

+
∑

i6=0,j (E−ej−eiE−ej+ei + Eej+eiEej−ei)

−1
2
({E−e0−ej , Ee0+ej}+ {E−e0+ej , Ee0−ej})

− (E−e0−ejE−e0+ej + Ee0+ejEe0−ej) ,∑
M2n+1,kM

k
2n+1 = −{Ee0 , E−e0}+

∑
i>0{Eei , E−ei},

we have

λ2
0 + (n+ 1

2
)λ0 = c

λ2
1 + (n− 1

2
)λ1 + λ0 = c

λ2
2 + (n− 1

2
)λ2 + (λ1 − λ2) + λ0 = c

...
λ2

n + (n− 1
2
)λn + (λ1 + · · ·+ λn−1 − (n− 1)λn) + λ0 = c∑

λi = c.

(3.3)

Subtracting the 3rd identity from the 2nd identity, we have

(λ1 − λ2)(λ1 + λ2 + n− 3

2
) = 0.

So λ1 = λ2 = λ if n ≥ 2. Assume n ≥ 3, subtracting the 4th identity from the
3rd identity, we have

(λ− λ3)(λ+ λ2 + n− 5

2
) = 0.

So λ3 = λ if n ≥ 3. By repeating this argument (n− 1) times, we get λ1 = · · · =
λn = λ . Then |Ω〉 = |λ0λ · · ·λ〉 .

By comparing the 2nd with the last identities, we get

λ2 =
1

2
λ,

so λ = 0 or 1/2.

By comparing the first two identities, we get

(λ− λ0)(λ+ λ0 + n− 1

2
) = 0.

So either λ0 = λ or λ0 = −(λ + n − 1
2
). In view of the fact that −λ0 ≥ λ , we

conclude that (λ0, λ) must be one of the following three pairs: (0, 0), (−n+1/2, 0),
(−n, 1/2). Consequently, the unitary highest weight representation, if it exists,
must be one of the following three cases: 1) the trivial one, 2) the one with highest
weight (−n+ 1/2, 0, . . . , 0), 3) the one with highest weight (−n, 1/2, . . . , 1/2).
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⇐ : The remaining question we must answer is this: such representations do exist
and satisfy the representation relations. This is certainly clear in the trivial case.

The existence of such representations in the nontrivial case is clear from the
classification result of Refs. [10, 11, 3]. As a matter of fact, in view of Theorem
1 in Ref. [8], the one with highest weight (−n + 1/2, 0, . . . , 0) can be realized by
the 2n-dimensional generalized Kepler problem with magnetic charge 0, and the
one with highest weight (−n, 1/2, . . . , 1/2) can be realized by the 2n-dimensional
generalized Kepler problem with magnetic charge 1/2. Moreover, in view of part
2) of Theorem 2 in Ref. [8], these representations indeed satisfy the representation
relations. The only problem with this argument is that the case n = 1 is not
covered; however, the results in Refs. [7, 8] can be pushed down to the case n = 1,
see subsection A in appendix A.

End of the proof of part 1) of Theorem 2.

We would like to remark that, by following the argument in the proof of
part 2) of Theorem 1, one can also verify the representation relations directly.
Since this argument is a bit long, we choose to skip it.

3.2. Part 2). We assume that n ≥ 1. To continue, a digression on Lie algebra
so(2, 2n) is needed. Recall that the root space of so(2, 2n) is Rn+1 . Let ei be the
vector in Rn+1 whose i-th entry is 1 and all other entries are zero. The positive
roots are ei ± ej with 0 ≤ i < j ≤ n .

Following Ref. [4], we choose the following Cartan basis for so(2, 2n):
H0 = M−1,0,
Hi = −M2i−1,2i 1 ≤ i ≤ n,

Eηej+η′ek = 1
2
(M2j−1,2k−1 + iηM2j,2k−1 + iη′M2j−1,2k − ηη′M2j,2k)

for 0 ≤ j < k ≤ n.

Here η, η′ ∈ {1,−1} . For convenience, we also use the same expression above to
define Eηej+η′ek for j > k , then we have

Eηej+η′ek = −Eη′ek+ηej

for j 6= k .

Let |Ω〉 = |λ0λ1 · · ·λn〉 be the highest weigh state of a representation for
which the representation relations hold. So Hi|Ω〉 = λi|Ω〉 and Eα|Ω〉 = 0 if α is
a positive root.

Since{
[Ee0+ei , E−e0−ei ] = −H0 −Hi, [Ee0−ei , E−e0+ei ] = −H0 +Hi,

[Eei+ej , E−ei−ej ] = Hi +Hj, [Eei−ej , E−ei+ej ] = Hi −Hj,

by unitarity, we conclude that

−λ0 ≥ λ1 ≥ · · · ≥ λn−1 ≥ |λn|. (3.4)

Just as before, one can show that each λi with i > 0 is a half integer and each
λi − λj with 0 < i < j ≤ n is an integer.

⇒ : The representation relations say that{
〈Ω| −

∑
M−1,kM

k
−1|Ω〉 = c,

〈Ω|
∑
M2j−1,kM

k
2j−1|Ω〉 = c for j = 1, 2, · · · , n, (3.5)
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where c is a constant. Since

∑
M−1,kM

k
−1 = −H2

0 + 1
2

∑
i6=0 ({E−e0−ei , Ee0+ei}+ {E−e0+ei , Ee0−ei})

+
∑

i6=0 (E−e0−eiE−e0+ei + Ee0+eiEe0−ei) ,∑
M2j−1,kM

k
2j−1 = H2

j + 1
2

∑
i6=0,j ({E−ej−ei , Eej+ei}+ {E−ej+ei , Eej−ei})

+
∑

i6=0,j (E−ej−eiE−ej+ei + Eej+eiEej−ei)

−1
2
({E−e0−ej , Ee0+ej}+ {E−e0+ej , Ee0−ej})

− (E−e0−ejE−e0+ej + Ee0+ejEe0−ej) ,

we have

λ2
0 + nλ0 = c

λ2
1 + (n− 1)λ1 + λ0 = c

λ2
2 + (n− 1)λ2 + (λ1 − λ2) + λ0 = c

...
λ2

n + (n− 1)λn + (λ1 + · · ·+ λn−1 − (n− 1)λn) + λ0 = c.

(3.6)

Subtracting the 3rd identity from the 2nd identity, we have

(λ1 − λ2)(λ1 + λ2 + n− 2) = 0.

So λ1 = λ2 = λ if n > 2 and λ2 = |λ1| if n = 2. Assume n ≥ 3, subtracting the
4th identity from the 3rd identity, we have

(λ− λ3)(λ+ λ2 + n− 3) = 0.

So λ1 = λ2 = λ3 if n > 3 and λ1 = λ2 = |λ3| if n = 3. By repeating this argument
(n− 1) times, we get λ1 = · · · = λn−1 = |λn| = λ . Therefore, for n ≥ 1, we have
|Ω〉 = |λ0 λ · · ·λ︸ ︷︷ ︸

n−1

(±λ)〉 .

By comparing the first two identities, we get

(λ− λ0)(λ+ λ0 + n− 1) = 0.

In view of the fact that −λ0 ≥ λ , we conclude that (λ0, λ) must be one of following
pairs: 1) (0,0), 2) (−n − λ + 1, λ) where λ ≥ 0 is a half integer. Consequently,
when n ≥ 1, the unitary highest weight representation, if it exists, must be one of
the following cases: 1) the trivial one, 2) the one with highest weight

(−(n− 1 + |µ|), |µ|, . . . , |µ|︸ ︷︷ ︸
n−1

, µ)

for a half integer µ .

⇐ : The remaining question we must answer is this: such representations do exist
and satisfy the representation relations. This is certainly clear in the trivial case.

The existence of such representations in the nontrivial case is clear from the
classification result of Refs. [10, 11, 3]. As a matter of fact, in view of Theorem 1
in Ref. [9], the one with highest weight

(−(n− 1 + |µ|), |µ|, . . . , |µ|︸ ︷︷ ︸
n−1

, µ)
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can be realized by the (2n − 1)-dimensional generalized Kepler problem with
magnetic charge µ . Moreover, in view of part 2) of Theorem 2 in Ref. [9], these
representations indeed satisfy the representation relations. The only problem with
this argument is that the case n = 1 is not covered; however, the results in Refs.
[7, 9] can be pushed down to the case n = 1, see subsection A in appendix A.

End of the proof of part 2) of Theorem 2.

We would like to remark that, by following the argument in the proof of
part 2) of Theorem 1, one can also verify the representation relations directly.
Since this argument is a bit long, we choose to skip it.

A. MICZ-Kepler problems in dimensions one or two

In Ref. [7], the generalized MICZ-Kepler problems are introduced in dimension
three or higher. Here we introduce their limits in dimension one and dimension
two. Since the arguments given in Refs. [7, 9, 8] are still valid for these limiting
cases, the theorems listed below are stated without detailed proof.

A.1. MICZ-Kepler problems in dimension one.

Definition A.1. Let µ a half integer and |µ| ≥ 1/2. Let Rµ be R+ if µ < 0
and be R− if µ > 0. The 1-dimensional MICZ-Kepler problem with magnetic
charge µ is defined to be the quantum mechanical system on Rµ for which the
wave-functions are complex-valued functions on Rµ and the hamiltonian is

H = −1

2

d2

dx2
+
µ2 − |µ|

2x2
− 1

|x|
. (A.1)

Let c = µ2 − |µ| and p = −i d
dx

. Define the dynamical symmetry operators as
follows: 

A = −1
2

(
xp2 + x+ c

x

)
,

M = −1
2

(
xp2 − x+ c

x

)
T = xp,
Γ = |x|p,

Γ−1 = 1
2

(
|x|p2 + |x|+ c

|x|

)
,

Γ2 = 1
2

(
|x|p2 − |x|+ c

|x|

)
.

(A.2)

Let the capital Latin letters A , B run from −1 to 2. Introduce JAB as
follows:

JAB =



A if A = 1, B = 2
M if A = 1, B = −1
Γ if A = 1, B = 0
T if A = 2, B = −1
Γ2 if A = 2, B = 0
Γ−1 if A = −1, B = 0
−JBA if A > B
0 if A = B.

(A.3)

The following theorem can be proved by direct computation:



712 Meng

Theorem A.2. Let C∞(Rµ) be the space of smooth complex-valued functions
on Rµ . Let JAB be defined by (A.3).

1) As operators on C∞(Rµ), JAB ’s satisfy the following commutation rela-
tion:

[JAB, JA′B′ ] = −iηAA′JBB′ − iηBB′JAA′ + iηAB′JBA′ + iηBA′JAB′

where the indefinite metric tensor η is diag{+ + −−} relative to the following
order: −1, 0, 1, 2 for the indices.

2) As operators on C∞(Rµ),

{JAB, J
A

C} := JABJ
A

C + JA
CJAB = 2cηBC .

Consequently, one can obtain the following two theorems:

Theorem A.3. For the 1-dimensional MICZ-Kepler problem with magnetic
charge µ, the following statements are true:

1) The negative energy spectrum is

EI = − 1/2

(I + |µ|)2

where I = 0, 1, 2, . . . ;

2) The Hilbert space H of negative-energy states admits a linear Spin(2)-
action under which there is a decomposition

H =
⊕̂∞

I=0
HI

where HI is the irreducible Spin(2)-representation witht weight (I + |µ|)sign(µ);

3) Spin(1, 1) acts linearly on the positive-energy states and R1 acts linearly
on the zero-energy states;

4) HI in part 2) is the energy eigenspace with eigenvalue EI in part 1).

Theorem A.4. Let H (µ) be the Hilbert space of bound states for the
1-dimensional generalized MICZ-Kepler problem with magnetic charge µ.

1) There is a natural unitary action of Spin(2, 2) on H (µ). In fact, H (µ)
is the unitary highest weight module of Spin(2, 2) with highest weight (−|µ|, µ);
consequently, it occurs at the unique reduction point of the Enright-Howe-Wallach
classification diagram5 for the unitary highest weight modules, so it is a non-
discrete series representation.

2) As a representation of subgroup Spin(2, 1),

H (µ) = D−
2|µ| (A.4)

where D−
2|µ| is the anti-holomorphic discrete series representation6 of Spin(2, 1)

with highest weight −|µ|.
5Page 101, Ref. [3]. See also Refs. [10, 11].
6The case µ = ±1/2 is a limit of the discrete series representation.
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3) As a representation of the maximal compact subgroup
(= Spin(2)×Z2 Spin(2)),

H (µ) =
⊕̂∞

l=0
D(−l − |µ|)⊗D((l + |µ|)sign(µ)) (A.5)

where D(λ) denotes the irreducible module of Spin(2) with weight λ.

A.2. MICZ-Kepler problems in dimension two.

Definition A.5. Let µ = 0 or 1/2. The 2-dimensional MICZ-Kepler problem
with magnetic charge µ is defined to be the quantum mechanical system on R2

∗
for which the wave-functions are complex-valued functions ψ on

R2
∗ = R+ × R/(r, θ) ∼ (r, θ + 2π)

satisfying identity

ψ(r, θ + 2π) = (−1)2µψ(r, θ) for any (r, θ) ∈ R+ × R ,

and the hamiltonian is

H = −1

2

(
1

r
∂rr∂r +

1

r2

∂2

∂θ2

)
− 1

r
. (A.6)

Let the small Greek letters α , β run from 1 to 2, x1 := r cos θ , x2 := r sin θ ,
xα := xα , pα := −i ∂

∂xα . Define the dynamical symmetry operators as follows:

J12 = x1p2 − x2p1 = −i∂θ,
Aα = 1

2
xαp

2 − pα(~r · ~p)− i
2
pα − 1

2
xα,

Mα = 1
2
xαp

2 − pα(~r · ~p)− i
2
pα + 1

2
xα,

T = ~r · ~p− i
2
,

Γα = rpα,
Γ−1 = 1

2
(rp2 + r) ,

Γ3 = 1
2
(rp2 − r) .

(A.7)

Let the capital Latin letters A , B run from −1 to 3. Introduce JAB as
follows:

JAB =



J12 if A = 1, B = 2
Aα if A = α, B = 3
Mα if A = α, B = −1
Γα if A = α, B = 0
T if A = 3, B = −1
Γ3 if A = 3, B = 0
Γ−1 if A = −1, B = 0
−JBA if A > B
0 if A = B.

(A.8)

The following theorem can be proved by direct computation:
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Theorem A.6. Let C∞(R2
∗) be the space of smooth complex-valued functions

on R2
∗ . Let JAB be defined by (A.8).

1) As operators on C∞(R2
∗), JAB ’s satisfy the following commutation rela-

tion:

[JAB, JA′B′ ] = −iηAA′JBB′ − iηBB′JAA′ + iηAB′JBA′ + iηBA′JAB′

where the indefinite metric tensor η is diag{+ +−−−} relative to the following
order: −1, 0, 1, 2, 3 for the indices.

2) As operators on C∞(R2
∗),

{JAB, J
A

C} := JABJ
A

C + JA
CJAB = −ηBC .

Consequently, one can obtain the following two theorems:

Theorem A.7. For the 2-dimensional MICZ-Kepler problem with magnetic
charge µ, the following statements are true:

1) The negative energy spectrum is

EI = − 1/2

(I + µ+ 1
2
)2

where I = 0, 1, 2, . . . ;

2) The Hilbert space H of negative-energy states admits a linear Spin(3)-
action under which there is a decomposition

H =
⊕̂∞

I=0
HI

where HI is the irreducible Spin(3)-representation with highest weight is I + µ;

3) Spin(2, 1) acts linearly on the positive-energy states and Spin(2) o R2

acts linearly on the zero-energy states;

4) The linear action in part 2) extends the manifest linear action of Spin(2),
and HI in part 2) is the energy eigenspace with eigenvalue EI in part 1).

Theorem A.8. Let H (µ) be the Hilbert space of bound states for the 2-
dimensional generalized MICZ-Kepler problem with magnetic charge µ.

1) There is a natural unitary action of S̃pin(2, 3) on H (µ) which extends
the manifest unitary action of Spin(2). In fact, H (µ) is the unitary highest weight

module of S̃pin(2, 3) with highest weight (−(µ+ 1/2), µ); consequently, it occurs
at the first reduction point of the Enright-Howe-Wallach classification diagram7 for
the unitary highest weight modules, so it is a non-discrete series representation.

2) As a representation of Spin(2, 1)× Spin(2),

H (µ) =
⊕̂

l=µ+Z
D−

2|l|+1 ⊗D(l) (A.9)

where D(l) is the irreducible module of Spin(2) with weight l and D−
2|l|+1 is the

anti-holomorphic discrete series representation of Spin(2, 1) with highest weight
−(|l|+ 1/2).

7Page 101, Ref. [3]. While there is a unique reduction point when µ = 1/2, there are two
reduction points when µ = 0. See also Refs. [10, 11].
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3) As a representation of the maximal compact subgroup
(= Spin(2)× Spin(3)),

H (µ) =
⊕̂∞

l=0
D(−(l + µ+ 1/2))⊗Dl (A.10)

where Dl is the irreducible module of Spin(3) with highest weight l + µ and
D(−(l+µ+1/2)) is the irreducible module of Spin(2) with weight −(l+µ+1/2).
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