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Abstract. Let G be a real-reductive Lie group and let G1 and G2 be two
subgroups given by involutions. We show how the technique of gradient maps
can be used in order to obtain a new proof of Matsuki’s parametrization of the
closed double cosets G1\G/G2 by Cartan subsets. We also describe the elements
sitting in non-closed double cosets.
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Introduction

Let G be a real-reductive Lie group equipped with two involutive automorphisms
σ1 and σ2 which both commute with a Cartan involution of G . We write Gσj

for the group of σj –fixed points and let Gj be an open subgroup of Gσj . The
subject of this paper is to describe how Matsuki’s description of the double cosets
G1\G/G2 ([22]) can be proved in a geometric way by using gradient maps and
exploiting slice representations.

Let us outline the main results. The product group G1 ×G2 acts on G by
left and right multiplication, i. e. by (g1, g2) · x := g1xg−1

2 , and the set of double
cosets G1\G/G2 coincides with the orbit space of this action. We will see that the
(G1×G2)–orbits in G are generically closed, i. e. that there is a dense open subset
Gsr of G consisting of closed orbits whose dimension is maximal among all orbits.
In [22] the notion of fundamental and standard Cartan subsets is introduced and it
is proven via a Jordan-decomposition for elements in G which takes the involutions
σ1 and σ2 into account that these Cartan subsets are cross sections for the closed
(G1 × G2)–orbits. We will give a geometric proof of this fact and show that
Matsuki’s cross sections actually are geometric slices at closed orbits of maximal
dimension. Moreover, we will see that locally Gsr has the structure of a trivial
fiber bundle over a domain in Matsuki’s cross sections whose fiber is the closed
(G1 ×G2)–orbit through a point of this domain.
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Included in this setup is the case that G is complex semi-simple and that
σ1 = σ2 =: σ is anti-holomorphic, i. e. that GR := Gσ is a real form of G . The orbit
structure of the closed (GR × GR)–orbits in G is studied in [4] and [28]. In [5]
the set of non-closed orbits is investigated, too. Their analysis is based on the
real-algebraic quotient theory available for algebraic actions of complex-reductive
groups on affine varieties which are defined over R . In particular, they make use
of a good quotient G//(GR×GR) which parametrizes the closed (GR×GR)–orbits
in G and from which they obtain a stratification of G .

The case that G is a connected reductive algebraic group defined over
an algebraically closed field of characteristic not equal to 2 and that σ1 and
σ2 are commuting regular involutions is studied in [14] with the help of étale
slice theorems, stratifications and the categorical quotient. Moreover, they also
consider the situation where G is complex reductive and defined over R such
that σ1 , σ2 are likewise defined over R . Very recently, they have also used the
Cartan decomposition of the momentum map in order to describe double coset
decompositions of a real form of a complex reductive group ([15]).

In this paper we explain how the presence of a natural (G1 ×G2)–gradient
map on G can be used as a substitute for the methods from the theory of algebraic
transformation groups. In particular we obtain the existence of a good quotient
G//(G1 × G2) and of an isotropy-type stratification from [12] and [29] which
provides us from the outset with a lot of information about the set of closed
orbits. Afterwards, we analyze the fine structure of the (G1 × G2)–action with
the help of the isotropy representation on transversal slices in the Lie algebra of
G and transfer this infinitesimal information via the Slice Theorem to the group
level. It turns out that the isotropy representation on the slice coincides with
the adjoint Hσ –representation on h−σ where (H, σ) is a symmetric reductive Lie
group. Therefore we will apply results from [7], [19], [25], and [26] where these
representations are investigated.

This paper is organized as follows. In the first section we review the notions
of compatible subgroups of complex-reductive groups and gradient maps together
with their main properties. In Section 2 we describe the gradient map we use for
the (G1 × G2)–action on G and investigate in detail the slice representations
for this action. Since the slice representations are equivalent to the isotropy
representations of reductive symmetric spaces, we investigate these in the third
section via a natural gradient map. In Section 4 we use these results to give a
geometric proof of the main result in [22] which describes the orbit structure of
the closed (G1 × G2)–orbits in G . We also describe the non-closed (G1 × G2)–
orbits. In the last section we consider some examples in order to illustrate our
methods and results.

I would like to thank Prof. Dr. P. Heinzner and H. Stötzel for many help-
ful discussions on the topics presented here as well as the referee for his useful
comments.

1. Compatible subgroups and gradient maps

In this section we collect the facts from the theory of gradient maps with main
emphasis on the Slice Theorem, the Quotient Theorem and isotropy-type stratifi-
cations. Further details and complete proofs can be found in [11], [12] and [29].
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Compatible subgroups of complex-reductive groups. Let U be a con-
nected compact Lie group. It is known ([6]) that U carries the structure of a real
linear-algebraic group. Let UC be the corresponding complex-algebraic group.
Then UC is complex-reductive and the inclusion U ↪→ UC is the universal com-
plexification of U in the sense of [16].

The map U × iu → UC , (u, ξ) 7→ u exp(ξ), is a diffeomorphism, whose in-
verse is called the Cartan decomposition of UC . Furthermore, the map
θ : UC → UC , θ

(
u exp(ξ)

)
:= u exp(−ξ), is an anti-holomorphic involutive au-

tomorphism of UC with U = Fix(θ), called the Cartan involution of UC corre-
sponding to the compact real form U . Proofs of these facts can be found for
example in [18].

A subgroup G of UC is called compatible (with the Cartan decomposition
of UC ) if G = K exp(p) for K := G ∩ U and p := g ∩ iu . If G is compatible,
then the map K × p → G , (k, ξ) 7→ k exp(ξ), is a diffeomorphism. It follows
directly from the definition that every compatible subgroup of UC is invariant
under the Cartan involution θ . An open subgroup of a compatible subgroup is
again compatible. Moreover, a compatible subgroup G = K exp(p) is closed if and
only if K is compact, and in this case K is a maximal compact subgroup of G . In
this paper a real-reductive Lie group is by definition a closed compatible subgroup
of some UC .

Remark 1.1. If a real-reductive group G = K exp(p) ⊂ UC is a complex sub-
group of UC , then G is automatically complex-reductive with maximal compact
subgroup K . Hence, we have G = KC and p = ik in this case.

Gradient maps and their properties. Let M be a Riemannian manifold. If
f ∈ C∞(M), then we write ∇f for the gradient vector field of f with respect to
the Riemannian metric of M , i. e. ∇f ∈ C∞(M, TM) is given by〈

∇f(x), v
〉

x
= df(x)v

for all x ∈ M and v ∈ TxM .

Let G = K exp(p) be a real-reductive Lie group acting differentiably on
M such that the compact group K acts by isometries. Following [24] we call a
smooth map Φ: M → p∗ a gradient map for the G–action on M if

∇Φξ = ξM

holds for all ξ ∈ p . Here, Φξ ∈ C∞(M) is defined by Φξ(x) := Φ(x)ξ , and
ξM ∈ C∞(M, TM) is the fundamental vector field induced by ξ ∈ p . If such a
gradient map exists, we call the G–action on M a gradient action. We will only
consider gradient maps Φ which are equivariant with respect to the K –action on
M and the co-adjoint K –representation on p∗ .

Example 1.2. Our main example for a gradient action is the following. Let G
be realized as a closed compatible subgroup of the complex-reductive group UC .
Let Z be a Kähler manifold endowed with a holomorphic action of UC such that
the U –action is Hamiltonian with U –equivariant momentum map µ : Z → u∗ .
Let M ⊂ Z be a closed G–stable submanifold. If we equip M with the restriction
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of the Riemannian metric 〈·, ·〉 which corresponds to the Kähler metric on Z ,
then the G–action on M is a gradient action with K –equivariant gradient map
Φ := ι∗ ◦ (µ|M), where ι∗ is the linear map dual to ι : p → u , ξ 7→ −iξ . This
can be seen as follows. Since µ : Z → u∗ is a U –momentum map, we have for
every ξ ∈ u the identity dµξ = ω(ξZ , ·) where ω is the Kähler form of Z and
µξ ∈ C∞(Z) is given by µξ(z) = µ(z)ξ . In particular, if ξ ∈ p , then we obtain

dµ−iξ = ω(−JξZ , ·) = 〈·, ξZ〉,

where J denotes the complex structure of Z . Restricting µ−iξ to M the claim
follows.

Example 1.3. Let V be a finite-dimensional complex vector space with a holo-
morphic representation ρ : UC → GL(V ) and let 〈·, ·〉 be a U –invariant Hermitian
inner product on V . Then the U –action on V is Hamiltonian with U –equivariant
momentum map µ : V → u∗ , µξ(v) := µ(v)ξ = i

〈
ρ∗(ξ)v, v

〉
, where ρ∗ is the in-

duced representation of u on V . If G = K exp(p) is a closed compatible subgroup
of UC and if W is a real G–invariant subspace of V , then the map

Φ: W → p∗, Φξ(w) = i
〈
ρ∗(−iξ)w, w

〉
,

is a K –equivariant gradient map with respect to Re〈·, ·〉|W×W for the G–action
on W . This map Φ is called the standard gradient map for the G–representation
on W .

Let M be a real G–stable submanifold of a complex Kähler manifold
Z endowed with a holomorphic action of UC . We assume that there exists a
U –equivariant momentum map µ : Z → u∗ and let Φ: M → p∗ be the induced
K –equivariant gradient map where K acts on p∗ via the co-adjoint representation.
Associated to this map we have its zero fiber Φ−1(0) and the set of semi-stable
points

SG

(
Φ−1(0)

)
:=

{
x ∈ M ; G · x ∩ Φ−1(0) 6= Ø

}
.

We will use the following facts from [12].

Proposition 1.4. If x ∈ SG

(
Φ−1(0)

)
, then G · x is closed in SG

(
Φ−1(0)

)
if

and only if G · x intersects Φ−1(0) non-trivially. If x ∈ Φ−1(0), then

1. G · x ∩ Φ−1(0) = K · x;

2. the isotropy subgroup of G at x is compatible, i. e. we have Gx = Kx exp(px)
with px :=

{
ξ ∈ p; ξM(x) = 0

}
;

3. the isotropy representation of Gx on TxM is completely reducible.

By the last statement of Proposition 1.4 there exists a Gx–invariant de-
composition TxM = g · x ⊕ W where g · x := {ξM(x); ξ ∈ g

}
= Tx(G · x). The

next theorem gives the existence of a geometric G–slice at points of Φ−1(0). For
its formulation we introduce the following notation. For any subgroup H ⊂ G
and any H –manifold N we write G×H N for the quotient manifold of G×N by
the H –action h · (g, x) := (gh−1, h · x). The H –orbit through (g, x) ∈ G × N is
denoted by [g, x] ∈ G×H N .
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Theorem 1.5. (Slice Theorem) For each x ∈ Φ−1(0) there exist a Gx–stable
open neighborhood S of 0 ∈ W , a G–stable open neighborhood Ω of x ∈ M , and
a G–equivariant diffeomorphism G×Gx S → Ω with [e, 0] 7→ x.

By abuse of notation we will identify S ∼= [e, S] ⊂ G×Gx S with its image
under the map G×GxS → Ω and hence obtain Ω = G·S . The map G×GxS → G·S
is called a geometric G–slice. The representation of Gx on W is called the slice
representation.

In closing we introduce the notion of a topological Hilbert quotient. We
call two points x, y ∈ M equivalent if and only if

G · x ∩G · y 6= Ø

holds. If this relation is an equivalence relation, we denote the corresponding
quotient by π : M → M//G and call it the topological Hilbert quotient of M by
the action of G .

Theorem 1.6. (Quotient Theorem) Suppose that M = SG

(
Φ−1(0)

)
. Then the

topological Hilbert quotient π : M → M//G exists and has the following properties.

1. Every fiber of π contains a unique closed G–orbit, and every other orbit in
the fiber has strictly larger dimension.

2. The closure of every G–orbit in a fiber of π contains the closed G–orbit.

3. The inclusion Φ−1(0) ↪→ M induces a homeomorphism Φ−1(0)/K ∼= M//G.

Isotropy-type stratifications. Let G = K exp(p) ⊂ UC be a reductive Lie
group and let M be a G–manifold together with a G–gradient map Φ: M → p∗ .
As above we suppose that M is embedded into a Kähler manifold Z endowed
with a holomorphic UC–action such that Φ is induced by a U –equivariant mo-
mentum map µ : Z → u∗ . Moreover, we assume M = SG

(
Φ−1(0)

)
and denote the

corresponding quotient by π : M → M//G .

Definition 1.7. For any subgroup H ⊂ G we define

M 〈H〉 :=
{
x ∈ M ; G · x is closed and Gx = H

}
.

The saturation IH := π−1
(
π(M 〈H〉)

)
of M 〈H〉 with respect to π is called the

H –isotropy stratum in M .

We collect some properties for later use. The proof of the following theorem
can be found in [29].

Theorem 1.8. (Isotropy Stratification Theorem) 1. The manifold M is a
disjoint union of the non-empty isotropy strata IH , and this union is locally
finite.

2. If IH ∩ IH′ 6= Ø and IH 6= IH′ , then there exists a g ∈ G such that
gHg−1 ( H ′ holds.

3. Each stratum IH is open in its closure IH .
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4. Let G ×Gx S → G · S be a geometric G–slice at x ∈ Φ−1(0), and let
N :=

{
w ∈ W ; 0 ∈ Gx · w

}
⊂ W be the null cone of the slice representation

of Gx . Then we have

IGx ∩G · S ∼= G×Gx

(
S ∩ (WGx +N )

)
.

Note that we view S as a Gx–invariant open neighborhood of 0 ∈ W when
writing G×Gx

(
S ∩ (WGx +N )

)
.

Remark 1.9. Since the null cone N is real algebraic in W (see [10]), it makes
sense to speak of smooth points of the stratum IH by Theorem 1.8(4). Moreover,
we see that the set of smooth points is open and dense in IH .

2. Compatible subgroups given by involutive automorphisms and
their actions

Regular and strongly regular elements. From now on we fix a closed com-
patible subgroup G = K exp(p) in the complex-reductive group UC . Let θ be the
Cartan involution of UC which defines its compact real form U . Let σ1 and σ2 be
involutive automorphisms of G which both commute with θ|G (but not necessarily
with each other).

Remark 2.1. If G is semi-simple, then there exist elements g1, g2 ∈ G such
that the Cartan involution θ|G commutes with σ′j := Int(gj)σj Int(g−1

j ) where
Int(gj) denotes conjugation by gj (compare the remark in Section 4.3 in [22]). In
the general case let us consider the decomposition G = G′ ·Z , where G′ is the semi-
simple part of G and Z is the connected component of the neutral element in the
center of G . Since all maximal compact subgroups of Z are conjugate, we conclude
that θ|Z is the unique Cartan involution of Z . Therefore the Cartan involution
σ′jθ|Zσ′j must coincide with θ|Z , i. e. σ′j and θ|Z commute. Since G1\G/G2 and

g1G1g
−1
1 \G/g2G2g

−1
2 are isomorphic, we may assume without loss of generality

that θ|G commutes with σj (see also Corollary 2.2 in [15]).

The composition τ := σ2σ1 is an (in general not involutive) automorphism
of G . We only consider involutions for which the restriction of τ to the center of
g is semi-simple with eigenvalues in the unit circle S1 , i. e. for which τ ∈ Aut(g)
is semi-simple and generates a compact subgroup.

Remark 2.2. If the Lie algebra g is semi-simple, then τ is automatically semi-
simple with eigenvalues in S1 . This follows from the fact that τ is an isometry of
the inner product 〈ξ1, ξ2〉 = −B

(
ξ1, θ(ξ2)

)
where B is the Killing form of g .

Let Gσj be the fixed point sets of σj for j = 1, 2 and let Gj be an open
subgroup of Gσj , i. e. let us assume that (Gσj)0 ⊂ Gj ⊂ Gσj holds. Then the
product group G1 ×G2 act on G by left and right multiplication, i. e. we define

(g1, g2) · x := g1xg−1
2 .

The arguments presented at the end of Section 2 in [22] allow us to assume that
G = G1G

0G2 holds.

Since σj is assumed to commute with the Cartan involution θ|G , the group
Gj = Kj exp(pσj) is a closed compatible subgroup of G . In particular, G1×G2 is
a closed compatible subgroup of UC × UC .
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Remark 2.3. It follows that Gσj has only finitely many connected components.
If G is simply-connected, then Gσj is connected (compare [20]).

Definition 2.4. We say that the element x ∈ G is regular (with respect to
G1 × G2 ) if the orbit (G1 × G2) · x has maximal dimension. We call x strongly
regular if it is regular and if (G1 × G2) · x is closed in G . We write Gr and Gsr

for the sets of regular and strongly regular elements in G , respectively. The orbit
(G1 ×G2) · x is called generic if x is strongly regular.

Remark 2.5. The sets Gr and Gsr are invariant under G1 ×G2 . We will see
(Theorem 4.8) that Gsr is open and dense in G . This justifies the terminology
“generic orbit”.

An explicit gradient map. We fix from now on an embedding of U into a
unitary group U(N) and consider the standard Hermitian inner product (A, B) 7→
Tr(AB

t
) on the space of complex (N ×N)–matrices. Its real part 〈·, ·〉 defines a

scalar product on g .

Remark 2.6. With respect to this scalar product 〈·, ·〉 the operator Ad(k),
where k ∈ K , is orthogonal, while Ad

(
exp(ξ)

)
, where ξ ∈ p , is symmetric.

By virtue of the Cartan decomposition UC = U exp(iu) we can define a
function ρ : UC → R≥0 by

ρ
(
u exp(iξ)

)
:=

1

2
Tr(ξξ

t
).

Using [2] one verifies that the (U × U)–invariant smooth function ρ is strictly
plurisubharmonic. Consequently, the (1, 1)–form ω := i

2
∂∂ρ is a (U×U)–invariant

Kähler form on UC . It follows from Lemma 9.1(2) in [11] that the U –action on
UC by right multiplication is Hamiltonian with momentum map

µ : UC → u, u exp(ξ) 7→ iξ,

where we identify u with its dual u∗ via the standard Hermitian inner product.
Since the map UC → UC , g 7→ g−1 , is biholomorphic and interchanges right and
left multiplication, we conclude that the U –action on UC given by left multipli-
cation is also Hamiltonian and has momentum map

µ : UC → u, u exp(ξ) 7→ −i Ad(u)ξ.

By restriction we obtain a (K1 × K2)–equivariant gradient map
Φ: G → pσ1 ⊕ pσ2 for the (G1×G2)–action on G with respect to the Riemannian
metric induced by 〈·, ·〉 . Explicitely, we have

Φ
(
k exp(ξ)

)
=

(
Ad(k)ξ + σ1

(
Ad(k)ξ

)
,−

(
ξ + σ2(ξ)

))
.

Hence, the zero fiber of Φ is given by

Φ−1(0) = K exp(p−σ2) ∩ exp(p−σ1)K

=
{
k exp(ξ) ∈ G; ξ ∈ p−σ2 ∩ Ad(k−1)p−σ1

}
,

(1)

where p−σj := {ξ ∈ p; σj(ξ) = −ξ} for j = 1, 2.
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Lemma 2.7. We have SG1×G2

(
Φ−1(0)

)
= G.

Proof. Since the Kähler form ω has global potential ρ , we obtain

SUC×UC
(
µ−1(0)

)
= UC.

By Proposition 11.2 in [11] this means SG1×G2

(
µ−1

u−σ1⊕u−σ2
(0)

)
= UC , which proves

the claim.

The isotropy representation. In this paragraph we will study the isotropy
representation ρ of (G1 × G2)x on TxG . Since (ξ1, ξ2) ∈ gσ1 ⊕ gσ2 induces the
tangent vector

d

dt

∣∣∣∣
t=0

exp(tξ1)x exp(−tξ2) =
d

dt

∣∣∣∣
t=0

x exp(t Ad(x−1)ξ1) exp(−tξ2)

= (`x)∗
(
Ad(x−1)ξ1 − ξ2

)
∈ TxG,

where `x denotes left multiplication with x ∈ G , we obtain Tx(G1 × G2) · x =
(gσ1 ⊕ gσ2) · x =

{
(`)xξ; ξ ∈ gσ2 + Ad(x−1)gσ1

}
. Moreover, one checks directly

that the isotropy group at x ∈ G is given by

(G1 ×G2)x =
{
(xgx−1, g); g ∈ G2 ∩ x−1G1x

}
.

Consequently, we may identify (G1×G2)x with G2∩x−1G1x via the isomorphism
ϕ : G2 ∩ x−1G1x → (G1 × G2)x , g 7→ (xgx−1, g). Similarly, we will identify the
tangent space Tx(G1×G2) ·x with gσ2 +Ad(x−1)gσ1 via (`x)∗ . We conclude from

ρ
(
ϕ(g)

)
(`x)∗ξ =

d

dt

∣∣∣∣
t=0

(xgx−1, g) · x exp(tξ)

=
d

dt

∣∣∣∣
t=0

xg exp(tξ)g−1 =
d

dt

∣∣∣∣
t=0

x exp
(
t Ad(g)ξ

)
= (`x)∗ Ad(g)ξ

that the map (`x)∗ intertwines the adjoint representation of G2 ∩ x−1G1x on g

with the isotropy representation of (G1×G2)x on TxG modulo ϕ . We summarize
our considerations in the following

Lemma 2.8. Modulo the isomorphism ϕ the isotropy representation of
(G1 × G2)x on TxG is equivalent to the adjoint representation of G2 ∩ x−1G1x
on g.

For any x ∈ G we define the automorphism τx := σ2 Int(x−1)σ1 Int(x) ∈
Aut(G) which induces the automorphism τx = σ2 Ad(x−1)σ1 Ad(x) of g . Note
that τe = σ2σ1 = τ is not necessarily involutive since we do not assume that σ1

and σ2 commute. We need the following technical

Lemma 2.9. Let x ∈ Φ−1(0) be given.

1. The automorphism τx = σ2 Ad(x−1)σ1 Ad(x) is semi-simple. In particular,
the automorphism τk with k ∈ K is semi-simple with eigenvalues in the unit
circle S1 = {z ∈ C; |z| = 1}.
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2. The subalgebra gτx ⊂ g is invariant under θ and σ2 . In particular, gτx is
reductive.

3. The eigenspace decomposition of gτx with respect to σ2 is given by

gτx =
(
gσ2 ∩ Ad(x−1)gσ1

)
⊕

(
g−σ2 ∩ Ad(x−1)g−σ1

)
.

Proof. Let x = k exp(ξ) be the Cartan decomposition of x ∈ Φ−1(0). It follows
that ξ ∈ p−σ2 ∩ Ad(k−1)p−σ1 , which implies σ2(ξ) = −ξ = Ad(k−1)σ1 Ad(k)ξ .
Using these identities we obtain

τx = Ad
(
exp(2ξ)

)
τk = τk Ad

(
exp(2ξ)

)
.

Since τ is assumed to be semi-simple and k ∈ K , we conclude that τk is semi-
simple with eigenvalues in S1 . Since for ξ ∈ p the operator Ad

(
exp(2ξ)

)
is sym-

metric, it is semi-simple, too. Since both automorphisms commute, we conclude
that τx is semi-simple, which proves the first claim.

If η ∈ gτx , then
Ad

(
exp(−2ξ)

)
η = τk(η).

Since τk has only eigenvalues in S1 while the eigenvalues of Ad
(
exp(−2ξ)

)
are real,

we obtain τk(η) = η as well as Ad
(
exp(−2ξ)

)
η = η for all η ∈ gτx . Together with

τxθ = Ad
(
exp(2ξ)

)
τkθ = θ Ad

(
exp(−2ξ)

)
τk and τxσ2 = σ2τ

−1
x this observation

implies the second claim. The last assertion is elementary to check.

In order to simplify notation we put

hx := gσ2 ∩ Ad(x−1)gσ1 and qx := g−σ2 ∩ Ad(x−1)g−σ1 .

Consequently, for x ∈ Φ−1(0) the Lie algebra gτx = hx ⊕ qx is reductive and sym-
metric with respect to σ2|gτx = Ad(x−1)σ1 Ad(x)|gτx . The set Hx :=
G2 ∩ x−1G1x is a closed subgroup of Gτx with Lie algebra hx and is isomorphic
to the isotropy group (G1 ×G2)x .

Lemma 2.10. For x ∈ Φ−1(0) we have the Hx–invariant decomposition

g =
(
gσ2 + Ad(x−1)gσ1

)
⊕ qx. (2)

Consequently, (`x)∗q
x is a (G1×G2)x–invariant complement to Tx

(
(G1×G2) ·x

)
in TxG.

Proof. Let x ∈ Φ−1(0) be given. By Lemma 2.9 the automorphism τx is semi-
simple, and hence Lemma 1(i) from [22] applies to prove (2). The last assertion
follows from Lemma 2.8.

As a corollary we obtain the following

Theorem 2.11. For every x ∈ Φ−1(0) there exists a neighborhood N of 0 ∈
qx such that Sx := x exp(iN) is a geometric (G1 × G2)–slice at x. The slice
representation of (G1 ×G2)x on TxSx is isomorphic to the adjoint representation
of Hx on qx .

Remark 2.12. If the group G is complex and if σ1 and σ2 are antiholomorphic,
then G1 and G2 are real forms of G . In this case it turns out that the Lie algebra
gτx is complex and that qx = ihx holds, i. e. that hx is a real form of gτx . Hence, the
slice representation is isomorphic to the adjoint representation of the real-reductive
group Hx on its Lie algebra hx .
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3. The isotropy representation of reductive symmetric spaces

Since we have seen that the slice representation of (G1 × G2)x at x ∈ Φ−1(0)
is isomorphic to the isotropy representation of a reductive symmetric space, we
investigate this representation in some detail using again natural gradient maps.
We think of the results obtained in this section as the infinitesimal version of the
(G1 × G2)–orbit structure in G . Later we will make use of the Slice Theorem in
order to transfer the results to the group level.

Closed orbits. Let G = K exp(p) ⊂ UC be a real-reductive Lie group with
Cartan involution θ . We may assume that U is embedded in some unitary group
U(N) and hence obtain the associated scalar product 〈·, ·〉 on g .

Let σ ∈ Aut(G) be any involutive automorphism commuting with θ .
In this case the set H = Gσ is a θ–stable closed subgroup and consequently
H = Kσ exp(pσ) is real-reductive. The homogeneous space X := G/H is called
a reductive symmetric space. Let g = h ⊕ q be the decomposition of g into
σ–eigenspaces. The group H acts on q via the adjoint representation, and this
representation is isomorphic to the isotropy representation of H on TeHX . We
refer the reader to [26] for more details on this topic.

Since the Lie algebra g is reductive, there is a notion of Jordan-Chevalley
decomposition for elements in g which goes as follows. Every element ξ ∈ g can
be uniquely written as ξ = ξs + ξn such that ξs is semi-simple, ξn is nilpotent,
and [ξs, ξn] = 0. If ξ ∈ q , then we have

σ(ξs) + σ(ξn) = σ(ξ) = −ξ = −ξs − ξn.

From the uniqueness of the Jordan-Chevalley decomposition we conclude that ξs

and ξn are again contained in q . Hence, it makes sense to speak of semi-simple
and nilpotent elements in q . Moreover, the set of semi-simple elements in q is
open and dense in q .

Remark 3.1. In [22] the map Ψ: G → Aut(G), x 7→ σ2 Ad(x−1)σ1 Ad(x), is
used in order to define a notion of Jordan decomposition in G as follows. Since
Aut(g) is an algebraic group, one can decompose Ψ(x) as Ψ(x) = su = us
where s ∈ Aut(G) is semi-simple and u ∈ Aut(G) is unipotent. It is proven
(Proposition 2 in [22]) that this decomposition can be lifted to G and thus yields a
kind of Jordan decomposition of elements in G which takes the involutions σ1 and
σ2 into account. By Theorem 2.11 every x ∈ G is of the form x = x0 exp(ξ), where
x0 ∈ Φ−1(0) is a point of the unique closed orbit in the closure of (G1 × G2) · x
and ξ lies in the null cone of qx0 and hence is nilpotent. It is not hard to see
that Ψ(x0) = s and Ad

(
exp(2ξ)

)
= u hold. If furthermore x = exp(ξ) lies in

exp(qy) for some y ∈ Φ−1(0), then we can decompose ξ as ξ = ξs + ξn and obtain
Ψ

(
exp(ξs)

)
= s as well as Ad

(
exp(2ξn)

)
= u (see Remark 4.1 in [9]).

It is known that the adjoint G–orbit through ξ ∈ g is closed if and only if
ξ is semi-simple. In the next proposition we obtain a similar characterization of
closed H –orbits in q .
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Proposition 3.2. Let ξ ∈ q. Then Ad(G)ξ is closed in g if and only if
Ad(H)ξ is closed in q. Consequently, Ad(H)ξ is closed in q if and only if ξ
is semi-simple. Hence, there is a dense open subset of ξ ∈ q such that Ad(H)ξ is
closed.

Remark 3.3. 1. The fact that Ad(H)ξ is closed precisely for semi-simple
ξ , is proven by a different method in [7]. It can also be deduced from [19]
and [25]. In order to illustrate the method we show how the standard gradient
map may be used to prove Proposition 3.2.

2. Note that Proposition 3.2 can be viewed as a generalization of Corollary 5.3
in [3].

Proof. We first assume that Ad(G)ξ is closed in g . Since the differential of
the map H × q → G , (h, ξ) 7→ h exp(ξ), at (e, 0) is given by (η, ξ) 7→ η + ξ , we
conclude that there is an open neighborhood N of 0 ∈ q such that V := H exp(N)
is open in G and diffeomorphic to H ×N . Since

d

dt

∣∣∣∣
0

Ad
(
exp(tη)

)
ξ′ = [η, ξ′]

holds for all η, ξ′ ∈ g and since [q, q] ⊂ h , we conclude that for all ξ′ ∈ Ad(G)ξ∩q

the orbit Ad(G)ξ′ intersects q locally in Ad(H)ξ′ . Consequently, every H –orbit
in Ad(G)ξ ∩ q is open and hence also closed in Ad(G)ξ ∩ q . This shows that
Ad(H)ξ is closed if Ad(G)ξ is closed.

In order to prove the converse, we consider the standard gradient map

ΦG : g → p∗, Φη
G(ξ) =

〈
[η, ξ], ξ

〉
,

for the adjoint G–action on g with respect to 〈·, ·〉 . Elementary computations
show that 〈

[η, ξ], ξ
〉

=
〈
η, [ξk, ξp]

〉
,

where ξ = ξk + ξp is the Cartan decomposition of ξ ∈ g . Since [ξk, ξp] ∈ p , the
zero fiber of this map is given by Φ−1

G (0) =
{
ξ ∈ g; [ξk, ξp] = 0

}
. Furthermore,

the restriction ΦH : q → (pσ)∗ of ΦG is a gradient map for the adjoint H –action
on q . Since we have [ξk, ξp] ∈ pσ for all ξ ∈ q , we obtain Φ−1

H (0) = Φ−1
G (0) ∩ q .

Since one directly checks SG

(
Φ−1

G (0)
)

= g and SH

(
Φ−1

H (0)
)

= q , the claim follows
from Proposition 1.4.

In closing we describe the connection to Cartan subspaces of q .

Definition 3.4. A Cartan subspace of q is a maximal Abelian subspace c ⊂ q

which consists of semi-simple elements.

Proposition 3.5. Every closed H –orbit in q intersects some θ–stable Cartan
subspace non-trivially. Conversely, if ξ lies in a θ–stable Cartan subspace of q,
then Ad(H)ξ is closed.
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Proof. If the orbit Ad(H)ξ ⊂ q is closed, we may assume by Proposition 1.4
that ξ lies in Φ−1

H (0) and hence that [ξk, ξp] = 0 holds. Therefore there exists a
θ–stable maximal Abelian subspace of q which contains ξ . By θ–invariance this
maximal Abelian subspace consists of semi-simple elements and thus is a Cartan
subspace.

Since every element ξ in a θ–stable Cartan subspace is mapped to zero
under ΦH , the H –orbit through ξ is closed. This finishes the proof.

Nonclosed orbits. The following statement is taken from [7] (see Theorem 23).

Proposition 3.6. (van Dijk) There are only finitely many nilpotent H –orbits
in q. It follows that the dimension of the null cone N ⊂ q coincides with the
dimension of an H –orbit which is open in N .

In order to describe the non-closed orbits, we will make use of the weight
space decomposition

gC = ZhC(c)⊕ cC ⊕
⊕
λ∈Λ

gC
λ

of gC with respect to a Cartan subspace c of q .

Remark 3.7. The set Λ of weights fulfills the axioms of an abstract root
system, since it coincides with the set of restricted roots for the symmetric space
gd = kd ⊕ pd where (gd, hd) is the dual of (g, h) (compare [26]). In particular, it
makes sense to speak of a subsystem Λ+ ⊂ Λ of positive roots.

In the following we extend the involution σ by C–linearity to gC . Since c

is contained in q , we have σ(gC
λ) = gC

−λ for all λ ∈ Λ. Consequently, elements of
q can be written as

ξ = ξ0 +
∑
λ∈Λ+

(
ξλ − σ(ξλ)

)
where ξ0 lies in Zq(c) = c . Elements of h can be described in a similar way.

The first goal in this subsection is to find a geometric H –slice at a point
η0 ∈ c . We identify the tangent space of H · η0 at η0 with [h, η0] .

Lemma 3.8. Let Λ(η0) :=
{
λ ∈ Λ; λ(η0) = 0

}
. Then we have

q = [h, η0]⊕ c⊕

q ∩
⊕

λ∈Λ(η0)

gC
λ

 .

Proof. Since we have q = c ⊕
(
q ∩

⊕
λ∈Λ gC

λ

)
, it is enough to show that

[h, η0] = q ∩
⊕

λ/∈Λ(η0) gC
λ holds. If ξ = [ξ′, η0] with ξ′ ∈ h is given, then we

decompose ξ′ =
∑

λ∈Λ ξ′λ and obtain ξ = −
∑

λ∈Λ λ(η0)ξ
′
λ = −

∑
λ/∈Λ(η0) λ(η0)ξ

′
λ ∈

q ∩
⊕

λ/∈Λ(η0) gC
λ which was to be shown.

In order to prove the converse let ξ ∈ q ∩
⊕

λ/∈Λ(η0) gC
λ be given. It follows

from the discussion above that ξ has a representation ξ =
∑

λ/∈Λ+(η0)

(
ξλ − σ(ξλ)

)
.

Defining

ξ′ :=
∑

λ/∈Λ+(η0)

(
1

λ(η0)
ξλ + σ( 1

λ(η0)
ξλ)

)
∈ h ∩

⊕
λ/∈Λ(η0)

gC
λ

one checks directly that [η0, ξ
′] = ξ holds. Hence, the lemma is proven.
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As a consequence we obtain the following description of non-closed orbits.

Proposition 3.9. Let ξ ∈ q be point on a non-closed H –orbit and let η0 ∈
H · ξ be an element lying in the unique closed H –orbit in H · ξ . We assume that
η0 is contained in the Cartan subspace c. Then ξ is contained in the null cone of

the ZH(η0)–representation on c⊕
(
q ∩

⊕
λ∈Λ(η0) gC

λ

)
.

4. Structure of the set of closed orbits

In this section we will state and proof the first main result, namely Matsuki’s
parametrization of the set of closed (G1 × G2)–orbits via Cartan subsets. We
will present a constructive proof in some detail since this explains how one has
to deal with concrete examples. In the case of the (GR × GR)–action on a semi-
simple complex group G , the proof reproduces the Cayley transform of Cartan
subalgebras in semi-simple real Lie algebras.

Cartan subsets. We review the notion of fundamental and standard Cartan
subsets from [22].

Definition 4.1. Let t0 be a maximal Abelian subspace in k−σ2 ∩ k−σ1 and let
a0 be an Abelian subspace of p−σ2 ∩ p−σ1 such that c0 := t0 ⊕ a0 is a maximal
Abelian subspace of g−σ2 ∩ g−σ1 . Then the set C0 := exp(c0) ⊂ G is called a
fundamental Cartan subset.

Remark 4.2. 1. By maximality of t0 the set T0 := exp(t0) is a torus in K .
In general T0 is not a maximal torus as we will see in Example 5.4.

2. The subalgebra c0 consists by construction of semi-simple elements.

Definition 4.3. A subset C := n exp(c) ⊂ G is called a standard Cartan sub-
set, if n lies in T0 and c is a θ–stable Abelian subspace of qn

= g−σ2 ∩ Ad(n−1)g−σ1 with decomposition c = t ⊕ a such that t ⊂ t0 , a ⊃ a0

and dim c = dim c0 hold.

Remark 4.4. The subspace c is a Cartan subspace of qn .

Lemma 4.5. Each standard Cartan subset C is contained in the zero-fiber
Φ−1(0).

Proof. Let C = n exp(c) be a standard Cartan subset and let z = n exp(η)
for some η ∈ c . According to the decomposition c = t ⊕ a we write η = ηt + ηa .
Since c is Abelian, we obtain z = n exp(ηt) exp(ηa) where n exp(ηt) ∈ K and
exp(ηa) ∈ exp(p) hold. Therefore we can compute as follows:

Φ(z) =
(
Ad

(
n exp(ηt)

)
ηa + σ1

(
Ad

(
n exp(ηt)

)
ηa

)
,−

(
ηa + σ2(ηa)

))
=

(
Ad(n)ηa + σ1

(
Ad(n)ηa

)
, 0

)
= (0, 0),

where we have used that c is Abelian and contained in qn .
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We shall regard two standard Cartan subsets as equivalent, if there is a
generic orbit which intersects both of them non-trivially. We will see later that
there are only finitely many equivalence classes of Cartan subsets. Let {Cj}j∈J be
a complete set of representatives. Then we can state the first main result.

Theorem 4.6. (Matsuki) Each closed (G1×G2)–orbit intersects one of the Cj ,
i. e. we have {

z ∈ G; (G1 ×G2) · z is closed
}

=
⋃
j

G1CjG2. (3)

Each generic (G1×G2)–orbit intersects exactly one Cj in a finite number of points.
Hence, the set of strongly regular elements in G coincides with the disjoint union
of the open sets Ωj := G1(Cj ∩Grs)G2 .

Remark 4.7. Let Gj = Kj exp(pσj), j = 1, 2, denote the Cartan decom-
position. The only point missing for a proof of Matsuki’s theorem is that the
(K1 ×K2)–orbit through every element in Φ−1(0) intersects some standard Car-
tan subset. This fact can be deduced from [25], where it is shown that any maximal
Abelian subspace of g−σ2 ∩ Ad(k−1)g−σ1 is conjugate under Ad(G2 × k−1G1k) to
a θ–stable maximal Abelian subspace. We will give another proof of this fact
which is organized in a way such that it becomes clear how to deal with concrete
examples.

We conclude from Proposition 3.2 the following

Theorem 4.8. The set Gsr of strongly regular elements is open and dense in
G. For each x ∈ Gsr the subspace qx lies in the center of gτx . In particular, in
this case qx is Abelian and consists of semi-simple elements.

Proof. Since SG1×G2

(
Φ−1(0)

)
= G , every orbit contains a unique closed orbit

in its closure and we have a geometric slice at every closed (G1 × G2)–orbit.
Moreover, by Theorem 2.11 the slice representation is equivalent to the isotropy
representation of a reductive symmetric space as considered in Section 3. Hence,
Proposition 3.2 implies that Gsr is open and dense in G .

For dimensional reasons the effective part of the slice representation of a
generic orbit must be that of a finite group, which implies that for x ∈ Gsr

the adjoint representation of hx on qx is trivial. We claim that this implies
qx ⊂ Z(gτx). In order to prove this claim, we decompose the reductive Lie algebra
gτx into its center z and its semi-simple part s . Since every automorphism of
gτx leaves its center and semi-simple part invariant, we obtain the decompositions
s = (s ∩ hx) ⊕ (s ∩ qx) as well as qx = (qx ∩ s) ⊕ (qx ∩ z). Hence, we have to
show that s ∩ qx = {0} . We conclude from the semi-simplicity of s and from
[hx, qx] = {0} that

s = [s, s] = [s ∩ hx, s ∩ hx] + [s ∩ qx, s ∩ qx] ⊂ s ∩ hx,

i. e. we have s = s ∩ hx which yields the claim. Since qx is θ–stable and Abelian,
it consists of semi-simple elements.
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Corollary 4.9. Let C = n exp(c) be a standard Cartan subset. For x ∈ C∩Gsr

we have qx = c. In particular, if x ∈ C ∩ Gsr , then the connected component of
C ∩Gsr which contains x defines a geometric slice to (G1 ×G2) · x.

Proof. This follows from Theorem 4.8 since c is a Cartan subspace of qx which
is Abelian and consists of semi-simple elements for strongly regular elements.

The (K1 × K2)–action on Φ−1(0). In this subsection we review Theorem 1
from [22]. Let t0 ⊂ k−σ2∩k−σ1 be a maximal Abelian subspace and let T0 := exp(t0)
be the corresponding torus in K .

Proposition 4.10. (Matsuki) Each (K1×K2)–orbit in K intersects the torus T0 .

To understand the intersection of the (K1 ×K2)–orbits with T0 , we intro-
duce the groups

NK1×K2(T0) :=
{
(k1, k2) ∈ K1 ×K2; k1T0k

−1
2 = T0

}
as well as

ZK1×K2(T0) :=
{
(k1, k2) ∈ K1 ×K2; k1 exp(η)k−1

2 = exp(η) for all η ∈ t0
}

and WK1×K2(T0) := NK1×K2(T0)/ZK1×K2(T0).

Remark 4.11. The group WK1×K2(T0) is finite (see Lemma 2.2.6 in [23]).

Proposition 4.12. (Matsuki) Every (K1 × K2)–orbit in K intersects T0 in
a WK1×K2(T0)–orbit. Hence, the inclusion T0 ↪→ K induces a homeomorphism
T0/WK1×K2(T0) ∼= K1\K/K2 .

Remark 4.13. In the special case σ1 = σ2 this statement can be found in [13],
while for commuting involutions σ1 and σ2 it is proven in [17].

Consequently, after applying an element of K1 ×K2 , we can assume that
k ∈ K is of the form k = exp(η) for some η ∈ t0 which is unique up to the action
of W := WK1×K2(T0).

The extended weight decomposition. Since the maximal Abelian subspace
t0 ⊂ k−σ2 ∩ k−σ1 consists of semi-simple elements, we may form the weight space
decomposition

gC = kC ⊕ pC =
⊕
λ∈Λk

kC
λ ⊕

⊕
λ∈Λp

pC
λ

with respect to t0 .

Remark 4.14. 1. If G is complex-reductive, then K is a compact real form
of G = KC and p = ik . In this case we identify pC with kC = g . Hence,
Λk and Λp are essentially the same, and we do not have to complexify g in
order to consider the weight decompositions when g is already complex.
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2. It is proven in [22] that the set of non-zero weights in Λk fulfills the axioms
of an abstract root system.

We extend the involutions σ1 and σ2 as C–linear maps to gC . Since the
semi-simple automorphism τ = σ2σ1 leaves each weight space invariant, we obtain
the finer decomposition

gC =
⊕

(λ,a)∈Λ̃k

kC
λ,a ⊕

⊕
(λ,a)∈Λ̃p

pC
λ,a, (4)

where kC
λ,a :=

{
ξ ∈ kC

λ ; τ(ξ) = aξ
}

and Λ̃k :=
{
(λ, a) ∈ Λk × S1; kC

λ,a 6= {0}
}

. The

sets pC
λ,a and Λ̃p are defined similarly. We call the decomposition (4) the extended

weight space decomposition of gC . For η ∈ t0 we define

Λ̃k(η) :=
{
(λ, a) ∈ Λ̃k; ae2λ(η) = 1

}
and analogously Λ̃p(η).

Lemma 4.15. Let k = exp(η) with η ∈ t0 be given. Then we have(
kσ2 ∩ Ad(k−1)kσ1

)C
= (kσ2)C ∩

⊕
(λ,a)∈Λ̃k(η)

kC
λ,a

as well as (
p−σ2 ∩ Ad(k−1)p−σ1

)C
= (p−σ2)C ∩

⊕
(λ,a)∈Λ̃p(η)

pC
λ,a.

Proof. Since the C–linear automorphism τk = σ2 Ad(k−1)σ1 Ad(k) of gC com-
mutes with θ and with the complex conjugation κ on gC which defines g , it follows
that τk leaves kC and pC invariant. Moreover, for every ξλ,a ∈ gC

λ,a := kC
λ,a ⊕ pC

λ,a

we have

τk(ξλ,a) = τ Ad(k2)ξλ,a = ae2λ(η)ξλ,a.

Hence, the fixed point sets of τk in kC and pC are given by⊕
(λ,a)∈Λ̃k(η)

kC
λ,a and

⊕
(λ,a)∈Λ̃p(η)

pC
λ,a,

respectively. Both fixed point sets are invariant under σ2 , and furthermore the

subalgebra
(
kσ2∩Ad(k−1)kσ1

)C
is the (+1)–eigenspace of σ2 restricted to the fixed

point set of τk in kC while
(
p−σ2 ∩ Ad(k−1)p−σ1

)C
is the (−1)–eigenspace of σ2

restricted to the fixed point set of τk in pC . These observations proof the lemma.

Remark 4.16. Since σ2(g
C
λ,a) = gC

−λ,a−1 and κ(gC
λ,a) = gC

−λ,a−1 , Lemma 4.15

enables us to determine kσ2 ∩ Ad(k−1)kσ1 and p−σ2 ∩ Ad(k−1)p−σ1 .
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A normal form for elements in Φ−1(0). In this paragraph we show that for
every element x ∈ Φ−1(0) there exists a pair (k1, k2) ∈ K1×K2 such that k1xk−1

2

lies in some standard Cartan subset. This proves that the closed (G1×G2)–orbits
in G are precisely those which intersect a standard Cartan subset non-trivially.

For this let x = k exp(ξ) be an arbitrary element of Φ−1(0), i. e. let
ξ ∈ p−σ2∩Ad(k−1)p−σ1 . By virtue of Proposition 4.10 the element k is conjugate to
an element of the torus T0 under K1×K2 . If (k1, k2) is an element of the isotropy
group (K1 ×K2)k , then k2 ∈ K2 ∩ k−1K1k and k1 = kk2k

−1 hold. Consequently,
we have

(k1, k2) · x = k1k exp(ξ)k−1
2 = k1kk−1

2 exp
(
Ad(k2)ξ

)
= k exp

(
Ad(k2)ξ

)
.

Hence, we have to understand the adjoint action of K2 ∩ k−1K1k on
p−σ2 ∩ Ad(k−1)p−σ1 . Since the set

(
K2 ∩ k−1K1k

)
exp

(
p−σ2 ∩ Ad(k−1)p−σ1

)
is

a closed compatible subgroup of G , we conclude from Proposition 7.29 in [18]
that all maximal Abelian subspaces of p−σ2 ∩ Ad(k−1)p−σ1 are conjugate under
K2 ∩ k−1K1k . Hence, we see that there exists an element k2 ∈ K2 ∩ k−1K1k such
that Ad(k2)ξ ∈ a holds for a maximal Abelian subspace a which contains a0 . Let
t := Zt0(a) and c := t⊕ a . Moreover, we decompose η ∈ t0 as

η = η1 + η2 ∈ t⊥ ⊕ t = t0

and put n := exp(η1).

Lemma 4.17. The set C := n exp(c) ⊂ G is a standard Cartan subset. Hence,
every element x ∈ Φ−1(0) is conjugate under the group K1 ×K2 to an element of
some standard Cartan subset.

Proof. It follows directly from the construction that n ∈ T0 holds and that
c ⊂ g−σ2 ∩ Ad(n−1)g−σ1 is a θ–stable Abelian subalgebra with decomposition
c = t⊕ a such that t ⊂ t0 and a ⊃ a0 hold.

It remains to show that dim c = dim c0 holds. It follows from the construc-
tion that c is a Cartan subspace of g−σ2 ∩ Ad(n−1)g−σ1 . Moreover, since n ∈ T0 ,
we conclude that c0 is also a Cartan subspace of g−σ2 ∩ Ad(n−1)g−σ1 , hence that
their dimensions coincide.

In the following we will define the appropriate notion of equivalence of
standard Cartan slices in order to make considerations independent of the point
x .

Definition 4.18. Two standard Cartan subsets C1 = T1 exp(a1) and C2 =
T2 exp(a2) are called equivalent (or conjugate), if there exists an element (k1, k2) ∈
NK1×K2(T0) such that T2 = k1T1k

−1
2 holds.

Lemma 4.19. If two standard Cartan subsets C1 and C2 are equivalent, then
there exists an element (k1, k2) ∈ K1 ×K2 such that C2 = k1C1k

−1
2 holds.

Proof. This is the content of Lemma 10 in [22].
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Proposition 4.20. Let {Cj}j∈J be a complete set of representatives of equiva-
lence classes of standard Cartan subsets. Then J is finite.

Proof. Our construction of the standard Cartan subset C = n exp(c) re-
veals that it is completely determined by the maximal Abelian subspace a in
p−σ2 ∩ Ad(k−1)p−σ1 . Since all maximal Abelian subspaces of p−σ2 ∩ Ad(k−1)p−σ1

are conjugate under K2∩k−1K1k , it is enough to show that there are only finitely
many possibilities for the subspace p−σ2 ∩ Ad(k−1)p−σ1 with k ∈ T0 . Since this
fact is a consequence of Lemma 4.15, the claim follows.

Remark 4.21. In [22] standard Cartan subsets are described in terms of or-
thogonal systems of weight vectors (compare also [25] and [21]).

In the next step we have to understand the intersection of the (G1 ×G2)–
orbits with the standard Cartan sets. For this, we introduce the following groups.
Let Cj be one of the standard Cartan subsets and define

NK1×K2(Cj) :=
{
(k1, k2) ∈ K1 ×K2; k1Cjk

−1
2 = Cj

}
,

ZK1×K2(Cj) :=
{
(k1, k2) ∈ K1 ×K2; k1xk−1

2 = x for all x ∈ Cj

}
,

and WK1×K2(Cj) := NK1×K2(Cj)/ZK1×K2(Cj).

Proposition 4.22. If x ∈ Cj is regular, then

(G1 ×G2) · x ∩ (Cj ∩Gsr) = WK1×K2(Cj) · x

holds.

Proof. This is Proposition 2.2.28 in [23].

Corollary 4.23. The groups WK1×K2(Cj) are finite.

Proof. Since Cj defines a geometric slice at its regular points, the intersection
of a generic (G1×G2)–orbit with Cj is zero-dimensional, and since this intersection
is given by an orbit of the compact group K1 × K2 , it is finite. Moreover, by
Proposition 4.22 this intersection coincides with an orbit of WK1×K2(Cj). Since
this group acts effectively, the claim follows.

Finally we restate and prove the main theorem 4.6.

Theorem 4.24. (Matsuki) Let {Cj} be a complete set of representatives of
standard Cartan subsets. Then

G1Φ
−1(0)G2 =

⋃
j

G1CjG2 and Gsr =
⋃̇
j

G1(Cj ∩Gsr)G2.

Moreover, each generic (G1×G2)–orbit intersects Cj∩Gsr in a WK1×K2(Cj)–orbit.
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Proof. The only claim which has not been proved up to now is that the second
union is disjoint. For convenience of the reader we reproduce the argument from
the proof of Theorem 3 in [22].

Let x ∈ Cj ∩Gsr and x′ ∈ Ck ∩Gsr with x′ ∈ (G1×G2) ·x be given. Since
Cj and Ck are contained in Φ−1(0), there exists an element (k1, k2) ∈ K1 × K2

such that x′ = k1xk−1
2 holds. We finish the proof by showing that the element

(k1, k2) normalizes Cj . For this we write Cj = n exp(cj). Since x ∈ Cj holds, we
conclude x−1n ∈ exp(cj) and thus Cj = x exp(cj). This implies

k1Cjk
−1
2 = k1

(
x exp(cj)

)
k−1

2 = k1xk−1
2 exp

(
Ad(k2)cj

)
= x′ exp

(
Ad(k2)cj

)
.

Moreover, since x is assumed to be strongly regular, we obtain cj = qx and
therefore

Ad(k2)cj = Ad(k2)q
x = Ad(k2)

(
g−σ2 ∩ Ad(x−1)g−σ1

)
= g−σ2 ∩ Ad(k2x

−1k−1
1 )g−σ1 = qx′ .

Since x′ is also strongly regular, we conclude qx′ = ck . Hence, the theorem is
proven.

In course of our proof of this theorem we have obtained the following fact.

Proposition 4.25. Let C = n exp(c) be a standard Cartan subset in G and
let x0 be a point of C such that the slice representation of (G1 ×G2)x0 is trivial.
Then x0 ∈ C ∩ Gsr and there exists an open neighborhood C0 of x0 in C ∩ Gsr

such that Ω = G1C
0G2 is diffeomorphic to

(
(G1 ×G2)/(G1 ×G2)x0

)
× C0 .

Remark 4.26. Since the effective part of the slice representation is that of a
finite group there exists an open and dense subset of points in C∩Gsr such that the
slice representation at these points is trivial. Moreover, we claim that the isotropy
groups of all these points are isomorphic. This can be seen from Theorem 2.11
since if (G1 ×G2)x acts trivially on qx = c , then (G1 ×G2)x

∼= ZG1×G2(C) holds.

The maximal region with proper (G1 × G2)–action. Let Ω be an open
(G1 ×G2)–invariant subset of G . We assume that every (G1 ×G2)–orbit in Ω is
closed in G , i. e. that Ω ⊂ G1Φ

−1(0)G2 holds. It follows that every (G1×G2)–orbit
in Ω admits a geometric slice and that the quotient Ω//(G1×G2) = Ω/(G1×G2) ∼=(
Ω ∩ Φ−1(0)

)
/(K1 × K2) is Hausdorff. Therefore, G1 × G2 acts properly on

Ω ⊂ G1Φ
−1(0)G2 if and only if the isotropy group (G1 × G2)x is compact for

every x ∈ Ω (compare [27]). This discussion leads to the following

Proposition 4.27. The set

CompG1×G2
(G) := {x ∈ G; (G1 ×G2) · x is closed and (G1 ×G2)x is compact}

is the maximal open subset of G1Φ
−1(0)G2 on which G1 ×G2 acts properly.

Proof. This is immediate from Proposition 14.24 in [11].
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Remark 4.28. 1. The reader should be aware of the fact that the set
CompG1×G2

(G) is in most cases empty.

2. If the group G is complex and the involutions σ1 and σ2 are both anti-
holomorphic, then a (G1 × G2)–orbit with compact isotropy group is auto-
matically closed in G . This can be deduced with the help of the Slice The-
orem from the fact that an adjoint GR–orbit in gR with compact isotropy
is automatically closed, where GR is real-reductive. As we will see in the
second example in Section 5, this is not the case if one of the involutions is
holomorphic.

Example 4.29. Let G/K be a Riemannian symmetric space of non-compact
type and let G/K ↪→ GC/KC be its complexification. Then CompG×KC(GC) co-
incides with the Akhiezer-Gindikin subset GU+KC ⊂ GC defined in Proposition 4
in [1].

Non-closed (G1 × G2)–orbits. We describe the set of regular elements in G
which lie in non-closed (G1 ×G2)–orbits.

Proposition 4.30. Every element x ∈ Gr can be written in the form

x = n exp(η) exp(ξ),

where x0 := n exp(η) lies in the standard Cartan subset C = n exp(c) and ξ is a
point of the null cone of the Hx0 –representation on qx0 .

Proof. This is a consequence of the Slice Theorem and the description of the
isotropy representation.

5. Examples

Real forms. Let G be complex semi-simple, and let σ1 = σ2 =: σ define the
real form GR of G . In [4] and [28] it is shown that the closed (GR×GR)–orbits in
G are parametrized by the different conjugacy classes of real Cartan subalgebras
in gR . Moreover, in [5] also the structure of non-closed orbits is investigated in
great detail. The case that σ1 and σ2 are any (not necessarily commuting) anti-
holomorphic involutive automorphisms of G defining the two real forms G1 and
G2 is considered in [23] where a natural gradient map is used in order to analyze
the set of closed (G1 × G2)–orbits in the same spirit as in this paper. A special
feature when actions of real forms are considered is that the slice representations
are equivalent to the adjoint representation of real-reductive Lie groups. These
are technically simpler to deal with than the isotropy representations of arbitrary
reductive symmetric spaces.

Complexification of semi-simple symmetric spaces. Let G be a linear
semi-simple real Lie group with an involutive automorphism σ , and let H be
a subgroup of G such that (Gσ)0 ⊂ H ⊂ Gσ holds. Then we can form the
complexification G/H ↪→ GC/HC of the semi-simple symmetric space G/H . The
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first basic question in this situation is how one can understand the orbit structure
of the G–action on GC/HC or equivalently the orbit structure of the (G×HC)–
action on GC . Let us assume that there exists an anti-holomorphic involutive
automorphism κ ∈ Aut(GC) which defines the real form G . The holomorphic
extension of σ ∈ Aut(G) to GC defines the group HC . Let θ ∈ Aut(G) be a Cartan
involution which commutes with σ and induces the decompositions G = K exp(p)
and g = k ⊕ p ; for a proof of the existence of such a Cartan involution see e. g.
[20]. Then the group U generated by K exp(ip) is a compact real form of GC such
that the groups G and HC are compatible subgroups of GC = UC = U exp(iu). It
follows that the group Uσ = U ∩HC is a compact real form of HC = Uσ exp(iuσ).

Let g = h ⊕ q be the decomposition of g with respect to σ . We conclude
from equation (1) that with this notation the zero fiber of our gradient map has
the form

Φ−1(0) = U exp
(
(iu)−σ

)
∩ exp

(
(iu)−κ

)
=

{
u exp(ξ); ξ ∈

(
i(q ∩ k)⊕ (q ∩ p)

)
∩ i Ad(u−1)k

}
.

Moreover, from

u−σ ∩ u−κ = i(p ∩ q) and (iu)−σ ∩ (iu)−κ = i(k ∩ q)

we see that if we choose a maximal torus t0 in i(p ∩ q) and a maximal Abelian
subspace a0 of Zi(k∩q)(t0), then C0 := exp(c0) with c0 := t0 ⊕ a0 is a fundamental
Cartan subset of GC .

Remark 5.1. 1. It follows from the construction that ic0 is a θ–stable
Cartan subspace of q whose non-compact factor it0 is maximal.

2. If we form the weight space decomposition g = g0⊕
⊕

λ∈Λ gλ , Λ = Λ(g, it0),
of g with respect to it0 , then the fact that Λ is a (possibly non-reduced)
root system is also proven in [26].

Let us form the extended weight space decomposition of (gC)C . For this we
consider the embedding gC ↪→ gC ⊕ gC , ξ 7→

(
ξ, κ(ξ)

)
. One checks immediately

that the C–linear extensions of σ and κ to (gC)C ∼= gC ⊕ gC are given by
(ξ, ξ′) 7→

(
σ(ξ), σ(ξ′)

)
and (ξ, ξ′) 7→ (ξ′, ξ), respectively. Forming the weight

space decomposition of g with respect to it0 with weights Λ = Λ(g, it0), it follows
for each λ ∈ Λ ∪ {0} that

(gC ⊕ gC)λ = gC
λ ⊕ gC

−λ

holds. Consequently, the set of extended weights is given by Λ̃ = Λ× {±1} .

Remark 5.2. The set

ω0 :=
{
iη ∈ t0; |λ(η)| < π

2
for all λ ∈ Λ(g, it0)

}
can be used to define a generalized Akhiezer-Gindikin domain in GC/HC con-
taining G/H (see Proposition 2.3 in [9]). If η ∈ ω0 and u = exp(η), then we
have

(
i(q ∩ k) ⊕ (q ∩ p)

)
∩ i Ad(u−1)k = i(q ∩ k). Hence, the (G × HC)–orbits

in G exp(ω0 × a0)H
C intersect only standard Cartan subsets which are conjugate

to the fundamental Cartan subset C0 . Since we have Λ̃ = Λ × {±1} , the set
G exp(ω0 × a0)H

C is an open neighborhood of GHC = (G × HC) · e in GC and
GHC is the only non-generic orbit in this neighborhood.
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In closing we describe three explicit examples in detail.

Example 5.3. Let G be as above and let θ be a Cartan involution of G .
Taking σ = θ we obtain the Riemannian symmetric space G/K . The analysis of
the G–action on the complexification GC/KC has begun in [1]. For a formulation
of Matsuki’s results in this context we refer the reader to [8].

A simple example for this setup is the complexification of the upper half
plane H+ =

{
z ∈ C; Im(z) > 0

}
which can be written as G/K with G = SL(2, R)

and K = SO(2, R). The complexification GC = SL(2, C) has SU(2) as compact
real form, and G and KC = SO(2, C) are closed compatible subgroups of GC =
SU(2) exp

(
isu(2)

)
.

Let g = k ⊕ p be the Cartan decomposition of g with respect to θ . Then
a fundamental Cartan subset of GC is given by C0 = exp(ia) where a ⊂ p is a
maximal Abelian subspace. From dim a = 1 we conclude that generic (G×KC)–
orbits are hypersurfaces in GC and that the (G×KC)–action is generically free.

Here we choose

a =

{
ηt :=

(
t 0
0 −t

)
; t ∈ R

}
and set xt := exp(iηt) ∈ C0 . One checks directly that the Weyl group WK×K(C0)
is generated by xt 7→ x−t and xt 7→ xt+π and hence is isomorphic to Z2 ⊕ Z2 . It
follows that the set F :=

{
xt ∈ C0; t ∈ [0, π/2]

}
forms a fundamental domain

for the WK×K(C0)–action on C0 . The only non-generic orbits in C0 are the
ones through x0 = e , xπ/4 and xπ/2 . Note that x0 and xπ/2 have compact
isotropy isomorphic to K while xπ/4 has non-compact isotropy isomorphic to
exp(ik) ∼= R . The slice representation at xπ/4 is isomorphic to the representation

s 7→
(

e2s 0
0 e−2s

)
of R on R2 . We conclude that there are precisely four non-closed

(G × KC)–orbits which contain xπ/4 in their closure and that these non-closed
orbits form the smooth part of the boundaries of the four connected components
of GC

sr .

Identifying GC/KC with (P1 × P1) \ ∆ where ∆ denotes the diagonal in
P1 × P1 , one finds that the four connected components of GC

sr coincide with the
preimages of the G–invariant domains (H+ ×H+) \∆, H+ ×H− , H− ×H+ and
(H− × H−) \ ∆ under the quotient map GC → GC/KC = (P1 × P1) \ ∆. The
Akhiezer-Gindikin domain in this example is the domain H+ ×H− .

Finally, we remark that

CompG×KC(GC) = GC \ π−1
(
π(xπ/4)

)
= GC

sr ∪ (G×KC) · e ∪ (G×KC) · xπ/2,

where π : GC → GC//(G×KC) denotes the topological Hilbert quotient.

Example 5.4. We now turn to the example G := SU(2, 2) and K :=
S
(
U(2)×U(2)

)
. The group U := SU(4) is a compact real form of GC = SL(4, C) =

UC such that G and KC = S
(
GL(2, C) × GL(2, C)

)
are closed compatible sub-

groups of UC . A fundamental Cartan subset of GC is given by C0 = T0 = exp(t0)
where it0 is a maximal Abelian subspace of p . Since every such space has di-
mension 2, generic (G ×KC)–orbits in GC are two-codimensional which implies
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that the isotropy groups have generically dimension 1. In particular T0 is not
a maximal torus in U since every maximal torus in SU(4) is three-dimensional.
Choosing

it0 :=

ηt,s :=


0 0 0 s
0 0 t 0
0 t 0 0
s 0 0 0

 ; t, s ∈ R


one checks directly that the restricted root system Λ = Λ(g, it0) is given by
Λ =

{
±λ1,±λ2,±(λ1 +λ2),±(λ1−λ2)

}
where λ1(ηt,s) = t+s and λ2(ηt,s) = t−s

hold. A fundamental domain for the (K × K)–action on U is given by exp(F)
with

F :=
{
iηt,s ∈ t0; 0 < t < s < π

4

}
⊂

{
iηt,s ∈ t0; |t|, |s| < π

4

}
=: ω0.

Direct computations give that p∩i Ad(u−1)k = {0} holds for all u ∈ exp(ω0) ⊂ T0 ,
i. e. Φ−1(0) ∩ exp(ω0) ⊂ U . Hence, G × KC acts properly on the domain
G exp(ω0)K

C . In fact, one can show that G exp(ω0)K
C is the connected com-

ponent of CompG×KC(GC) containing GKC (see Proposition 7 in [1]).

In the next step we describe the boundary of G exp(ω0)K
C in GC . There

are two qualitatively different types of boundary points of ω0 , namely those ηt,s

where |t| = π
4

and |s| < π
4

(or vice versa) and those where |t| = |s| = π
4
. To make

our considerations explicit, we take the element η1 :=


0 0 0 iπ/4
0 0 0 0
0 0 0 0

iπ/4 0 0 0

 ∈ ∂ω0 .

Let u1 := exp(η1). Since p ∩ i Ad(u−1
1 )k = R


0 0 0 i
0 0 0 0
0 0 0 0
−i 0 0 0

 , we conclude the u1

is contained in the standard Cartan subset C1 = u1 exp(c1) with

c1 =




0 0 0 is
0 0 it 0
0 it 0 0
−is 0 0 0

 ; t, s ∈ R


=




0 0 0 0
0 0 it 0
0 it 0 0
0 0 0 0


︸ ︷︷ ︸

t1

⊕




0 0 0 is
0 0 0 0
0 0 0 0
−is 0 0 0


︸ ︷︷ ︸

a1

.

The isotropy of the point u1 is isomorphic to

KC ∩ u−1
1 Gu1 =




z 0 0 0
0 a 0 0
0 0 b 0
0 0 0 z−1

 ; z ∈ C∗, a, b ∈ S1, zz−1ab = 1


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and the tangent space of the geometric slice at u1 is given by

pC ∩ i Ad(u−1
1 )g =




0 0 0 it
0 0 w 0
0 −w 0 0
is 0 0 0

 ; t, s ∈ R, w ∈ C

 .

With this information, one sees directly that the (non-closed) (KC ∩ u−1
1 Gu1)–

orbits through 
0 0 0 ±i
0 0 0 0
0 0 0 0
0 0 0 0

 and


0 0 0 0
0 0 0 0
0 0 0 0
±i 0 0 0


form the smooth part of the nullcone in pC ∩ i Ad(u−1

1 )g . Consequently, these
elements lie in the smooth part of a one-codimensional stratum.

Next we consider the point η2 :=


0 0 0 iπ/4
0 0 iπ/4 0
0 iπ/4 0 0

iπ/4 0 0 0

 ∈ ∂ω0 and

put u2 := exp(η2). From

p ∩ i Ad(u−1
2 )k =




0 0 x is
0 0 it −x
x −it 0 0
−is −x 0 0

 ; t, s ∈ R, x ∈ C


we see that u2 is contained in the standard Cartan subset C2 = u2 exp(c2) with

c2 = a2 =




0 0 0 is
0 0 it 0
0 −it 0 0
−is 0 0 0

 ; t, s ∈ R

 .

Going through the different boundary parts of ω0 we find all the conjugacy classes
of standard Cartan subsets in GC .

Example 5.5. Let G = SU(2, 2) and σ : G → G , g 7→ g , be given. The
involution σ defines the group H := Gσ = SO(2, 2). The groups G and HC =
SO(4, C) are compatible subgroups of GC = SL(4, C) with respect to the compact
real form U = SU(4). As usual we write g = h ⊕ q for the decomposition of g

with respect to σ . Direct computations show that C0 = exp(c0) with

c0 =




0 0 0 s
0 0 t 0
0 −t 0 0
−s 0 0 0

 ; t, s ∈ R

︸ ︷︷ ︸
=t0

⊕




α 0 0 0
0 −α 0 0
0 0 −α 0
0 0 0 α

 ; α ∈ R

︸ ︷︷ ︸
=a0

⊂ iq

is a fundamental Cartan subset. Consequently, the generic (G × HC)–orbits in
GC are three-codimensional. Since dimR G × HC = 15 + 12 = 27, we see that
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the (G × HC)–isotropy of a regular element is trivial. In particular, there exist
non-closed orbits with compact isotropy.

Taking the same fundamental domain F ⊂ t0 as in the previous example it
is possible to find representatives of the standard Cartan subsets in the same way
as above. Moreover, computing the slice representations one obtains a description
of the elements lying in non-closed orbits.
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[29] Stötzel, H., Quotients of real reductive group actions related to orbit type
strata, Dissertation, Bochum, 2008, to appear.

Christian Miebach
Fakultät für Mathematik
Ruhr-Universität Bochum
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