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Abstract. Let G be a semisimple Lie group with a finite center and finitely
many connected components. For example, G could be a group of R–points
of a semisimple Zariski connected algebraic group defined over Q . Let Γ be
a discrete cocompact subgroup of G . Using the spectral decomposition of
compactly supported Poincaré series we discuss the existence of various types
of irreducible unitary subrepresentations of L2(Γ \G).
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1. Introduction

Let G be a semisimple Lie group with a finite center and finitely many connected
components. For example, G could be a group of R–points of a semisimple
Zariski connected algebraic group defined over Q . Let Γ be a discrete cocompact
subgroup of G . By a well–known theorem of Gelfand–Graev–Piatetski Shapiro, the
right–regular representation L2(Γ\G) decomposes into a direct sum of irreducible
unitary representations of G each appearing with a finite multiplicity. The spectral
decomposition of L2(Γ\G) was studied in the works such as [4], [5] [8], [16] usually
assuming that Γ is torsion free and using the Selberg trace formula for compact
quotients. In spite of those efforts, the decomposition of L2(Γ \ G) is still rather
mysterious. In fact, except some partial results on representations in the discrete
series, K –spherical representations, and cohomological representations, we do not
know if L2(Γ \ G) contains a “significant” number of other types of irreducible
unitary subrepresentations. The goal of this paper is to shed some light on those
issues. The main result of this short note is the following theorem:

Theorem 1.1. Let K be a maximal compact subgroup of G. Assume that Γ
is a cocompact discrete subgroup of G but G is not compact. Then we have the
following:

(i) Every irreducible subrepresentation of L2(Γ \ G) contains a K –type from
L2(K ∩ Γ \ K) i.e., a K –type containing a non–zero vector invariant un-
der K ∩ Γ.
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(ii) Let δ be a K –type appearing in L2(K ∩ Γ \K). Then there exist infinitely
many non–equivalent irreducible unitary subrepresentations of L2(Γ \ G)
containing δ .

We remark that K ∩ Γ is usually trivial. For example, in the torsion free
case. Theorem 1.1 is proved in Section 4. A major step towards the proof of
(i) was done in Section 3 where we prove Theorem 3.1 which is of independent
interest. More precisely, in Definition 2.1 we define the space of square–integrable
automorphic forms A∈(− \ G) for an arbitrary discrete subgroup Γ ⊂ G by
the analogy with the usual definition for an arithmetic group Γ [3] and, for the
convenience of the reader, we include the standard theorem (see Theorem 2.3)
which describes the relation between A∈(− \ G) and L2(Γ \ G). Then Theorem
3.1 shows that for a non–zero ϕ ∈ A∈(− \ G) the (g, K)–module generated by
ϕ contains a K –type trivial on K ∩ Γ. At this point the standard theorem (see
Theorem 2.3 (i)) completes the proof of Theorem 1.1 (i). The proof of Theorem
1.1 (ii) occupies the major part of Section 4. It is self–contained and it is based on
a new (and simple) method of the spectral decomposition of compactly supported
Poincaré series. We develop this idea further in the case of the non–compact
quotient in [12] but this is more arithmetic in its nature.

In Section 5 we collect some applications. Our intention is not to give an
exhaustive list. First, in Proposition 5.1 we generalize the classical results about
the existence of infinitely many Z(g)–eigenvalues on the space of automorphic
forms for Γ \G/K when Γ \G is compact ([5], [13]). In Proposition 5.2 we show
that given δ containing a non–zero vector invariant under K ∩ Γ, only finitely
many irreducible subrepresentations of L2(Γ \G) containing δ are in the (limits)
of the discrete series for G . This is interesting since when G poses discrete series
(i.e., when its connected component has a compact Cartan subgroup [7]), then the
trace formula ([4], [16]) or Poincaré series (see [11] and references there) can be
used to show the existence of irreducible subrepresentations of L2(Γ\G) which are
in the discrete series for G . Next, Vogan’s theory of representations attached to
fine K –types ([15], Definition 4.3.9) generalizes the usual theory of K –spherical
representations. In Theorem 5.4 we discuss the existence of the subrepresentations
of L2(Γ \ G) of that form. We explain the case of G = SL2(R) in Example 5.5
which seems to be a rather new result.

We remark that it would be interesting to study the appearance of repre-
sentations attached to fine K –types in the discrete spectrum of L2(Γ \ G) when
Γ \G is not compact. We leave this for another occasion.

I would like to thank M. Tadić, G. Savin, J. Schwermer and D. Vogan for
some useful discussions. The paper was written while I was a visitor of the Erwin
Schrödinger Institute in Vienna. I would like to thank the Erwin Schrödinger
Institute and J. Schwermer for their hospitality.

2. Preliminary results

Let G be a semisimple Lie group with a finite center and finitely many connected
components. Let K be a maximal compact subgroup of G . We write g for
the (real) Lie algebra of G . The maximal compact subgroup K is a fixed point
set of a Cartan involution Θ of G . The differential θ of Θ gives the following
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decomposition of g :
g = k⊕ p,

where k and p are +1 and −1 eigenspaces of θ . We have k = Lie(K). Let a be
a maximal Abelian subalgebra of p . We choose some ordering of the roots Σ(a, g)
so that we determine the positive roots Σ+(a, g). Let N be the corresponding
unipotent radical. This determines minimal parabolic subgroup P = MAN of G ,
where A = exp (a) and M = ZK(A).

We have the following diffeomorphism:

N × A×K
(n,a,k) 7→n·a·k−−−−−−−−→ G = NAK.

The Iwasawa decomposition implies that there exists unique C∞–functions
a : G→ A , n : G→ N , and k : G→ K such that

g = n(g) · a(g) · k(g), g ∈ G. (1)

Let U(g) be the universal enveloping algebra of the complexified Lie algebra
of g . Let Z(g) be the center of U(g). We consider U(g) as algebra of left–invariant
differential operators on G :

X.f(g) =
d

dt
f(g exp (tX))

∣∣
t=0
, f ∈ C∞(G), X ∈ g.

In this paper Γ denotes a discrete subgroup of G . We define a G–invariant
measure on Γ \G as follows:∫

Γ\G
P (f)(g)dg =

∫
G

f(g)dg, (2)

for f ∈ Cc(G) (the space of compactly supported complex continuous functions
on G), where the compactly supported Poincaré series is defined as follows:

P (f)(g)
def
=
∑
γ∈Γ

f(γ · g). (3)

Obviously, for f ∈ C∞
c (G) (the space of compactly supported smooth complex

continuous functions on G), the function P (f) belongs to the space C∞
c (Γ \ G)

(the subspace of C∞(G) consisting of all left Γ–invariant functions compactly
supported modulo Γ).

We use the measure on Γ\G defined by the right–hand side of (2) to define
L2(Γ \G) a right regular representation of G .

Let K̂ be the set of equivalence of irreducible representations of K . Let
δ ∈ K̂ , then we write d(δ) and ξδ the degree and character of δ , respectively. We
fix the normalized Haar measure dk on K . Let π be a Banach representation of
G on the Banach space B . Then, for b ∈ B and δ ∈ K̂ , we let

Eδ(b) =

∫
K

d(δ)ξδ(k)π(k)b dk.

It belongs to δ–isotypic component B(δ) of B .
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Definition 2.1. We let A∈(−\G) be the space of K –finite (square–integrable)
automorphic forms on G . In the present set-up can be defined as in the arithmetic
case (see ([3], 1.3)). Explicitly, A∈(−\G) consists of all functions ϕ ∈ C∞(Γ \G)
satisfying the following:

a-1) ϕ is K –finite and Z(g)–finite 1

a-2) ϕ ∈ L2(Γ \G).

We will use the following result from the representation theory (see [6]):

Theorem 2.2. Assume that Γ is cocompact in G. Then L2(Γ \ G) = ⊕̂jHj ,
where Hj are closed irreducible G–invariant subspaces of L2(Γ \ G). Moreover,
for each i, there exists finitely many j ’s such that Hj is equivalent with Hi .

Next, we observe the following standard theorem (due to Harish–Chandra):

Theorem 2.3. Let Γ be an arbitrary discrete subgroup of G. Then we have
the following:

(i) Let H be an irreducible subspace of L2(Γ \ G). Then the (g, K)–module
on the space of K –finite vectors HK of H is an irreducible submodule of
A∈(− \ G).

(ii) Let ϕ ∈ A∈(− \ G) be a non–zero automorphic form. Then the (closed)
subrepresentation Uϕ generated by ϕ ∈ L2(Γ \G) is a direct sum of finitely
many irreducible subrepresentations.

(iii) Assume that Γ is cocompact in G. Then, using the notation of Theorem 2.2,
we obtain the following decomposition into irreducible (g, K)–modules:

A2(Γ \G) = ⊕j(Hj)K .

Proof. We include the standard proof for the reader’s convenience. We prove
(i). Since H is irreducible and unitary, it is admissible by a well–known theorem
of Harisch–Chandra (see [15], Theorem 0.3.6). Hence, its (g, K)–module (H)K is
irreducible and admissible (see [15], Theorem 0.3.5). It is well–known that (H)K is
Z(g)–finite (see [15], Proposition 0.3.19). This means that every ψ ∈ HK is Z(g)–
finite and K –finite in the sense of distributions. But then ψ is real analytic on
G . In particular, ψ ∈ C∞(Γ \G). Now, (i) follows from Definition 2.1. The proof
of (ii) the same as the proof of ([7], Lemma 77). We prove (iii). First, (i) implies
⊕j(Hj)K ⊂ A2(Γ \G). Conversely, let ϕ ∈ A∈(−\G) be a non–zero automorphic
form. We write ϕ =

∑
j ϕj according to the decomposition L2(Γ \ G) = ⊕̂jHj .

It is clear that if ϕj is not trivial the projection Uϕ → Hj is a non–trivial G–
equivariant bounded map. Hence, (ii) implies that there exists only finitely many
such j ’s. This proves the converse inclusion.

1In what follows the adjective finite will be used with respect to the right action.
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3. Frobenius Reciprocity for Automorphic Representations

The main result of this section is Theorem 3.1. It explains the restriction of
an automorphic representation to K . If we think of A∈(− \ G) and L2(Γ \G) as
induced representations from the trivial representation of Γ to G in an appropriate
category, Theorem 3.1 (ii) is a sort of a Frobenius reciprocity for the restriction to
K . Example 3.3 below shows that the result is the best possible.

Theorem 3.1. Assume that Γ is a discrete subgroup of G. Let ϕ ∈ A∈(−\G)
be a non–zero automorphic form. Then we have the following:

(i) There exists u ∈ U(g) and k ∈ K such that such that u.ϕ(k) 6= 0.

(ii) The (g, K)–submodule of A∈(− \ G) generated by ϕ contains a non–trivial
isotypic component for some δ ∈ K̂ such that there is a non–zero K ∩ Γ–
invariant vector in the space of δ .

Proof. First, we prove (i). The proof rests on the following simple fact:

If Y is a finite–dimensional connected Cω –manifold (this means real ana-
lytic) and if f : Y → C is real analytic and trivial on a non–empty open subset of
Y , then f ≡ 0 on Y .

It well–known that K meets all connected components of G . Also, being an
automorphic form, ϕ is real–analytic on G . Hence, on a sufficiently small neigh-
borhood of an k ∈ K ⊂ G , we have the following: ϕ(k ·expX) =

∑∞
n=0

1
n!
Xn.ϕ(k).

Therefore, if (i) is not true, then we obtain ϕ is identically equal to zero on every
connected component of G . This is a contradiction. Now, we prove (ii). First, (i)
implies that there exists an automorphic form ψ in the module generated by ϕ
and k0 ∈ K such that ψ(k0) 6= 0. Since ψ is K –finite, we can find δ1, . . . , δr ∈ K̂
such that ψ =

∑r
i=1Eδi

(ψ). Note that the automorphic forms Eδi
(ψ) are defined

as follows: Eδi
(ψ) =

∫
K
d(δi)ξδi

(k)ψ(gk)dk. Since

0 6= ψ(k0) =
r∑

i=1

Eδi
(ψ)(k0),

there exists i such that Eδi
(ψ)(k0) 6= 0. Hence the claim follows from Lemma 3.2

below.

Lemma 3.2. Let δ ∈ K̂ . Assume that ϕ ∈ A∈(−\G) belongs to the δ–isotypic
component of A∈(−\G) and ϕ is not identically zero on K . Then there is a non–
zero K ∩ Γ–invariant vector in the space of δ .

Proof. Since ϕ belongs to the δ–isotypic component of A(−\G), Eδ(ϕ) = ϕ .
Explicitly,

ϕ(g) =

∫
K

d(δ)ξδ(k)ϕ(gk)dk, g ∈ G.

Since ϕ is not identically zero on K , ϕ(k0) 6= 0 for some k0 ∈ K . Now,

ϕ(k0) =

∫
K

d(δ)ξδ(k)ϕ(k0 · k)dk.
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If we fix the realization Vδ of δ . Let ( , ) be the K –invariant scalar product on
Vδ , and let (v1, . . . , vd(δ)) be an orthonormal basis of Vδ . Then

ξδ(k) =

d(δ)∑
i=1

(δ(k)vi, vi).

The number of elements, say M , in K ∩ Γ is finite. We compute

0 6= M · ϕ(k0) =
∑

γ∈K∩Γ

ϕ(γ · k0)

=
∑

γ∈K∩Γ

∫
K

d(δ)ξδ(k)ϕ(γk0 · k)dk

=
∑

γ∈K∩Γ

∫
K

d(δ)ξδ((γk0)−1k)ϕ(k)dk

=

d(δ)∑
i=1

∫
K

d(δ)

( ∑
γ∈K∩Γ

(δ(γ)δ(k0)vi, δ(k)vi)

)
ϕ(k)dk

=

d(δ)∑
i=1

∫
K

d(δ)

( ∑
γ∈K∩Γ

δ(γ)δ(k0)vi, δ(k)vi

)
ϕ(k)dk.

Hence, we see that

0 6=
∑

γ∈K∩Γ

δ(γ)δ(k0)vi ∈ V K∩Γ
δ ,

for some i .

Example 3.3. Let G = SL2 . Then G = SL2(R) and K can be identified with
U(1) as follows: (

cos t − sin t
sin t cos t

)
↔ exp it = cos t+ i sin t.

Then K∩SL2(Z) is {±1, ±i} in this identification. Let m ∈ Z≥2 and let D±m be
the representation in the discrete series with the highest weight −m or the lowest
weight m , respectively. The K –types of D±m belong to m + 2Z . Hence we see
that if D±m ↪→ A∈(SL∈(Z)\SL∈(R)), then for some type m+2k of D±m , we must
have (−1)m+2k = 1 and im+2k = 1. This implies m+2k ≡ 0(mod 4). Hence D±m

with m ≡ 1(mod 2) do not appear. (This is well–known. It follows considering
central characters.) But it is well–known that some of D±m with m ≡ 0(mod 2)
do appear. We see that not all K –types of such D±m contain a vector invariant
under K ∩ SL2(Z).

4. The proof of Theorem 1.1

We begin this section by some general observations so we assume that Γ is an
arbitrary discrete subgroup of G until we state differently.
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The Hilbert space L2(K ∩ Γ \K) decomposes, under the right translations
of K , as a Hilbert direct sum of irreducible representations δ ∈ K̂ containing a
non–trivial vector invariant under K∩Γ; such δ appears exactly dimV K∩Γ

δ times,
and δ–isotypic component consists of the following functions:

k → (δ(k)v, w), v ∈ Vδ, w ∈ V K∩Γ
δ , (4)

where Vδ is the space of δ and ( , ) is K –invariant positive definite Hermitian
form on Vδ . It is clear that the orthogonal projector Eδ fixes any such function.

We start this section proving the following non–vanishing result:

Lemma 4.1. There exists a neighborhood U of 1 in N and a neighborhood
V of 1 in A such that every function ϕ ∈ C∞

c (G), supported in U · V · K such
that its restriction to K is non–trivial and it belongs to L2(K ∩ Γ \ K), has a
non–vanishing Poincaré series

P (ϕ)(g) =
∑
γ∈Γ

ϕ(γ · g).

Proof. The main point is that there exists U and V small enough such that

Γ ∩ (U · V ·K) = Γ ∩K.

Indeed, let U1 ⊃ U2 ⊃ · · · and V1 ⊃ V2 ⊃ · · · be the bases of neighborhoods of
identities in N and A consisting of compact sets, respectively. Then the compact
sets in G defined by

Wn = Un · Vn ·K, n ≥ 1, (5)

all have a finite intersection with Γ. Moreover, Γ ∩W1 ⊃ Γ ∩W2 ⊃ · · · implies
that there exists n0 such that Γ ∩Wn = Γ ∩Wn+1 , for n ≥ n0 . We show that
we can take U = Un0 and V = Vn0 . Indeed, let γ ∈ Wn0 = Un0 · Vn0 ·K . Then,
for n ≥ n0 , we may write γ as follows γ = unvnkn , where un ∈ Un , vn ∈ Vn and
kn ∈ K . Clearly, un → 1 and vn → 1 as n → ∞ . Hence, kn → γ as n → ∞ .
Thus, γ ∈ K . This proves Γ∩U ·V ·K ⊂ Γ∩K . The converse inclusion is trivial
since U and V are neighborhoods of identity.

Now, since the restriction of ϕ to K is non–trivial, we can find k ∈ K such
that ϕ(k) 6= 0. We compute

P (ϕ)(k) =
∑
γ∈Γ

ϕ(γ · k) =
∑

γ∈Γ∩(U ·V ·K)·k−1

ϕ(γ · k) = (#K ∩ Γ) · ϕ(k) 6= 0.

Since G is not necessarily connected we need to be careful in defining the
function ϕ . We prove the following lemma:

Lemma 4.2. Let δ ∈ K̂ be a subrepresentation of L2(K ∩ Γ \K). Then there
exists ϕ ∈ C∞

c (G) such that the following hold:

(i) Eδ(ϕ) = ϕ.

(ii) ψ = P (ϕ) 6= 0.

(iii) There exists a compact set C ⊂ G, right–invariant under K , such that Γ ·C
does not contain a connected component of G and supp(ψ) ⊂ Γ ·C . The set
Γ · C is closed in G.
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Proof. We use the notation introduced in Lemma 4.1. A function ϕ with the
required properties (i) and (ii) can be constructed as follows. Let ζ ∈ C∞

c (U),
ζ(1) 6= 0, η ∈ C∞

c (V ), η(1) 6= 0, and ξ be a non–zero matrix coefficient of δ given
by (4) with v = w 6= 0. Then the function ϕ ∈ C∞

c (G∞) defined by (see (1))

ϕ(g) = ζ(n(g))η(a(g))ξ(k(g)), g ∈ G∞,

satisfies (i) and (ii).

Next, by the construction, the support of ψ is contained in the set of the
form Γ · C , where C is a compact set right–invariant under K . We show that
Γ ·C is closed in G . Indeed, if γn · cn → g , then, by passing to a subsequence, we
may assume that cn → c ∈ C , hence γn → g · c−1 . Since Γ is discrete, for n large
enough, the sequence γn stabilizes. Hence g ∈ Γ · C .

Finally, we show that we can shrink U and V in order to obtain that Γ ·C
does not contain a connected component of G . But since K meets all connected
components of G and C is right–invariant under K , it is enough to show that we
can shrink U and V in order to obtain that Γ · C 6= G .

To accomplish this, we use the sequence of relatively compact neighborhoods
Wn defined by (5) in the proof of Lemma 4.1. We prove that Γ ·Wn 6= G for n
large enough. Assume that this is not true. Then there is an increasing sequence
(nl)l≥1 such that Γ ·Wnl

= G . Let us pick g ∈ G . Then we can write as follows

g = γl · ul · vl · kl

for some γl ∈ Γ, ul ∈ Unl
, vl ∈ Vnl

, and kl ∈ K . (See the proof of Lemma 4.1
for the notation.) Clearly, ul → 1, vl → 1, and, by passing to a subsequence, we
may assume that kl → k . Hence γl → gk−1 . Since Γ is discrete, the converging
sequence must stabilize. We conclude that g ∈ Γ · K . Hence G = Γ · K . Now,
since G is not compact, we have that N is not trivial. Let gl → 1 be an arbitrary
sequence in G . We can write gl = γlkl , where the symbols have their obvious
meaning, and, by passing to a subsequence, kl → k . Then γl → k−1 . Hence, for
large enough l , γl does not depend on l and it belongs to K ∩ Γ. This implies
that, for large enough l , gl ∈ K . This is clearly impossible if we choose a sequence
in N which satisfies gl 6= 1 for l large enough.

Now, we begin the proof of Theorem 1.1. Hence, we assume that Γ is
cocompact in G . First, Theorems 2.3 (i) and 3.1 prove Theorem 1.1 (i). Now,
we prove Theorem 1.1 (ii). We take ϕ and ψ = P (ϕ) as in Lemma 4.2. Then,
Lemma 4.2 (i) implies ψ = Eδ(ψ). Next, we can write (see Theorem 2.2)

L2(Γ \G) = ⊕̂jHj,

where Hj are irreducible subspaces. We write according to that decomposition

ψ =
∑

j

ψj. (6)

Applying Eδ , we obtain

ψ = Eδ(ψ) =
∑

j

Eδ(ψj).
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The uniqueness of the expansion implies Eδ(ψj) = ψj for all j . Hence
ψj ∈ A∈(− \ G) applying Theorem 2.3 (i). Now, since ψj is real analytic for
all j (see the proof of Theorem 2.3 (i)), the sum on the right–hand side of (6)
cannot be finite since otherwise ψ would be real analytic. But this is not possible
since it vanishes on a non–empty open set G − Γ · C which meets all connected
components of G by Lemma 4.2 (iii). This is a contradiction. This proves Theorem
1.1 (ii).

5. Some Applications of Theorem 1.1

We start by the following application which generalizes the classical results about
the existence of infinitely many Z(g)–eigenvalues on the space of automorphic
forms for Γ \G/K when Γ \G is compact ([5], [13]):

Proposition 5.1. Assume that Γ is a cocompact discrete subgroup of G but
G is not compact. Assume that δ ∈ K̂ is a K –type containing a non–zero vector
invariant under K ∩ Γ. Then there exist infinitely many infinitesimal characters
χ : Z(g) → C such that χ–eigenspaces in A∈(− \ G)(δ) are non–trivial.

Proof. First, we decompose L2(Γ \ G) = ⊕̂jHj as in Theorem 2.2, where Hj

are closed irreducible G–invariant subspaces of L2(Γ \ G). Since an irreducible
unitary representation on Hilbert space H is admissible (see [15], Theorem 0.3.5),
we see H(δ) = (H)K(δ). Hence, Theorem 2.3 (iii) implies that

A2(Γ \G)(δ) = ⊕j(Hj)K(δ) = ⊕jHj(δ).

Next, by Theorem 1.1 (ii), there exists infinitely many indices j such that
Hj(δ) 6= 0. Since, for each i , there exists only finitely many j ’s such that Hj

is equivalent with Hj and since there exists only finitely many non–equivalent
irreducible (g, K)–modules with a fixed infinitesimal character (see [15], Corollary
5.4.17), the above decomposition of A2(Γ \G)(δ) proves the claim.

We remark that the classical case corresponds to the case A∈(− \ G)(1),
where 1 is a trivial representation of K .

Now, we explain the representation–theoretic applications. The next propo-
sition shows the existence of irreducible subspaces of L2(Γ \ G) which are not in
the (limits) discrete series for G :

Proposition 5.2. Assume that Γ is a cocompact discrete subgroup of G but
G is not compact. Assume that δ ∈ K̂ is a K –type containing a non–zero vector
invariant under K ∩ Γ. Assume that G poses representations in the discrete
series (i.e., its connected component has a compact Cartan subgroup [7].) Then
there exists infinitely many irreducible unitary representations (π,H) of G which
are not in the limits of discrete series ([10], Section 1) for G, which contain δ ,
and the space of bounded G–equivariant maps HomG(H, L2(Γ\G)) is non–trivial.

Proof. Following ([10], Section 1), we say that an irreducible unitary represen-
tation (π,H) is in the discrete series (resp., in the limits of discrete series) if some
irreducible (hence, all subrepresentations of π|G0 ) are in the discrete series (resp.,
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in the limits of discrete series). Here G0 is the connected component of G . Since
G/G0 is finite, we see that there are only finitely many irreducible subrepresen-
tations of π|G0 (see ([10], Section 1) for a more precise description). This clearly
reduces the proof to the case G = G0 . So, we assume that G = G0 . Now, the
description of the K –type structure of the limits of discrete series for G0 (see [9],
Theorems 9.20 and 12.26) shows that there could be only finitely many of them
containing any given K –type δ . Indeed, let t be the Lie algebra of a compact
Cartan subgroup T ⊂ K ⊂ G . Let t′ = HomR(

√
−1t, R).

It is well–known that there exists a one–to–one correspondence between
the sets of simple roots ∆ of t in gC and Weyl chambers C ⊂

√
−1t . It is given

by ∆ ↔ C = {x ∈
√
−1t : α(x) > 0, α ∈ ∆} . Let ρ be the half–sum of all

positive roots of t in gC determined by ∆. Also, the choice of the Weyl chamber
C determines the positive roots for t in kC ; we write the half–sum of the positive
roots as ρc and the set of simple roots by ∆c .

A limit of discrete series π of G is parametrized by a pair (C, λ), π =
π(C, λ), consisting of a Weyl chamber C ⊂

√
−1t and a C –dominant weight λ

which is not orthogonal to any compact C –simple root. Also, every K –type of
π has its highest weight of the form λ + ρ − 2ρc +

∑
α∈∆ nαα (λ ∈ t′ ), where

nα ∈ Z≥0 .

Now, assume that π contains given K –type δ . Let µ be the highest weight
of δ . Then

µ = λ+ ρ− 2ρc +
∑
α∈∆

nαα, (7)

for some nα ∈ Z≥0 . Since λ is C –dominant, we have the following:

((µ− ρ+ 2ρc), β) ≥
∑
α∈∆

nα (α, β) , β ∈ ∆, (8)

where ( , ) is a (suitable) scalar product on t′ . Multiplying (8) with nβ and
summing over β ∈ ∆, we obtain the following:

0 ≥
∑

α,β∈∆

(α, β)nαnβ −
∑
β∈∆

Aβnβ, (9)

where we write Aβ = ((µ− ρ+ 2ρc), β), for β ∈ ∆. Since G is semisimple, ∆ is
a basis of t′ . It is obvious that the matrix A = ((α, β))α,β∈∆ is symmetric and
positive definite. Now, by the change of coordinates we can diagonalize the matrix
A and by ”completing the squares” in new coordinates we can see that the set of
all (xα)α∈∆ ∈ R∆ given by

0 ≥
∑

α,β∈∆

(α, β)xαxβ −
∑
β∈∆

Aβnβ

is compact. Hence, there exists only finitely many integral solutions (nα)α∈∆ ∈ Z∆

to the inequality (9). Hence, given µ and C , there are only finitely many λ ’s as
above such that (7) holds. Finally, since there are finitely many Weyl chambers,
we obtain the claim.

Let P = MAN be the minimal parabolic subgroup of G given by its
Langlands decomposition described in Section 2. We let a be the real Lie algebra
of A and a∗ its complex dual (see Section 2). Then we have the following result:
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Proposition 5.3. Assume that K ∩Γ is trivial. Let δ ∈ K̂ . Then there exists
an irreducible representation ε contained in the restriction of K to M such that
L2(Γ\G) contains an irreducible subquotient of IndG

MAN(ε⊗exp ν( )) for infinitely
many values ν ∈ a∗ .

Proof. Applying Harish–Chandra’s subquotient theorem ([15], Theorem 4.1.9),
every irreducible representation (or rather a (g, K)–module) of G containing δ
must belong to one of the principal series IndG

MAN(ε′ ⊗ exp ν( )), where ε′ is
contained δ upon the restriction to M . Now, we apply Theorem 1.1 (ii).

This result is more transparent when G is quasi–split in view of Vogan’s
theory of minimal K –types ([14], [15]). Assume that ε ∈ M̂ is fine ([15], Definition
4.3.8) i.e., ε , upon a restriction to the identity component of M ∩ G′ , is trivial.
Here G′ is the commutator group of G . We remark that when G is split (and
semisimple) then all representations of M are fine. (See the comment after ([15],
Definition 4.3.8). In this case M is a finite abelian group.)

Let ε ∈ M̂ be fine. Following ([15], Definition 4.3.15), we let A(ε) is
the set of K –types δ such that δ is fine ([15], Definition 4.3.9) and ε occurs in
δ|M . Applying ([15], Theorem 4.3.16), we obtain that A(ε) is not empty and for
δ ∈ A(ε), we have the following:

δ|M = ⊕ε′∈{w(ε); w∈W}ε
′, (10)

where W = NK(A)/M is the Weyl group of A in G . Since the restriction
map implies IndG

MAN(ε ⊗ exp ν( )) ' IndK
M(ε) as K –representations, Frobenius

reciprocity and (10) imply that for every ν ∈ a∗ there exists a unique irreducible
subquotient Jε⊗ν(δ) of IndG

MAN(ε⊗ exp ν( )) containing K –type δ .

One important example is the case ε = 1M . Then µ = 1K ∈ A(1M), and
Jε⊗ν(δ) is the unique K –spherical irreducible subquotient of IndG

MAN(ε⊗exp ν( )).

Theorem 5.4. Assume that K ∩ Γ is trivial, and G is quasi–split. Let ε ∈ M̂
be fine. Then, for every δ ∈ A(ε), there exists infinitely many ν ∈ a∗ such that
Jε⊗ν(δ) is an irreducible subrepresentation of L2(Γ \G).

Proof. We remark that the principal series

IndG
MAN(ε⊗ exp ν( )) and IndG

MAN(w(ε)⊗ expw(ν)( ))

have the equivalent composition series ([15], Theorem 4.1.4). On the other hand,
there are infinitely many irreducible unitary representations of G which contains
δ and appear in L2(Γ \G) by Theorem 1.1 (ii). Now, (10) and Harish–Chandra’s
subquotient theorem ([15], Theorem 4.1.9) imply that all of them must be sub-
quotients of IndG

MAN(ε⊗ exp ν( )) for various ν ∈ a∗ .

We finish the paper with an example:

Example 5.5. Let G = SL2(R). Then K can be identified with the the group
U(1) (see Example 3.3). Then K̂ = Z as explained in Example 3.3. Let Γ be a
cocompact discrete subgroup of G such that K ∩ Γ is trivial. The examples of
such groups can be constructed out of quaternion algebras over Q (see [2], page
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46, 3.20.4 and references there). Here M = {±1} (which is also the center of G).
Let sgn be the non–trivial character of M . It is well–known that a non–spherical
principal series IndG

MAN(sgn⊗ exp s( )), s ∈ C , reduces if and only if s = 0. We
have the following:

Jsgn⊗s(δ) ' IndG
MAN(sgn⊗ exp s( )), s ∈ C− {0},

for all δ ∈ Z , (−1)δ = −1 (i.e., δ is odd). Next, Theorem 5.4 implies that
L2(Γ \ G) contains Jsgn⊗s(δ) for infinitely many s ∈ C − {0} . Since all of them
must be unitary, we conclude that s ∈

√
−1R applying a well–known classification

of unitary representations of SL2(R). This means that there exists infinitely many
irreducible non–spherical unitary principal series which appear in L2(Γ \G).
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