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Abstract. In this article we give a simpler proof of the main theorem of
M. Cowling and U. Haagerup, Completely bounded multipliers of the Fourier
algebra of a simple Lie group of real rank one, Invent. Math. 96 (1989), 507–
549, which reads as follows. Let G be a connected real Lie group of real rank
1 with finite centre. If G is locally isomorphic to SO0(1, n) or SU(1, n), then
ΛG = 1. If G is locally isomorphic to Sp(1, n), then ΛG = 2n− 1, while if G is
the exceptional rank one group F4(−20) , then ΛG = 21.
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Introduction

Let G be a locally compact group, with a left-invariant Haar measure. The space
of compactly supported continuous functions is written Cc(G), and the Lebesgue
spaces Lp(G) are defined as usual (where 1 ≤ p ≤ ∞). We recall some basic
results about the Fourier algebra of G .

For any continuous representation (π,Hπ) of G and any ξ and η in Hπ ,
the continuous function 〈π(·)ξ, η〉 on G is called a matrix coefficient of π . The
Fourier–Stieltjes algebra B(G) is defined to be the space of all matrix coefficients of
all continuous unitary representations of G . Equipped with pointwise operations,
and the norm

‖u‖B(G) = min{‖ξ‖ ‖η‖ : u = 〈π(·)ξ, η〉},

where the minimum is taken over all such representations of u , the space B(G)
is a Banach algebra. The von Neumann algebra associated to the left regular
representation of G is denoted by VN(G). The predual of VN(G) is identified
with the closed ideal of B(G) consisting of the matrix coefficients of the left regular
representation of G . It is known as the Fourier algebra and is denoted by A(G).

A function φ : G → C is called a multiplier of A(G) if φ · A(G) ⊆ A(G).
If φ is a multiplier of A(G), then the linear operator mφ : u 7→ φ · u is bounded.
The space of all multipliers of A(G) is denoted by MA(G). Equipped with the
operator norm, MA(G) is a Banach algebra. A completely bounded multiplier is an
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element φ of MA(G) such that Mφ , the transpose of mφ , is completely bounded
on VN(G). We define ‖φ‖M0A(G) to be the completely bounded operator norm
of Mφ ; then the space of all completely bounded multipliers with this norm is a
Banach algebra, denoted by M0A(G).

We say that A(G) has an L-completely bounded approximate identity (for
some positive real L , necessarily at least 1) if there exists a net {ui}i∈I in A(G)
such that ‖ui‖M0A(G) ≤ L for all i in I and {ui} tends to 1 locally uniformly.
Denote by ΛG the infimum of all L for which there exists an L-completely bounded
approximate identity {ui} in A(G), with the convention that ΛG = ∞ if G does
not admit a L-completely bounded approximate identity for any finite L . The
group G is said to be weakly amenable if ΛG < ∞ . We refer to Eymard [7], De
Cannière and Haagerup [6] and Cowling and Haagerup [5] for more details.

Cowling and Haagerup [5] proved that any connected noncompact simple
Lie group of real rank one with finite center is weakly amenable and calculated the
constant ΛG , as described in the abstract. We give a simpler proof of this theorem
by using the multiplier theory of the Fourier algebra of a double coset hypergroup
developed in Muruganandam [14, 15] and spherical Fourier analysis.

1. Notation and Preliminaries

Denote by N the set {0, 1, 2, . . .} . For a locally compact group G with a compact
subgroup K , denote by G//K the space of all double cosets of K in G . For any
function space F on G , denote by F \ the set of all K -biinvariant functions in
F . Whenever possible, we identify F \ with the corresponding function space on
G//K . For example Cc(G)\ is identified with Cc(G//K).

The rest of this section is devoted to preliminaries on connected noncompact
semisimple Lie groups. We adhere to the notation and conventions of Cowling and
Haagerup [5] as far as possible.

Throughout this article, unless specified otherwise, G denotes a connected
noncompact simple Lie group of real rank 1 with finite center, not locally isomor-
phic to SO0(1, n). Let K be a maximal compact subgroup of G and θ be the
corresponding Cartan involution of G ; extend θ to the Lie algebra in the usual
way. Let KAN and KĀ+K be the Iwasawa and Cartan decompositions of G .
Denote by S the maximal solvable subgroup AN of G , by M the centralizer of
A in K , and by N̄ the subgroup θ(N).

Write g , a and n for the Lie algebras of G , A and N , and n̄ for θ(n).
Fix an order on a , and denote by α the indivisible positive root and by 2p and
q the dimensions of gα and g2α . Write r for p + q . Fix Hα in a such that
α(Hα) = 1. Then r = (1/2) tr(adHα|n). For t in [0,∞), denote by at the
element exp(log(t)Hα/2) of A . Then

as exp(X + Y )a−1
s = exp(s1/2X + sY ), (1)

for all s in R+ , X in gα and Y in g2α . We normalize the Haar measure on K so
that the total mass of K is 1; then there is a function δ on A such that∫

G

f(g) dg =

∫
K

∫
A+

∫
K

f(katk
′) δ(t) dk dt dk′,
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where dk and dg are elements of Haar measure on K and G . We may and shall
assume that the Haar measure on G is normalized so that limt→∞ e−2rtδ(t) = 1.

The Killing form on g is written B ; we recall that

B(Hα, Hα) = tr(adHα)2 = 2(2p+ 4q).

We equip g with the inner product

〈X,Y 〉 =
−B(X, θ(Y ))

B(Hα, Hα)
=
−B(X, θ(Y ))

2(2p+ 4q)
, (2)

so that the length of the vector Hα is equal to 1. For any unexplained terms in
the text, we refer to Cowling and Haagerup [5] and Faraut [9].

Proposition 1.1. Take X in g−α and Y in g−2α . Then there exist k′ and k′′

in K , and unique k in K , n in N , s in R and t in [0,∞), such that

exp(X + Y ) = k exp(sHα)n = k′ exp(tHα)k′′,

2 cosh(2t) = 1 + |X|2 +
(
1 +

|X|2

2

)2
+ 2 |Y |2 ,

es =
((

1 +
|X|2

2

)2
+ 2 |Y |2

)1/2

.

Therefore, the restriction of u in C∞
c (G//K) to N̄ is of the form

exp(X + Y ) 7→ f(2 |X|2 +
1

4
|X|4 + 2 |Y |2) ,

for some function f in C∞
c (R).

Proof. This is a restatement of Helgason [10, Theorem IX.3.8], with the mod-
ified inner product in (2).

We briefly recall some results about the class one or spherical principal
series of representations of G .

For λ in C , define the character χλ on MAN by

χλ(m exp(sHα)n) = e(λ+r)s ∀m ∈M ∀s ∈ R ∀n ∈ N.

Denote by Hλ the completion of the space of all continuous functions ξ on G such
that

ξ(xp) = χλ(p
−1) ξ(x) ∀x ∈ G ∀p ∈MAN,

where ‖ξ‖ is defined by (
∫

K
|ξ(k)|2 dk)1/2 . The left translation representation of

G on Hλ is written πλ .

The K -fixed unit vector ξλ in Hλ is given by

ξλ(kp) = χλ(p
−1) ∀k ∈ K ∀p ∈MAN.

If X is in g−α and Y is in g−2α , then by Proposition 1.1,

ξλ(exp(X + Y )) =
((

1 +
|X|2

2

)2
+ 2 |Y |2

)−(λ+r)/2

.
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The spherical function φλ associated to πλ is given by

φλ = 〈πλ(·)ξλ, ξ−λ̄〉.
The functions φλ are K -biinvariant, and φ−r = φr = 1. Further, ‖φλ‖∞ = 1 for
every λ in C such that |Re(λ)| ≤ r . The functions φλ converge to 1 uniformly
on compacta as λ→ r− . The function φλ is positive definite if and only if λ is in
ıR ∪ [−τ, τ ] ∪ {r} , where τ = min{p+ 1, r} .

We normalize the Haar measure on N̄ by∫
N̄

f(n) dn =
1

Kp,q

∫
g−α

∫
g−2α

f(v, z) dz dv, (3)

where

Kp,q =
π(2p+q+1)/2

Γ((2p+ q + 1)/2) 2(2p+3q−2)/2
, (4)

so that
∫

N̄
ξr(n) dn = 1. (See Proposition 2.1 below for more on this). Then∫

K

ξ(k) η(k) dk =

∫
N̄

ξ(n) η(n) dn ∀ξ ∈ Hλ ∀η ∈ H−λ̄,

for all λ ∈ C , by Helgason [11, Theorem I.5.20]. Thus

φλ(an̄) = χλ(a)

∫
N̄

ξλ|N̄(n̄−1a−1n̄′a) ξ−λ|N̄(n̄′) dn̄′.

It is notationally more convenient to work with N rather than N̄ . Define
uλ : N → C by

uλ(exp(X + Y )) =
((

1 +
|X|2

2

)2
+ 2 |Y |2

)−(λ+r)/2

(5)

for all X in gα and Y in g2α .

The following theorem is a consequence of the previous proposition, and
the interchange of α and −α , n and n̄ , and N and N̄ .

Theorem 1.2. Normalize the Haar measure on N as in (3). Then the spher-
ical function φλ , restricted to the group S , is given by

φλ(asn) = s−(λ+r)/2

∫
N

uλ(n
−1a−1

s n′as)u−λ(n
′) dn′. (6)

Further, for any function u in C∞
c (G//K), there exists f in C∞

c (R) such that

u(exp(X + Y )) = f(2 |X|2 +
1

4
|X|4 + 2 |Y |2), (7)

for all X in gα and Y in g2α .

In order to compute the constant ΛG , we need to estimate ‖φλ‖M0A(G) . By
Cowling and Haagerup [5, Proposition 1.6],

‖φλ‖M0A(G) = ‖φλ|S‖B(S) ,

as φλ is K -biinvariant. To compute ‖φλ|S‖B(S) , we proceed as follows. Using the
fact that uλ is M -biinvariant we apply the Plancherel–Parseval formula to the
Gelfand pair of Korányi to calculate the right hand side of the equation (6). This
involves finding an expression for the spherical Fourier transform of uλ in terms of
Whittaker functions. Then we split φλ|S into a sum of matrix coefficients {φλ,n}∞n=0

belonging to the representations of the double coset hypergroup MS//M . We
complete the job by estimating the norms of φλ,n .
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2. The Gelfand pair of Korányi

For convenience, we denote gα and g2α by v and z respectively, so that n = v+ z ,
and an arbitrary element of n is denoted by (v, z), where v is in v and z is in
z . Moreover, for (v, z) in n , the corresponding group element exp(v, z) is also
denoted by (v, z). In particular uλ in (5) is of the form

uλ(v, z) =
((

1 +
|v|2

2

)2
+ 2 |z|2

)−(λ+r)/2

. (8)

Proposition 2.1. Suppose that Re(λ) = σ and that σ > 0. Then∫
v

∫
z

|uλ(v, z)| dz dv =
π(2p+q+1)/2 Γ(σ)

Γ((σ + p+ 1)/2) Γ((σ + r)/2) 2(2σ+q−2)/2
.

In particular, ∫
v

∫
z

ur(v, z) dz dv =
π(2p+q+1)/2

Γ((2p+ q + 1)/2) 2(2p+3q−2)/2
.

Proof. The proof is elementary and follows as in [5, Lemma 3.1].

Observe that MN forms a semidirect product with M acting on N by inner
automorphisms, as the compact group M normalizes N . Korányi [13] proved that
(MN,N) is a Gelfand pair. We list some of the useful properties of this pair.

When q > 1, the M -biinvariant functions on MN may be identified
with their restrictions to N that are biradial, in the sense that, for example,
Cc(MN//M) is identified with the space of all functions u in Cc(N) for which
there exists a function f in Cc(R2) such that u(v, z) = f(|v| , |z|) for all (v, z) in
N . When q = 1, that is, when G is SU(1, n), the class of M -biinvariant functions
is larger. In fact, u is M -biinvariant if and only if u(v, t) = f(|v| , t). But this
does not affect our considerations.

The bounded spherical functions of this Gelfand pair are of two types:

(a) ϕµ , where µ ≥ 0, is defined by

ϕµ(v, z) = j2p(2−1/2µv),

where j2p is the “Bessel-like function” v 7→
∫

Sv
eiσ·v dσ . Here Sv is the unit sphere

in v , and dσ denotes the normalized surface measure.

(b) ψν,n , where ν > 0 and n ∈ N , is defined by

ψν,n(v, z) = cν,n j
q(2−1/2νz) exp(−ν

4
|v|2)Lp−1

n (
ν

2
|v|2), (9)

where Lp−1
n denotes the nth Laguerre polynomial of order p − 1, and cν,n is the

normalizing constant such that ψν,n(e) = 1. In fact,

cν,n =
1

Ln
p−1(0)

=
Γ(p)n!

Γ(n+ p)
.

See Cowling [4, appendix] for a quick tutorial on these special functions.
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The above are eigenfunctions of the left invariant differential operators ∆1

and ∆2 on N which are explicitly given in Faraut [9] (see also Cowling [3]). We
define ∆2 only:

∆2 =

q∑
j=1

∂2

∂z2
j

. (10)

Then

∆2ψν,n = −ν
2

2
ψν,n , (11)

and, if u(v, z) = f(|v|2 , |z|2) for some function f in C∞
c (R2), then

∆2u(v, z) = 4t
∂2f(|v|2 , t)

∂t2
+ 2q

∂f(|v|2 , t)
∂t

, (12)

where t = |z|2 . See [9, Section I, paragraph 4 and Section II, paragraph 1] for
further details. In particular, for u and f as in (7), and for all k > 0,

∆k
2u(v, 0) =

23k Γ( q
2

+ k)

Γ( q
2
)

f (k)(2 |v|2 +
1

4
|v|4). (13)

We now write down the Plancherel–Godement formula for this Gelfand
pair explicitly. For the general theory of Gelfand pairs we refer to [8]. The set of
spherical functions of type (a) is a set of Plancherel–Godement measure zero.

In the next theorem, Ω` denotes the surface measure of the unit sphere
S`−1 in R` , and Kp,q is as in (4). For f ∈ Cc(MN//M), the spherical Fourier
transform is defined by

f̂(ν, n) =

∫
N

f(n)ψν,n(n) dn. (14)

Theorem 2.2. For every f in Cc(MN//M),∫
N

|f(n)|2 dn =
Ω2p Ωq Kp,q

π2p+q 2(2p+3q+2)/2

∞∑
n=0

Γ(n+ p)

n!

∫ ∞

0

∣∣∣f̂(ν, n)
∣∣∣2 νr−1 dν

=
22−2r−q

√
π

Γ(p) Γ( q
2
) Γ

(
r+p+1

2

) ∞∑
n=0

Γ(n+ p)

n!

∫ ∞

0

∣∣∣f̂(ν, n)
∣∣∣2 νr−1 dν.

Proof. Korányi [13] sketches the proof. It may also be found in Cowling [4,
Theorem 5.2.1], with different normalizations.

Denote by dπ(ν, n) the element of the Plancherel–Godement measure ap-
pearing above. The corresponding unitary operator is called the Plancherel–
Godement transformation.

Theorem 2.3. If uλ is as in (8) and Re(λ) > −(p+ 1), then

ûλ(ν, n) =
2r Γ(2p+q+1

2
)

Γ(λ+r
2

) Γ(β)

∫ ∞

0

xn+β−1 e−2x−ν/2

(x+ ν/2)n+p−β+1
dx,

where β = (λ+ p+ 1)/2.
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Proof. We first show that the Bessel transform of uλ is equal to∫
z

uλ(v, z) j
q(2−1/2νz) dz

=
π(q+1)/2 2(2−q)/2

Γ(β) Γ(λ+r
2

)

∫ ∞

0

(
x(x+ ν/2)

)β−1
exp

(
−

(
1 +

|v|2

2

)
(2x+ ν/2)

)
dx.

(15)

Let ω be a unit vector in z . Then∫
ω⊥
uλ(v, tω + z) dz

=

∫
ω⊥

((
1 +

|v|2

2

)2
+ 2(t2 + |z|2)

)−(λ+r)/2

dz

=
((

1 +
|v|2

2

)2
+ 2t2

)(q−1−λ−r)/2
∫

ω⊥
(1 + |z′|2)−(λ+r)/2 dz′

=
π(q−1)/2 Γ(β)

Γ(λ+r
2

) 2(q−1)/2

((
1 +

|v|2

2

)2
+ 2t2

)−β

,

where, again, β = (λ+ p+ 1)/2. Since uλ is biradial,∫
z

uλ(v, z) j
q(2−1/2νz) dz

=

∫
z

uλ(v, z) exp
(
−i2−1/2ν〈z, ω〉

)
dz

=
π(q−1)/2 Γ(β)

Γ(λ+r
2

) 2(q−1)/2

∫
R

((
1 +

|v|2

2

)2
+ 2t2

)−β

exp
(
−i2−1/2νt

)
dt.

(16)

We now show that∫
R

((
1 +

|v|2

2

)2
+ 2t2

)−β

exp
(
−i2−1/2νt

)
dt

=

√
2π

Γ(β)2

∫ ∞

0

(
x(x+ ν/2)

)β−1
exp

(
−(2x+ ν/2)

)
exp

(
−|v|

2

2
(2x+ ν/2)

)
dx.

As both expressions are analytic in {λ ∈ C : Re(λ) > −(p+ 1)} , it is sufficient to
prove the equality when λ is real. We therefore assume that λ is real.

If F and G are the Laplace transforms of (suitable) functions f and g ,
then ∫

R
F (a+ ib)G(a+ ib) e−iνb db = 2π

∫ ∞

0

f(x) g(x+ ν) e−a(2x+ν) dx.

See for instance, [5, equation (3.8)]. We apply this result where

f(x) = g(x) =


xβ−1 e−x

Γ(β)
if x > 0

0 if x ≤ 0.
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Observe that F (a+ ib) = G(a+ ib) = (1 + a+ ib)−β . Therefore,∫
R

((
1 +

|v|2

2

)2
+ 2t2

)−β

exp
(
−i2−1/2νt

)
dt

=

∫
R
F

( |v|2
2

+ i
√

2t
)
G

( |v|2
2

+ i
√

2t
)

exp
(
−i2−1/2νt

)
dt

=

√
2π

Γ(β)2

∫ ∞

0

(
x(x+ ν/2)

)β−1
exp

(
−(2x+ ν/2)

)
exp

(
−|v|

2

2
(2x+ ν/2)

)
dx.

We combine this equation and (16) to prove (15).

Finally, from the definition of the Laguerre polynomials,∫
v

exp
(
−|v|

2

2
(2x+ ν/2)

)
exp

(
−ν

4
|v|2

)
Lp−1

n

(ν
2
|v|2

)
dv

= Ω2p

∫ ∞

0

exp
(−s2

2
(2x+ ν)

)
Lp−1

n

(ν
2
s2

)
s2p−1 ds

=
Ω2p 2p−1

(2x+ ν)p

n∑
m=0

(−1)m Γ(n+ p)

Γ(m+ p)(n−m)!m!

∫ ∞

0

( νs

2x+ ν

)m

e−s sp−1 ds

=
Ω2p Γ(n+ p)xn

2n! (x+ ν/2)n+p
.

(17)

Therefore, by (14) and the definition of ψν,n in (9),

ûλ(ν, n) =
cν,n

Kp,q

∫
v

∫
z

uλ(v, z) j
q(2−1/2νz) exp(−ν

4
|v|2)Lp−1

n (
ν

2
|v|2) dz dv

=
2r Γ

(
2p+q+1

2

)
Γ(λ+r

2
) Γ(β)

∫ ∞

0

xn+β−1 e−2x−ν/2

(x+ ν/2)n+p−β+1
dx,

where β = (λ+ p+ 1)/2, by (15), (17) and (4).

The following expression of the spherical Fourier transform of uλ in terms of
the Whittaker function will be useful later. See Section 16.12 of Whittaker and
Watson [17], for the definition and more details of Whittaker functions.

Corollary 2.4. For all λ in C,

ûλ(ν, n) =
2r−λ Γ(2p+q+1

2
) Γ(n+ β)

Γ(λ+r
2

) Γ(β)
ν(λ−1)/2W−n−p/2, λ/2(ν),

where W−n−p/2, λ/2 denotes the Whittaker function.

Proof. When Re(λ) > −(p + 1), the corollary holds by the definition of
the Whittaker functions and the theorem. Since the function λ 7→ ûλ extends
analytically to C , the above identity holds for other values of λ also.
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Corollary 2.5. For all ν in R+ , all n in N, and all λ in C,

νλ/2 û−λ(ν, n) =
22λ Γ(λ+r

2
) Γ(2n−λ+p+1

2
) Γ(λ+p+1

2
)

Γ(−λ+r
2

) Γ(2n+λ+p+1
2

) Γ(−λ+p+1
2

)
ν−λ/2 ûλ(ν, n). (18)

Proof. For all k , m , and x ,

Wk, m(x) = Wk,−m(x),

by Whittaker and Watson [17, Section 16.4, Equation (C)]. The result follows
immediately.

Theorem 2.6. Suppose that λ = σ + ıγ , where 0 ≤ σ < r . Then there exists
a constant C(p, q), depending only on p and q , such that for all n in N,∫ ∞

0

∣∣ν−λ/2 ûλ(ν, n)
∣∣2 νr−1 dν ≤ C(p, q) e2|γ| (r − σ)−1,

Further,

lim sup
σ→r−

(r − σ)

∫ ∞

0

∣∣ν−σ/2 ûσ(ν, n)
∣∣2 νr−1 dν ≤ 1.

Proof. We first observe that∣∣∣∣∫ ∞

0

x(2n+λ+p−1)/2 e−2x−ν/2

(x+ ν/2)(2n+p−λ+1)/2
dx

∣∣∣∣ ≤ e−ν/2

∫ ∞

0

e−2x x(σ−1)/2(x+ ν/2)(σ−1)/2 dx

= 2−σ ν(σ−1)/2 Γ
(σ + 1

2

)
W0, σ/2(ν).

Therefore, ∣∣ν−λ/2 ûλ(ν, n)
∣∣ ≤ |Q(λ)| ν−1/2W0, σ/2(ν), (19)

where

Q(λ) =
2r−λ Γ(2p+q+1

2
) Γ(λ+1

2
)

Γ(λ+2p+q+1
2

) Γ(λ+p+1
2

)
.

From the asymptotic behaviour of the Γ-function,

|Q(λ)| ≤ C1(p, q) e
2|γ|;

see for example, Titchmarsh [16, Section 4.4.2].

For all ν > 1, the Whittaker function satisfies

W0, σ/2(ν) = e−ν/2

(
1 +

(σ/2)2 − (1/2)2

ν
+O

(∫ ∞

0

x(σ+3)/2 (1 + x)|σ−1| ν−2e−x dx
))

(see Whittaker and Watson [17, Section 16.3]). From the last two equations and
(19), ∫ ∞

1

∣∣ν−λ/2 ûλ(ν, n)
∣∣2 νr−1 dν ≤ C2(p, q) e

2|γ|. (20)
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By Proposition 2.1,∫ 1

0

∣∣ν−λ/2 ûλ(ν, n)
∣∣2 νr−1 dν ≤ ‖uλ‖2

1

∫ 1

0

∣∣ν−λ/2
∣∣2 νr−1 dν =

‖uσ‖2
1

(r − σ)
. (21)

Finally, from equations (20) and (21),∫ ∞

0

∣∣ν−λ/2 ûλ(ν, n)
∣∣2 νr−1 dν ≤ ‖uσ‖2

1

(r − σ)
+ C2(p, q) e

2|γ|

≤ C3(p, q) (r − σ)−1 e2|γ|.

To conclude, observe that equations (20) and (21) also imply that

lim sup
σ→r−

(r − σ)

∫ ∞

0

∣∣ν−σ/2 ûσ(ν, n)
∣∣2 νr−1 dν ≤ lim sup

σ→r−
‖uσ‖2

1 = ‖ur‖2
1 = 1,

as required.

3. The double coset hypergroup MS//M

Recall that if as1(v1, z1) and as2(v2, z2) are in the group S (that is, AN ), then
by (1),

as1(v1, z1) · as2(v2, z2) = as1as2

(
(as2)

−1(v1, z1)as2

)
· (v2, z2)

= as1as2(s
−1/2
2 v1, s

−1
2 z1) · (v2, z2).

Since M commutes with A and acts on N by automorphisms, the action of
M extends to S and forms another semidirect product MS . Recall that the space
of double cosets MS//M forms a hypergroup, called a double coset hypergroup.
Notice that an arbitrary element (as(v, z))

� of MS//M is of the form as(v, z)
� ,

which is uniquely determined by s , |v| , and |z| . For the definition and basic
properties of hypergroups, see Bloom and Heyer [1] and Jewett [12].

Now we construct a series of representations of the hypergroup MS//M
that are weakly contained in the left regular representation of MS//M .

Suppose that G//K is a double coset hypergroup, where K is a compact
subgroup of a locally compact group G . Let (ρ,H) be a unitary representation of
G , and write K for [ρ(L1(G//K))(H)]− . If K 6= {0} , then by Muruganandam [15,
Remark 3.2]

f 7→ ρ(f)|K L1(G//K) → BL(K)

defines a nondegenerate representation of L1(G//K) and so a representation of
G//K . We shall denote this representation by ρ̃ .

In particular, the representation λ̃ arising from the left regular represen-
tation λ of G is the left regular representation of G//K on L2(G//K). More
precisely, denote the coset KxK in G//K by x� , and define the generalized left
translate f(x� ∗ y�) of f by x� to be

∫
K
f(xky) dk . Then

λ̃(x�)f(y�) = f((x−1)� ∗ y�) =

∫
K

f(x−1ky) dk ∀f ∈ L2(G//K). (22)
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If ρ and ρ̃ are as above and ρ is weakly contained in λ , then ρ̃ is weakly

contained in λ̃ . For ‖λ(f)‖ =
∥∥∥λ̃(f)

∥∥∥ when f is in L1(G//K), by Murugan-

andam [15, Theorem 3.15(1) and Remark 3.14]. Therefore

‖ρ̃(f)‖ ≤ ‖ρ(f)‖ ≤ ‖λ(f)‖ =
∥∥λ̃(f)

∥∥. (23)

Hence ρ̃ is weakly contained in λ̃ . See Muruganandam [14] for more about
representations of hypergroups and weak containment.

Lemma 3.1. For as in A, define the map δs on L2(N) by

δsf(v, z) = s−r/2 f(a−1
s (v, z)as) = s−r/2 f(s−1/2v, s−1z).

Then δs is a unitary operator on L2(N), and δ?
s = δs−1 . Further, δs leaves

invariant the space L2(MN//N) of M -biinvariant functions in L2(N). Moreover,
for all f in L1 ∩ L2(MN//N), all s and ν in R+ , and all n in N,

(δsf)̂(ν, n) = sr/2 f̂(sν, n).

Proof. This is elementary.

Denote by π the representation of S unitarily induced from the trivial
character on A . That is, π is realized on L2(N) by

π(asn)f(n′) = s−r/2 f(n−1a−1
s n′as) = δsλ(n)f(n′) ∀n′ ∈ N. (24)

Denote a typical element of the Hilbert space L2(R+ × N; dπ(ν, n)) by f̂ .

Theorem 3.2. The map ρ : MS//M → BL(L2(R+ × N; dπ(ν, n))), defined by

ρ((as(v, z))
�)f̂(ν, n) = sr/2 ψsν,n(v, z) f̂(sν, n)

is a representation of the hypergroup MS//M that is weakly contained in the left
regular representation λ̃ of MS//M .

The restriction ρn of ρ to each copy of L2(R+, ν
r−1 dν) is a representation

of MS//M and is also weakly contained in λ̃.

Proof. We extend the representation π of S in (24) to the semidirect product
MS by taking π(m) to be the identity for all m in M . We denote by π this
extended representation, and by π̃ the corresponding representation of MS//M
on the Hilbert space [π(L1(MS//M))(L2(N))]− , which is equal to L2(N).

By Lemma 3.1, we see that π̃ leaves L2(MN//N) invariant. Denote this
representation of MS//M on L2(MN//N) by π1 . By (22),

π1((as(v, z))
�)f = δs

(
λ̃((v, z)�)f

)
. (25)

Since the group MS is amenable, π is weakly contained in λ and so by (23) (and
the discussion thereof), π1 is weakly contained in λ̃ .

If F denotes the Plancherel–Godement transformation on the Gelfand pair
(MN,M) in Theorem 2.2, then L2(MN//N) and L2(R+ × N; dπ(ν, n)) are uni-
tarily equivalent via F . Using (25), it can be easily verified that

ρ(as(v, z)
�) = F ◦ π1(as(v, z)

�) ◦ F−1 ∀ as(v, z)
� ∈MS//M, (26)

since (λ̃((v, z)�)f)
̂
(ν, n) = ψν,n(v, z) f̂(ν, n). Thus ρ defines a representation of

MS//M , which is weakly contained in λ̃ . The theorem follows.
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For all λ in C and n in N , define

v̂λ,n(ν) = ν−λ/2 ûλ(ν, n).

By Theorem 2.6, v̂λ,n is in L2(R+, ν
r−1 dν). By (18), v̂−λ,n also belongs to

L2(R+, ν
r−1 dν). Thus we may define the matrix coefficient φλ,n :

φλ,n = 〈ρn(·)v̂λ,n, v̂−λ,n〉. (27)

Theorem 3.3. Suppose that λ = σ+ ıγ , where |σ| < r , and that n ∈ N. Then
the matrix coefficient φλ,n belongs to B(S). Moreover, when σ ∈ [−R,R] and
p < R < r , and n ∈ N,

‖φλ,n‖B(S) ≤ C(p, q) (1 + n)−R (r −R)−1 e6|γ|.

Proof. By the preceding theorem and Theorem 4.3 of Muruganandam [15], we
deduce that φλ,n belongs to B(S) and

‖φλ,n‖B(S) ≤ ‖v̂λ,n‖2 ‖v̂−λ,n‖2 .

Now we estimate ‖v̂λ,n‖2 ‖v̂−λ,n‖2 . By Corollary 2.5,

‖v̂λ,n‖2 ‖v̂−λ,n‖2

=

∣∣∣∣∣22λ Γ(λ+r
2

) Γ(2n−λ+p+1
2

) Γ(λ+p+1
2

)

Γ(−λ+r
2

) Γ(2n+λ+p+1
2

) Γ(−λ+p+1
2

)

∣∣∣∣∣
∫ ∞

0

∣∣ν−λ/2 ûλ(ν, n)
∣∣2 νr−1 dν

≤ 22σ

∣∣∣∣∣ Γ(λ+r
2

)

Γ(−λ+r
2

)

∣∣∣∣∣
n∏

k=1

∣∣∣∣2k − λ+ p− 1

2k + λ+ p− 1

∣∣∣∣ C(p, q) (r − σ)−1 e4|γ|.

To complete the proof, we follow Cowling and Haagerup [5]. If λ = σ+ ıγ ,
where σ is in [p, r] , and n is in N , then

n∏
k=1

∣∣∣∣2k − λ+ p− 1

2k + λ+ p− 1

∣∣∣∣ ≤ C(p, q) (1 + |γ|)σ n−σ,

by [5, equation (4.10)]. Therefore,

‖φλ,n‖B(S) ≤ C2(p, q) (1 + n)−σ e6|γ| (r − σ)−1.

Similarly, when −r ≤ σ ≤ −p ,

‖φλ,n‖B(S) ≤ C2(p, q) (1 + n)−σ e6|γ| (r + σ)−1.

Define the strip E to be{
λ ∈ C : Re(λ) ∈ (−r, r)

}
.

Consider the analytic B(S)-valued function ψ : λ 7→ cos(λ/r)−6γ φλ,n on
the strip E . This function is bounded in B(S)-norm on each closed substrip
{λ ∈ C : |Re(λ)| ≤ R} when p < R < r , and satisfies the condition

‖ψλ‖B(S) ≤ C3(p, q) (1 + n)−R (r −R)−1

when Re(λ) = ±R . By the three lines theorem for Banach spaces, this estimate
also holds inside the strip. Therefore, when p ≤ R < r and Re(λ) ∈ [−R,R] ,

‖φλ,n‖B(S) ≤ C(p, q) (1 + n)−R (r −R)−1 e6|γ|,

as required.
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Theorem 3.4. Suppose that G is SU(1, n), Sp(1, n) or F4(−20) . If Re(λ) = 0,
then φλ|S belongs to B(S) and ‖φλ|S‖B(S) = 1. The family φλ|S of B(S)-valued
functions continues analytically into the strip E and, for λ in E ,

‖φλ|S‖B(S) ≤ C(p, q) (r − σ)−1 e6|γ|

and

lim sup
σ→r−

‖φσ|S‖B(S) ≤
√
π Γ( r

2
)

Γ(p+1
2

) Γ( q
2
)
.

Proof. When Re(λ) = 0, the function φλ is positive definite, and we see that
φλ ∈ B(G) and so φλ|S ∈ B(S); further, ‖φλ|S‖B(S) = 1.

Define the function v̂λ on R+ × N by

v̂λ(ν, n) = ν−λ/2 ûλ(ν, n).

When Re(λ) = 0, both v̂λ and v̂−λ are in L2(R+×N; dπ(ν, n)) as ‖v̂λ‖2 = ‖ûλ‖2 .

Since φλ|S in (6) is biradial, it is M -biinvariant. Therefore,

φλ(as(v, z)) = φλ(as(v, z)
�).

By (6), (24), (25) and (26),

φλ(as(v, z)) = s−(λ+r)/2

∫
N

uλ(n
−1a−1

s n′as)u−λ(n
′) dn′

= s−λ/2〈π1(as(v, z)
�)uλ, u−λ〉L2(MN//N)

= s−λ/2〈ρ(as(v, z)
�)ûλ, û−λ〉L2(R+×N; dπ(ν,n))

= 〈ρ(as(v, z)
�)v̂λ, v̂−λ〉L2(R+×N; dπ(ν,n)) .

By Theorem 2.2 and the definition of φλ,n in (27),

φλ =
22−2r−q

√
π

Γ(p) Γ( q
2
) Γ( r+p+1

2
)

∞∑
n=0

Γ(n+ p)

n!
φλ,n (28)

when Re(λ) = 0. Both sides of this expression extend analytically when λ varies
in E . Moreover,

‖φλ|S‖B(S) ≤
22−2r−q

√
π

Γ(p) Γ( q
2
) Γ( r+p+1

2
)

∞∑
n=0

Γ(n+ p)

n!
‖v̂λ,n‖2 ‖v̂−λ,n‖2 . (29)

Since Γ(n+ p) ≤ n! (p+ n− 1)p−1 ,

∞∑
n=0

Γ(n+ p)

n!
(1 + n)−R <∞,

when p < R < r . Therefore, by Theorem 3.3 and (29),

‖φλ|S‖B(S) ≤ C(p, q) (r −R)−1 e6|γ|,

whenever −R ≤ Re(λ) ≤ R , and R is in (p, r). Therefore (28) and (29) hold for
all λ in the strip E .
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Fix σ < r satisfying r − σ < 1. Take ε such that r − σ < ε < 1. Then

‖v̂σ,n‖2 ‖v̂−σ,n‖2

=

∣∣∣∣∣22σ Γ(σ+r
2

) Γ(2n−σ+p+1
2

) Γ(σ+p+1
2

)

Γ(−σ+r
2

) Γ(2n+σ+p+1
2

) Γ(−σ+p+1
2

)

∣∣∣∣∣
∫ ∞

0

∣∣ν−σ/2 ûσ(ν, n)
∣∣2 νr−1 dν,

by Corollary 2.5. By Theorem 2.6,

Γ(n+ p)

n!
‖v̂σ,n‖2 ‖v̂−σ,n‖2 ≤ C5(p, q)

22σ Γ(σ+r
2

) Γ(p)

Γ(−σ+r
2

)(r − σ)
·
[p]n

∣∣[−σ+p+1
2

]n
∣∣

n! [σ+p+1
2

]n

≤ C6(p, q, σ)
[p]n

∣∣[−σ+p+1
2

]n
∣∣

n! [σ+p+1
2

]n
,

where C6(p, q, σ) is a constant depending on p, q and σ . Here [a]n denotes the
“shifted factorial” (or Pochhammer symbol) a(a+ 1) · · · (a+ n− 1).

Since |−σ + p+ 1| ≤ q − 1 + ε ,

Γ(n+ p)

n!
‖v̂σ,n‖2 ‖v̂−σ,n‖2 ≤ C6(p, q, σ)

[p]n [ q−1+ε
2

]n

n! [ r+p+1−ε
2

]n
∀n ∈ N.

Now 2p+q−1+ ε < r+p+1− ε as ε < 1, and so by [17, equation (14.11)],
the sum over n of the fractions on the right hand side is finite and is equal to

2F1(p,
q−1+ε

2
, r+p+1−ε

2
, 1), where 2F1 is the Gaussian hypergeometric function.

Thus we see that for every such fixed σ , the right hand side of (29) is
finite. Therefore we can apply the Lebesgue dominated convergence theorem for
the variable σ in the sum of the equation (29).

lim sup
σ→r−

‖φσ|S‖B(S)

≤ 22−2r−q
√
π

Γ(p) Γ( q
2
) Γ( r+p+1

2
)

∞∑
n=0

Γ(n+ p)

n!
lim

σ→r−
‖v̂σ,n‖2 ‖v̂−σ,n‖2 .

(30)

Now by the second part of Theorem 2.6,

lim
σ→r−

‖v̂σ,n‖2 ‖v̂−σ,n‖2 ≤ lim
σ→r−

∣∣∣∣∣ 22σ Γ(σ+r
2

) Γ(2n−σ+p+1
2

) Γ(σ+p+1
2

)

Γ(−σ+r
2

) Γ(2n+σ+p+1
2

) Γ(−σ+p+1
2

) (r − σ)

∣∣∣∣∣
= lim

σ→r−

∣∣∣∣ 22σ Γ(σ+r
2

)

Γ(−σ+r
2

) (r − σ)

∣∣∣∣ n∏
k=1

∣∣∣∣2k − σ + p− 1

2k + σ + p− 1

∣∣∣∣
= 22r−1 Γ(r)

n∏
k=1

∣∣∣∣ 2k − q − 1

2k + r + p− 1

∣∣∣∣
=

22r−1 Γ(r) Γ( r+p+1
2

) Γ( q+1
2

)

Γ( r+p+1+2n
2

) Γ( q+1−2n
2

)
.
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Therefore, by (30)

lim sup
λ→r−

‖φσ|S‖B(S) ≤
Γ(r) 21−q

√
π

Γ( q
2
) Γ( r+p+1

2
)

∞∑
n=0

(−1)n [p]n [1−q
2

]n

n! [ r+p+1
2

]n
. (31)

But then

∞∑
n=0

(−1)n [p]n [1−q
2

]n

n! [ r+p+1
2

]n
= 2F1(p,

1− q

2
,
r + p+ 1

2
,−1) =

2−p Γ( r+p+1
2

)
√
π

Γ(p+q+1
2

) Γ(p+1
2

)

by [2, Section 2.8 (47)]. Hence by (31) and the Legendre Duplication Formula,
(see for instance, [17, Section 12.15, Corollary]),

lim sup
σ→r−

‖φσ|S‖B(S) ≤
21−r Γ(r)π

Γ( r+1
2

) Γ(p+1
2

) Γ( q
2
)

=

√
π Γ( r

2
)

Γ(p+1
2

) Γ( q
2
)
,

as claimed.

Theorem 3.5. Suppose that G is SU(1, n), Sp(1, n) or F4(−20) . Then G is
weakly amenable and

ΛG ≤
√
π Γ( r

2
)

Γ(p+1
2

) Γ( q
2
)
.

Proof. This follows as in De Cannière and Haagerup [6, Theorem 3.7].

4. The lower bound of ΛG

We prove the reverse inequality to the inequality of Theorem 3.5 to conclude. As
ΛG is always at least 1, there is nothing to do for the groups SU(1, n). Therefore,
we assume that G is Sp(1, n) or F4(−20) .

Recall the definition (10) of ∆2 . For positive R , define the radial measure
µR in the spherical measure algebra M(MN//M) by

〈f, µR〉 =

∫
v

f(v, 0) exp
(
−R

4
|v|2

)
dv ∀f ∈ C∞

c (N).

Proposition 4.1. Suppose that u is in A(N) ∩ C∞
c (MN//M). Then∣∣∣〈∆p/2

2 u, µR〉
∣∣∣ ≤ (23/2 π)p ‖u‖B(N) .

Proof. First, A(MN)|N = A(N), so u is in A(MN)\ . By [15, Theorem 3.10],
u is in the Fourier algebra A(MN//M) of the double coset hypergroup MN//M ,
and ‖u‖B(N) = ‖u‖B(MN//N) .

By [14, Proposition 4.2] and Jewett [12, Theorem 12.2(C)], we observe that
u is the inverse Fourier transform of û and ‖u‖B(MN//N) = ‖û‖1 . Therefore,

‖u‖B(N) = ‖û‖1 . (32)
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The spherical Fourier–Stieltjes transform of µR can easily be calculated. In
fact,

µ̂R(ν, n) =
( 4π

ν +R

)p(R− ν

R + ν

)n

,

and so

|µ̂R(ν, n)| ≤
( 4π

ν +R

)p

. (33)

Since ∆2 is M -biinvariant, we see from (11) that

(∆2u)̂(ν, n) =

∫
v

∫
z

u(v, z) ∆2ψν,n(v, z) dz dv = −ν
2

2
û(ν, n).

Therefore,

〈∆p/2
2 u, µR〉 =

∫
(∆

p/2
2 u)̂(ν, n) µ̂R(ν, n) dπ(ν, n)

= (−1)p/2 2−p/2

∫
R+×N

νp û(ν, n) µ̂R(ν, n) dπ(ν, n),

and so, by (32) and (33),∣∣∣〈∆p/2
2 u, µR〉

∣∣∣ ≤ (π2
√

2)p

∫
R+×N

( ν

ν +R

)p

|û(ν, n)| dπ(ν, n)

≤ (π2
√

2)p ‖u‖B(N) ,

as required.

Lemma 4.2. Suppose that {fi}i∈I is a net in C∞
c (R), that ‖fi‖∞ ≤ L for each

i in I , and that limi fi = 1 uniformly on compacta. Then

lim
i

∫ ∞

0

f
(p/2)
i (2s2 +

1

4
s4) s2p−1 ds = (−1)p/2 2p−2 Γ

(p
2

)
.

Proof. This follows Cowling and Haagerup [5, Proposition 5.3].

Theorem 4.3. Suppose that G is isomorphic to Sp(1, n), where n ≥ 2, or to
F4(−20) . Let {ui}i∈I be a net in Ac(G) such that

(i) there exists L > 0 such that ‖ui‖M0A(G) ≤ L for all i in I

(ii) {ui} tends to 1, uniformly on compacta.
Then

L ≥
√
π Γ( r

2
)

Γ(p+1
2

) Γ( q
2
)
.

Proof. By [5, Propositions 1.1 and 1.6], we may assume that each ui is in
A(G)∩C∞

c (G//K). Thus, we may suppose that ui|N ∈ A(N)∩C∞
c (MN//M) and

‖ui‖B(N) ≤ L for every i , and {ui} tends to 1 uniformly on compacta.

By the proposition above,

(π2
√

2)p ‖ui‖B(N) ≥
∣∣∣〈∆p/2

2 ui, µR〉
∣∣∣ ∀i ∈ I.
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Allowing R to tend to 0 and applying (13), we deduce that

(π2
√

2)p ‖ui‖B(N) ≥
∣∣∣∣∫

v

∆
p/2
2 ui(v, 0) dv

∣∣∣∣
≥

(2
√

2)p Γ(p+q
2

)

Γ( q
2
)

∣∣∣∣∫
v

f
(p/2)
i (2 |v|2 +

1

4
|v|4) dv

∣∣∣∣
=

(2
√

2)p Γ( r
2
)

Γ( q
2
)

Ω2p

∣∣∣∣∫ ∞

0

f
(p/2)
i (2s2 +

1

4
s4) s2p−1 ds

∣∣∣∣ .
The functions fi converge to 1 locally uniformly on compacta on [0,∞).

Therefore, by Lemma 4.2 above and the Legendre Duplication formula,

lim sup
i

‖ui‖B(N) ≥
2p−1 Γ( r

2
) Γ(p

2
)

Γ( q
2
) Γ(p)

=

√
π Γ( r

2
)

Γ(p+1
2

) Γ( q
2
)
,

as claimed.

In conclusion, we have proved the following theorem.

Theorem 4.4. Suppose that G is a connected real Lie group with finite center.
If G is locally isomorphic to SU(1, n), then ΛG = 1; if G is locally isomorphic to
Sp(1, n), then ΛG = 2n − 1; and if G is the exceptional rank one group F4(−20) ,
then ΛG = 21.
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[2] Erdélyi, A., W. Magnus, F. Oberhettinger, and F. G. Tricomi, “Higher
Transcendental Functions, Vol. I,” Bateman Manuscript Project, McGraw-
Hill, New York–Toronto–London, 1953.

[3] Cowling, M., Unitary and uniformly bounded representations of some
simple Lie groups , in: “Harmonic Analysis and Group Representations,”
C.I.M.E. II ciclo 1980, Liguori, Napoli, 1982, 49–128.

[4] —, The radial Haagerup property , in: “Locally Compact Groups with
the Haagerup Property,” Progress in Mathematics, vol. 197, Birkhäuser,
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