
Journal of Lie Theory
Volume 18 (2008) 181–191
c© 2008 Heldermann Verlag
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Abstract. The purpose of this paper is to determine the dual of Kawazoe’s
atomic Hardy space for semisimple Lie groups. The conclusion is that it consists
of functions, whose translates satisfy conditions which are similar to the condi-
tions for Goldberg’s Euclidean local bmo-space. We will also find the duals of
the corresponding K -invariant and K -bi-invariant spaces.
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1. Introduction

To begin with, we recall Kawazoe’s definition of the atomic Hardy space, H1
p,0(G),

for non-compact semisimple Lie groups, for more details about this space see [4].
Thus, let G be a connected non-compact semisimple Lie group with finite center
and Cartan decomposition G = K exp p. For g = k exp X , we denote by σ(g) the
norm of X with respect to the Euclidean structure on p induced by the Killing
form. Let dg and dk be the Haar measures on G and K respectively, where
the latter is assumed to be normalized to have total mass 1. By B(r) we denote
the ball centered at the origin of radius r, i.e. B(r) = {g ∈ G; σ(g) ≤ r}. We
observe that KB(r)K = B(r) (That the ball is left K -invariant follows directly
from the definition of the norm σ and that it is right K -invariant follows from the
invariance of the Killing form). A well-known property for non-compact semisimple
Lie groups is that they are of exponential growth, i.e. the volume of a ball with
radius r grows exponentially as r tends to infinity.

For 1 < p ≤ ∞, a function a on G is called a (1, p, 0)-atom if it satisfies
the following conditions

(i) supp a ⊂ B(r) for some r > 0,

(ii) if r ≤ 1, then ‖a‖Lp ≤ |B(r)|−
1
p′ and

∫
G

a(g) dg = 0,

(iii) if r > 1, then ‖a‖Lp ≤ |B(r)|−1.
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Remark 1.1. In [4] it is assumed throughout that the group has real rank
one, because the goal in that paper is to show that certain maximal operators are
bounded. However, for the definition of the atomic Hardy space this restriction is
not necessary.

Remark 1.2. We observe that if p = ∞ the conditions coincide with the
conditions for Goldberg’s local h1 -atoms in the Euclidean setting, see [2] pages 36-
37. The reason for the stronger bound (for local h1 -atoms the bound would have

been |B(r)|−
1
p′ ) in (iii) for general values of p is imposed to ensure boundedness

of different maximal functions. For more details see [4] remarks 4.2 and 4.7.

Remark 1.3. In Rn the condition (ii) for different values of p give rise to the
same Hardy space. However, for the Hardy spaces H1

p,0 defined below this is still
an open question.

We introduce the notation fx(g) = f(xg), x, g ∈ G. The atomic Hardy space on
G is then defined as the space of linear combinations of translated atoms

H1
p,0 :=

{
f =

∑
i

λi(ai)xi
; ai is a (1, p, 0)-atom , xi ∈ G, and

∑
i

|λi| < ∞
}

.

The norm is ‖f‖H1
p,0

:= inf
∑

i |λi|, where the infimum is taken over all represen-

tations f =
∑

i λi(ai)xi
.

Kawazoe also defines Hardy spaces of K -right-invariant and K -bi-invariant func-
tions. Let

f#(g) =

∫
K

f(gk) dk, f [(g) =

∫
K

∫
K

f(kgk′) dk dk′.

then following Kawazoe we define H1,#
p,0 := {f#; f ∈ H1

p,0}, and H1,[
p,0 := {f [; f ∈

H1
p,0}. We will determine the dual of H1

p,0 in Theorem 2.3 and the dual of H1,[
p,0 and

H1,#
p,0 respectively in Corollary 3.1 and Corollary 3.2. There is also another way to

define H1,[
p,0 from atoms without using translations and we will give a definition of

its dual without the use of translations as well, see the end of Section 3.

Acknowledgement: The author would like to thank Professor Kawazoe for
fruitful discussions.

2. Duality

As the definition of (1, p, 0)-atoms is related to the definition of atoms for local
Hardy spaces it is not surprising that the dual space should be related to bmo,
the local BMO-space introduced by Goldberg.

Definition of BMO1
p,0

In the following, let us denote the average of a function, f, over a measurable set,
U, by fU , i.e.

fU :=
1

|U |

∫
U

f(g) dg.
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The space BMO1
p,0 consists in the functions b ∈ L1

loc(G) for which there exists a
constant C such that

sup
x∈G

sup
r≤1

(
1

|B(r)|

∫
B(r)

|bx(g)− (bx)B(r)|p
′
dg

) 1
p′

< C

and

sup
x∈G

sup
r>1

1

|B(r)|

(∫
B(r)

|bx(g)|p′ dg

) 1
p′

< C,

with the smallest bound C as the norm.

If for f ∈ L1
loc(G) we define

f̃(x) := sup
x∈B,r(B)≤1

(
1

|B|

∫
B

|f − fB|p
′
dg

) 1
p′

˜̃f(x) := sup
x∈B,r(B)>1

1

|B|

(∫
B

|f |p′ dg

) 1
p′

,

where the supremum is taken over all balls containing x with radius r(B) ≤ 1 and
> 1 respectively. Then because the measure dg is left invariant we obtain

BMO1
p,0 = {b ∈ L1

loc(G) : b̃ ∈ L∞(G), ˜̃b ∈ L∞}

and the norm can be identified with

‖b‖BMO1
p,0

= max(‖b̃‖L∞ , ‖˜̃b‖L∞).

Before proceeding we make the following observation, which is easy to prove using
the triangle inequality.

Remark 2.1. If a function b ∈ L1
loc(G) satisfies the condition(

1

|B(r)|

∫
B(r)

|bx(g)− c|p′ dg

) 1
p′

≤ C

for a given constant c then this is true also with c replaced by the constant (bx)B(r).

Remark 2.2. A related BMO-space has been introduced by Ionescu [3]. We
will return to that space in Section 3.

Main theorem

We will denote by (H1
p,0)finite the dense subspace of H1

p,0 consisting of finite linear
combinations of atoms, or translates of atoms.

Theorem 2.3. BMO1
p,0 = (H1

p,0)
∗. This holds in the sense that
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i) if b ∈ BMO1
p,0, then we obtain a linear functional on (H1

p,0)finite by setting

L(f) =

∫
G

f(g)b(g) dg, f ∈ (H1
p,0)finite.

This linear functional has a unique bounded extension to H1
p,0 which satisfies

‖L‖ ≤ c‖b‖BMO1
p,0

.

ii) Conversely, for every bounded linear functional L on H1
p,0 there exists an

element b ∈ BMO1
p,0 such that

L(f) =

∫
G

f(g)b(g) dg

for f ∈ (H1
p,0)finite and ‖b‖BMO1

p,0
≤ c′‖L‖.

Proof. i) If a is an (1, p, 0)-atom with supp a ⊂ B(r), r ≤ 1 then since the
measure is left-invariant∣∣∣∣∫

x−1B(r)

ax(g)b(g)dg

∣∣∣∣ =

∣∣∣∣∫
B(r)

a(g)bx−1(g)dg

∣∣∣∣ .

By condition (ii) in the definition of a (1, p, 0)-atom and Hölder’s inequality, this
is bounded by

≤ ‖a‖Lp

(∫
B(r)

|bx−1(g)− (bx−1)B(r)|p
′
dg

) 1
p′

.

Again by condition (ii) we can estimate this by(
1

|B(r)|

∫
B(r)

|bx−1(g)− (bx−1)B(r)|p
′
dg

) 1
p′

≤ ‖b‖BMO1
p,0

.

If a is a (1, p, 0)-atom with supp a ⊂ B(r), r > 1 and b ∈ BMO1
p,0 then∣∣∣∣∫

x−1B(r)

ax(g)b(g) dg

∣∣∣∣ =

∣∣∣∣∫
B(r)

a(g)bx−1(g) dg

∣∣∣∣
by the left-invariance of the measure. By Hölder’s inequality and (iii) this is

≤ 1

|B(r)|

(∫
B(r)

|bx−1(g)|p′ dg

) 1
p′

≤ ‖b‖BMO1
p,0

.

Hence, if f ∈ (H1
p,0)finite, f =

∑N
i=1 λi(ai)xi

and b ∈ BMO1
p,0 we have∣∣∣∣∫

G

f(g)b(g) dg

∣∣∣∣ ≤ N∑
i=1

|λi|‖b‖BMO1
p,0

.

ii) The idea of this part of the proof is to show that an element of the dual is
given locally by functions in Lp′ that are compatible, and hence gives rise to a
L1

loc function on G. Finally we verify that this function belongs to BMO1
p,0 . To

see that the linear functionals on H1
p,0 are given locally by functions in Lp′ we

need some lemmas.

For a given subset U we will denote by Lp
U,0 := {f ∈ Lp(U) : fU = 0}. Let

L ∈ (H1
p,0)

∗ with ‖L‖ ≤ 1.
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Lemma 2.4. If r ≤ 1 then Lp
xB(r),0 ⊂ H1

p,0, for all x ∈ G.

Proof. If f ∈ Lp
xB(r),0 then f = c · ax−1 , where a is an (1, p, 0)-atom and

c = |B(r)|
1
p′ ‖f‖Lp . Hence, ‖f‖H1

p,0
≤ |B(r)|

1
p′ ‖f‖Lp .

Hence, if r ≤ 1, L restricts to a linear functional on Lp
xB(r),0 with ‖L‖(Lp

xB(r),0
)∗ ≤

|B(r)|
1
p′ . By the Hahn-Banach theorem L extends from Lp

xB(r),0 to a linear func-

tional L̃ on Lp
xB(r) with ‖L̃‖(Lp

xB(r)
)∗ = ‖L‖(Lp

xB(r),0
)∗ . By

(
Lp

xB(r),L
p′

xB(r)

)
-duality,

for each x ∈ G there exists a function Φx,r ∈ Lp′

xB(r) such that

L̃(f) =

∫
xB(r)

Φx,r(g)f(g) dg for f ∈ Lp
xB(r)

and ‖Φx,r‖Lp′ ≤ |B(r)|
1
p′ . In particular

L(f) =

∫
xB(r)

Φx,r(g)f(g) dg for f ∈ Lp
xB(r),0.

Thus, for each x ∈ G and r ≤ 1, we have a function Φx,r ∈ Lp′

xB(r) representing L

on Lp
xB(r),0. Furthermore, as the following remark shows, the different representants

are compatible up to a constant on the intersection.

Remark 2.5. If r1 < 1 and r2 < 1, x1, x2 ∈ G, then∫
(Φx,r2 − Φx,r1)f dx = 0 for f ∈ Lp

x1B(r1)∩x2B(r2),0.

Hence, Φx2,r2 − Φx1,r1 = cx1,x2,r1,r2 on x1B(r1) ∩ x2B(r2) for some constant
cx1,x2,r1,r2 . We will make a choice later to fix this constant.

Next we consider r > 1. In this case we have no moment conditions.

Lemma 2.6. If r > 1, then Lp
xB(r) ⊂ H1

p,0 for all x ∈ G.

Proof. If f ∈ Lp
xB(r) then f = cax−1 where c = |B(r)|‖f‖Lp and a is an

(1, p, 0)-atom. Hence, ‖f‖H1
p,0
≤ |B(r)|‖f‖Lp .

Thus when r > 1, L restricts to a linear functional on Lp
xB(r) with ‖L‖(Lp

xB(r)
)∗ ≤

|B(r)|. The lemma and the
(
Lp

xB(r),L
p′

xB(r)

)
- duality shows that there exists a

function Φx,r ∈ Lp′

xB(r) such that

L(f) =

∫
Φx,r(g)f(g) dg for f ∈ Lp

xB(r),

and ‖Φx,r‖Lp′
xB(r)

≤ |B(r)|.

Remark 2.7. If r2 > 1 and r1 > 1, x1, x2 ∈ G and x1B(r1) ⊂ x2B(r2) then∫
(Φx2,r2 − Φx1,r1)f dx = 0 for f ∈ Lp

x1B(r1) so Φx2,r2 = Φx1,r1 on x1B(r1).
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Remark 2.8. Assume now that r3 > 1, r2 > 1, r1 < 1 and x1B(r1) ⊂
x3B(r3)∩x2B(r2), then we may choose r4 large enough so that x3B(r3)∪x2B(r2) ⊂
x1B(r4). As Lp

x1B(r1),0 ⊂ Lp
x1B(r4) with preserved norms, we must have

Φx1,r4 − Φx1,r1 = cx1,r1,r4

on x1B(r1). Hence, by the reasoning above and Remark 2.7 we have

Φx3,r3 − Φx2,r2 = (Φx3,r3 − Φx1,r1)− (Φx2,r2 − Φx1,r1)

= (Φx1,r4 − Φx1,r1)− (Φx1,r4 − Φx1,r1) = 0,

on x1B(r1). Thus there is a unique constant cx1,r1 such that Φx2,r2 = Φx1,r1 +cx1,r1

on x1B(r1) as soon as r1 < 1 < r2 and x1B(r1) ⊂ x2B(r2).

Let φx,r(g) = Φx,r(g) + cx,r if r ≤ 1 and φx,r(g) = Φx,r(g) if r > 1. Set
b(g) = φx,r(g) if g ∈ xB(r).

Lemma 2.9. The function b is well-defined.

Proof. We need to show that the function b(g) is independent of the choice
of ball xB(r) containing g. Thus, assuming that g ∈ x1B(r1) ∩ x2B(r2) then we
want to show that φx1,r1(g) = φx2,r2(g). There are three cases to consider

i) If r1 > 1 and r2 > 1 then there exists a ball B(r3) with x1B(r1)∪x2B(r2) ⊂
x3B(r3). Hence, by Remark 2.7, Φx3,r3 = Φx2,r2 on x2B(r2) and Φx3,r3 =
Φx1,r1 on x1B(r1), which implies that Φx2,r2 = Φx1,r1 on x1B(r1) ∩ x2B(r2).
In particular, φx1,r1(g) = φx2,r2(g).

ii) If r1 < 1 and r2 > 1 then if we choose r3 large enough so that x1B(r1) ∪
x2B(r2) ⊂ x1B(r3) we obtain Φx1,r3 = Φx2,r2 on x2B(r2), by Remark 2.7
and Φx1,r3 = Φx1,r1 + cx1,r1 on x1B(r1), by Remark 2.8. Hence, Φx2,r2 =
Φx1,r1 + cx1,r1 on x1B(r1) ∩ x2B(r2). Thus, φx1,r1(g) = φx2,r2(g).

iii) If r1 < 1 and r2 < 1 then there exists r3 > 1 such that x1B(r1)∪x2B(r2) ⊂
x3B(r3). By remark 2.8 we have, on x1B(r1), Φx3,r3 = Φx1,r1 + cx1,r1 , and
on x2B(r2), Φx3,r3 = Φx2,r2 + cx2,r2 . This implies that Φx1,r1 + cx1,r1 =
Φx2,r2 + cx2,r2 on x1B(r1) ∩ x2B(r2). Hence, φx1,r1(g) = φx2,r2(g).

To summarize, given a linear functional L we have defined a function b such that
b ∈ Lp′ locally and

L(f) =

∫
G

f(g)b(g) dg,

for any function f ∈ H1
p,0. Next we have to show that this function belongs to our

BMO -space.

Lemma 2.10. b ∈ BMO1
p,0 .
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Proof. For xB(r) with r ≤ 1 we have, according to the comment after Lemma
2.4,

‖b− cx,r‖Lp′
xB(r)

= ‖Φx,r‖Lp′
xB(r)

≤ |B(r)|
1
p′ ,

i.e. (
1

|B(r)|

∫
B(r)

|bx(g)− cx,r|p
′
dg

) 1
p′

≤ C.

The first condition in our definition of BMO1
p,0 then follows from Remark 2.1.

For B(r) with r > 1 we have

‖b‖
Lp′

xB(r)

= ‖Φx,r‖Lp
xB(r)

≤ |B(r)|.

See the comment after Lemma 2.6. Hence,

1

|B(r)|

(∫
xB(r)

|b(g)|p′ dg

) 1
p′

≤ C,

which is equivalent to the second condition in our definition of BMO1
p,0 .

This lemma concludes the proof of Theorem 2.3.

3. K -invariant cases

In this section we will determine the duals of H1,#
p,0 and H1,[

p,0. For the latter space
we will consider two different definitions, one with translations and one without.

The duals of H1,#
p,0 and H1,[

p,0

Let BMO1,#
p,0 denote the dual of H1,#

p,0 and BMO1,[
p,0 the dual of H1,[

p,0, see the

Introduction for definitions of H1,#
p,0 and H1,[

p,0.

Corollary 3.1. The space BMO1,#
p,0 is easily determined from BMO1

p,0, namely

BMO1,#
p,0 = {b ∈ BMO1

p,0; b is K -right-invariant }.

Proof. Since K is compact and the space H1
p,0 is normed, the first part follows

directly from the fact that the dual of a space of K -invariant vectors is the
corresponding space of K -invariant linear functionals, see [1, Theorem 1.1]. Hence,

(H1,#
p,0 )∗ = {b ∈ BMO1

p,0; b is K -right-invariant }.

Corollary 3.2. The space BMO1,[
p,0 can be characterized in a similar way. We

have
BMO1,[

p,0 = {b ∈ BMO1
p,0; b is K -bi-invariant}.
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Proof. The proof is a bit more complicated because H1,[
p,0 is not the subspace

of K -left-invariant vectors in H1,#
p,0 . Instead we essentially repeat the proof of

Theorem 2.3. First the fact that any K -bi-invariant element b ∈ BMO1
p,0 defines

a linear functional on H1,[
p,0 follows directly from the proof of Theorem 2.3(i) once

we note that if a is a (1, p, 0)-atom with support in the set B(r) then∫
G

(ax)
[(g)b(g) dg =

∫
G

ax(g)b(g) dg

because b is assumed to be K -bi-invariant and the measure is left- and right-
invariant.

For the proof that any linear functional in (H1,[
p,0)

∗ can be represented by

a K -bi-invariant element of BMO1
p,0 we follow the proof of Theorem 2.3(ii). The

difference being that we have to replace the translated balls by sets of the form
KxB(r). Let Lp,K

KxB(r) be the space of K -bi-invariant Lp -functions on the set

KxB(r) and Lp,K
KxB(r),0 the subspace of such functions with integral zero. To obtain

the analogues of Lemmas 2.4 and 2.6 we proceed as in the proof of Theorem 5.5 in
[4] for showing that any element of Lp,K

KxB(r),0 belongs to H1,[
p,0 for r ≤ 1 and that

any element of Lp,K
KxB(r) belongs to H1,[

p,0 for r > 1.

We will only give a proof in the first case since the second follows in the
same way. Hence, given an element f ∈ Lp,K

KxB(r),0, we define a to be

a(g) =
f(x−1g)

I(x, r, (x−1g)−1)
χB(r)(g),

where χB(r) is the characteristic function for the ball B(r) with radius r, and

I(x, r, y) =

∫
K

χB(r)(xky−1) dk. (1)

Since f and I are K -bi-invariant we obtain∫
G

a(g) dg =

∫
G

f(g)

I(x, r, g−1)

(∫
K

χB(r)(xkg) dk

)
dg =

∫
G

f(g) dg = 0.

Next we want to know the Lp -norm of a. First we observe that

|f(g)| =

∣∣∣∣∫
K

f(g) dk

∣∣∣∣ =

∣∣∣∣∫
K

f(g)χB(r)(x
−1kg) dk

∣∣∣∣
≤ |f(g)|

(∫
K

χB(r)(x
−1kg) dk

) p−1
p

(2)

since the support of f is in KxB(r) and f is K -bi-invariant. For the Lp -norm
we have the following estimate

‖a‖p
p =

∫
G

∣∣∣∣ f(x−1g)

I(x, r, (x−1g)−1)

∣∣∣∣p (∫
K

χB(r)(xkg) dk

)
dg

≤
∫

G

|f(g)|pI(x, r, g−1)1−p dg.
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By (2) we find that this is bounded by

∫
G

|f(g)|p
(∫

K

χB(r)(x
−1kg) dk

)p−1

I(x, r, g−1)1−p dg =

∫
G

|f(g)|p dg = ‖f‖p
Lp .

Hence, a is a multiple of a (1, p, 0)-atom and ‖a‖H1
p,0
≤ |B(r)|

1
p′ ‖f‖Lp . It is now

easy to see that f ∈ H1,[
p,0 because

(ax)
[(g) =

∫
K

∫
K

a(xkgk′) dk dk′ =

∫
K

f(g)

I(x, r, g−1)
χB(r)(xkg) dk = f(g),

where we have used that f and I are K -bi-invariant and that χB(r) is K -right-
invariant.

To define the function Φx,r we need
(
Lp,K

KxB(r),L
p′,K
KxB(r)

)
-duality, which is

valid because of [1, Theorem 1.1]. Otherwise the proof is the same except for minor
changes.

Comparison with Ionescu’s BMO

The space BMO1,#
p,0 could also be considered as defined on the symmetric space

G/K. In [3], Ionescu, defined a BMO-space on Riemannian symmetric spaces of
rank one in the following way. Let for each f ∈ L1

loc(G/K), in analogy with our
earlier definition, a function f̃ be defined by

f̃(z) = sup
z∈B,r(B)≤1

1

|B|

∫
B

|f(z′)− fB| dz′

where the supremum is taken over all balls with radius ≤ 1 containing z. The
BMO-space defined by Ionescu is then

BMOI :=
{

f ∈ L1
loc(G/K); ‖f̃‖L∞(G/K) < C

}
.

Comparing this with our definition of BMO1,#
1,0 we find that the difference is that

Ionescu does not assume any estimate for the balls with radius > 1. Hence,
BMO1,#

1,0 ⊂ BMOI . In particular this implies that the analytic interpolation theo-
rem, [3, Proposition 2], will hold if we assume that the operator is bounded from
L∞ → BMO1,#

1,0 instead of L∞ → BMOI . Essentially this says that, if Tτ is an
analytic family of operators such that Tτ is bounded on L2 when Re(τ) = 0 and
bounded from L∞ to BMO1,#

1,0 when Re(τ) = 1, it will also be bounded on Lp for
any p ∈ [2,∞) when Re(τ) = (p − 2)/p. As the referee has pointed out, this in
itself is not so interesting because it is clearly more difficult to check whether a
function belongs to BMO1,#

1,0 than to check whether it belongs to BMOI . However,
by duality, Corollary 3.1, this also implies that we also get analytic interpolation
for values of p between 1 and 2 by replacing the L∞ → BMO1,#

1,0 -estimate with

an H1,#
1,0 → L1 estimate.
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The dual of H1,[
p,0 without translations

There is also a different way of defining H1,[
p,0 without translating the atoms.

Throughout this section we will assume that the rank of G is 1. For g ∈ G
and r > 0 let

R(x, r) = {g ∈ G; σ(x)− r ≤ σ(g) ≤ σ(x) + r}.

and

‖f‖x,r,p =

(∫
G

|f(g)|pI(x, r0, g
−1)1−p dg

) 1
p

,

where I is defined in (1), r0 = 2r if r ≤ 1 and r0 = r + 1 if r > 1. Following
Kawazoe we now define a (1, p, 0, \)-atom to be a function, a, satisfying

i) a is K -bi-invariant and supp a ⊂ R(x, r) for some x ∈ G and r > 0.

ii) For r ≤ 1,

‖a‖x,r,p ≤ |B(r)|−
1
p and

∫
G

a(g) dg = 0.

iii) For r > 1,
‖a‖x,r,p ≤ |B(r)|−1.

Then the Hardy space H1,\
p,0 is defined to be

H1,\
p,0(G) =

{
f =

∑
λiai; ai is a (1, p, 0, \)− atom on G and

∑
|λi| < ∞

}
,

with norm ‖f‖H1,\
p,0

= inf
∑
|λi|.

In [4] it is shown, see [4, Theorem 5.5], that H1,\
p,0 = H1,[

p,0 so (H1,\
p,0)

∗ = BMO1,[
p,0 .

However, we would like to define the dual without translations. Let r0 be as above
and set BMO1,\

p,0 to be the space of K -bi-invariant functions b ∈ L1
loc(G) for which

there is a constant C such that

sup
x∈G

sup
r≤1

(
1

|B(r)|

∫
R(x,r)

I(x, r0, g
−1)|b(g)− bR(x,r)|p

′
dg

) 1
p′

≤ C

and

sup
x∈G

sup
r>1

1

|B(r)|

(∫
R(x,r)

I(x, r0, g
−1)|b(g)|p′ dg

) 1
p′

< C}

Then it is possible to show that (H1,\
p,0)

∗ = BMO1,\
p,0 . The idea of the proof is to

show that BMO1,\
p,0
∼= BMO1,[

p,0 . In fact, this follows, for r ≤ 1, from(∫
B(r)

|(b)x(g)− c|p′ dg

) 1
p′

=

(∫
G

I(x, r, g−1)|b(g)− c|p′ dg

) 1
p′

and, for r > 1, from the identity(∫
B(r)

|(b)x(g)|p′ dg

) 1
p′

=

(∫
G

I(x, r, g−1)|b(g)|p′ dg

) 1
p′

,

which both are easily obtained using invariance and the definition of the function
I, (1).
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