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Abstract. It is usual to define the law of a Lie algebra by giving explicitly the
nonzero brackets between the elements of one of its bases. However, this paper
shows that it is possible to reduce significatively the number of the brackets
which are normally indicated when defining a filiform Lie algebra. Indeed, two
particular families of brackets are considered and it is proved that the algebra
can be defined by using only the elements of anyone of them.
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Introduction

Firstly, we would like to explain why we are dealing with complex filiform Lie
algebras. The class of these algebras, within the nilpotent Lie algebras, was
introduced by M. Vergne in the late 1960’s (in her Ph. D. Thesis, later published
in 1970 (see [12])), although before that, Blackburn [2] had already studied the
analogous class of finite Lie p-groups and used the term mazimal class to call
them, which is now also used for Lie algebras. In fact, both terms (filiform and
mazximal class) are synonymous. Vergne showed that within the variety of nilpotent
Lie multiplications on a fixed vector space, non-filiform ones can be relegated to
small-dimensional components. Thus, from an intuitive point of view, it is possible
to consider that quite a lot nilpotent Lie algebras are filiform. Moreover, filiform
Lie algebras are the most structured subset of nilpotent Lie algebras, which allows
us to study and classify them easier than the set of nilpotent Lie algebras.

Apart from that, it is well-known that the usual form to define explicitly a
Lie algebra in general consists on giving the nonzero brackets between the elements
constituting one of its bases. For instance, the Lie algebra h (belonging to si2)
given by the 2 x 2 real matrices with trace equal to zero (note that it is not filiform,
but simple) is normally defined in an explicit way by the brackets

[e1,e2) = 2e€a, [e1,e3] = —2e3, [ea, €3] = ey,

where B = {e1, e2,e3} is a basis of that algebra, with
(1 0 (01 _(00
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So, it seems logical that all the nonzero brackets appearing in the definition
of a Lie algebra are totally necessary to define it, in the sense that if some of them
were missing, then the Lie algebra would not be well defined.

However, the main goal of this paper is precisely to show that this is not
true, specially in the case of filiform Lie algebras. In fact, quite a lot of the
nonzero brackets generally appearing in the definition of a filiform Lie algebra are
unnecessary, since they can be obtained from the remaining ones.

Indeed, two examples shown in this paper prove that, for a filiform Lie
algebra of dimension n, a reduction of the number of nonzero brackets from about
”72 to about n is possible. For instance, if n = 8, it can be seen in the examples
that almost fifty per cent (even more in other dimensions) of the brackets appearing
in the explicit definition of the filiform Lie algebra are unnecessary.

Finally, let us notice that it also happens in the case of any general Lie
algebra, although in the non-filiform case, the number of nonzero brackets to reduce
is very small. So, for instance, the middle bracket [e;, e3] used to define the above
Lie algebra h can be obtained from the other two, simply by using the Jacobi
identity.

1. Definitions and notations

For a global overview of Lie algebras in general and nilpotent Lie algebras in
particular, the reader can consult [11] and [9], respectively. Let us now recall some
concepts on filiform Lie algebras.

A complex nilpotent Lie algebra g is said to be filiform if

dimg*=n—2; ... dimg"=n—k; ... dimg" =0,
where dimg =n, and gf = [g,g""1], 2<k<n.

From now on, g will denote a n-dimensional complex filiform Lie algebra,
with n < 3. It is already proved (see [6]) that there exists a (ordered) basis
{e1,...,e,} of g, called an adapted basis, such that

le1, en] = en_1, h=3,...,n.
lea, en] =0, h=1,...,n. (1)
les, en] =0, h=4,...,n.

These brackets will be called filiformity brackets.
It is easy to deduce that, with respect to that previous basis, it holds

g’ = {ea, ... en_1}, g’ = {€ea, ... en_a},... gl = {e2}, g" ={0}. (2)

The filiform Lie algebra g is called a model one, if the only nonzero brackets
between the elements of an adapted basis are [e1,e,] = e,_1, h =3,...,n. For a
given dimension n (n > 3), this model algebra is unique (up to isomorphism) and
every filiform Lie algebra of this dimension is a deformation of the model (see [9]).

Let us now denote by Cgh the centralizer of a subalgebra hin g. In [6]
(although by using a different notation to denote it, which was later improved in
[8]), the following integer was introduced

7 = 2z(g) =maz{k e N| Cx(g" ") D g}
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Note that this definition means that the ideal g"~**2 is the greatest ideal
whose centralizer contains g2, that is, the ideal whose centralizer is the ideal g,
generated by {es,...,e,_1,€,}.

Moreover, note as well that, according to that definition, z(g) is an in-
variant of filiform Lie algebras. In terms of adapted basis, it is deduced in [6]
that

2z =min{k € N = {1} | [ex, en] # 0}.

However, let us observe that zi(g) may not exist. In such a case, it is also
easy to see that g is a model algebra. This implies that the algebra with basis
{ea,...,e,} is commutative, which allows us to give a new definition of model
algebra, also independent of any adapted basis: a filiform Lie algebra g is said to
be a model algebra if Cg(g"?) is commutative. Both definitions are equivalent,
since g"~? is the ideal with basis {es, 3} whose centralizer is the ideal with basis
{ea,...,en}.

In [7] (also with a different notation) the integer z9(g) was introduced as
follows

2y = 25(g) = max{k € N|g" " is commutative}.

Note that this definition means that the ideal g"~*2"! = {e,,...,e,,} is the
greatest commutative subalgebra in the nilpotency sequence.

In that paper the three following asserts were also proved: a) 2o(g) is an
invariant of complex filiform Lie algebras. b) there exists at least some bracket
lek, ex11] # 0, for some k < n, in every non-model complex filiform Lie algebra of
dimension n, and ¢) an equivalent definition of zy is

25(g) = min {k € N | [e, ex11] # 0}.

Similarly to the case of z1(g), if the set of this definition is empty, then g is
a model algebra. Otherwise, the smallest value of z9(g) is 4, because of being
le1,€2] = [e2,e3] = [e3,eq] = 0 with respect to any adapted basis. Finally, this
relation between both invariants was also obtained

4<z21<zg<n<2z—2.

Now, in the following sections, two different families of brackets are consid-
ered. The first one will be formed by the brackets appearing in the definition of
21(g) and the second one for those appearing in the definition of 2z5(g). Both of
them will allow us, separately, to reduce significatively the number of the brackets
which normally appear when defining a filiform Lie algebra.

From now on, we will suppose that all the Lie algebras appearing in this
paper are complex filiform ones and that all bases are adapted. We will denote by
J(a,b,c) =0 the Jacobi identity associated with vectors a, b and c.

Remark 1.1.  In the last years, a new notation to denote the vectors belonging
to an adapted basis of a filiform Lie algebra is being used:

Let g be a n-dimensional filiform Lie algebra. A (ordered) basis {ey,...,e,}
of g is called an adapted basis if (compare with (1))

le1, en] = enyi1, h=2,...,n—1.
len, en] =0, h=1,...,n.
[en, en_1] =0, h=2,...,n.
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In this case, the filiformity brackets would be those [e1,e,] = epy1, with
h=2,...,n— 1, and expressions (2) reduce to

g? = {e3,...,ent, g’ = {64,...,en},...,g”_1 = {e,}, g" ={0}.

Also, in a similar way, the definitions of integers z1(g) and z3(g) can be
translated.

However, in this paper we will continue using the first notation (which,
in any case, has not been completely abandoned), since all the classifications of
filiform Lie algebras existing at the present time, which we will refer to in the last
section of this paper, have been written by using it.

2. Reducing the number of brackets

Theorem 2.1. Together with the filiformity brackets (1), the brackets belonging
to the family
fl = {[ehaen]a 2 < h < n}

are enough to define explicitly a n-dimensional complex filiform Lie algebra, with
respect to an adapted basis.

Proof.  We firstly consider the Jacobi identity J(e1, e, 2,€,) =0
[[617 €n72]7 €n} + Hen727 en]v 61] + Henv 61]7 enf2] - 0

Since the brackets [[e1, €n_2], €n] = [en—3, €] and [e,_2, €,] are known by hypoth-
esis, the bracket [e, o, €, 1] = [—€n_1,€n_2] = [[én, €1], €n_2] is obtained.

Similarly, starting from the Jacobi identity J(ey,ep,e,) = 0 and by using
the previous result, the bracket [ep, e, 1] is now obtained.

In this way, we obtain the brackets [ep, e, 2] with z; < h <n —1, starting
from Jacobi identities and the brackets obtained in the previous steps. Since
n is finite, all of the resting brackets can be consecutively deduced by applying
repeatedly this procedure. U

Now, let us see how we can apply the above theorem with an example:

Example 2.2.  The 8-dimensional complex filiform Lie algebra s (from Goze
and Ancocheas’s classification (see [1])) is usually defined, with respect to an
adapted basis B = {ey,...es}, by the following nonzero brackets

ler,en] =en1 (3 < h <8),

[647 67] = €2, [64, 68] = €3,
[65766] = —é€y, [65768] = €4,

%66, er] = e, leg, €8] = €5 + e,

Note that with the exception of the brackets corresponding to the filiformity
of the algebra, that is, brackets [e1,e,] = ep—1 (3 < h < 8), other seven nonzero
brackets are used to define explicitly this algebra.

However, Theorem 2.1 implies that it is enough to give only four of these
seven brackets to define the algebra. Actually, these brackets are [ey, 5], [es, es],
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[eg, es] and [e7, eg], which belong to the family F;. In this way, almost half of the
brackets usually given are unnecessary.

To check this fact, we just have to redo the proof. So, by using consecu-
tively the Jacobi Identities given by the triples (ey, ey, €s), (€1, €6, €7), (€1, €5,€7),
(e1,e4,e7), (e1,€5,€6), (e1,€4,66) and (eq, ey, e5), those non used brackets [ey, e7] =
ea, [es,e6] = —ea, [es,665] = 0 and [eq,e5] = 0 are obtained and the assert is
proved. <

Theorem 2.3. Together with the filiformity brackets (1), the brackets belonging
to the family:
Fa = {[ex, err1], 22 <k <n}

are enough to define explicitly a n-dimensional complex filiform Lie algebra, with
respect to an adapted basis.

Proof. ~ This proof is similar to that of Theorem 2.1. We firstly consider the
Jacobi identity J(ey,er_1,ex) = 0, with 3 < k < n, which implies [e;_o, €] =
le1, [ex—1,€ex]]. This allows us to compute the bracket [e,_o,ex], due to [ex_1, ex]
being known by hypothesis.

In a similar way, starting from the brackets

[6227 622+1]7 [ezTi-la 622+2]7 ceey [en—la en] (3)

the brackets
[ezg—lv 622+1]7 [6227 622+2]7 ceey [en—27 en] (4)

are obtained.
Similarly, from J(ey, ep, ) = 0, with 3 < h < k, we deduce that

le1, [en, ex]] = len—1, €x] + [en, ex—1] (5)

and thus, the bracket [e,_3,€,] can be computed, since [e,_2,€,] and [e,_2, €,_1]
are already obtained by (4) and (3), respectively. Similarly, [e,_4,€,-1] can also
be obtained from previous expressions.

Therefore, as n is finite, all of the resting brackets can be consecutively
deduced by repeating this procedure. O

Example 2.4.  Let us consider again the same filiform Lie algebra g of Exam-
ple 2.2. We already showed that, apart from the brackets due to the filiformity of
the algebra, it was enough to consider only the four brackets [ey, eg], [es, es], [es, €s]
and [er, es] of the family F; to define it, while the other three brackets were not
needed to describe the algebra.

Now, Theorem 2.3 shows that it is enough to give only the three brackets
les, €6, [es, €7] and [er, es] of family F, to define the algebra, since the other four
brackets ([eq, €7], [es, €s], [e5, €s] and [eg, eg]) can be obtained from them. Note that
this gives us a saving of more than fifty per cent of the number of the brackets
used in the usual definition of this algebra.

This fact can be verified as in Example 2.2, since the Jacobi identities
formed by (eq,er, es), (e1,€q,€7), (e1,es5,€6), (€1,€4,€5), (e1,€6,€s), (e1,e5,e5) and
(e1, eq, e5) involve the following results: [eg, es] = e3 + €5, [e5,e7] =0, [es, e6] =
0, [es,es] = €4, [eq,es] = e3 and [eyq, e7] =2 +e5. This finishes the example <
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3. Some applications
In this last section we show two applications of the previous results.

3.1. Relations between Graph Theory and Lie algebras.

A novel recent research tries to progress in Lie Theory by using Graph
Theory as a tool. It is true that, at the present, there are just a few works relating
both theories, Lie and Graphs, one to each other, but it is a fact that some research
papers are appearing in this sense (for instance, see [4], [5] and [10]). The idea
lies in the representation of each Lie algebra by a certain graph. In this way, the
properties of these graphs can be studied by considering Graph Theory and then
be translated to Lie algebras.

For example, other colleagues and myself considered in [4] the family £ of
n-dimensional Lie algebras over the field Z/27, with a basis {ej,...,e,}, in such
a way that if r;s < n, then [e,,es] = 0 and [e,,e,]| is a linear combination of
€1, ..., en_1 (note, however, that these algebras are not filiform). We represented
each of them by a square matrix (n — 1) x (n — 1), where the element 4, j, which
can only 0 or 1, is the coefficient of e; in the bracket [e;, e,].

Next, we defined in a natural way a map between £ and the set of simple
directed pseudo-graphs (i.e., directed pseudo-graphs with at most one loop in
each vertex and without double edges) in such a way that each Lie algebra of
L corresponds with the simple directed pseudo-graph whose adjacency matrix
coincides with the matrix of the algebra.

In this way, by using the properties of such pseudo-graphs and an appropri-
ate equivalence relation, we concluded that there exist, up to isomorphism, 4,6, 14
and 34 Lie algebras of this family of dimensions 2,3,4 and 5, respectively, over
Z/27.

Moreover, a similar study has been done in [10] by the author jointly with
other colleagues for the family of n-dimensional Lie algebras over the field Z/37,
having a basis {u1, ..., u,}, such that if r,s < n, then [u,,us] =0 and [u,,u,] is
a linear combination of the basic elements uy, ..., u,_1 (note that u, does not
appear in this combination). Now, a Lie algebra of such a type can be represented
by a (n—1) x (n— 1) square matrix, where the element ¢, j is the coefficient of u;
in the bracket [u;, u,], which can only be 0, 1 or 2. By using now the set of directed
pseudo-graphs in which, at most, two double edges are allowed, we obtained that
there exist, at most, 41 Lie algebras belonging to that family.

Then, it is obvious that the less possible number of brackets appearing in
the definition of the algebra implies that the corresponding graphs will be easier
to deal with. Therefore, the reductions can constitute a step forward to tackle the
open problem of the classifications of general Lie algebras.

3.2. Classification of complex filiform Lie algebras of dimension less than
or equal to 8.

This subsection is devoted to show the explicit classification (up to iso-
morphisms) of complex filiform Lie algebras (from now on, CFLAs) of dimen-
sion n < 8, by showing only the brackets belonging to the family F; (al-
though in a same way, the family F, could also have been used). The brackets
ler,en] = en—1 (3 < h < n) corresponding to the filiformity are omitted in each
algebra for reasons of length, although they must be supposed.
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It can be noted that these classifications are very simple up to dimension
7. However, getting the classification for larger dimensions constitutes a quite
hard and complicated process, which normally requires the help of a computer.
Note also that there exist 34, 104 and 149 CFLAs of dimensions 9, 10 and 11,
respectively. The largest dimension for which the explicit classification of these
algebras is known is 12. Indeed, there are 496 algebras of this dimension (see [3]).

e CFLAs of dimension 2: A: Model algebra.
e CFLAs of dimension 3: A1 Model algebra.
e CFLAs of dimension 4: A1 Model algebra.
e CFLAs of dimension 5: At: Model algebra. M [es,e5] = eo.

CFLAs of dimension 6:
As i Model algebra.

[ea, €6] = €2, [e5, e6] = e3.
Ao o [ea,eq] = es, [e5, €6] = €a.
A3 i [ea,eq] = ea +e3, [e5, e6] = €3 + ea.
e CFLAs of dimension 7 (« is a complex parameter):

)\% : [66, 67] = €2

)\% : [65, 67] = €2 [66, 67] = €3.

X7 les,er) = ez, [es,er] =esten

/\? : [64, 87] = €9, [65, 67] = €3, [66, 67} = €4.

)\(75 : leq, e7] = e, les, e7] = es, [es, e7] = eq + 3.
/\; : [64,67] = —eg, [66,67] = €3.

M oes,er] =aea, les,er] = (a+1)es, [es,er] = (a+1)es.

e CFLAs of dimension 8
A previous remark is convenient at this point. By applying Theorem 2.1 to the
general law of these algebras (with respect to an adapted basis), we obtain
le4, e8] = aa7e3 + asgea,
les, es] = aareq + (as8 + as,7)es + as gea,
les, es] = aa7es + (aag + 2as57)es + (as s + ag,7)es + aggez,
[67, 68] = a4 766 + (a478 -+ 2a577)65 + (a5,g + CL677)64 + agges + arg €.
where a47,...,a7g8 are complex parameters satisfying a restriction due to Jacobi
identities: a4 7 (2a48 + Hasy) = 0. This implies that some parameter families

of algebras can appear. Therefore, by using them, the following classification of
CFLAs of dimension 8 is obtained, where previous parameters have been replaced
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by Greek characters.

)\515 : Model algebra.
Ag : [67,68] = €2
)\g o [es, es] = ea,
/\é1 : [66,68] = €9,
)\g o [es, es] = ea,
)\g : [65,68] = €2,
)\g o [es, es] = Bea,
A [es,es] = Bea,
[67, 68] = (ﬂ + 1)64 + es.
A : o [es, e8] = e,
eq, es] = eu,
)\51;0 : [eq, es] = ea,
eq, es] = eu,
)\51;1 [e4, e8] = ea,
[e6, e8] = eq + e2,
)%2 : [eq, es] = ea,
[e6, e8] = €4 + ag7e3 + d ez,
)\%;3 0 [eq, es] = —eo,
ME o [ess e8] = aes,
[66, 68] = (Oé + 2) €4,
AP [es e8] = e,
[es, es] = (a+2) eq + e3,
MO [es es] =es,  es, es] = eu,
[e7, es] = eg.
)%7 : [64, 68] = €3, [65, 68] = €4,
[67, 68] = e6 t+ €3.
)\é8 : [64, 68] = €3, [65, eg] = e4 + e,
[e7,es] = eg + e4.
)\ég : [64, 68] = e3, [65, eg] = e4 + e,
le7,es] = eg + €4 + €3
)\%O : [64, 68] = €3 — %eg,
e, e8] = €5 — 54+ 3 €3 —
)\%1 : [64, 68] = €3 — %62,
[66,68] = €5 — %64 + %63,
A2 es,es] =e3— 5 e,
le6, es] = e5 — 3 €a,

NUNEZ

[e7, eg] = es.
[67, 68] — €3 + €9
e6, es] = es, [e7, es] = eq.
[66, 68] = e3 + €9, [67, 68] = e4 + e3.
le6,es] = (B+1)es, [er,es] = (B + 1)ea.
e, es] = (B+1) e3 + ea,
[es, es] = es,
[e7, es] = es.
[65768] = €3,
[67, 68] = €5 + €9
[65768] = €3,
ler,es] = e5+e3+vea
e, es] = es,
[67, 68] =e5+ag7€4+ des.
[66, 68] = e4 + €3, [67, 68] = e5 + e4.
[65, 68] = (Oé + 1) €3,
[67, 68] = (Oé + 2) €5.
[65, 68] = (Oé + 1) e3 + eo,
[e7,es] = (a+2) e5 + eq.
6, e8] = es,

les, e8] = e5 + e,
[66, eg] = e5 + e3+ eg,

[66, eg] = e5 + €3+ €9,

[65768]264—3634-%627
%627 [67,68]266—%65+%€4—28l63-
[65768]264—3634-%627
e7,e8] =€ — 5 €5 + 5 e4.
erves] = e~ fes + |
les, e8] = eq — 5 €3,
[67,68] = € — %65.
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