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Abstract. We show how to detect non-tame automorphisms by using a crite-
rion which is based on the Dieudonné determinant and we construct some specific
non-tame automorphisms of free metabelian Lie algebras and free Lie algebras
of the form F/γm(F )

′
.
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1. Introduction

Let F be the free Lie algebra generated by the set X = {x1, . . . , xn} over the field
K of characteristic 0. Denote by F

′
the derived subalgebra of F . We identify

a free metabelian Lie algebra L of rank n , with F/F ′′ in the usual way , where
F ′′ is the derived subalgebra of F ′. If an automorphism ϕ of L can be lifted to
an automorphism of F then we say that ϕ is a tame automorphism of L.The
questions of lifting automorphism are naturally related to the problem of finding
appropriate necessary and sufficent conditions for an endomorphism of F to be an
automorphism.

Drensky and Gupta [5] have proved that free nilpotent Lie algebras have
non-tame automorphisms. In the case of free metabelian Lie algebras Bahturin
and Nabiyev [1] have established the existence of non-tame automorphisms.

Birman [3], Reutenauer [7],Umirbaev [10] and Yagzhev [11] have given a
matrix characterization of automorphisms among arbitrary endomorphisms as
follows: Define the Jacobian matrix Jϕ = (∂ϕ(xi)

∂xj
)
1≤i,j≤n

,where ∂
∂xj

denotes partial

Fox derivation with respect to xj in the universal enveloping algebra U(F ) [6].
Then ϕ is an automorphism if and only if the matrix Jϕ is invertible over U(F ).
A generalization of this result has been proved by Shpilrain[8]. He has proved that
any subset {y1, . . . , yn} generates the free Lie algebra F modulo R

′
if and only if

the matrix (σR( ∂yi

∂xj
)1≤i,j≤n is invertible over U(F/R), where R is an ideal of F and

σR : U(F ) → U(F/R) is the natural homomorphism. This result has been used
in obtaining a powerful necessary condition of tameness. An approach giving a
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necessary condition for a matrix over integral group ring Z(G) of a free group G to
be invertible is due to Shpilrain [9]. He has used a non-commutative determinant
to obtain this necessary condition. This condition was earlier mentioned for free
Lie algebras in [2] by Y. Bahturin and V. Shpilrain. Our purpose is to give some
specific examples of non-tame automorphisms by using Bahturin’s and Shpilrain’s
technique for free Lie algebras.

In this paper we use a necessary condition which is given in [2] for a
matrix over U(F ) to be invertible. This condition yields a method for detecting
non-tame automorphisms of the free metabelian Lie algebra L = F/F ′′ . This
method is explicitly based on a non-commutative determinant: We consider the
image of the Jacobian matrix in an appropriate algebra U(F )/∆m , where ∆
is the augmentation ideal of U(F ), evaluate the Dieudonné determinant of this
image and then observe that this determinant should be equal to an element
of the field K. We also give some applications of this technique to detecting
non-tame automorphisms. First we give two examples illustrating the difference
between the usual determinant of the abelianized matrix and our non-commutative
determinant. Then we present a non-tame automorphism of the free metabelian
Lie algebra L . We denote the multiplication in F by the the commutator [a, b] .

2. Preliminaries

Let U(F ) be the universal enveloping algebra of the free Lie algebra F and ∆
its augmentation ideal, that is, the kernel of the augmentation homomorphism
ε : U(F ) → K defined by ε(xi) = 0, i = 1, 2, . . . , n . If R 6= F is an ideal of F
then we denote by ∆R the ideal of U(F ) generated by the ideal R . Note that ∆R

is the kernel of the natural homomorphism σR : U(F ) → U(F/R) .

In [6] Fox gave a detailed account of the differential calculus in a free group
ring . Since any associative algebra is naturally imbedded in a free group algebra,
most of the technical results remain valid for free associative algebras.

We introduce here Fox derivations as the mappings ∂
∂xi

: U(F ) → U(F ), i =
1, 2, . . . , n , satisfying the following conditions whenever α, β ∈ K, u, v ∈ U(F ) :

1.
∂xj

∂xi
= δi,j (Kronecker delta),

2. ∂
∂xi

(αu+ βv) = α ∂u
∂xi

+ β ∂v
∂xi

,

3. ∂
∂xi

(uv) = ∂u
∂xi
ε(v) + u ∂v

∂xi
.

It is an obvious consequence of the definitions that ∂
∂xi

(1) = 0.

The ideal ∆ is a free left U(F )−module with a free basis {x1, . . . , xn} and
the mappings ∂

∂xi
are projections on the corresponding free cyclic direct summands.

Thus any element f ∈ ∆ can be uniquely written in the form f =
∑
i

∂f
∂xi
xi.

Throught out this paper we will need the following technical lemmas. The
first lemma is an immediate consequence of the definitions.

Lemma 2.1. Let J be an arbitrary ideal of F and let u ∈ ∆ . Then u ∈ J∆
if and only if ∂u

∂xi
∈ J for each i, 1 ≤ i ≤ n.

Proof of the next lemma can be found in [11]

Lemma 2.2. Let R be an ideal of F and let u ∈ F . Then u ∈ ∆R∆ if and
only if u ∈ R′ .



Özkurt and Ekici 207

3. The Dieudonné Determinant

In this section we consider an algebra Hm = U(F )/∆m , m ≥ 2, and we describe
the construction of a non-commutative determinant corresponding to Dieudonné
determinant.This construction is similar to that of [2] but more understandable
and detailed than it. Any invertible square matrix over the universal enveloping
algebra U(F ) (i.e. a matrix from the general lineer group GLk(U(F )) for some
k ≥ 1) is also invertible over Hm . Such a matrix over Hm has at least one invertible
element in every row and in every column (see the Remark 3 below). Therefore
by using elementary transformations every invertible square matrix over Hm can
be written as a product of elementary and diagonal matrices. By an elementary
matrix we mean a matrix which differs from the identity matrix by a single entry
outside the diagonal.

Now take the multiplicative group H∗
m of all invertible elements of Hm . It

is clear that invertible elements of Hm are of the form α + v + ∆m with v ∈ ∆,
0 6= α ∈ K. Since (α + v)(α−1 − α−2v + α−3v2 + . . . + (−1)m−1α−mvm−1) =
1(mod∆m), we have modulo ∆m :

(α+ v)−1 = α−1 − α−2v + α−3v2 + . . .+ (−1)m−1α−mvm−1.

Hence the commutator subgroup (H∗
m, H

∗
m) of the group H∗

m is generated as a
group modulo ∆m by elements of the form

(1−v)(1−w)(1−v)−1(1−w)−1 = (1−v)(1−w)(1+v+. . .+vm−1)(1+w+. . .+wm−1)

with v, w ∈ ∆ . Let Sm be the subsemigroup of U(F ) generated by all such
elements .

Remark 3.1. Let M = (mi,j) ∈ GLn(Hm). Consider the matrix ε(M) of the
augmentations of elements of M . It is clear that the matrix ε(M) is invertible
over K . This means that we have at least one element with non-zero augmentation
in every row and in every column of the matrix M . Hence M has at least one
invertible element in every row and in every column. This allows us to reduce the
matrix M to a diagonal form by applying elementary transformations to its rows
as the following:

Select an invertible element mij in the j-th column . Subtract the i-th row
multiplied on the left by mkjm

−1
ij from the k -th row, where 1 ≤ k ≤ n, k 6= i .

Then all elements in the j − th column will be zero except mij . Now apply this
operation to all columns and then change the rows to obtain a diagonal matrix.

Now given a matrix A ∈ GLn(Hm) over Hm ,we define its Dieudonné deter-
minant using the fact that every invertible matrix over Hm can be diagonalizable.
For every arbitrary permutation σ ∈ Sn we associate the permutation matrix
P (σ) = (δi,σ(j)) , where δ denotes the Kronecker symbol. Then there exists a
decomposition A = TDP (σ)V , where

T =

 1 ∗ ∗
. . . ∗

0 1

 , D = diag(d1, . . . , dn), V =

 1 . 0
∗ .. .
∗ ∗ 1

 ,

σ a permutation, P (σ) the permutation matrix corresponding to σ and D and σ
are unique with these properties (see [4] Theorems 1 and 2 in chap.19).
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Definition 3.2. Let A ∈ GLn(Hm) have the decomposition of the form A =
TDP (σ)V , D = diag(d1, . . . , dn). The Dieudonné determinant of A is Dm(A) =
π(sgn(σ)d1 · · · dn), where π is the canonical mapping H∗

m → H∗
m/(H

∗
m, H

∗
m).

Now we can give the following proposition which is similar to Y. Bahturin
and V. Shpilrain’s result [2].

Proposition 3.3. Let A ∈ GLn(U(F )) and detm(A) be an arbitrary preimage
of Dm(A) in U(F ). Then for any m ≥ 2 we have

detm(A) = (α+ v)gm + wm,

where α ∈ K , α 6= 0, v ∈ ∆\∆m, gm ∈ Sm, wm ∈ ∆m .

Proof. Let A ∈ GLn(U(F )). Then it is invertible over Hm . Now consider the
multiplicative group H∗

m of all invertible elements of Hm and come up with the
determinant Dm(A) using the fact that in the algebra Hm , every element with
non-zero augmentation is invertible. Hence the result follows.

Now we have

Corollary 3.4. ([2]) Let ϕ be an automorphism of F and detm(Jϕ) be an
arbitrary preimage of Dm(Jϕ) in U(F ). Then for any m ≥ 2 we have

detm(Jϕ) = αgm + wm,

where α ∈ K,α 6= 0, gm ∈ Sm, wm ∈ ∆m .

Proof. Let ϕ be an automorphism of F . It is well known that ϕ is a
composition of elementary automorphisms of F . It is routine to show that the
Jacobian matrix of any elementary automorphism of F can be written as a product
of elementary and diagonal matrices. This result and the equality Jα◦β = α(Jβ)Jα
for the composition α ◦ β of any two automorphisms α, β of F allows us to
write the Jacobian matrix Jϕ of ϕ in the form Jϕ = E · D , where E is a
product of elementary matrices and D is a diagonal matrix with diagonal elements
d1, d2, . . . , dn . Since the only invertible elements of U(F ) are the elements of the
field K , the diagonal elements of D must belong to K . Now consider the algebra
Hm = U(F )/∆m . The image of Jϕ over Hm is also invertible. Let Jϕ = E · D
be this image. Then the diagonal elements di + ∆m of the matrix D and their

product
n

Π
i=1

(di + ∆m) = d1 · d2 · · · dn + ∆m cannot belong to the commutator

subgroup (H∗
m, H

∗
m). Hence the Dieudonné determinant of Jϕ is of the form

Dm(Jϕ) = α+ ∆m,

where α = d1 ·d2 · · · dn . It is clear that an arbitrary preimage of Dm(Jϕ) in U(F )
is of the form αgm + wm , where gm ∈ Sm, wm ∈ ∆m .

Corollary 3.4 yields a necessary condition for an endomorphism of F to be
an automorphism . The main point is that we have to check whether or not the
condition of the Corollary 3.4 is contradicted.

The following examples show that the usual commutative determinant is
only good for distinguishing automorphisms modulo F

′′
whereas a non-commutat-

ive determinant allows a more subtle analysis.
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Example 3.5. Consider the endomorphism ϕ of F defined as

ϕ : x1 → x1 + [[x1, [xj1 , xj2 ]] , xj3 ] ,

xi → xi, i 6= 1,

where jα 6= jβ for 1 ≤ α, β ≤ 3 and jγ 6= 1 for γ = 1, 2 . Then the image of the
Jacobian matrix Jϕ over U(F/F

′
) has zeroes below the diagonal and units on the

diagonal. Thus it is invertible. This implies that ϕ induces an automorphism of
L .

Let us consider the image
1 + ∂g

∂x1

∂g
∂x2

∂g
∂x3

. . . ∂g
∂xn

0 1 0 . . . 0
. . . . . . .
0 0 0 . . . 1


of the Jacobian matrix Jϕ over H4 = U(F )/∆4,where g = [[x1, [xj1 , xj2 ]], xj3 ] .
Recall that the commutator subgroup (H∗

4 , H
∗
4 )of the multiplicative group H∗

4 is
generated as a group by elements of the form

(1− v)(1− w)(1 + v + v2 + v3)(1 + w + w2 + w3) + ∆4

where v, w ∈ ∆. Straightforward calculation shows that an element of this form
may be written as

1 + vw − wv + v2w − vwv + wvw − w2v + ∆4.

Denote by 〈∆,∆〉 the subspace of U(F ) generated by all elements of the
form fg−gf, f, g ∈ ∆. Hence the elements of the commutator subgroup (H∗

4 , H
∗
4 )

of H∗
4 are of the form 1 + z , where z ∈ 〈∆,∆〉 . Now we can compute D4(Jϕ):

D4(Jϕ) = π(1 + [x1, [xj1 , xj2 ]]
∂xj3
∂x1

− xj3 [xj1 , xj2 ]) = 1− xj3 [xj1 , xj2 ] + ∆4.

Therefore an arbitrary preimage of D4(Jϕ) in U(F ) must be

det4(Jϕ) = 1 + [x1, [xj1 , xj2 ]]
∂xj3
∂x1

− xj3 [xj1 , xj2 ](mod ∆4).

If ϕ were an automorphism, then we would have

1 + [x1, [xj1 , xj2 ]]
∂xj3
∂x1

− xj3 [xj1 , xj2 ] = αg4(mod ∆4).

for some 0 6= α ∈ K , g4 ∈ S4 . This yields α = 1 and g4 − 1 ∈ 〈∆,∆〉 and

xj3 [xj1 , xj2 ] = 0(mod 〈∆,∆〉+ ∆4).

But this is impossible since

xj3 [xj1 , xj2 ] = xj3xj1xj2 − xj3xj2xj1 .

cannot belong to 〈∆,∆〉 + ∆4 . This contradiction proves that ϕ is not an auto-
morphism.
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Example 3.6. Let ψ be the endomorphism of F defined as

ψ : x1 → x1 + [[x1, [x2, x3]], x4],

xi → xi, i 6= 1.

Consider the Jacobian matrix Jψ :

Jψ=


1 + x4 [x2, x3] x4x1x3 −x4x1x2 .. 0

0 1 0 .. 0
0 0 1 .. 0
. . . . . .. .
0 0 0 .. 1



The image of elements of Jψ in U(F/F ′) determines the image
1 x4x1x3 −x4x1x2 .. 0
0 1 0 .. 0
0 0 1 .. 0
. . . . . .. .
0 0 0 .. 1


of Jψ over U(F/F ′) . Hence above matrix is invertible over U(F/F ′). This implies
that ψ is an automorphism of the free metabelian Lie algebra L .

Now, let us consider the image of Jψ over H4 = U(F )/∆4 and compute
D4(Jψ) :

D4(Jψ) = 1 + x4[x2, x3] + ∆4.

If ψ were an automorphism of F we would have

det4(Jψ) = 1 + x4[x2, x3] = αg4(mod ∆4)

for some 0 6= α ∈ K , g4 ∈ S4 by Corollary 3.4. Then it follows that α = 1 and
1+x4[x2, x3] ∈ S4(mod ∆4). This yields x4[x2, x3] = 0(mod 〈∆,∆〉+∆4). Which
is impossible. Thus ψ can not be an automorphism .

These examples illustrate the difference between the usual commutative
determinant and the non-commutative determinant.

Remark 3.7. By Proposition 3.3 we obtain a condition for detecting non-
invertibility of a square matrix M over U(F ). First we compute detm(M) starting
from m = 1 and carry on the computation until we have the condition of the
Proposition 3.3 contradicted.

4. Applications of Non-Commutative Determinants: Non-tame
Automorphisms

In this section we are going to give some applications of the Dieudonné determi-
nant. Let L be the free metabelian Lie algebra F/F ′′ . We denote by γn(F ) the
n-th term of the lower central series of F .
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Theorem 4.1. The endomorphism ϕ defined as

ϕ : x1 → x1 + [[x1, [xj1 , xj2 ]], xj3 ], jα 6= jβ, 1 ≤ α, β ≤ 3, jγ 6= 1, γ = 1, 2

xi → xi, i 6= 1

is a non-tame automorphism of L.

Proof. Suppose that for some uj ∈ F
′′
, j = 1, 2, . . . , n we have an automor-

phism ψ of F induced by

ψ : x1 → x1 + [[x1, [xj1 , xj2 ]], xj3 ] + u1, jα 6= jβ, 1 ≤ α, β ≤ 3, jγ 6= 1, γ = 1, 2

xi → xi + ui, i 6= 1

Since ψ is an automorphism , the Jacobian matrix

Jψ =


1 + ∂g

∂x1
+ ∂u1

∂x1

∂g
∂x2

+ ∂u1

∂x2
. . . ∂g

∂xn
+ ∂u1

∂xn
∂u2

∂x1
1 + ∂u2

∂x2
. . . ∂u2

∂xn

. . . . . .
∂un

∂x1

∂un

∂x2
. . . 1 + ∂un

∂xn


is invertible over U(F ),where g = [[x1, [xj1 , xj2 ]], xj3 ], jα 6= jβ, 1 ≤ α, β ≤ 3,
jγ 6= 1, γ = 1, 2. Denote R = F ′ . Then the diagonal elements of Jψ have the form
1+v, v ∈ ∆R and they are all invertible modulo ∆2

R . All the other elements of Jψ
except those in the first row belong to ∆R by Lemma 2.1 and Lemma 2.2. Note
that ∆2

R ⊂ ∆4 . Let us consider the image of Jψ under the canonical mapping
η : U(F ) → U(F )/∆4 . We can reduce the matrix η(Jψ) to a diagonal form by
applying elementary transformations to its rows. Let w1 = ∂g

∂x1
+ ∂u1

∂x1
. Then the

inverse of the diagonal element 1 + w1 of η(Jψ) is 1− w1 .

Now we are going to apply the following elementary transformations:

Subtract the first row multiplied on the left by ∂ui

∂x1
(1 − w1) from the i-th

row , i = 2, . . . , n . We get
1 + w1

∂g
∂x2

+ ∂u1

∂x2
. . . ∂g

∂xn
+ ∂u1

∂xn

0 1 + ∂u2

∂x2
. . . ∂u2

∂xn

. . . . . . . .
0 ∂un

∂x2
. . . 1 + ∂un

∂xn


over U(F )/∆4 . Using the diagonal elements a22, . . . , ann we apply similar elemen-
tary transformations to clear all the off diagonal elements of the matrix . After
applying all of these transformations we obtain the following diagonal matrix over
U(F )/∆4 . 

1 + w1 0 . . . 0
0 1 + ∂u2

∂x2
. . . 0

. . . . . .
0 0 . . . 1 + ∂un

∂xn

 .
Now consider the algebra H4 = U(F )/∆4 . Recall that the invertible

elements of the multiplicative subgroup H∗
4 are of the form

α+ w + ∆4,
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where 0 6= α ∈ K,w ∈ ∆. Hence elements from the commutator subgroup of the
group H∗

4 have the form
1 + v + ∆4, v ∈ 〈∆,∆〉

(see the computation in the example 3.6). Applying Corollary 3.4 we obtain

1 + [x1, [xj1 , xj2 ]]
∂xj3
∂x1

− xj3 [xj1 , xj2 ] +
∑ ∂ui

∂xi
= αg4(mod ∆4),

for some 0 6= α ∈ K, g4 ∈ S4 . This implies α = 1 and g4 − 1 ∈ 〈∆,∆〉 . Since

[x1, [xj1 , xj2 ]]
∂xj3

∂x1
∈ 〈∆,∆〉 , we have xj3 [xj1 , xj2 ] +

∑
∂ui

∂xi
= 0(mod 〈∆,∆〉+ ∆4) .

We know that the element h = xj3 [xj1 , xj2 ] does not belong to 〈∆,∆〉+∆4 . Hence
we have to compensate it by

∑
∂ui

∂xi
. Since h ∈ ∆3 we will examine monomials of

weight 4 from F
′′

. Since h involves only the generators xj1 , xj2 , xj3 , it is sufficient
to consider the monomials of the following form:

uj1 = [[xj2 , xj1 ], [xj3 , xj1 ]],

uj2 = [[xj1 , xj2 ], [xj3 , xj2 ]],

uj3 = [[xj1 , xj3 ], [xj2 , xj3 ]].

Consider the expansions of
∂ujk

∂xjk
modulo 〈∆,∆〉+ ∆4, k = 1, 2, 3.

∂uj1
∂xj1

= [xj2 , xj1 ]xj3 − [xj3 , xj1 ]xj2(mod 〈∆,∆〉+ ∆4),

∂uj2
∂xj2

= [xj1 , xj2 ]xj3 − [xj3 , xj2 ]xj1(mod 〈∆,∆〉+ ∆4),

∂uj3
∂xj3

= [xj1 , xj3 ]xj2 − [xj2 , xj3 ]xj1(mod 〈∆,∆〉+ ∆4).

Since
3∑

k=1

∂ujk
∂xjk

= 2[xj1 , xj3 ]xj2(mod 〈∆,∆〉+ ∆4),

3∑
k=1

∂ujk

∂xjk
can not compensate h . This completes the proof.

Theorem 4.2. The endomorphism

ϕ : x1 → x1 + [x1, v],

xi → xi, i 6= 1

induces a non-tame automorphism of F/γm(F )
′
,where

v = [[. . . [xj1 , xj2 ] , . . .] , xjm ] , jk 6= 1, k = 1, ..,m, m ≥ 3.

Proof. Suppose by way of contradiction that for some uj ∈ γm(F )
′
we have an

automorphism ψ of F induced by

ψ : x1 → x1 + [x1, v] + u1,

xi → xi + ui, i 6= 1.
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Now the proof goes along the same lines as in Theorem 4.1. But we consider the
image of the Jacobian matrix Jψ over the algebra H2m−1 = U(F )/∆2m−1 . As we
have seen in the proof of Theorem 4.1, we obtain

det2m−1(Jψ) = 1− v (mod ∆2m−1).

Applying Corollary 3.4 we get

1− v = 1− [[. . . [xj1 , xj2 ], . . .], xjm ] ∈ S2m−1(mod ∆2m−1).

Which is not the case; indeed the element v has the form uw −wu, where
u = [[. . . [xj1 , xj2 ], . . .], xjm−1 ], w = xjm . Straightforward calculations show that

1− v = 1− [u,w] = (1 + u)(1−w)(1 + u)−1(1−w)−1 +wuw−w2u(mod ∆2m−1).

If the form of the element 1− v were

(1− a)(1− b)(1− a)−1(1− b)−1(mod ∆2m−1)

then we would have wuw − w2u = 0(mod ∆2m−1). This contradiction completes
the proof.

References

[1] Bahturin, Yu., and S. Nabiyev, Automorphisms and Derivations of Abelian
Extensions of some Lie Algebras , Abh. Math. Sem. Uni. Hamburg 62
(1992), 43–54.

[2] Bahturin, Yu., and V. Shpilrain, On Lie algebras with wild automorphisms ,
Results Math. 28 (1995), 209–213.

[3] Birman, J. S., An Inverse Function Theorem for Free Groups , Proc. Amer.
Math. Soc. 41 (1973), 634–638.

[4] Draxl, P. K., “Skew Fields,” London Mathematical Society Lecture Notes
Series 83, Cambridge Univ. Press, 1983.

[5] Drensky, V., and C. K. Gupta, Automorphisms of Free Nilpotent Lie
Algebras , Can J. Math 11 (1990), 259–279.

[6] Fox, R. H., Free Differantial Calculus, I.Derivation in the Free Group Ring ,
Ann. of Math. 2 (1953), 547–560.

[7] Reutenauer, C., Applications of a Noncommutative Jacobian Matrix , J.
Pure Appl. Alg. 77 (1992), 169–181.

[8] Shpilrain, V., On Generators of L/R2 Lie Algebras , Proc. Amer. Math.
Soc. 119 (1993), 1039–1043.

[9] —, Non-commutative Determinants and Automorphisms of Groups,
Comm. Algebra 25 (1997), 559–574.

[10] Umirbaev, U. U., On Schreier Varieties of Algebras , Comm. Algebra 33
(1994), 317–340; English transl.: Algebra and Logic 33 (1994), 180–193.

[11] Yagzhev, A. V., Endomorphism of Free Algebras , Sibirsk. Math. Zh. 21
(1980), 181–192; English transl.: Siberian Math. J. 21 (1980), 133–141.
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