Linear Maps Preserving Fibers

Gerald W. Schwarz*

Communicated by F. Knop

Abstract. Let $G \subset \operatorname{GL}(V)$ be a complex reductive group where dim $V < \infty$, and let $\pi: V \to V/\!\!/G$ be the categorical quotient. Let $\mathcal{N} := \pi^{-1}\pi(0)$ be the null cone of V, let H_0 be the subgroup of $\operatorname{GL}(V)$ which preserves the ideal \mathcal{I} of \mathcal{N} and let H be a Levi subgroup of H_0 containing G. We determine the identity component of H. In many cases we show that $H = H_0$. For adjoint representations we have $H = H_0$ and we determine H completely. We also investigate the subgroup G_F of $\operatorname{GL}(V)$ preserving a fiber F of π when V is an irreducible cofree G-module.

Mathematics Subject Index 2000: 20G20, 22E46, 22E60.

Keywords and phrases: Invariants, null cone, cofree representations.

1. Introduction

Our base field is \mathbb{C} , the field of complex numbers. Let V be a finite dimensional G-module where $G \subset \operatorname{GL}(V)$ is reductive. Let R denote $\mathbb{C}[V]$. We have the categorical quotient $\pi: V \to V/\!\!/G$ dual to the inclusion $R^G \subset R$. Let $\mathcal{N}_G := \pi^{-1}\pi(0)$ (or just \mathcal{N}) denote the null cone. Let $G_0 = \{g \in \mathrm{GL}(V) \mid f \circ g = f\}$ for all $f \in \mathbb{R}^{G}$. Let H_0 denote the subgroup of $\mathrm{GL}(V)$ which preserves \mathcal{N}_G schematically. Equivalently, H_0 is the group preserving the ideal $\mathcal{I} = R^G_+ R$ where R^G_+ is the ideal of invariants vanishing at 0. Let G_1 be a Levi factor of G_0 containing G and let H denote a Levi factor of H_0 containing G_1 . We show that $H^0 \subset G_1 \operatorname{GL}(V)^{G_1}$, hence that $H^0 \subset G_1 \operatorname{GL}(V)^G$. In many cases H_0 and G_0 are reductive, for example, if V is irreducible. In the case that $V = \mathfrak{g}$ is a semisimple Lie algebra and G its adjoint group we show that $H = H_0 = (\mathbb{C}^*)^r \operatorname{Aut}(\mathfrak{g})$ where r is the number of simple ideals in \mathfrak{g} . We also obtain information about the subgroup of $GL(\mathfrak{g})$ preserving a fiber of π (other than the zero fiber). We have similar results in the case that V is a cofree G-module. Our results generalize those of Botta, Pierce and Watkins [1] and Watkins [12] for the case $\mathfrak{g} = \mathfrak{sl}_n$. Finally, we show that if $G \subset G' \subset GL(V)$ where G' is connected reductive such that π and $\pi': V \to V/\!\!/G'$ have a common fiber, then $R^G = R^{G'}$.

We thank M. Raïs for his help and for the questions and conjectures in his work [5] which led to this paper.

ISSN 0949–5932 / \$2.50 © Heldermann Verlag

^{*} Partially supported by NSA Grant H98230-06-1-0023

2. Equal fibers

Let $G \subset G' \subset \operatorname{GL}(V)$ be reductive where G' is connected. We have quotient mappings $\pi: V \to V/\!\!/G$ and $\pi': V \to V/\!\!/G'$. Let $\rho: V/\!\!/G \to V/\!\!/G'$ denote the canonical map.

Theorem 2.1. Suppose that there is a fiber F of π which is also a fiber of π' (as sets). Then $R^G = R^{G'}$.

Proof. The hypothesis implies that there is a point $z' \in X' := V/\!\!/G'$ such that $\rho^{-1}(z')$ is a point in $X := V/\!\!/G$. Since ρ is surjective, the minimal dimension of any irreducible component of a fiber is the difference in the dimensions of X and X', so we have that dim $X = \dim X'$. Then there is a nonempty open subset U of X' such that the fiber of ρ over any point of U is finite. But for $z' \in X'$, the fiber $(\pi')^{-1}(z')$ is connected since G' is connected. Hence the fiber $\rho^{-1}(z') = \pi((\pi')^{-1}(z'))$ is connected. It follows that $\rho: \rho^{-1}(U) \to U$ is 1-1 and onto, hence birational. Thus ρ is an isomorphism [3, II.3.4]

Remark 2.2. Solomon [10, 11] has classified many of the pairs of groups $G \subset G' \subset GL(V)$ with the same invariants, including the case where V is irreducible. Often, $R^G = R^{G'}$ forces G = G'. Suppose that (V, G) is *generic*, i.e., it has trivial principal isotropy groups and the complement of the set of principal orbits has codimension two in V. Then $R^G = R^{G'}$ implies that G = G' [9].

3. Groups preserving the ideal of \mathcal{N}

Let V be a G-module. We assume that G is a Levi subgroup of G_0 . Let H be a Levi subgroup of H_0 containing G. Our aim is to show that H^0 is generated by $\operatorname{GL}(V)^G$ and G^0 .

Proposition 3.1. Let V, G and H be as above. Then G is normal in H.

Proof. Let p_1, \ldots, p_r be a set of minimal homogeneous generators of \mathbb{R}^G . Let $d_1 < d_2 < \cdots < d_s$ be the distinct degrees of the p_i . Then clearly H preserves the span W_1 of the p_i of degree d_1 . Assuming that s > 1, let W'_2 be the span of the p_i of degree d_2 . Then H stabilizes $W_0 := R_{d_2-d_1}W_1$ and H stabilizes $W := W'_2 + W_0 = \mathcal{I} \cap R_{d_2}$ where R_d for $d \in \mathbb{N}$ denotes the elements of R homogeneous of degree d. Note that $W'_2 \cap W_0 = W'_2 \cap \mathbb{R}^G \cdot W_1 = 0$. Since H is reductive, there is an H-stable subspace W_2 of W complementary to W_0 . Since G acts trivially on W'_2 , it acts trivially on W/W_0 and on W_2 . Continuing in this way we obtain H-modules W_1, \ldots, W_s consisting of G-invariant functions such that $W' := W_1 + \cdots + W_s$ generates \mathbb{R}^G . Clearly G is the kernel of the action of H on W'.

Corollary 3.2. Suppose that H_0 is reductive. Then G_0 is reductive and normal in H_0 .

Since G^0 is reductive, H^0 acts on G^0 by inner automorphisms. Hence $H^0 = H_1 G^0$ where $H_1 := Z_H (G^0)^0$ is the connected centralizer of G^0 in H.

Lemma 3.3. Let $g \in G$. Then there is a homomorphism $\theta: H_1 \to Z(G^0)$ such that $ghg^{-1} = \theta(h)h$, $h \in H_1$.

Proof. Let $h \in H_1$. Since conjugation by h preserves the connected components of G there is an element $\theta(h) \in G^0$ such that $hg^{-1}h^{-1} = g^{-1}\theta(h)$. Let $h_1 \in H_1$. Then

$$g^{-1}\theta(h_1h) = h_1hg^{-1}h^{-1}h_1^{-1} = h_1g^{-1}\theta(h)h_1^{-1} = h_1g^{-1}h_1^{-1}\theta(h) = g^{-1}\theta(h_1)\theta(h).$$

Thus θ is a homomorphism. From $hg^{-1}h^{-1} = g^{-1}\theta(h)$ it follows that $ghg^{-1} = \theta(h)h$. Since h centralizes G^0 , so does ghg^{-1} , and we see that $\theta(h)$ centralizes G^0 . Thus $\theta(h) \in Z(G^0)$.

Corollary 3.4. Suppose that $G = G_0$ and that G_0 is normal in H_0 . Then H_0 is reductive.

Proof. As above, we have $(H_0)^0 = H_2 G^0$ where $H_2 \subset H_0$ is connected and centralizes G^0 , and H_0 is reductive if and only if H_2 is reductive. Let R be the unipotent radical of H_2 . Corresponding to each $g \in G$ there is a homomorphism $\theta \colon H_2 \to Z(G^0)$, and since R is unipotent, $\theta(R) = \{e\}$. Thus $R \subset \operatorname{GL}(V)^G$ where $\operatorname{GL}(V)^G$ is obviously in H_2 . Thus R is trivial and H_0 is reductive.

Write $H^0 = H^0_s G^0_s T$ where H^0_s (resp. G^0_s) is the semisimple part of H_1 (resp. G^0) and $T := Z(H^0)^0 \subset H_1$ is a torus. Set $T_0 := Z(G^0)^0$.

Corollary 3.5. The group H_s^0 is contained in $\operatorname{GL}(V)^G$.

Theorem 3.6. Let V, G and H be as above. Then $H^0 = GL(V)^G G^0$.

Proof. Write $H^0 = H^0_s G^0_s T$ as above and set $F := G/G^0$. Then F normalizes T and by Lemma 3.3, F acts trivially on T/T_0 . Thus T^F projects onto T/T_0 . Choose a torus S in $(T^F)^0$ complementary to $(T^F \cap T_0)^0$. Then $H^0 = H^0_s SG^0$ where $H^0_s S$ lies in $\mathrm{GL}(V)^G$.

Remark 3.7. Write $V = \bigoplus_{i=1}^{r} m_i V_i$ where the V_i are irreducible and pairwise non-isomorphic and $m_i V_i$ denotes the direct sum of m_i copies of V_i . Then the theorem shows that $H^0 = G^0 \prod_{i=1}^{r} \operatorname{GL}(m_i)$.

Example 3.8. Let $\{e\} \neq G \subset \operatorname{GL}(V)$ be finite. Then \mathcal{N}_G , as a set, is just the origin, and it is preserved by $\operatorname{GL}(V)$. Thus it is essential in Theorem 3.6 that H preserve \mathcal{N}_G schematically.

Corollary 3.9. Suppose that $V = \bigoplus_{i=1}^{r} V_i$ where the V_i are irreducible, non-trivial and pairwise non-isomorphic. Let $H' \subset GL(V)$ be semisimple. Then the following are equivalent:

- (1) $H' \subset H_0$.
- (2) $H' \subset G_0$.

Proposition 3.10. Suppose that V is an irreducible G-module. Then G_0 and H_0 are reductive and $H^0 = \mathbb{C}^* G^0$.

Proof. The fixed points of the unipotent radical R of G_0 are a G_0 -stable nonzero subspace of V. Thus R acts trivially on V, i.e., R = 0. Hence G_0 is reductive.

Corollary 3.11. Suppose that V = mW where W is an irreducible G-module. Then H_0 is reductive.

Proof. The group H contains $G \times GL(m)$ which acts irreducibly on $V \simeq W \otimes \mathbb{C}^m$. Thus H_0 is reductive.

In the remainder of this section, we do not assume that G is a Levi subgroup of G_0 .

Corollary 3.12. Let $G \subset GL(W)$ and let $V = pW \oplus qW^*$ where $2 \le p \le q$ and the *G*-modules *W* and *W*^{*} are irreducible and non isomorphic. Then

- (1) G_0 and H_0 are reductive.
- (2) $G_0 \subset \operatorname{GL}(W)$.
- (3) $H^0 = GL(p) GL(q) (G_0)^0$.

Proof. First we consider the case that G = GL(W). Then Example 4.3 below shows that $G_0 = GL(W)$ and that $(H_0)^0 = GL(p) GL(q) GL(W)$. Now the invariants of GL(W) are generated by those of degree 2 and the degree 2 invariants of G and of GL(W) are the same. Thus G_0 must be a subgroup of GL(W) and $(H_0)^0$ must be a subgroup of GL(p) GL(q) GL(W) containing GL(p) GL(q). Hence $(H_0)^0 = GL(p) GL(q) H_1$ where $H_1 \subset GL(W)$. Note that GH_1 is a finite extension of H_1 . Since W is an irreducible G-module and G_0 and GH_1 contain G, both G_0 and H_1 (hence $(H_0)^0$) are reductive and we have (1) and (2). Theorem 3.6 gives (3).

Lemma 3.13. Suppose that $V^G = (0)$ and let $V = \bigoplus_{i=1}^r m_i V_i$ be the isotypic decomposition of V where the V_i are pairwise non-isomorphic G-modules. Suppose that $\mathfrak{h}_0(m_i V_i) \subset m_i V_i$ for all i. Then H_0 is reductive.

Proof. For any i, $G(H_0)^0$ is a finite extension of $(H_0)^0$ which contains the product $G \prod_i \operatorname{GL}(m_i)$. The latter group acts irreducibly on $m_i V_i$, hence the image of $G(H_0)^0$ in $\operatorname{GL}(m_i V_i)$ is reductive for all i. It follows that $(H_0)^0$ is reductive, hence that H_0 is reductive.

Corollary 3.14. Suppose that V_i is an irreducible nontrivial G_i -module where G_i is reductive and $\mathbb{C}[V_i]^{G_i} \neq \mathbb{C}, i = 1, \ldots, r$. Let $V := \bigoplus_i m_i V_i$ with the canonical action of $G := G_1 \times \cdots \times G_r$ where $m_i \geq 1$ for all i. Then H_0 is reductive.

Proof. Suppose that \mathfrak{h}_0 is not contained in $\bigoplus_i \operatorname{End}(m_iV_i)$. Since \mathfrak{h}_0 is Hstable, it must contain one of the irreducible $G_i \times \operatorname{GL}(m_i) \times G_j \times \operatorname{GL}(m_j)$ modules $\operatorname{Hom}(m_iV_i, m_jV_j)$, $i \neq j$. Without loss of generality suppose that $\mathfrak{h}_0 \supset \operatorname{Hom}(m_2V_2, m_1V_1)$. Let $f \in \mathcal{O}(m_1V_1)^{G_1}$ be a nonconstant homogeneous
invariant of minimal degree $d \geq 2$. Let $\varphi \in \operatorname{Hom}(m_2V_2, m_1V_1)$. Then φ sends f to the function $h(v_1, v_2) := df(v_1)(\varphi(v_2))$ where $v_i \in m_iV_i$, i = 1, 2. Clearly
there is a φ such that $h \neq 0$. Thus h is a nonzero element of bidegree (d - 1, 1)in $\mathbb{C}[m_1V_1 \oplus m_2V_2]$. But by the minimality of d and the fact that no nonzero
invariant in $\mathbb{C}[m_2V_2]$ has degree 1, there is no element of \mathcal{I} of this bidegree. Hence $\operatorname{Hom}(m_2V_2, m_1V_1)$ does not preserve \mathcal{I} , a contradiction. Thus \mathfrak{h}_0 is contained in $\bigoplus_i \operatorname{End}(m_iV_i)$ and one can apply Lemma 3.13.

Corollary 3.15. Suppose that $G \subset GL(V)$ is a finite group generated by pseudoreflections. Then H_0 is reductive.

Proof. We have that $V = \bigoplus V_i$ and $G = \prod G_i$ where $G_i \subset GL(V_i)$ is an irreducible group generated by pseudoreflections. Now apply Corollary 3.14.

Proposition 3.16. Suppose that V is an orthogonal representation of G where $V^G = (0)$. Then H_0 is reductive.

Proof. We have an isotypic decomposition $V = \bigoplus_i m_i V_i \bigoplus n_j (W_j \oplus W_j^*)$ where the V_i are irreducible nontrivial orthogonal representations of G and the W_j are irreducible nonorthogonal representations of G. Note that for each ithere is a quadratic invariant $p_i \in \mathbb{C}[m_i V_i]^G$ and for each j a quadratic invariant (a contraction) $q_j \in \mathbb{C}[n_j(W_j \oplus W_j^*)]^G$. Suppose that \mathfrak{h}_0 is not contained in $\bigoplus_i \operatorname{End}(m_i V_i) \bigoplus_j \operatorname{End}(n_j (W_j \oplus W_i^*))$. For example, suppose that there is a nonzero element φ of \mathfrak{h}_0 whose restriction to m_2V_2 has nonzero projection to m_1V_1 . Then we have the function $h(v_1, v_2) := dp_1(v_1)(\varphi(v_2))$ for $v_1 \in m_1V_1$ and $v_2 \in m_2 V_2$. As before, the actions of G and the $GL(m_i)$ guarantee that we can assume that $h \neq 0$. Now the bidegree of h is (1,1) and $h \in \mathcal{I}$. However, there are no nonconstant invariants of bidegree (a, b) in $\mathbb{C}[m_1V_1 \oplus m_2V_2]$ for $a \leq 1$ and $b \leq 1$. Thus h cannot lie in \mathcal{I} . One similarly gets contradictions for all the possible ways that $\mathfrak{h}_0 \not\subset \bigoplus_i \operatorname{End}(m_i V_i) \bigoplus_i \operatorname{End}(n_j (W_j \oplus W_j^*))$ can occur. Finally, note that the normalizer N of the image of G in $GL(n_i(W_i \oplus W_i^*))$ contains an element interchanging the copies of W_i and W_i^* . Thus N acts irreducibly and we can now apply the argument of Lemma 3.13.

Corollary 3.17. If G is any one of the following groups, then H_0 is reductive for any representation V of G with $V^G = (0)$.

- (1) SO(n), $n \ge 3$.
- (2) G_2 , F_4 , E_8 .
- (3) B_{4n+3} and B_{4n+4} , $n \ge 0$.
- (4) $\mathsf{D}_{4n}, n \ge 1$.

4. Some examples and a conjecture

We give examples where G_0 is not reductive and we give examples where G_0 is reductive but H_0 is not.

Example 4.1. Let V and W be G-modules such that $\mathcal{O}(V \oplus W)^G = \mathcal{O}(V)^G$. Then $\operatorname{Hom}(V, W)$ is contained in the radical of \mathfrak{g}_0 so that G_0 and H_0 are not reductive. A concrete example is given by $G = \operatorname{SL}_4$ and $V \oplus W = \wedge^2 \mathbb{C}^4 \oplus \mathbb{C}^4$ with the obvious G action.

Example 4.2. Let W be an irreducible G-module where $W^G = (0)$ and $\mathcal{O}(W)^G \neq \mathbb{C}$. Let $V = W \oplus \mathbb{C}$ where G acts trivially on \mathbb{C} . Then $\mathfrak{g}_0 \subset \mathfrak{gl}(W)$ while $\operatorname{Hom}(\mathbb{C}, W)$ is contained in the Lie algebra of the radical of H_0 .

Example 4.3. Let $1 \leq p \leq q$ and consider the $G = \operatorname{GL}(W)$ representation on $V = pW \oplus qW^*$ where $W = \mathbb{C}^n$, $n \geq 1$. (See Corollary 3.12.) By classical invariant theory, the *G*-invariants are just the contractions of elements of the copies of W with elements of the copies of W^* . Let U denote $W \oplus W^* \simeq \mathbb{C}^{2n}$.

Three cases arise:

Case 1: p = q = 1. Then our invariant is the bilinear form (,) corresponding to the matrix $J := \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix} \subset \operatorname{GL}(2n)$, i.e., $(x, y) = x^t J y$, $x, y \in U$. Thus $G_0 = O(2n)$ and $H_0 = \mathbb{C}^* G_0$.

Case 2: p = 1, q > 1. Then H_0 contains a copy of $\operatorname{GL}(q)$ and the action of H_0 on the invariants is a representation $H_0 \to \operatorname{GL}(q)$ whose kernel is G_0 . Thus $H_0 = \operatorname{GL}(q)G_0$. A matrix computation shows that $G_0 = \operatorname{GL}(W) \ltimes (\wedge^2(W^*) \otimes \mathbb{C}^q)$. If $x \in W$ and $y_1, \ldots, y_q \in W^*$, then the unipotent radical of G_0 sends (x, y_1, \ldots, y_q) to $(x, y_1 + B_1 x, \ldots, y_q + B_q x)$ where for each j, B_j is a skew symmetric matrix, $B_j \in \wedge^2(W^*) \subset \operatorname{Hom}(W, W^*)$.

Case 3: $p \geq 2$. We show that $G_0 = \operatorname{GL}(W)$, that $H_0 = H$ and that $H^0 = \operatorname{GL}(p) \operatorname{GL}(q) \operatorname{GL}(W)$. We also determine H. First suppose that p = q = 2. Then G_0 preserves the inner products on 2U, i.e., G_0 is a subgroup of $\operatorname{O}(2n)$. Moreover, G_0 preserves the skew product on 2U sending x, y to $x^t K y$ where $K = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$. Hence G_0 lies in the intersection of $\operatorname{O}(2n)$ and $\operatorname{Sp}(2n)$ which is the copy of $\operatorname{GL}(W)$ acting on U by the matrices $\begin{pmatrix} A & 0 \\ 0 & t_{A^{-1}} \end{pmatrix}$, $A \in \operatorname{GL}(W)$. Clearly, as long as $2 \leq p \leq q$ we must have that $G_0 = G = \operatorname{GL}(W)$. We have a representation $\varphi: H_0 \to \operatorname{GL}(pq)$ given by the action of H_0 on the pq generators of the invariants. The kernel of φ is $G_0 = G$. Thus H_0 is reductive. By Theorem 3.6 we have $H^0 = \operatorname{GL}(p) \operatorname{GL}(q) \operatorname{GL}(W)$. Let $h \in H$. If h stabilizes pW and qW^* , then h induces an automorphism of $\operatorname{GL}(W)$ which is trivial on \mathbb{C}^*I and must be inner on $\operatorname{SL}(W)$. Hence modulo an element of $\operatorname{SL}(W)$, h lies in the centralizer of $\operatorname{GL}(W)$, which is $\operatorname{GL}(p) \operatorname{GL}(q)$. Hence $h \in H^0$. The only other possibility is that h interchanges the copies of pW and qW^* . This can only happen if p = q. Thus H is connected if $p \neq q$ and H/H^0 has order two if p = q.

Example 4.4. Let $G = \mathbb{Z}/4\mathbb{Z} \subset \mathbb{C}^*$ and let $V = \mathbb{C}^2$ where $\xi(a, b) = (\xi^2 a, \xi b)$ for $(a, b) \in \mathbb{C}^2$, $\xi \in G$. Since G is finite, $G_0 = G$. Let x and y be the usual coordinate functions on V. Then the invariants are generated by x^2 , xy^2 and y^4 . Consider the element $\varphi \in \operatorname{End}(V)$ which sends (a, b) to (0, a) for $a, b \in \mathbb{C}$.

Then φ acts on $\mathbb{C}[V]$ by the derivation $x\partial/\partial y$. This derivation preserves \mathcal{I} and it follows that φ is a basis of the Lie algebra of the unipotent radical of H_0 .

Example 4.5. Let $G = \mathbb{C}^*$ and let V be the p + q + r dimensional representation with weights -1 of multiplicity p, 1 of multiplicity q and 2 of multiplicity r where p, q, $r \in \mathbb{N}$ and $pqr \neq 0$. If x_i , y_j and z_k are corresponding coordinate functions, then the invariants are generated by the monomials $x_i y_j$ and $x_i x_{i'} z_k$. We have $G_0 = G$ while the radical of H_0 has Lie algebra spanned by the linear mappings corresponding to the derivations $y_i \partial/\partial z_k$.

Example 4.6. Let $V \oplus W = S^2(\mathbb{C}^n) \oplus \mathbb{C}^n$ with the obvious action of G =SL_n, $n \geq 2$. Then using classical invariant theory [6] one computes that the invariants have homogeneous generators p and q of bidegrees (n, 0) and (n-1, 2), respectively. Now Hom(V, W) contains a copy of W^* where $\xi \in W^*$ sends $v \in V$ to $i_{\xi}(v) \in W$ (contraction). Then this copy of W^* acts on $\mathbb{C}[V \oplus W]$ sending a polynomial f(v, w) into $df(v, w)(0, i_{\xi}(v)), v \in V, w \in W$. This action annihilates p and sends q to a subspace of $\mathcal{O}(V \oplus W)$ of bidegree (n, 1) transforming under G as W^* . But the only way to get a copy of W^* in this bidegree is to multiply ptimes the copy of W^* in degree 1 in $\mathcal{O}(V \oplus W)$. Thus \mathcal{I} is preserved. It is now easy to establish that the unipotent radical of H_0 has Lie algebra the copy of W^* in Hom(V, W).

Conjecture 4.7. If G is semisimple and V is generic (see 2.2) with $V^G = (0)$, then H_0 is reductive.

5. Cofree Representations

Recall that V is cofree if R is a free module over R^G . Equivalently, R^G is a polynomial ring and $\pi: V \to V/\!\!/G$ is equidimensional [8, 17.29]. If p_1, \ldots, p_d are minimal homogeneous generators of R^G , then we can identify π with the polynomial map $p = (p_1, \ldots, p_d): V \to \mathbb{C}^d$. Cofreeness is equivalent to the fact that the p_i form a regular sequence in $\mathbb{C}[V]$. See [7] for the classification of cofree representations of the simple algebraic groups and [4] for the classification of irreducible cofree representations of semisimple algebraic groups.

We say that $G' \subset \operatorname{GL}(V)$ stabilizes a fiber F of π if G' preserves F schematically, i.e., preserves the ideal I_F of F.

Proposition 5.1. Suppose that G is reductive and V is a cofree G-module. If $G' \subset GL(V)$ stabilizes a fiber of $\pi: V \to V/\!\!/G$, then G' stabilizes \mathcal{N}_G .

Proof. Let F be a fiber of π . Then there are constants c_i , $i = 1, \ldots, d$, such that I_F is the ideal generated by $p_i - c_i$, $i = 1, \ldots, d$. Let $0 \neq f \in I_F$ and let gr f denote the nonzero homogeneous part of f of largest degree. Then the elements gr f for $0 \neq f \in I_F$ generate a homogeneous ideal I which obviously contains \mathcal{I} . We show that $I \subset \mathcal{I}$ so that $I = \mathcal{I}$. If G' preserves I_F , it preserves $I = \mathcal{I}$, and we have the proposition.

Let d_i be the degree of p_i , i = 1, ..., d. Let $0 \neq f \in I_F$ where gr f is homogeneous of degree r. We have $f = \sum a_i(p_i - c_i)$ where $a_1, ..., a_n \in R$. Let $s = \max_i \{ \deg a_i + d_i \}$. Let a'_i denote the homogeneous part of a_i of degree $s - d_i$. If s > r, then we must have that $\sum_i a'_i p_i = 0$. Since the p_i are a regular sequence, this relation is generated by the Koszul relations $p_j p_i - p_i p_j = 0$, $1 \le i < j \le d$. Hence there are $b_{ij} \in R$, $b_{ij} = -b_{ji}$, such that

$$\sum_{i} a'_{i}(p_{i} - c_{i}) = \sum_{i \neq j} b_{ij}(p_{j}(p_{i} - c_{i}) - p_{i}(p_{j} - c_{j})) = \sum_{i \neq j} b_{ij}(c_{j}(p_{i} - c_{i}) - c_{i}(p_{j} - c_{j}))$$

where for fixed i, deg $\sum_{j \neq i} b_{ij}c_j < s - d_i$. Thus we may replace each a_i by a polynomial of degree less than $s - d_i$ without changing f. Continuing inductively we reduce to the situation that deg $a_i \leq r - d_i$ for all i. Let a'_i denote the homogeneous degree $r - d_i$ term in $a_i, i = 1, \ldots, d$. Then gr $f = \sum_i a'_i p_i \in \mathcal{I}$.

Example 5.2. Let $G = \mathbb{C}^*$ and $V = \mathbb{C}^3$ with coordinate functions x, y and z corresponding to weights -1, 1 and 2. The fiber defined by xy = 1 and $x^2z = 0$ is the fiber defined by xy = 1 and z = 0, and it has a symmetry which interchanges x and y. However, this is not a symmetry of the ideal generated by the invariants. Thus Proposition 5.1 does not hold in case the representation is not cofree.

Remark 5.3. Let F be a principal fiber of π where V is cofree. Then $d\pi$ has rank $d = \dim V/\!\!/G$ on F so that F is smooth. It follows that G' preserves I_F if and only if G' preserves the set F.

Corollary 5.4. Let $V = \bigoplus_{i=1}^{r} V_i$ where the V_i are pairwise non-isomorphic nontrivial *G*-modules and *V* is cofree. Suppose that $G \subset G' \subset GL(V)$ where G' is connected semisimple. Then the following are equivalent.

- (1) $R^G = R^{G'}$.
- (2) G' preserves a fiber of $\pi: V \to V/\!\!/G$.
- (3) G' preserves \mathcal{N}_G .

Proof. Use Corollary 3.9 and Proposition 5.1.

Corollary 5.5. Let V be an irreducible nontrivial cofree G-module with $\mathbb{R}^G \neq \mathbb{C}$. Let $F \neq \mathcal{N}$ be a fiber of $\pi: V \to V/\!\!/G$ and let G_F be the subgroup of $\operatorname{GL}(V)$ stabilizing F. Then

- (1) $G_0 \subset G_F \subset H_0$ are reductive.
- (2) $H^0 = \mathbb{C}^*(G_0)^0$.
- (3) G_F/G_0 is finite.

Proof. Parts (1) and (2) are clear. Since $F \neq \mathcal{N}$, it is only stabilized by a finite subgroup of \mathbb{C}^* , hence we have (3).

It would be nice to find an example of an irreducible module V of a semisimple group G with $G = (G_0)^0$ such that the subgroup of GL(V) fixing a fiber F of $\pi: V \to V/\!\!/G$, $F \neq \mathcal{N}_G$, has dimension bigger than dim G.

Remark 5.6. Let V be an irreducible nontrivial cofree representation of a simple algebraic group G such that $R^G \neq \mathbb{C}$. The cases for which $G \neq (G_0)^0$ are as follows (we use the numbering and notation of [6]).

- (1) $(\varphi_3, \mathsf{B}_3).$
- (2) $(\varphi_4, \mathsf{B}_4).$
- (3) $(\varphi_5, \mathsf{B}_5).$
- (4) $(\varphi_1, \mathsf{G}_2).$

6. The adjoint case

Let \mathfrak{g} be a simple Lie algebra. Choose a Cartan subalgebra \mathfrak{t} of \mathfrak{g} and a base Π of the root system. Choose $x_{\alpha} \in \mathfrak{g}_{\alpha}$ and $y_{\alpha} \in \mathfrak{g}_{-\alpha}$, $\alpha \in \Pi$, such that $(x_{\alpha}, y_{\alpha}, [x_{\alpha}, y_{\alpha}])$ is a standard \mathfrak{sl}_2 triple. Then there is a unique order 2 automorphism ψ of \mathfrak{g} which is -1 on \mathfrak{t} and sends x_{α} to $-y_{\alpha}$, $\alpha \in \Pi$.

Now let $\mathfrak{g} = \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_r$ where the \mathfrak{g}_i are simple ideals of the Lie algebra \mathfrak{g} . Let $\psi_i \in \operatorname{Aut}(\mathfrak{g}_i)$ be as above. Let G denote the adjoint group of \mathfrak{g} and let G_0 , H_0 and H be as in the introduction.

Theorem 6.1. We have that $H = (\mathbb{C}^*)^r \operatorname{Aut}(\mathfrak{g})$ and that $G_0 \simeq (\mathbb{Z}/2\mathbb{Z})^r G$ where the *i*th copy of $\mathbb{Z}/2\mathbb{Z}$ is generated by $-\psi_i$.

Proof. By Dixmier [2], $(G_0)^0 = G$, and using Corollary 3.14 we obtain that $H_0 = H$ where $H^0 = (\mathbb{C}^*)^r G$. Hence if $\varphi \in H$, we obtain an automorphism σ of $\mathfrak{g} \simeq \operatorname{ad} \mathfrak{g} \subset \mathfrak{h} \subset \mathfrak{gl}(\mathfrak{g})$ where $\operatorname{ad}(\sigma(X)) = \varphi \circ \operatorname{ad} X \circ \varphi^{-1}$, $X \in \mathfrak{g}$. Clearly $\operatorname{Aut}(\mathfrak{g}) \subset H$, so replacing φ by $\varphi \circ \sigma^{-1}$ we can arrange that $\varphi \circ \operatorname{ad} X \circ \varphi^{-1} = \operatorname{ad} X$ for all $X \in \mathfrak{g}$. Then by Schur's lemma, $\varphi \in (\mathbb{C}^*)^r \subset H^0$ so that $H = (\mathbb{C}^*)^r \operatorname{Aut}(\mathfrak{g})$. If we start with $\varphi \in G_0$, then since φ induces the identity on $\mathbb{C}[\mathfrak{g}]^G$, so does σ , and it follows from Schur's lemma that φ is a product $\prod_i \lambda_i \sigma_i$ where, for all i, $\sigma_i : \mathfrak{g}_i \to \mathfrak{g}_i$ is an automorphism and $\lambda_i \in \mathbb{C}^*$ acts via multiplication on \mathfrak{g}_i . But φ has to preserve the invariants of degree 2 of each \mathfrak{g}_i , hence $\lambda_i = \pm 1$ for all i. Now [9, Theorem 2.5] shows that, for each i, $\lambda_i \sigma_i \in G_i$ or $\lambda_i \sigma_i \in (-\psi_i)G_i \neq G_i$, where G_i is the adjoint group of \mathfrak{g}_i . Hence $G_0 \simeq (\mathbb{Z}/2\mathbb{Z})^r G$.

Corollary 6.2. (See [1]). Let $\mathfrak{g} = \mathfrak{sl}_n$. Then H is generated by G, \mathbb{C}^* and transposition.

Proof. In the case of \mathfrak{sl}_n with the usual choice of \mathfrak{t} and Π , the automorphism ψ is $X \mapsto -X^t$, $X \in \mathfrak{sl}_n$. Then ψ generates the group of outer automorphisms of \mathfrak{sl}_n (which is the trivial group for n = 2). Hence H is generated by G, \mathbb{C}^* and transposition.

Corollary 6.3. (See[12]). Let G_F be the subgroup of $\operatorname{GL}(\mathfrak{gl}_n)$ which preserves the $G := \operatorname{PGL}(n)$ -orbit F of an element x_0 of \mathfrak{gl}_n which has nonzero trace and distinct eigenvalues. Then G_F is generated by G and transposition.

Proof. The condition on x_0 implies that F is a smooth fiber of the quotient mapping (see Remark 5.3). Write $x_0 = \mu I + y_0$ where $\mu \in \mathbb{C}^*$, $y_0 \in \mathfrak{sl}_n$ and Iis the $n \times n$ identity matrix. Then F is just $\mu I + F_1$ where $F_1 = G \cdot y_0$. We may write an element of G_F as $\begin{pmatrix} 1 & 0 \\ c & \lambda g \end{pmatrix}$ where $c \in \mathfrak{sl}_n$, $g \in \operatorname{GL}(\mathfrak{sl}_n)$ is a linear mapping preserving the schematic null cone of \mathfrak{sl}_n and $\lambda \in \mathbb{C}^*$ (use 3.10 and 5.1). Then g is in G or g is an element of G composed with transposition. Applying the inverse of g we obtain an element h of the form $y \mapsto \lambda y + c$, $y \in F_1$. We need to show that c = 0. Suppose not. Let $g \in G$ such that $gc \neq c$. Then $h^{-1}ghg^{-1}(y) = y + c', \ 0 \neq c' \in \mathfrak{sl}_n, \ y \in F_1$. Thus $F_1 = F_1 + c'$. It follows that for any invariant polynomial p on $\mathfrak{sl}_n, \ p(y + nc') = p(y)$ for all $y \in F_1$ and $n \in \mathbb{Z}$. Thus dp(y)(c') = 0 for any $y \in F_1$. But the covectors dp(y) for $y \in F_1$ span $(\mathfrak{sl}_n)^*$. Thus c' = 0, a contradiction.

References

- [1] Botta, P., S. Pierce, and W. Watkins, *Linear transformations that preserve the nilpotent matrices*, Pac. J. Math. **104** (1983), 39–46.
- [2] Dixmier, J., Champs de vecteurs adjoints sur les groupes et algèbres de Lie semi-simples, J. Reine Angew. Math. **309** (1979), 183–190.
- [3] Kraft, H., "Geometrische Methoden in der Invariantentheorie", Aspekte der Mathematik, vol. **D1** Vieweg Verlag, Braunschweig/Wiesbaden, 1985.
- [4] Littelmann, P., Koreguläre und äquidimensionale Darstellungen, J. of Alg. 123 (1989), 193–222.
- [5] Raïs, M., Notes sur la notion d'invariant caractéristique, http://arxiv.org /abs/0707.0782.
- [6] Schwarz, G. W., Representations of simple Lie groups with regular rings of invariants, Invent. Math. **49** (1978), 167–191.
- [7] —, Representations of simple Lie groups with a free module of covariants, Invent. Math. **50** (1978), 1–12.
- [8] —, Lifting smooth homotopies of orbit spaces, IHES Publ. Math. 51 (1980), 37–135.
- [9] —, *Linear maps preserving invariants*, http://arxiv.org/abs/0708.2890.
- [10] Solomon, S., Irreducible linear group-subgroup pairs with the same invariants, J. Lie Theory **15** (2005), 105–123.

- [11] —, Orthogonal linear group-subgroup pairs with the same invariants, J. Alg. **299** (2006), 623–647.
- [12] Watkins, W., Linear transformations that preserve a similarity class of matrices, Lin. Mult. Alg. 11 (1982), 19–22.

Gerald W. Schwarz Department of Mathematics Brandeis University MS 050, PO Box 549110 Waltham, MA 02454-9110 schwarz@brandeis.edu

Received November 13, 2007 and in final form April 8, 2008