Linear Maps Preserving Fibers

Gerald W. Schwarz

Communicated by F. Knop

Abstract. Let $G \subset \text{GL}(V)$ be a complex reductive group where $\text{dim} \ V < \infty$, and let $\pi: V \to V/G$ be the categorical quotient. Let $N := \pi^{-1}(0)$ be the null cone of V, let H_0 be the subgroup of $\text{GL}(V)$ which preserves the ideal I of N and let H be a Levi subgroup of H_0 containing G. We determine the identity component of H. In many cases we show that $H = H_0$. For adjoint representations we have $H = H_0$ and we determine H completely. We also investigate the subgroup G_F of $\text{GL}(V)$ preserving a fiber F of π when V is an irreducible cofree G-module.

Mathematics Subject Index 2000: 20G20, 22E46, 22E60.

Keywords and phrases: Invariants, null cone, cofree representations.

1. Introduction

Our base field is \mathbb{C}, the field of complex numbers. Let V be a finite dimensional G-module where $G \subset \text{GL}(V)$ is reductive. Let R denote $\mathbb{C}[V]$. We have the categorical quotient $\pi: V \to V/G$ dual to the inclusion $R^G \subset R$. Let $N_G := \pi^{-1}(0)$ (or just N) denote the null cone. Let $G_0 = \{g \in \text{GL}(V) \mid f \circ g = f \text{ for all } f \in R^G\}$. Let H_0 denote the subgroup of $\text{GL}(V)$ which preserves N_G schematically. Equivalently, H_0 is the group preserving the ideal $I = R^G_+R$ where R^G_+ is the ideal of invariants vanishing at 0. Let G_1 be a Levi factor of G_0 containing G and let H denote a Levi factor of H_0 containing G_1. We show that $H^0 \subset G_1 \text{GL}(V)^{G_1}$, hence that $H^0 \subset G_1 \text{GL}(V)^{G_1}$. In many cases H_0 and G_0 are reductive, for example, if V is irreducible. In the case that $V = \mathfrak{g}$ is a semisimple Lie algebra and G its adjoint group we show that $H = H_0 = (\mathbb{C}^*)^r \text{Aut}(\mathfrak{g})$ where r is the number of simple ideals in \mathfrak{g}. We also obtain information about the subgroup of $\text{GL}(\mathfrak{g})$ preserving a fiber of π (other than the zero fiber). We have similar results in the case that V is a cofree G-module. Our results generalize those of Botta, Pierce and Watkins [1] and Watkins [12] for the case $\mathfrak{g} = \mathfrak{sl}_n$.

Finally, we show that if $G \subset G' \subset \text{GL}(V)$ where G' is connected reductive such that π and $\pi': V \to V/G'$ have a common fiber, then $R^G = R^{G'}$.

We thank M. Rais for his help and for the questions and conjectures in his work [5] which led to this paper.

* Partially supported by NSA Grant H98230-06-1-0023

ISSN 0949-5932 / $2.50 © Heldermann Verlag
2. Equal fibers

Let $G \subset G' \subset \text{GL}(V)$ be reductive where G' is connected. We have quotient mappings $\pi: V \to V//G$ and $\pi': V \to V//G'$. Let $\rho: V//G \to V//G'$ denote the canonical map.

Theorem 2.1. Suppose that $\rho^{-1}(z')$ is a fiber in $X := V//G$. Since ρ is surjective, the minimal dimension of any irreducible component of a fiber is the difference in the dimensions of X and X', so we have that $\dim X = \dim X'$. Then there is a nonempty open subset U of X' such that the fiber of ρ over any point of U is finite. But for $z' \in X'$, the fiber $\rho^{-1}(z')$ is connected since G' is connected. Hence the fiber $\rho^{-1}(z') = \pi((\pi')^{-1}(z'))$ is connected. It follows that $\rho: \rho^{-1}(U) \to U$ is 1-1 and onto, hence birational. Thus ρ is an isomorphism [3, II.3.4]

Proof. The hypothesis implies that there is a point $z' \in X' := V//G'$ such that $\rho^{-1}(z')$ is a point in $X := V//G$. Since ρ is surjective, the minimal dimension of any irreducible component of a fiber is the difference in the dimensions of X and X', so we have that $\dim X = \dim X'$. Then there is a nonempty open subset U of X' such that the fiber of ρ over any point of U is finite. But for $z' \in X'$, the fiber $\rho^{-1}(z')$ is connected since G' is connected. Hence the fiber $\rho^{-1}(z') = \pi((\pi')^{-1}(z'))$ is connected. It follows that $\rho: \rho^{-1}(U) \to U$ is 1-1 and onto, hence birational. Thus ρ is an isomorphism [3, II.3.4]

Remark 2.2. Solomon [10, 11] has classified many of the pairs of groups $G \subset G' \subset \text{GL}(V)$ with the same invariants, including the case where V is irreducible. Often, $R^G = R^{G'}$ forces $G = G'$. Suppose that (V, G) is generic, i.e., it has trivial principal isotropy groups and the complement of the set of principal orbits has codimension two in V. Then $R^G = R^{G'}$ implies that $G = G'$ [9].

3. Groups preserving the ideal of \mathcal{N}

Let V be a G-module. We assume that G is a Levi subgroup of G_0. Let H be a Levi subgroup of H_0 containing G. Our aim is to show that H^0 is generated by $\text{GL}(V)^G$ and G^0.

Proposition 3.1. Let V, G and H be as above. Then G is normal in H.

Proof. Let p_1, \ldots, p_r be a set of minimal homogeneous generators of R^G. Let $d_1 < d_2 < \cdots < d_s$ be the distinct degrees of the p_i. Then clearly H preserves the span W_1 of the p_i of degree d_1. Assuming that $s > 1$, let W'_1 be the span of the p_i of degree d_2. Then H stabilizes $W_0 := R_{d_2-d_1}W_1$ and H stabilizes $W := W'_2 + W_0 = I \cap R_d$ where R_d for $d \in \mathbb{N}$ denotes the elements of R homogeneous of degree d. Note that $W'_2 \cap W_0 = W'_2 \cap R^G : W_1 = 0$. Since H is reductive, there is an H-stable subspace W'_2 of W complementary to W_0. Since G acts trivially on W'_2, it acts trivially on W/W_0 and on W_2. Continuing in this way we obtain H-modules W_1, \ldots, W_s consisting of G-invariant functions such that $W' := W_1 + \cdots + W_s$ generates R^G. Clearly G is the kernel of the action of H on W'.

Corollary 3.2. Suppose that H_0 is reductive. Then G_0 is reductive and normal in H_0.

Since G^0 is reductive, H^0 acts on G^0 by inner automorphisms. Hence $H^0 = H_1G^0$ where $H_1 := Z_H(G^0)^0$ is the connected centralizer of G^0 in H.

Lemma 3.3. Let \(g \in G \). Then there is a homomorphism \(\theta : H_1 \rightarrow Z(G^0) \) such that \(ghg^{-1} = \theta(h)h \), \(h \in H_1 \).

Proof. Let \(h \in H_1 \). Since conjugation by \(h \) preserves the connected components of \(G \) there is an element \(\theta(h) \in G^0 \) such that \(h^{-1}g^{-1}h^{-1} = g^{-1}\theta(h) \). Let \(h_1 \in H_1 \). Then

\[
g^{-1}\theta(h_1h) = h_1hg^{-1}h^{-1}h_1^{-1} = h_1g^{-1}\theta(h)h_1^{-1} = h_1g^{-1}h_1^{-1}\theta(h) = g^{-1}\theta(h_1)\theta(h).
\]

Thus \(\theta \) is a homomorphism. From \(h^{-1}g^{-1}h^{-1} = g^{-1}\theta(h) \) it follows that \(ghg^{-1} = \theta(h)h \). Since \(h \) centralizes \(G^0 \), so does \(ghg^{-1} \), and we see that \(\theta(h) \) centralizes \(G^0 \). Thus \(\theta(h) \in Z(G^0) \).

Corollary 3.4. Suppose that \(G = G_0 \) and that \(G_0 \) is normal in \(H_0 \). Then \(H_0 \) is reductive.

Proof. As above, we have \((H_0)_0 = H_2G^0 \) where \(H_2 \subset H_0 \) is connected and centralizes \(G^0 \), and \(H_0 \) is reductive if and only if \(H_2 \) is reductive. Let \(R \) be the unipotent radical of \(H_2 \). Corresponding to each \(g \in G \) there is a homomorphism \(\theta : H_2 \rightarrow Z(G^0) \), and since \(R \) is unipotent, \(\theta(R) = \{ e \} \). Thus \(R \subset GL(V)^G \) where \(GL(V)^G \) is obviously in \(H_2 \). Thus \(R \) is trivial and \(H_0 \) is reductive.

Write \(H^0 = H^0_sG^0_sT \) where \(H^0_s \) (resp. \(G^0_s \)) is the semisimple part of \(H_1 \) (resp. \(G^0 \)) and \(T := Z(H^0)_0 \subset H_1 \) is a torus. Set \(T_0 := Z(G^0)_0 \).

Corollary 3.5. The group \(H^0_s \) is contained in \(GL(V)^G \).

Theorem 3.6. Let \(V, G \) and \(H \) be as above. Then \(H^0 = GL(V)^G \).

Proof. Write \(H^0 = H^0_sG^0_sT \) as above and set \(F := G/G^0 \). Then \(F \) normalizes \(T \) and by Lemma 3.3, \(F \) acts trivially on \(T/T_0 \). Thus \(T^F \) projects onto \(T/T_0 \). Choose a torus \(S \) in \((T^F)^0 \) complementary to \((T^F \cap T_0)^0 \). Then \(H^0 = H^0_sSG^0_0 \) where \(H^0_sS \) lies in \(GL(V)^G \).

Remark 3.7. Write \(V = \bigoplus_{i=1}^r m_iV_i \) where \(V_i \) are irreducible and pairwise non-isomorphic and \(m_iV_i \) denotes the direct sum of \(m_i \) copies of \(V_i \). Then the theorem shows that \(H^0 = G^0 \prod_{i=1}^r GL(m_i) \).

Example 3.8. Let \(\{ e \} \neq G \subset GL(V) \) be finite. Then \(N_G \), as a set, is just the origin, and it is preserved by \(GL(V) \). Thus it is essential in Theorem 3.6 that \(H \) preserve \(N_G \) schematically.

Corollary 3.9. Suppose that \(V = \bigoplus_{i=1}^r V_i \) where the \(V_i \) are irreducible, non-trivial and pairwise non-isomorphic. Let \(H' \subset GL(V) \) be semisimple. Then the following are equivalent:

1. \(H' \subset H_0 \).
2. \(H' \subset G_0 \).
Proposition 3.10. Suppose that V is an irreducible G-module. Then G_0 and H_0 are reductive and $H^0 = C^*G^0$.

Proof. The fixed points of the unipotent radical R of G_0 are a G_0-stable nonzero subspace of V. Thus R acts trivially on V, i.e., $R = 0$. Hence G_0 is reductive. Similarly, H_0 is reductive. ■

Corollary 3.11. Suppose that $V = mW$ where W is an irreducible G-module. Then H_0 is reductive.

Proof. The group H contains $G \times \text{GL}(m)$ which acts irreducibly on $V \cong W \otimes \mathbb{C}^m$. Thus H_0 is reductive. ■

In the remainder of this section, we do not assume that G is a Levi subgroup of G_0.

Corollary 3.12. Let $G \subset \text{GL}(W)$ and let $V = pW \oplus qW^*$ where $2 \leq p \leq q$ and the G-modules W and W^* are irreducible and non isomorphic. Then

1. G_0 and H_0 are reductive.
2. $G_0 \subset \text{GL}(W)$.
3. $H^0 = \text{GL}(p)\text{GL}(q)(G_0)^0$.

Proof. First we consider the case that $G = \text{GL}(W)$. Then Example 4.3 below shows that $G_0 = \text{GL}(W)$ and that $(H_0)^0 = \text{GL}(p)\text{GL}(q)\text{GL}(W)$. Now the invariants of $\text{GL}(W)$ are generated by those of degree 2 and the degree 2 invariants of G and of $\text{GL}(W)$ are the same. Thus G_0 must be a subgroup of $\text{GL}(W)$ and $(H_0)^0$ must be a subgroup of $\text{GL}(p)\text{GL}(q)\text{GL}(W)$ containing $\text{GL}(p)\text{GL}(q)$. Hence $(H_0)^0 = \text{GL}(p)\text{GL}(q)H_1$ where $H_1 \subset \text{GL}(W)$. Note that GH_1 is a finite extension of H_1. Since W is an irreducible G-module and G_0 and GH_1 contain G, both G_0 and H_1 (hence $(H_0)^0$) are reductive and we have (1) and (2). Theorem 3.6 gives (3). ■

Lemma 3.13. Suppose that $V^G = (0)$ and let $V = \bigoplus_{i=1}^r m_iV_i$ be the isotypic decomposition of V where the V_i are pairwise non-isomorphic G-modules. Suppose that $h_0(m_iV_i) \subset m_iV_i$ for all i. Then H_0 is reductive.

Proof. For any i, $G(H_0)^0$ is a finite extension of $(H_0)^0$ which contains the product $G \prod_i \text{GL}(m_i)$. The latter group acts irreducibly on m_iV_i, hence the image of $G(H_0)^0$ in $\text{GL}(m_iV_i)$ is reductive for all i. It follows that $(H_0)^0$ is reductive, hence that H_0 is reductive. ■

Corollary 3.14. Suppose that V_i is an irreducible nontrivial G_i-module where G_i is reductive and $\mathbb{C}[V_i]^{G_i} \neq \mathbb{C}$, $i = 1, \ldots, r$. Let $V := \bigoplus_i m_iV_i$ with the canonical action of $G := G_1 \times \cdots \times G_r$ where $m_i \geq 1$ for all i. Then H_0 is reductive.
Proof. Suppose that \mathfrak{h}_0 is not contained in $\bigoplus_i \text{End}(m_i V_i)$. Since \mathfrak{h}_0 is H-stable, it must contain one of the irreducible $G_i \times \text{GL}(m_i) \times G_j \times \text{GL}(m_j)$-modules $\text{Hom}(m_i V_i, m_j V_j)$, $i \neq j$. Without loss of generality suppose that $\mathfrak{h}_0 \supset \text{Hom}(m_2 V_2, m_1 V_1)$. Let $f \in \mathcal{O}(m_1 V_1)^{G_i}$ be a nonconstant homogeneous invariant of minimal degree $d \geq 2$. Let $\varphi \in \text{Hom}(m_2 V_2, m_1 V_1)$. Then φ sends f to the function $h(v_1, v_2) := df(v_1)(\varphi(v_2))$ where $v_i \in m_i V_i$, $i = 1, 2$. Clearly there is a φ such that $h \neq 0$. Thus h is a nonzero element of bidegree $(d - 1, 1)$ in $\mathbb{C}[m_1 V_1 \oplus m_2 V_2]$. But by the minimality of d and the fact that no nonzero invariant in $\mathbb{C}[m_2 V_2]$ has degree 1, there is no element of \mathcal{I} of this bidegree. Hence $\text{Hom}(m_2 V_2, m_1 V_1)$ does not preserve \mathcal{I}, a contradiction. Thus \mathfrak{h}_0 is contained in $\bigoplus_i \text{End}(m_i V_i)$ and one can apply Lemma 3.13.

Corollary 3.15. Suppose that $G \subset \text{GL}(V)$ is a finite group generated by pseudoreflections. Then H_0 is reductive.

Proof. We have that $V = \bigoplus V_i$ and $G = \prod G_i$ where $G_i \subset \text{GL}(V_i)$ is an irreducible group generated by pseudoreflections. Now apply Corollary 3.14.

Proposition 3.16. Suppose that V is an orthogonal representation of G where $V^G = \{0\}$. Then H_0 is reductive.

Proof. We have an isotypic decomposition $V = \bigoplus_i m_i V_i \bigoplus n_j(W_j \oplus W_j^*)$ where the V_i are irreducible nontrivial orthogonal representations of G and the W_j are irreducible nonorthogonal representations of G. Note that for each i there is a quadratic invariant $p_i \in \mathbb{C}[m_i V_i]^G$ and for each j a quadratic invariant (a contraction) $q_j \in \mathbb{C}[n_j(W_j \oplus W_j^*)]^G$. Suppose that \mathfrak{h}_0 is not contained in $\bigoplus_i \text{End}(m_i V_i) \bigoplus_j \text{End}(n_j(W_j \oplus W_j^*))$. For example, suppose that there is a nonzero element φ of \mathfrak{h}_0 whose restriction to $m_2 V_2$ has nonzero projection to $m_1 V_1$. Then we have the function $h(v_1, v_2) := dp_1(v_1)(\varphi(v_2))$ for $v_1 \in m_1 V_1$ and $v_2 \in m_2 V_2$. As before, the actions of G and the $\text{GL}(m_i)$ guarantee that we can assume that $h \neq 0$. Now the bidegree of h is $(1, 1)$ and $h \in \mathcal{I}$. However, there are no nonconstant invariants of bidegree (a, b) in $\mathbb{C}[m_1 V_1 \oplus m_2 V_2]$ for $a \leq 1$ and $b \leq 1$. Thus h cannot lie in \mathcal{I}. One similarly gets contradictions for all the possible ways that $\mathfrak{h}_0 \not\subset \bigoplus_i \text{End}(m_i V_i) \bigoplus_j \text{End}(n_j(W_j \oplus W_j^*))$ can occur. Finally, note that the normalizer N of the image of G in $\text{GL}(n_j(W_j \oplus W_j^*))$ contains an element interchanging the copies of W_j and W_j^*. Thus N acts irreducibly and we can now apply the argument of Lemma 3.13.

Corollary 3.17. If G is any one of the following groups, then H_0 is reductive for any representation V of G with $V^G = \{0\}$.

1. $\text{SO}(n)$, $n \geq 3$.
2. G_2, F_4, E_8.
3. B_{4n+3} and B_{4n+4}, $n \geq 0$.
4. D_{4n}, $n \geq 1$.
4. Some examples and a conjecture

We give examples where G_0 is not reductive and we give examples where G_0 is reductive but H_0 is not.

Example 4.1. Let V and W be G-modules such that $\mathcal{O}(V \oplus W)^G = \mathcal{O}(V)^G$. Then $\text{Hom}(V,W)$ is contained in the radical of \mathfrak{g}_0 so that G_0 and H_0 are not reductive. A concrete example is given by $G = \text{SL}_4$ and $V \oplus W = \wedge^2 \mathbb{C}^4 \oplus \mathbb{C}^3$ with the obvious G action.

Example 4.2. Let W be an irreducible G-module where $W^G = \{0\}$ and $\mathcal{O}(W)^G \neq \mathbb{C}$. Let $V = W \oplus \mathbb{C}$ where G acts trivially on \mathbb{C}. Then $\mathfrak{g}_0 \subset \mathfrak{gl}(W)$ while $\text{Hom}(\mathbb{C},W)$ is contained in the Lie algebra of the radical of H_0.

Example 4.3. Let $1 \leq p \leq q$ and consider the $G = \text{GL}(W)$ representation on $V = pW \oplus qW^*$ where $W = \mathbb{C}^n$, $n \geq 1$. (See Corollary 3.12.) By classical invariant theory, the G-invariants are just the contractions of elements of the copies of W with elements of the copies of W^*. Let U denote $W \oplus W^* \simeq \mathbb{C}^{2n}$.

Three cases arise:

Case 1: $p = q = 1$. Then our invariant is the bilinear form $(\ , \)$ corresponding to the matrix $J := (0 \ I) \subset \text{GL}(2n)$, i.e., $(x, y) = x^t J y$, $x, y \in U$. Thus $G_0 = \text{O}(2n)$ and $H_0 = \mathbb{C}^* G_0$.

Case 2: $p = 1$, $q > 1$. Then H_0 contains a copy of $\text{GL}(q)$ and the action of H_0 on the invariants is a representation $H_0 \to \text{GL}(q)$ whose kernel is G_0. Thus $H_0 = \text{GL}(q) G_0$. A matrix computation shows that $G_0 = \text{GL}(W) \ltimes (\wedge^q (W^*) \otimes \mathbb{C})$. If $x \in W$ and $y_1, \ldots, y_q \in W^*$, then the unipotent radical of G_0 sends (x, y_1, \ldots, y_q) to $(x, y_1 + B_1 x, \ldots, y_q + B_q x)$ where for each j, B_j is a skew symmetric matrix, $B_j \in \wedge^2 (W^*) \subset \text{Hom}(W, W^*)$.

Case 3: $p \geq 2$. We show that $G_0 = \text{GL}(W)$, that $H_0 = H$ and that $H^0 = \text{GL}(p) \text{GL}(q) \text{GL}(W)$. We also determine H. First suppose that $p = q = 2$. Then G_0 preserves the inner products on $2U$, i.e., G_0 is a subgroup of $\text{O}(2n)$. Moreover, G_0 preserves the skew product on $2U$ sending x, y to $x^t K y$ where $K = (0 \ I)$. Hence G_0 lies in the intersection of $\text{O}(2n)$ and $\text{Sp}(2n)$ which is the copy of $\text{GL}(W)$ acting on U by the matrices $(A, 0, 0, A^{-1})$, $A \in \text{GL}(W)$. Clearly, as long as $2 \leq p \leq q$ we must have that $G_0 = G = \text{GL}(W)$. We have a representation $\varphi : H_0 \to \text{GL}(pq)$ given by the action of H_0 on the pq generators of the invariants. The kernel of φ is $G_0 = G$. Thus H_0 is reductive. By Theorem 3.6 we have $H^0 = \text{GL}(p) \text{GL}(q) \text{GL}(W)$. Let $h \in H$. If h stabilizes pW and qW^*, then h induces an automorphism of $\text{GL}(W)$ which is trivial on $\mathbb{C}^* I$ and must be inner on $\text{SL}(W)$. Hence modulo an element of $\text{SL}(W)$, h lies in the centralizer of $\text{GL}(W)$, which is $\text{GL}(p) \text{GL}(q)$. Hence $h \in H^0$. The only other possibility is that h interchanges the copies of pW and qW^*. This can only happen if $p = q$. Thus H is connected if $p \neq q$ and H/H^0 has order two if $p = q$.

Example 4.4. Let $G = \mathbb{Z}/4\mathbb{Z} \subset \mathbb{C}^*$ and let $V = \mathbb{C}^2$ where $\xi(a, b) = (\xi^2 a, \xi b)$ for $(a, b) \in \mathbb{C}^2$, $\xi \in G$. Since G is finite, $G_0 = G$. Let x and y be the usual coordinate functions on V. Then the invariants are generated by x^2, xy^2 and y^4. Consider the element $\varphi \in \text{End}(V)$ which sends (a, b) to $(0, a)$ for $a, b \in \mathbb{C}$.
Then \(\varphi \) acts on \(\mathbb{C}[V] \) by the derivation \(x \partial / \partial y \). This derivation preserves \(\mathcal{I} \) and it follows that \(\varphi \) is a basis of the Lie algebra of the unipotent radical of \(H_0 \).

Example 4.5. Let \(G = \mathbb{C}^* \) and let \(V \) be the \(p + q + r \) dimensional representation with weights \(-1\) of multiplicity \(p \), \(1 \) of multiplicity \(q \) and \(2 \) of multiplicity \(r \) where \(p, q, r \in \mathbb{N} \) and \(pqr \neq 0 \). If \(x_i, y_j \) and \(z_k \) are corresponding coordinate functions, then the invariants are generated by the monomials \(x_i y_j \) and \(x_i x_j z_k \). We have \(G_0 = G \) while the radical of \(H_0 \) has Lie algebra spanned by the polynomial ring and \(\pi \).

Example 4.6. Let \(V \oplus W = S^2(\mathbb{C}^n) \oplus \mathbb{C}^n \) with the obvious action of \(G = \text{SL}_n \), \(n \geq 2 \). Then using classical invariant theory [6] one computes that the invariants have homogeneous generators \(p \) and \(q \) of bidegrees \((n,0)\) and \((n-1,2)\), respectively. Now \(\text{Hom}(V,W) \) contains a copy of \(W^* \) where \(\xi \in W^* \) sends \(v \in V \) to \(i_\xi(v) \in W \) (contraction). Then this copy of \(W^* \) acts on \(\mathbb{C}[V \oplus W] \) sending a polynomial \(f(v,w) \) into \(df(v,w)(0,i_\xi(v)) \), \(v \in V, w \in W \). This action annihilates \(p \) and sends \(q \) to a subspace of \(\mathcal{O}(V \oplus W) \) of bidegree \((n,1)\) transforming under \(G \) as \(W^* \). But the only way to get a copy of \(W^* \) in this bidegree is to multiply \(p \) times the copy of \(W^* \) in degree \(1 \) in \(\mathcal{O}(V \oplus W) \). Thus \(\mathcal{I} \) is preserved. It is now easy to establish that the unipotent radical of \(H_0 \) has Lie algebra the copy of \(W^* \) in \(\text{Hom}(V,W) \).

Conjecture 4.7. If \(G \) is semisimple and \(V \) is generic (see 2.2) with \(V^G = (0) \), then \(H_0 \) is reductive.

5. Cofree Representations

Recall that \(V \) is cofree if \(R \) is a free module over \(R^G \). Equivalently, \(R^G \) is a polynomial ring and \(\pi: V \rightarrow V/\!/G \) is equidimensional [8, 17, 29]. If \(p_1, \ldots, p_d \) are minimal homogeneous generators of \(R^G \), then we can identify \(\pi \) with the polynomial map \(p = (p_1, \ldots, p_d): V \rightarrow \mathbb{C}^d \). Cofreeness is equivalent to the fact that the \(p_i \) form a regular sequence in \(\mathbb{C}[V] \). See [7] for the classification of cofree representations of the simple algebraic groups and [4] for the classification of irreducible cofree representations of semisimple algebraic groups.

We say that \(G' \subset \text{GL}(V) \) stabilizes a fiber \(F \) of \(\pi \) if \(G' \) preserves \(F \) schematically, i.e., preserves the ideal \(I_F \) of \(F \).

Proposition 5.1. Suppose that \(G \) is reductive and \(V \) is a cofree \(G \)-module. If \(G' \subset \text{GL}(V) \) stabilizes a fiber of \(\pi: V \rightarrow V/\!/G \), then \(G' \) stabilizes \(\mathcal{N}_G \).

Proof. Let \(F \) be a fiber of \(\pi \). Then there are constants \(c_i, i = 1, \ldots, d \), such that \(I_F \) is the ideal generated by \(p_i - c_i, i = 1, \ldots, d \). Let \(0 \neq f \in I_F \) and let \(\text{gr} f \) denote the nonzero homogeneous part of \(f \) of largest degree. Then the elements \(\text{gr} f \) for \(0 \neq f \in I_F \) generate a homogeneous ideal \(I \) which obviously contains \(\mathcal{I} \). We show that \(I \subset \mathcal{I} \) so that \(I = \mathcal{I} \). If \(G' \) preserves \(I_F \), it preserves \(I = \mathcal{I} \), and we have the proposition.

Let \(d_i \) be the degree of \(p_i, i = 1, \ldots, d \). Let \(0 \neq f \in I_F \) where \(\text{gr} f \) is homogeneous of degree \(r \). We have \(f = \sum a_i (p_i - c_i) \) where \(a_1, \ldots, a_n \in R \). Let
\[s = \max_i \{ \deg a_i + d_i \} \]. Let \(a'_i \) denote the homogeneous part of \(a_i \) of degree \(s - d_i \).

If \(s > r \), then we must have that \(\sum_i a'_i p_i = 0 \). Since the \(p_i \) are a regular sequence, this relation is generated by the Koszul relations \(p_j p_i - p_i p_j = 0 \), \(1 \leq i < j \leq d \).

Hence there are \(b_{ij} \in R \), \(b_{ij} = -b_{ji} \), such that
\[
\sum_i a'_i(p_i - c_i) = \sum_{i \neq j} b_{ij}(p_j(p_i - c_i) - p_i(p_j - c_j)) = \sum_{i \neq j} b_{ij}(c_j(p_i - c_i) - c_i(p_j - c_j))
\]
where for fixed \(i \), \(\deg \sum_{j \neq i} b_{ij} c_j < s - d_i \). Thus we may replace each \(a_i \) by a polynomial of degree less than \(s - d_i \) without changing \(f \). Continuing inductively we reduce to the situation that \(\deg a_i \leq s - d_i \) for all \(i \). Let \(a'_i \) denote the homogeneous degree \(r - d_i \) term in \(a_i \), \(i = 1, \ldots, d \). Then \(\text{gr } f = \sum_i a'_i p_i \in \mathcal{I} \).

Example 5.2. Let \(G = \mathbb{C}^* \) and \(V = \mathbb{C}^3 \) with coordinate functions \(x, y \) and \(z \) corresponding to weights \(-1, 1 \) and \(2 \). The fiber defined by \(xy = 1 \) and \(x^2 z = 0 \) is the fiber defined by \(xy = 1 \) and \(z = 0 \), and it has a symmetry which interchanges \(x \) and \(y \). However, this is not a symmetry of the ideal generated by the invariants. Thus Proposition 5.1 does not hold in case the representation is not cofree.

Remark 5.3. Let \(F \) be a principal fiber of \(\pi \) where \(V \) is cofree. Then \(d\pi \) has rank \(d = \dim V/\mathcal{G} \) on \(F \) so that \(F \) is smooth. It follows that \(G' \) preserves \(I_F \) if and only if \(G'' \) preserves the set \(F \).

Corollary 5.4. Let \(V = \bigoplus_{i=1}^r V_i \) where the \(V_i \) are pairwise non-isomorphic nontrivial \(G \)-modules and \(V \) is cofree. Suppose that \(G \subseteq G' \subseteq \text{GL}(V) \) where \(G' \) is connected semisimple. Then the following are equivalent.

1. \(R^G = R^{G'} \).
2. \(G' \) preserves a fiber of \(\pi : V \to V/\mathcal{G} \).
3. \(G' \) preserves \(\mathcal{N}_G \).

Proof. Use Corollary 3.9 and Proposition 5.1.

Corollary 5.5. Let \(V \) be an irreducible nontrivial cofree \(G \)-module with \(R^G \neq \mathbb{C} \). Let \(F \neq \mathcal{N} \) be a fiber of \(\pi : V \to V/\mathcal{G} \) and let \(G_F \) be the subgroup of \(\text{GL}(V) \) stabilizing \(F \). Then

1. \(G_0 \subset G_F \subset H_0 \) are reductive.
2. \(H^0 = \mathbb{C}^*(G_0)^0 \).
3. \(G_F/G_0 \) is finite.

Proof. Parts (1) and (2) are clear. Since \(F \neq \mathcal{N} \), it is only stabilized by a finite subgroup of \(\mathbb{C}^* \), hence we have (3).

It would be nice to find an example of an irreducible module \(V \) of a semisimple group \(G \) with \(G = (G_0)^0 \) such that the subgroup of \(\text{GL}(V) \) fixing a fiber \(F \) of \(\pi : V \to V/\mathcal{G} \), \(F \neq \mathcal{N}_G \), has dimension bigger than \(\dim G \).
Remark 5.6. Let V be an irreducible nontrivial cofree representation of a simple algebraic group G such that $R^G \neq \mathbb{C}$. The cases for which $G \neq (G_0)^0$ are as follows (we use the numbering and notation of [6]).

1. (φ_3, B_3).
2. (φ_4, B_4).
3. (φ_5, B_5).
4. (φ_1, G_2).

6. The adjoint case

Let \mathfrak{g} be a simple Lie algebra. Choose a Cartan subalgebra \mathfrak{t} of \mathfrak{g} and a base Π of the root system. Choose $x_\alpha \in \mathfrak{g}_\alpha$ and $y_\alpha \in \mathfrak{g}_{-\alpha}$, $\alpha \in \Pi$, such that $(x_\alpha, y_\alpha, [x_\alpha, y_\alpha])$ is a standard \mathfrak{sl}_2 triple. Then there is a unique order 2 automorphism ψ of \mathfrak{g} which is -1 on \mathfrak{t} and sends x_α to $-y_\alpha$, $\alpha \in \Pi$.

Now let $\mathfrak{g} = \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_r$ where the \mathfrak{g}_i are simple ideals of the Lie algebra \mathfrak{g}. Let $\psi_i \in \text{Aut}(\mathfrak{g}_i)$ be as above. Let G denote the adjoint group of \mathfrak{g} and let G_0, H_0 and H be as in the introduction.

Theorem 6.1. We have that $H = (\mathbb{C}^*)^r \text{Aut}(\mathfrak{g})$ and that $G_0 \simeq (\mathbb{Z}/2\mathbb{Z})^r G$ where the ith copy of $\mathbb{Z}/2\mathbb{Z}$ is generated by $-\psi_i$.

Proof. By Dixmier [2], $(G_0)^0 = G$, and using Corollary 3.14 we obtain that $H_0 = H$ where $H_0 = (\mathbb{C}^*)^r G$. Hence if $\varphi \in H$, we obtain an automorphism σ of $\mathfrak{g} \simeq \text{ad} \mathfrak{g} \subset \mathfrak{h} \subset \mathfrak{gl}(\mathfrak{g})$ where $\text{ad}(\sigma(X)) = \varphi \circ \text{ad} X \circ \varphi^{-1}$, $X \in \mathfrak{g}$. Clearly $\text{Aut}(\mathfrak{g}) \subset H$, so replacing φ by $\varphi \circ \sigma^{-1}$ we can arrange that $\varphi \circ \text{ad} X \circ \varphi^{-1} = \text{ad} X$ for all $X \in \mathfrak{g}$. Then by Schur’s lemma, $\varphi \in (\mathbb{C}^*)^r \subset H^0$ so that $H = (\mathbb{C}^*)^r \text{Aut}(\mathfrak{g})$.

If we start with $\varphi \in G_0$, then since φ induces the identity on $\mathbb{C}[\mathfrak{g}]^G$, so does σ, and it follows from Schur’s lemma that φ is a product $\prod \lambda_i \sigma_i$, where for all i, $\sigma_i : \mathfrak{g}_i \to \mathfrak{g}_i$ is an automorphism and $\lambda_i \in \mathbb{C}^*$ acts via multiplication on \mathfrak{g}_i. But φ has to preserve the invariants of degree 2 of each \mathfrak{g}_i, hence $\lambda_i = \pm 1$ for all i.

Now [9, Theorem 2.5] shows that, for each i, $\lambda_i \sigma_i \in G_i$ or $\lambda_i \sigma_i \in (-\psi_i)G_i \neq G_i$, where G_i is the adjoint group of \mathfrak{g}_i. Hence $G_0 \simeq (\mathbb{Z}/2\mathbb{Z})^r G$. $lacksquare$

Corollary 6.2. (See [1]). Let $\mathfrak{g} = \mathfrak{sl}_n$. Then H is generated by G, \mathbb{C}^* and transposition.

Proof. In the case of \mathfrak{sl}_n with the usual choice of \mathfrak{t} and Π, the automorphism ψ is $X \mapsto -X^t$, $X \in \mathfrak{sl}_n$. Then ψ generates the group of outer automorphisms of \mathfrak{sl}_n (which is the trivial group for $n = 2$). Hence H is generated by G, \mathbb{C}^* and transposition. $lacksquare$
Corollary 6.3. (See[12]). Let G_F be the subgroup of $\text{GL}(\mathfrak{gl}_n)$ which preserves the $G := \text{PGL}(n)$-orbit F of an element x_0 of \mathfrak{gl}_n which has nonzero trace and distinct eigenvalues. Then G_F is generated by G and transposition.

Proof. The condition on x_0 implies that F is a smooth fiber of the quotient mapping (see Remark 5.3). Write $x_0 = \mu I + y_0$ where $\mu \in \mathbb{C}^*$, $y_0 \in \mathfrak{sl}_n$ and I is the $n \times n$ identity matrix. Then F is just $\mu I + F_1$ where $F_1 = G \cdot y_0$. We may write an element of G_F as $(\begin{array}{cc} 1 & 0 \\ c & \lambda g \end{array})$ where $c \in \mathfrak{sl}_n$, $g \in \text{GL}(<\mathfrak{sl}_n>$) is a linear mapping preserving the schematic null cone of \mathfrak{sl}_n and $\lambda \in \mathbb{C}^*$ (use 3.10 and 5.1). Then g is in G or g is an element of G composed with transposition. Applying the inverse of g we obtain an element h of the form $y \mapsto \lambda y + c$, $y \in F_1$. We need to show that $c = 0$. Suppose not. Let $g \in G$ such that $gc \neq c$. Then $h^{-1}gh^{-1}(y) = y + c'$, $0 \neq c' \in \mathfrak{sl}_n$, $y \in F_1$. Thus $F_1 = F_1 + c'$. It follows that for any invariant polynomial p on \mathfrak{sl}_n, $p(y + nc') = p(y)$ for all $y \in F_1$ and $n \in \mathbb{Z}$. Thus $dp(y)(c') = 0$ for any $y \in F_1$. But the covectors $dp(y)$ for $y \in F_1$ span $(\mathfrak{sl}_n)^*$. Thus $c' = 0$, a contradiction. □

References

Gerald W. Schwarz
Department of Mathematics
Brandeis University
MS 050, PO Box 549110
Waltham, MA 02454-9110
schwarz@brandeis.edu

Received November 13, 2007
and in final form April 8, 2008