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Abstract. Let G ⊂ GL(V ) be a complex reductive group where dim V < ∞ ,
and let π : V → V//G be the categorical quotient. Let N := π−1π(0) be the
null cone of V , let H0 be the subgroup of GL(V ) which preserves the ideal I
of N and let H be a Levi subgroup of H0 containing G . We determine the
identity component of H . In many cases we show that H = H0 . For adjoint
representations we have H = H0 and we determine H completely. We also
investigate the subgroup GF of GL(V ) preserving a fiber F of π when V is an
irreducible cofree G -module.
Mathematics Subject Index 2000: 20G20, 22E46, 22E60.
Keywords and phrases: Invariants, null cone, cofree representations.

1. Introduction

Our base field is C , the field of complex numbers. Let V be a finite dimensional
G-module where G ⊂ GL(V ) is reductive. Let R denote C[V ] . We have
the categorical quotient π : V → V//G dual to the inclusion RG ⊂ R . Let
NG := π−1π(0) (or just N ) denote the null cone. Let G0 = {g ∈ GL(V ) | f ◦g = f
for all f ∈ RG} . Let H0 denote the subgroup of GL(V ) which preserves NG

schematically. Equivalently, H0 is the group preserving the ideal I = RG
+R where

RG
+ is the ideal of invariants vanishing at 0. Let G1 be a Levi factor of G0

containing G and let H denote a Levi factor of H0 containing G1 . We show that
H0 ⊂ G1 GL(V )G1 , hence that H0 ⊂ G1 GL(V )G . In many cases H0 and G0 are
reductive, for example, if V is irreducible. In the case that V = g is a semisimple
Lie algebra and G its adjoint group we show that H = H0 = (C∗)r Aut(g) where
r is the number of simple ideals in g . We also obtain information about the
subgroup of GL(g) preserving a fiber of π (other than the zero fiber). We have
similar resuts in the case that V is a cofree G-module. Our results generalize
those of Botta, Pierce and Watkins [1] and Watkins [12] for the case g = sln .
Finally, we show that if G ⊂ G′ ⊂ GL(V ) where G′ is connected reductive such
that π and π′ : V → V//G′ have a common fiber, then RG = RG′

.

We thank M. Räıs for his help and for the questions and conjectures in his
work [5] which led to this paper.
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2. Equal fibers

Let G ⊂ G′ ⊂ GL(V ) be reductive where G′ is connected. We have quotient
mappings π : V → V//G and π′ : V → V//G′ . Let ρ : V//G → V//G′ denote the
canonical map.

Theorem 2.1. Suppose that there is a fiber F of π which is also a fiber of π′

(as sets). Then RG = RG′
.

Proof. The hypothesis implies that there is a point z′ ∈ X ′ := V//G′ such that
ρ−1(z′) is a point in X := V//G . Since ρ is surjective, the minimal dimension
of any irreducible component of a fiber is the difference in the dimensions of X
and X ′ , so we have that dimX = dimX ′ . Then there is a nonempty open
subset U of X ′ such that the fiber of ρ over any point of U is finite. But for
z′ ∈ X ′ , the fiber (π′)−1(z′) is connected since G′ is connected. Hence the fiber
ρ−1(z′) = π((π′)−1(z′)) is connected. It follows that ρ : ρ−1(U) → U is 1-1 and
onto, hence birational. Thus ρ is an isomorphism [3, II.3.4]

Remark 2.2. Solomon [10, 11] has classified many of the pairs of groups G ⊂
G′ ⊂ GL(V ) with the same invariants, including the case where V is irreducible.
Often, RG = RG′

forces G = G′ . Suppose that (V,G) is generic, i.e., it has trivial
principal isotropy groups and the complement of the set of principal orbits has
codimension two in V . Then RG = RG′

implies that G = G′ [9].

3. Groups preserving the ideal of N

Let V be a G-module. We assume that G is a Levi subgroup of G0 . Let H be a
Levi subgroup of H0 containing G . Our aim is to show that H0 is generated by
GL(V )G and G0 .

Proposition 3.1. Let V , G and H be as above. Then G is normal in H .

Proof. Let p1, . . . , pr be a set of minimal homogeneous generators of RG . Let
d1 < d2 < · · · < ds be the distinct degrees of the pi . Then clearly H preserves
the span W1 of the pi of degree d1 . Assuming that s > 1, let W ′

2 be the span
of the pi of degree d2 . Then H stabilizes W0 := Rd2−d1W1 and H stabilizes
W := W ′

2 + W0 = I ∩ Rd2 where Rd for d ∈ N denotes the elements of R
homogeneous of degree d . Note that W ′

2 ∩W0 = W ′
2 ∩ RG ·W1 = 0. Since H is

reductive, there is an H -stable subspace W2 of W complementary to W0 . Since
G acts trivially on W ′

2 , it acts trivially on W/W0 and on W2 . Continuing in this
way we obtain H -modules W1, . . . ,Ws consisting of G-invariant functions such
that W ′ := W1 + · · ·+Ws generates RG . Clearly G is the kernel of the action of
H on W ′ .

Corollary 3.2. Suppose that H0 is reductive. Then G0 is reductive and normal
in H0 .

Since G0 is reductive, H0 acts on G0 by inner automorphisms. Hence
H0 = H1G

0 where H1 := ZH(G0)0 is the connected centralizer of G0 in H .



Schwarz 435

Lemma 3.3. Let g ∈ G. Then there is a homomorphism θ : H1 → Z(G0) such
that ghg−1 = θ(h)h, h ∈ H1 .

Proof. Let h ∈ H1 . Since conjugation by h preserves the connected compo-
nents of G there is an element θ(h) ∈ G0 such that hg−1h−1 = g−1θ(h). Let
h1 ∈ H1 . Then

g−1θ(h1h) = h1hg
−1h−1h−1

1 = h1g
−1θ(h)h−1

1 = h1g
−1h−1

1 θ(h) = g−1θ(h1)θ(h).

Thus θ is a homomorphism. From hg−1h−1 = g−1θ(h) it follows that ghg−1 =
θ(h)h . Since h centralizes G0 , so does ghg−1 , and we see that θ(h) centralizes
G0 . Thus θ(h) ∈ Z(G0).

Corollary 3.4. Suppose that G = G0 and that G0 is normal in H0 . Then H0

is reductive.

Proof. As above, we have (H0)
0 = H2G

0 where H2 ⊂ H0 is connected and
centralizes G0 , and H0 is reductive if and only if H2 is reductive. Let R be the
unipotent radical of H2 . Corresponding to each g ∈ G there is a homomorphism
θ : H2 → Z(G0), and since R is unipotent, θ(R) = {e} . Thus R ⊂ GL(V )G where
GL(V )G is obviously in H2 . Thus R is trivial and H0 is reductive.

Write H0 = H0
sG

0
sT where H0

s (resp. G0
s ) is the semisimple part of H1

(resp. G0 ) and T := Z(H0)0 ⊂ H1 is a torus. Set T0 := Z(G0)0 .

Corollary 3.5. The group H0
s is contained in GL(V )G .

Theorem 3.6. Let V , G and H be as above. Then H0 = GL(V )GG0 .

Proof. Write H0 = H0
sG

0
sT as above and set F := G/G0 . Then F normalizes

T and by Lemma 3.3, F acts trivially on T/T0 . Thus T F projects onto T/T0 .
Choose a torus S in (T F )0 complementary to (T F ∩ T0)

0 . Then H0 = H0
sSG

0

where H0
sS lies in GL(V )G .

Remark 3.7. Write V =
⊕r

i=1miVi where the Vi are irreducible and pairwise
non-isomorphic and miVi denotes the direct sum of mi copies of Vi . Then the
theorem shows that H0 = G0

∏r
i=1 GL(mi).

Example 3.8. Let {e} 6= G ⊂ GL(V ) be finite. Then NG , as a set, is just the
origin, and it is preserved by GL(V ). Thus it is essential in Theorem 3.6 that H
preserve NG schematically.

Corollary 3.9. Suppose that V =
⊕r

i=1 Vi where the Vi are irreducible, non-
trivial and pairwise non-isomorphic. Let H ′ ⊂ GL(V ) be semisimple. Then the
following are equivalent:

(1) H ′ ⊂ H0 .

(2) H ′ ⊂ G0 .
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Proposition 3.10. Suppose that V is an irreducible G-module. Then G0 and
H0 are reductive and H0 = C∗G0 .

Proof. The fixed points of the unipotent radical R of G0 are a G0 -stable
nonzero subspace of V . Thus R acts trivially on V , i.e., R = 0. Hence G0 is
reductive. Similarly, H0 is reductive.

Corollary 3.11. Suppose that V = mW where W is an irreducible G-module.
Then H0 is reductive.

Proof. The group H contains G × GL(m) which acts irreducibly on V '
W ⊗ Cm . Thus H0 is reductive.

In the remainder of this section, we do not assume that G is a Levi subgroup
of G0 .

Corollary 3.12. Let G ⊂ GL(W ) and let V = pW ⊕ qW ∗ where 2 ≤ p ≤ q
and the G-modules W and W ∗ are irreducible and non isomorphic. Then

(1) G0 and H0 are reductive.

(2) G0 ⊂ GL(W ).

(3) H0 = GL(p) GL(q)(G0)
0 .

Proof. First we consider the case that G = GL(W ). Then Example 4.3 below
shows that G0 = GL(W ) and that (H0)

0 = GL(p) GL(q) GL(W ). Now the
invariants of GL(W ) are generated by those of degree 2 and the degree 2 invariants
of G and of GL(W ) are the same. Thus G0 must be a subgroup of GL(W ) and
(H0)

0 must be a subgroup of GL(p) GL(q) GL(W ) containing GL(p) GL(q). Hence
(H0)

0 = GL(p) GL(q)H1 where H1 ⊂ GL(W ). Note that GH1 is a finite extension
of H1 . Since W is an irreducible G-module and G0 and GH1 contain G , both
G0 and H1 (hence (H0)

0) are reductive and we have (1) and (2). Theorem 3.6
gives (3).

Lemma 3.13. Suppose that V G = (0) and let V =
⊕r

i=1miVi be the isotypic
decomposition of V where the Vi are pairwise non-isomorphic G-modules. Suppose
that h0(miVi) ⊂ miVi for all i. Then H0 is reductive.

Proof. For any i , G(H0)
0 is a finite extension of (H0)

0 which contains the
product G

∏
i GL(mi). The latter group acts irreducibly on miVi , hence the image

of G(H0)
0 in GL(miVi) is reductive for all i . It follows that (H0)

0 is reductive,
hence that H0 is reductive.

Corollary 3.14. Suppose that Vi is an irreducible nontrivial Gi -module where
Gi is reductive and C[Vi]

Gi 6= C, i = 1, . . . , r . Let V :=
⊕

imiVi with the
canonical action of G := G1 × · · · × Gr where mi ≥ 1 for all i. Then H0 is
reductive.
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Proof. Suppose that h0 is not contained in
⊕

i End(miVi). Since h0 is H -
stable, it must contain one of the irreducible Gi × GL(mi) × Gj × GL(mj)-
modules Hom(miVi,mjVj), i 6= j . Without loss of generality suppose that
h0 ⊃ Hom(m2V2,m1V1). Let f ∈ O(m1V1)

G1 be a nonconstant homogeneous
invariant of minimal degree d ≥ 2. Let ϕ ∈ Hom(m2V2,m1V1). Then ϕ sends
f to the function h(v1, v2) := df(v1)(ϕ(v2)) where vi ∈ miVi , i = 1, 2. Clearly
there is a ϕ such that h 6= 0. Thus h is a nonzero element of bidegree (d− 1, 1)
in C[m1V1 ⊕ m2V2] . But by the minimality of d and the fact that no nonzero
invariant in C[m2V2] has degree 1, there is no element of I of this bidegree. Hence
Hom(m2V2,m1V1) does not preserve I , a contradiction. Thus h0 is contained in⊕

i End(miVi) and one can apply Lemma 3.13.

Corollary 3.15. Suppose that G ⊂ GL(V ) is a finite group generated by pseu-
doreflections. Then H0 is reductive.

Proof. We have that V =
⊕

Vi and G =
∏
Gi where Gi ⊂ GL(Vi) is an

irreducible group generated by pseudoreflections. Now apply Corollary 3.14.

Proposition 3.16. Suppose that V is an orthogonal representation of G where
V G = (0). Then H0 is reductive.

Proof. We have an isotypic decomposition V =
⊕

imiVi

⊕
nj(Wj ⊕ W ∗

j )
where the Vi are irreducible nontrivial orthogonal representations of G and the
Wj are irreducible nonorthogonal representations of G . Note that for each i
there is a quadratic invariant pi ∈ C[miVi]

G and for each j a quadratic invari-
ant (a contraction) qj ∈ C[nj(Wj ⊕ W ∗

j )]G . Suppose that h0 is not contained
in

⊕
i End(miVi)

⊕
j End(nj(Wj ⊕ W ∗

j )). For example, suppose that there is a
nonzero element ϕ of h0 whose restriction to m2V2 has nonzero projection to
m1V1 . Then we have the function h(v1, v2) := dp1(v1)(ϕ(v2)) for v1 ∈ m1V1 and
v2 ∈ m2V2 . As before, the actions of G and the GL(mi) guarantee that we can
assume that h 6= 0. Now the bidegree of h is (1, 1) and h ∈ I . However, there
are no nonconstant invariants of bidegree (a, b) in C[m1V1 ⊕ m2V2] for a ≤ 1
and b ≤ 1. Thus h cannot lie in I . One similarly gets contradictions for all the
possible ways that h0 6⊂

⊕
i End(miVi)

⊕
j End(nj(Wj ⊕W ∗

j )) can occur. Finally,
note that the normalizer N of the image of G in GL(nj(Wj ⊕W ∗

j )) contains an
element interchanging the copies of Wj and W ∗

j . Thus N acts irreducibly and we
can now apply the argument of Lemma 3.13.

Corollary 3.17. If G is any one of the following groups, then H0 is reductive
for any representation V of G with V G = (0).

(1) SO(n), n ≥ 3.

(2) G2 , F4 , E8 .

(3) B4n+3 and B4n+4 , n ≥ 0.

(4) D4n , n ≥ 1.
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4. Some examples and a conjecture

We give examples where G0 is not reductive and we give examples where G0 is
reductive but H0 is not.

Example 4.1. Let V and W be G-modules such that O(V ⊕W )G = O(V )G .
Then Hom(V,W ) is contained in the radical of g0 so that G0 and H0 are not
reductive. A concrete example is given by G = SL4 and V ⊕W = ∧2C4⊕C4 with
the obvious G action.

Example 4.2. Let W be an irreducible G-module where WG = (0) and
O(W )G 6= C . Let V = W ⊕ C where G acts trivially on C . Then g0 ⊂ gl(W )
while Hom(C,W ) is contained in the Lie algebra of the radical of H0 .

Example 4.3. Let 1 ≤ p ≤ q and consider the G = GL(W ) representation on
V = pW⊕qW ∗ where W = Cn , n ≥ 1. (See Corollary 3.12.) By classical invariant
theory, the G-invariants are just the contractions of elements of the copies of W
with elements of the copies of W ∗ . Let U denote W ⊕W ∗ ' C2n .

Three cases arise:

Case 1: p = q = 1. Then our invariant is the bilinear form ( , ) corresponding to
the matrix J := ( 0 I

I 0 ) ⊂ GL(2n), i.e., (x, y) = xtJy , x , y ∈ U . Thus G0 = O(2n)
and H0 = C∗G0 .

Case 2: p = 1, q > 1. Then H0 contains a copy of GL(q) and the action of H0

on the invariants is a representation H0 → GL(q) whose kernel is G0 . Thus H0 =
GL(q)G0 . A matrix computation shows that G0 = GL(W ) n (∧2(W ∗) ⊗ Cq). If
x ∈ W and y1, . . . , yq ∈ W ∗ , then the unipotent radical of G0 sends (x, y1, . . . , yq)
to (x, y1 + B1x, . . . , yq + Bqx) where for each j , Bj is a skew symmetric matrix,
Bj ∈ ∧2(W ∗) ⊂ Hom(W,W ∗).

Case 3: p ≥ 2. We show that G0 = GL(W ), that H0 = H and that H0 =
GL(p) GL(q) GL(W ). We also determine H . First suppose that p = q = 2.
Then G0 preserves the inner products on 2U , i.e., G0 is a subgroup of O(2n).
Moreover, G0 preserves the skew product on 2U sending x , y to xtKy where
K =

(
0 I
−I 0

)
. Hence G0 lies in the intersection of O(2n) and Sp(2n) which is the

copy of GL(W ) acting on U by the matrices
(

A 0
0 tA−1

)
, A ∈ GL(W ). Clearly, as

long as 2 ≤ p ≤ q we must have that G0 = G = GL(W ). We have a representation
ϕ : H0 → GL(pq) given by the action of H0 on the pq generators of the invariants.
The kernel of ϕ is G0 = G . Thus H0 is reductive. By Theorem 3.6 we have
H0 = GL(p) GL(q) GL(W ). Let h ∈ H . If h stabilizes pW and qW ∗ , then h
induces an automorphism of GL(W ) which is trivial on C∗I and must be inner
on SL(W ). Hence modulo an element of SL(W ), h lies in the centralizer of
GL(W ), which is GL(p) GL(q). Hence h ∈ H0 . The only other possibility is that
h interchanges the copies of pW and qW ∗ . This can only happen if p = q . Thus
H is connected if p 6= q and H/H0 has order two if p = q .

Example 4.4. Let G = Z/4Z ⊂ C∗ and let V = C2 where ξ(a, b) = (ξ2a, ξb)
for (a, b) ∈ C2 , ξ ∈ G . Since G is finite, G0 = G . Let x and y be the usual
coordinate functions on V . Then the invariants are generated by x2 , xy2 and
y4 . Consider the element ϕ ∈ End(V ) which sends (a, b) to (0, a) for a , b ∈ C .
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Then ϕ acts on C[V ] by the derivation x∂/∂y . This derivation preserves I and
it follows that ϕ is a basis of the Lie algebra of the unipotent radical of H0 .

Example 4.5. Let G = C∗ and let V be the p + q + r dimensional represen-
tation with weights −1 of multiplicity p , 1 of multiplicity q and 2 of multiplicity
r where p , q , r ∈ N and pqr 6= 0. If xi , yj and zk are corresponding coordinate
functions, then the invariants are generated by the monomials xiyj and xixi′zk .
We have G0 = G while the radical of H0 has Lie algebra spanned by the linear
mappings corresponding to the derivations yj∂/∂zk .

Example 4.6. Let V ⊕ W = S2(Cn) ⊕ Cn with the obvious action of G =
SLn , n ≥ 2. Then using classical invariant theory [6] one computes that the
invariants have homogeneous generators p and q of bidegrees (n, 0) and (n−1, 2),
respectively. Now Hom(V,W ) contains a copy of W ∗ where ξ ∈ W ∗ sends v ∈ V
to iξ(v) ∈ W (contraction). Then this copy of W ∗ acts on C[V ⊕W ] sending a
polynomial f(v, w) into df(v, w)(0, iξ(v)), v ∈ V , w ∈ W . This action annihilates
p and sends q to a subspace of O(V ⊕W ) of bidegree (n, 1) transforming under
G as W ∗ . But the only way to get a copy of W ∗ in this bidegree is to multiply p
times the copy of W ∗ in degree 1 in O(V ⊕W ). Thus I is preserved. It is now
easy to establish that the unipotent radical of H0 has Lie algebra the copy of W ∗

in Hom(V,W ).

Conjecture 4.7. If G is semisimple and V is generic (see 2.2) with V G = (0),
then H0 is reductive.

5. Cofree Representations

Recall that V is cofree if R is a free module over RG . Equivalently, RG is a
polynomial ring and π : V → V//G is equidimensional [8, 17.29]. If p1, . . . , pd

are minimal homogeneous generators of RG , then we can identify π with the
polynomial map p = (p1, . . . , pd) : V → Cd . Cofreeness is equivalent to the fact
that the pi form a regular sequence in C[V ] . See [7] for the classification of
cofree representations of the simple algebraic groups and [4] for the classification
of irreducible cofree representations of semisimple algebraic groups.

We say that G′ ⊂ GL(V ) stabilizes a fiber F of π if G′ preserves F
schematically, i.e., preserves the ideal IF of F .

Proposition 5.1. Suppose that G is reductive and V is a cofree G-module. If
G′ ⊂ GL(V ) stabilizes a fiber of π : V → V//G, then G′ stabilizes NG .

Proof. Let F be a fiber of π . Then there are constants ci , i = 1, . . . , d , such
that IF is the ideal generated by pi− ci , i = 1, . . . , d . Let 0 6= f ∈ IF and let gr f
denote the nonzero homogeneous part of f of largest degree. Then the elements
gr f for 0 6= f ∈ IF generate a homogeneous ideal I which obviously contains I .
We show that I ⊂ I so that I = I . If G′ preserves IF , it preserves I = I , and
we have the proposition.

Let di be the degree of pi , i = 1, . . . , d . Let 0 6= f ∈ IF where gr f is
homogeneous of degree r . We have f =

∑
ai(pi − ci) where a1, . . . , an ∈ R . Let
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s = maxi{deg ai +di} . Let a′i denote the homogeneous part of ai of degree s−di .
If s > r , then we must have that

∑
i a

′
ipi = 0. Since the pi are a regular sequence,

this relation is generated by the Koszul relations pjpi − pipj = 0, 1 ≤ i < j ≤ d .
Hence there are bij ∈ R , bij = −bji , such that∑

i

a′i(pi − ci) =
∑
i6=j

bij(pj(pi − ci)− pi(pj − cj)) =
∑
i6=j

bij(cj(pi − ci)− ci(pj − cj))

where for fixed i , deg
∑

j 6=i bijcj < s − di . Thus we may replace each ai by a
polynomial of degree less than s− di without changing f . Continuing inductively
we reduce to the situation that deg ai ≤ r − di for all i . Let a′i denote the
homogeneous degree r − di term in ai , i = 1, . . . , d . Then gr f =

∑
i a

′
ipi ∈ I .

Example 5.2. Let G = C∗ and V = C3 with coordinate functions x , y and z
corresponding to weights −1, 1 and 2. The fiber defined by xy = 1 and x2z = 0 is
the fiber defined by xy = 1 and z = 0, and it has a symmetry which interchanges
x and y . However, this is not a symmetry of the ideal generated by the invariants.
Thus Proposition 5.1 does not hold in case the representation is not cofree.

Remark 5.3. Let F be a principal fiber of π where V is cofree. Then dπ has
rank d = dimV//G on F so that F is smooth. It follows that G′ preserves IF if
and only if G′ preserves the set F .

Corollary 5.4. Let V =
⊕r

i=1 Vi where the Vi are pairwise non-isomorphic
nontrivial G-modules and V is cofree. Suppose that G ⊂ G′ ⊂ GL(V ) where G′

is connected semisimple. Then the following are equivalent.

(1) RG = RG′
.

(2) G′ preserves a fiber of π : V → V//G.

(3) G′ preserves NG .

Proof. Use Corollary 3.9 and Proposition 5.1.

Corollary 5.5. Let V be an irreducible nontrivial cofree G-module with RG 6=
C. Let F 6= N be a fiber of π : V → V//G and let GF be the subgroup of GL(V )
stabilizing F . Then

(1) G0 ⊂ GF ⊂ H0 are reductive.

(2) H0 = C∗(G0)
0 .

(3) GF/G0 is finite.

Proof. Parts (1) and (2) are clear. Since F 6= N , it is only stabilized by a
finite subgroup of C∗ , hence we have (3).

It would be nice to find an example of an irreducible module V of a
semisimple group G with G = (G0)

0 such that the subgroup of GL(V ) fixing
a fiber F of π : V → V//G , F 6= NG , has dimension bigger than dimG .
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Remark 5.6. Let V be an irreducible nontrivial cofree representation of a
simple algebraic group G such that RG 6= C . The cases for which G 6= (G0)

0 are
as follows (we use the numbering and notation of [6]).

(1) (ϕ3,B3).

(2) (ϕ4,B4).

(3) (ϕ5,B5).

(4) (ϕ1,G2).

6. The adjoint case

Let g be a simple Lie algebra. Choose a Cartan subalgebra t of g and a base Π
of the root system. Choose xα ∈ gα and yα ∈ g−α , α ∈ Π, such that (xα , yα ,
[xα, yα]) is a standard sl2 triple. Then there is a unique order 2 automorphism ψ
of g which is −1 on t and sends xα to −yα , α ∈ Π.

Now let g = g1 ⊕ · · · ⊕ gr where the gi are simple ideals of the Lie algebra
g . Let ψi ∈ Aut(gi) be as above. Let G denote the adjoint group of g and let
G0 , H0 and H be as in the introduction.

Theorem 6.1. We have that H = (C∗)r Aut(g) and that G0 ' (Z/2Z)rG
where the ith copy of Z/2Z is generated by −ψi .

Proof. By Dixmier [2], (G0)
0 = G , and using Corollary 3.14 we obtain that

H0 = H where H0 = (C∗)rG . Hence if ϕ ∈ H , we obtain an automorphism σ
of g ' ad g ⊂ h ⊂ gl(g) where ad(σ(X)) = ϕ ◦ adX ◦ ϕ−1 , X ∈ g . Clearly
Aut(g) ⊂ H , so replacing ϕ by ϕ◦σ−1 we can arrange that ϕ◦adX ◦ϕ−1 = adX
for all X ∈ g . Then by Schur’s lemma, ϕ ∈ (C∗)r ⊂ H0 so that H = (C∗)r Aut(g).
If we start with ϕ ∈ G0 , then since ϕ induces the identity on C[g]G , so does σ ,
and it follows from Schur’s lemma that ϕ is a product

∏
i λiσi where, for all i ,

σi : gi → gi is an automorphism and λi ∈ C∗ acts via multiplication on gi . But
ϕ has to preserve the invariants of degree 2 of each gi , hence λi = ±1 for all i .
Now [9, Theorem 2.5] shows that, for each i , λiσi ∈ Gi or λiσi ∈ (−ψi)Gi 6= Gi ,
where Gi is the adjoint group of gi . Hence G0 ' (Z/2Z)rG .

Corollary 6.2. (See [1]). Let g = sln . Then H is generated by G, C∗ and
transposition.

Proof. In the case of sln with the usual choice of t and Π, the automorphism
ψ is X 7→ −X t , X ∈ sln . Then ψ generates the group of outer automorphisms
of sln (which is the trivial group for n = 2). Hence H is generated by G , C∗ and
transposition.
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Corollary 6.3. (See[12]). Let GF be the subgroup of GL(gln) which preserves
the G := PGL(n)-orbit F of an element x0 of gln which has nonzero trace and
distinct eigenvalues. Then GF is generated by G and transposition.

Proof. The condition on x0 implies that F is a smooth fiber of the quotient
mapping (see Remark 5.3). Write x0 = µI + y0 where µ ∈ C∗ , y0 ∈ sln and I
is the n × n identity matrix. Then F is just µI + F1 where F1 = G · y0 . We
may write an element of GF as

(
1 0
c λg

)
where c ∈ sln , g ∈ GL(sln) is a linear

mapping preserving the schematic null cone of sln and λ ∈ C∗ (use 3.10 and 5.1).
Then g is in G or g is an element of G composed with transposition. Applying
the inverse of g we obtain an element h of the form y 7→ λy + c , y ∈ F1 . We
need to show that c = 0. Suppose not. Let g ∈ G such that gc 6= c . Then
h−1ghg−1(y) = y+ c′ , 0 6= c′ ∈ sln , y ∈ F1 . Thus F1 = F1 + c′ . It follows that for
any invariant polynomial p on sln , p(y + nc′) = p(y) for all y ∈ F1 and n ∈ Z .
Thus dp(y)(c′) = 0 for any y ∈ F1 . But the covectors dp(y) for y ∈ F1 span
(sln)∗ . Thus c′ = 0, a contradiction.
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