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Abstract. Let G C GL(V) be a complex reductive group where dim V' < oo,
and let m: V' — V//G be the categorical quotient. Let N := 7~1m(0) be the
null cone of V', let Hy be the subgroup of GL(V') which preserves the ideal 7
of NV and let H be a Levi subgroup of Hy containing G. We determine the
identity component of H. In many cases we show that H = Hy. For adjoint
representations we have H = Hy and we determine H completely. We also
investigate the subgroup G of GL(V) preserving a fiber F' of m when V is an
irreducible cofree G-module.
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1. Introduction

Our base field is C, the field of complex numbers. Let V' be a finite dimensional
G-module where G C GL(V) is reductive. Let R denote C[V]. We have
the categorical quotient 7: V' — V/G dual to the inclusion RY C R. Let
Ng = 777(0) (or just N') denote the null cone. Let Gy = {g € GL(V) | fog = f
for all f € RY}. Let Hy denote the subgroup of GL(V) which preserves Ng
schematically. Equivalently, Hj is the group preserving the ideal Z = RER where
Rf is the ideal of invariants vanishing at 0. Let G; be a Levi factor of G
containing G and let H denote a Levi factor of Hy containing G;. We show that
H® c G; GL(V)“ | hence that H° C Gy GL(V)Y. In many cases Hy and Gy are
reductive, for example, if V' is irreducible. In the case that V = g is a semisimple
Lie algebra and G its adjoint group we show that H = Hy = (C*)" Aut(g) where
r is the number of simple ideals in g. We also obtain information about the
subgroup of GL(g) preserving a fiber of 7 (other than the zero fiber). We have
similar resuts in the case that V' is a cofree G-module. Our results generalize
those of Botta, Pierce and Watkins [1] and Watkins [12] for the case g = sl,,.
Finally, we show that if G C G’ C GL(V) where G’ is connected reductive such
that 7 and 7': V — VG’ have a common fiber, then R® = R%".

We thank M. Rais for his help and for the questions and conjectures in his
work [5] which led to this paper.
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2. Equal fibers

Let G C G' € GL(V) be reductive where G’ is connected. We have quotient
mappings 7: V — VG and 7": V — V/J/G'. Let p: VG — VG’ denote the

canonical map.

Theorem 2.1.  Suppose that there is a fiber F of ® which is also a fiber of @’
(as sets). Then R® = R,

Proof.  The hypothesis implies that there is a point 2z’ € X’ := V//G’ such that
p~1(2') is a point in X := V//G. Since p is surjective, the minimal dimension
of any irreducible component of a fiber is the difference in the dimensions of X
and X', so we have that dim X = dim X’. Then there is a nonempty open
subset U of X’ such that the fiber of p over any point of U is finite. But for
2/ € X', the fiber (7')7'(2’) is connected since G’ is connected. Hence the fiber
p (') = n((x')71(2")) is connected. Tt follows that p: p~'(U) — U is 1-1 and
onto, hence birational. Thus p is an isomorphism [3, 11.3.4] |

Remark 2.2.  Solomon [10, 11] has classified many of the pairs of groups G C
G’ C GL(V) with the same invariants, including the case where V' is irreducible.
Often, R® = R% forces G = G'. Suppose that (V,G) is generic, i.c., it has trivial
principal isotropy groups and the complement of the set of principal orbits has
codimension two in V. Then R® = RY implies that G = G’ [9].

3. Groups preserving the ideal of N

Let V be a G-module. We assume that G is a Levi subgroup of Gy. Let H be a
Levi subgroup of Hy containing G'. Our aim is to show that H° is generated by
GL(V)% and G°.

Proposition 3.1.  Let V, G and H be as above. Then G is normal in H .

Proof. Let pi,...,p, be a set of minimal homogeneous generators of RY. Let
dy < dy < --+ < dgs be the distinct degrees of the p;. Then clearly H preserves
the span W) of the p; of degree d;. Assuming that s > 1, let W be the span
of the p;, of degree dy. Then H stabilizes Wy := Rg4,_q,W1 and H stabilizes
W = W)+ Wy, = ZN Ry, where R; for d € N denotes the elements of R
homogeneous of degree d. Note that Wi N Wy = Wi N RY - W, = 0. Since H is
reductive, there is an H -stable subspace W5 of W complementary to Wy. Since
G acts trivially on W3, it acts trivially on W/W, and on W,. Continuing in this

way we obtain H-modules Wy, ..., Wy consisting of G-invariant functions such
that W' := Wj +--- + W, generates R®. Clearly G is the kernel of the action of
H on W'. [
Corollary 3.2. Suppose that Hy is reductive. Then Gq is reductive and normal
m HO .

Since G is reductive, H® acts on G° by inner automorphisms. Hence
H° = H,G° where H, := Zy(G°)° is the connected centralizer of G° in H.
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Lemma 3.3.  Let g € G. Then there is a homomorphism 0: H, — Z(G°) such
that ghg™" = 6(h)h, h € H; .

Proof. Let h € H;. Since conjugation by h preserves the connected compo-
nents of G there is an element 6(h) € G° such that hg='h™' = ¢g7'0(h). Let
hy € Hy. Then

g7 0(hih) = hihg*h ™ hyY = hig 0(R)hT" = hig 'Ry 0(h) = g '0(hy)0(h).

Thus 6 is a homomorphism. From hg='h™! = ¢g7'0(h) it follows that ghg™' =

O(h)h. Since h centralizes G°, so does ghg™', and we see that 6(h) centralizes
G°. Thus 6(h) € Z(G°). m

Corollary 3.4. Suppose that G = Go and that Gy is normal in Hy. Then Hj
18 reductive.

Proof. As above, we have (Hy)" = HyG® where Hy C H, is connected and
centralizes GV, and H, is reductive if and only if H, is reductive. Let R be the
unipotent radical of H,. Corresponding to each g € GG there is a homomorphism
0: Hy — Z(G°), and since R is unipotent, §(R) = {e}. Thus R C GL(V)% where
GL(V)% is obviously in H,. Thus R is trivial and H, is reductive. n

Write H° = HIG?T where H? (resp. G?) is the semisimple part of H,
(resp. G°) and T := Z(H°)? C H, is a torus. Set Ty := Z(G°)°.

Corollary 3.5.  The group H? is contained in GL(V)C.
Theorem 3.6.  Let V, G and H be as above. Then H® = GL(V)9GC.

Proof.  Write H” = HYG T as above and set F':= G/G°. Then F normalizes
T and by Lemma 3.3, F' acts trivially on 7'/Ty. Thus T projects onto T/Ts.
Choose a torus S in (TF)° complementary to (TF NTp)°. Then HY = HYSGY
where H?S lies in GL(V)¢. m

Remark 3.7. Write V = @Zzl m;V; where the V; are irreducible and pairwise
non-isomorphic and m;V; denotes the direct sum of m; copies of V;. Then the
theorem shows that HY = G°]'_, GL(m;).

Example 3.8.  Let {e} # G C GL(V) be finite. Then Ng, as a set, is just the
origin, and it is preserved by GL(V). Thus it is essential in Theorem 3.6 that H
preserve Ng schematically.

Corollary 3.9.  Suppose that V' = @._, Vi where the V; are irreducible, non-
trivial and pairwise non-isomorphic. Let H' C GL(V) be semisimple. Then the
following are equivalent:

(1) H C Hy.
(2) H C Gy.
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Proposition 3.10.  Suppose that V' is an irreducible G-module. Then Gy and
Hy are reductive and H° = C*G°.

Proof.  The fixed points of the unipotent radical R of Gy are a Gy-stable
nonzero subspace of V. Thus R acts trivially on V', i.e., R = 0. Hence Gy is
reductive. Similarly, H, is reductive. [ |

Corollary 3.11.  Suppose that V.= mW where W is an irreducible G -module.
Then Hq is reductive.

Proof.  The group H contains G x GL(m) which acts irreducibly on V ~
W @ C™. Thus H, is reductive. [ |

In the remainder of this section, we do not assume that G is a Levi subgroup

of Go.

Corollary 3.12.  Let G C GL(W) and let V = pW @ qW* where 2 < p < q
and the G -modules W and W* are wrreducible and non isomorphic. Then

(1) Go and Hy are reductive.
(2) Gy C GL(W).
(3) H° = GL(p) GL(q)(Go)".

Proof.  First we consider the case that G = GL(W). Then Example 4.3 below
shows that Gy = GL(W) and that (Hy)® = GL(p) GL(q) GL(W). Now the
invariants of GL(W) are generated by those of degree 2 and the degree 2 invariants
of G and of GL(W) are the same. Thus Gy must be a subgroup of GL(WW) and
(Hy)® must be a subgroup of GL(p) GL(g) GL(W) containing GL(p) GL(q). Hence
(Ho)? = GL(p) GL(q)H, where H, C GL(WW). Note that GH, is a finite extension
of Hy. Since W is an irreducible G-module and G, and GH; contain G, both
Gy and H; (hence (Hy)?) are reductive and we have (1) and (2). Theorem 3.6
gives (3). |

Lemma 3.13.  Suppose that V¢ = (0) and let V = @;_, m;V; be the isotypic
decomposition of V' where the V; are pairwise non-isomorphic G -modules. Suppose
that bo(m;V;) C m;V; for all i. Then Hy is reductive.

Proof.  For any i, G(H,)" is a finite extension of (Hy)® which contains the
product G [[, GL(m;). The latter group acts irreducibly on m;V;, hence the image
of G(Hp)? in GL(m;V;) is reductive for all i. It follows that (Hy)® is reductive,

hence that H, is reductive. ]
Corollary 3.14.  Suppose that V; is an irreducible nontrivial G;-module where
G, is reductive and C[V;]% # C, i = 1,...,r. Let V := @, m;V; with the
canonical action of G == Gy X --- x G, where m; > 1 for all i. Then Hy is

reductive.
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Proof.  Suppose that by is not contained in €, End(m;V;). Since b, is H-
stable, it must contain one of the irreducible G; x GL(m;) x G; x GL(m;)-
modules Hom(m;V;,m;V;), ¢ # j. Without loss of generality suppose that

ho O Hom(myVo,miVi). Let f € O(miV1)% be a nonconstant homogeneous
invariant of minimal degree d > 2. Let ¢ € Hom(myV3,m1V;). Then ¢ sends
f to the function h(vy,vs) := df (v1)(¢(v2)) where v; € m;V;, i = 1, 2. Clearly
there is a ¢ such that h # 0. Thus h is a nonzero element of bidegree (d — 1, 1)
in C[myVi @ myVs]. But by the minimality of d and the fact that no nonzero
invariant in C[myV3| has degree 1, there is no element of Z of this bidegree. Hence
Hom(msy Vs, m1V7) does not preserve Z, a contradiction. Thus g is contained in
D, End(m;V;) and one can apply Lemma 3.13. [

Corollary 3.15.  Suppose that G C GL(V) is a finite group generated by pseu-
doreflections. Then Hy is reductive.

Proof. We have that V. = @V; and G = [[G; where G; C GL(V;) is an
irreducible group generated by pseudoreflections. Now apply Corollary 3.14. |

Proposition 3.16.  Suppose that V is an orthogonal representation of G where
VY =(0). Then Hy is reductive.

Proof. ~ We have an isotypic decomposition V = @, m;Vi@n;(W; & W)
where the V; are irreducible nontrivial orthogonal representations of G and the
W, are irreducible nonorthogonal representations of G. Note that for each ¢
there is a quadratic invariant p; € C[mi%]a and for each j a quadratic invari-
ant (a contraction) ¢; € Cln;(W; & W;)]|. Suppose that by is not contained
in @, End(m;V;) @, End(n;(W; & W})). For example, suppose that there is a
nonzero element ¢ of by whose restriction to msols has nonzero projection to
m1Vi. Then we have the function hA(vy,vy) := dp;(v1)(¢(v2)) for vy € miV; and
vy € myVs. As before, the actions of G and the GL(m;) guarantee that we can
assume that h # 0. Now the bidegree of h is (1,1) and h € Z. However, there
are no nonconstant invariants of bidegree (a,b) in Clm;V; @ myV3] for a < 1
and b < 1. Thus h cannot lie in Z. One similarly gets contradictions for all the
possible ways that by ¢ @, End(m;V;) @, End(n;(W; ® W})) can occur. Finally,
note that the normalizer N of the image of G in GL(n;(W; @ W})) contains an
element interchanging the copies of W; and W;. Thus N acts irreducibly and we
can now apply the argument of Lemma 3.13. |

Corollary 3.17.  If G is any one of the following groups, then Hy is reductive
for any representation V of G with V¢ = (0).

(1) SO(n), n > 3.

(2) Gy, Fy, Es.

(8) Banss and Byyig, n > 0.

(4) D4n7 ”Z 1.
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4. Some examples and a conjecture

We give examples where Gq is not reductive and we give examples where Gy is
reductive but Hj is not.

Example 4.1.  Let V and W be G-modules such that O(V @ W)¢ = O(V)¢.
Then Hom(V, W) is contained in the radical of gy so that Gy and H, are not
reductive. A concrete example is given by G = SL, and V@ W = A2C*@ C* with
the obvious G action.

Example 4.2. Let W be an irreducible G-module where W¢ = (0) and
O(W)¢ # C. Let V=W & C where G acts trivially on C. Then gy C gl(W)
while Hom(C, W) is contained in the Lie algebra of the radical of Hy.

Example 4.3.  Let 1 <p < ¢ and consider the G = GL(W) representation on
V = pW@qW* where W = C", n > 1. (See Corollary 3.12.) By classical invariant
theory, the G-invariants are just the contractions of elements of the copies of W
with elements of the copies of W*. Let U denote W @& W* ~ C?".

Three cases arise:

Case 1: p=¢ = 1. Then our invariant is the bilinear form ( , ) corresponding to
the matrix J := (9}) C GL(2n), i.e., (z,y) =2'Jy, x, y € U. Thus Gy = O(2n)
and Hy = C*G).

Case 2: p=1, ¢ > 1. Then H, contains a copy of GL(q) and the action of H
on the invariants is a representation Hy — GL(q) whose kernel is Go. Thus Hy =
GL(q)Gy. A matrix computation shows that Gy = GL(W) x (A2(W*) @ C9). If
r €W and yy,...,y, € W*, then the unipotent radical of Gy sends (x,yi,...,y,)
to (x,y1 + Bix,...,y, + Byr) where for each j, B; is a skew symmetric matrix,
B; € N2(W*) C Hom (W, W*).

Case 3: p > 2. We show that Gy = GL(W), that Hy = H and that H° =
GL(p) GL(¢q) GL(W). We also determine H. First suppose that p = ¢ = 2.
Then Gq preserves the inner products on 2U, i.e., Gq is a subgroup of O(2n).
Moreover, G preserves the skew product on 2U sending z, y to z'Ky where
K = (21%). Hence Gy lies in the intersection of O(2n) and Sp(2n) which is the
copy of GL(W) acting on U by the matrices (‘3 Al ), A € GL(W). Clearly, as
long as 2 < p < ¢ we must have that Go = G = GL(W). We have a representation
¢: Hy — GL(pq) given by the action of Hy on the pg generators of the invariants.
The kernel of ¢ is Gg = G. Thus Hj is reductive. By Theorem 3.6 we have
H° = GL(p) GL(q) GL(W). Let h € H. If h stabilizes pi¥ and ¢W*, then h
induces an automorphism of GL(W') which is trivial on C*/ and must be inner
on SL(WW). Hence modulo an element of SL(WW), h lies in the centralizer of
GL(W), which is GL(p) GL(q). Hence h € H°. The only other possibility is that
h interchanges the copies of pWW and ¢W™*. This can only happen if p = ¢. Thus
H is connected if p # q and H/H° has order two if p = q.

Example 4.4. Let G = Z/47Z C C* and let V = C? where £(a,b) = (£2a, &b)
for (a,b) € C?, £ € G. Since G is finite, Gy = G. Let z and y be the usual
coordinate functions on V. Then the invariants are generated by z?, xy? and
y*. Consider the element ¢ € End(V) which sends (a,b) to (0,a) for a, b € C.
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Then ¢ acts on C[V] by the derivation x0/0y. This derivation preserves Z and
it follows that ¢ is a basis of the Lie algebra of the unipotent radical of Hy.

Example 4.5. Let G = C* and let V' be the p + ¢ + r dimensional represen-
tation with weights —1 of multiplicity p, 1 of multiplicity ¢ and 2 of multiplicity
r where p, ¢, » € N and pgr # 0. If x;, y; and 2, are corresponding coordinate
functions, then the invariants are generated by the monomials z;y; and z;zy 2.
We have Gy = G while the radical of H, has Lie algebra spanned by the linear
mappings corresponding to the derivations y,;0/0z.

Example 4.6. Let V@& W = S?(C") @ C" with the obvious action of G =
SL,, n > 2. Then using classical invariant theory [6] one computes that the
invariants have homogeneous generators p and ¢ of bidegrees (n,0) and (n—1,2),
respectively. Now Hom(V, W) contains a copy of W* where £ € W* sends v € V
to ig(v) € W (contraction). Then this copy of W* acts on C[V @ W] sending a
polynomial f(v,w) into df (v, w)(0,i¢(v)), v € V, w € W. This action annihilates
p and sends ¢ to a subspace of O(V & W) of bidegree (n,1) transforming under
G as W*. But the only way to get a copy of W* in this bidegree is to multiply p
times the copy of W* in degree 1 in O(V @& W). Thus Z is preserved. It is now
easy to establish that the unipotent radical of Hy has Lie algebra the copy of W*
in Hom(V, W).

Conjecture 4.7.  If G is semisimple and V is generic (see 2.2) with V¢ = (0),
then Hj is reductive.

5. Cofree Representations

Recall that V is cofree if R is a free module over R®. Equivalently, R® is a
polynomial ring and 7: V — V/G is equidimensional [8, 17.29]. If py,...,pg
are minimal homogeneous generators of R, then we can identify 7 with the
polynomial map p = (p1,...,pa): V — C%. Cofreeness is equivalent to the fact
that the p; form a regular sequence in C[V]. See [7] for the classification of
cofree representations of the simple algebraic groups and [4] for the classification
of irreducible cofree representations of semisimple algebraic groups.

We say that G’ C GL(V) stabilizes a fiber F' of 7 if G’ preserves F
schematically, i.e., preserves the ideal [r of F'.

Proposition 5.1.  Suppose that G is reductive and V' is a cofree G -module. If
G' C GL(V) stabilizes a fiber of m: V — VJ/G, then G’ stabilizes Ng .

Proof. Let F be a fiber of 7. Then there are constants ¢;, : = 1,...,d, such
that I is the ideal generated by p; —¢;, i =1,...,d. Let 0 # f € Ir and let gr f
denote the nonzero homogeneous part of f of largest degree. Then the elements
gr f for 0 # f € Ir generate a homogeneous ideal I which obviously contains Z.
We show that I C Z so that [ =Z. If G’ preserves I, it preserves I = Z, and
we have the proposition.

Let d; be the degree of p;, © = 1,...,d. Let 0 # f € Ir where gr f is
homogeneous of degree r. We have f = > a;(p; — ¢;) where aq,...,a, € R. Let
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s = max;{dega; +d;}. Let a; denote the homogeneous part of a; of degree s —d;.
If s > r, then we must have that ) a/p;, = 0. Since the p; are a regular sequence,
this relation is generated by the Koszul relations p;p; —pip; =0, 1 <1 < j < d.
Hence there are b;; € R, bj; = —bj;, such that

D aipi—ci) =Y bi(pi(pi — i) = pilpy — ¢5)) = D bis(ej(pi — i) — eilp — ¢)

i 1#] i#]

where for fixed 7, deg Z#i bijc; < s —d;. Thus we may replace each a; by a
polynomial of degree less than s — d; without changing f. Continuing inductively
we reduce to the situation that dega; < r — d; for all i. Let a, denote the
homogeneous degree r — d; term in a;, i =1,...,d. Then grf =) ajp, € Z. =

Example 5.2. Let G = C* and V = C? with coordinate functions z, vy and z
corresponding to weights —1, 1 and 2. The fiber defined by 2y = 1 and 2%z = 0 is
the fiber defined by zy = 1 and z = 0, and it has a symmetry which interchanges
x and y. However, this is not a symmetry of the ideal generated by the invariants.
Thus Proposition 5.1 does not hold in case the representation is not cofree.

Remark 5.3. Let F' be a principal fiber of © where V' is cofree. Then dr has
rank d = dim V /G on F so that F is smooth. It follows that G’ preserves I if
and only if G’ preserves the set F'.

Corollary 5.4. Let V = @;_, V; where the V; are pairwise non-isomorphic
nontrivial G -modules and V' is cofree. Suppose that G C G' C GL(V) where G’
is connected semisimple. Then the following are equivalent.

(1) R% = RY".
(2) G' preserves a fiber of m: V. — V|G
(3) G’ preserves Ng.

Proof.  Use Corollary 3.9 and Proposition 5.1. |

Corollary 5.5.  Let V be an irreducible nontrivial cofree G -module with R® #
C. Let F # N be a fiber of m: V. — V|G and let G be the subgroup of GL(V)
stabilizing F'. Then

(1) Gy C Gp C Hy are reductive.
(2) H° = C*(Gy)°.
(3) Gr/Gy is finite.

Proof.  Parts (1) and (2) are clear. Since F' # N, it is only stabilized by a
finite subgroup of C*, hence we have (3). ]

It would be nice to find an example of an irreducible module V' of a
semisimple group G with G = (Gg)° such that the subgroup of GL(V) fixing
afiber F of m: V — V)G, F # Ng, has dimension bigger than dim G.
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Remark 5.6. Let V be an irreducible nontrivial cofree representation of a
simple algebraic group G such that R“ # C. The cases for which G # (G,)° are
as follows (we use the numbering and notation of [6]).

(1) (¢s3,B3)
(2) (¢4,B4)
(3) (¢s5,Bs)
(4) (¢1,G2)

6. The adjoint case

Let g be a simple Lie algebra. Choose a Cartan subalgebra t of g and a base Il
of the root system. Choose z, € g, and y, € g_o, o € II, such that (x4, Ya,
(o, Vo)) is a standard sly triple. Then there is a unique order 2 automorphism 1)
of g which is —1 on t and sends z, to —y,, o € II.

Now let g = g1 @ --- & g, where the g; are simple ideals of the Lie algebra
g. Let ¢; € Aut(g;) be as above. Let G denote the adjoint group of g and let
Gy, Hy and H be as in the introduction.

Theorem 6.1.  We have that H = (C*)" Aut(g) and that Gy ~ (Z/2Z)"G
where the ith copy of Z/27 is generated by —i;.

Proof. By Dixmier [2], (Gy)? = G, and using Corollary 3.14 we obtain that
Hy = H where H° = (C*)"G. Hence if ¢ € H, we obtain an automorphism o
of g ~ adg C h C gl(g) where ad(c(X)) = poadX o™, X € g. Clearly
Aut(g) C H, so replacing ¢ by poo~! we can arrange that poad X op™ = ad X
for all X € g. Then by Schur’s lemma, ¢ € (C*)" C HY so that H = (C*)" Aut(g).
If we start with ¢ € Gy, then since ¢ induces the identity on C[g]“, so does o,
and it follows from Schur’s lemma that ¢ is a product [[, \;o; where, for all 7,
0;: g; — @ is an automorphism and \; € C* acts via multiplication on g;. But
¢ has to preserve the invariants of degree 2 of each g;, hence \; = +1 for all 7.
Now [9, Theorem 2.5] shows that, for each i, \;o; € G; or \jo; € (—,)G; # Gy,
where G; is the adjoint group of g;. Hence Gy ~ (Z/27)"G. [

Corollary 6.2. (See [1]). Let g = sl,,. Then H is generated by G, C* and
transposition.

Proof. 1In the case of sl,, with the usual choice of t and II, the automorphism
Y is X — —X' X € sl,. Then v generates the group of outer automorphisms
of sl,, (which is the trivial group for n = 2). Hence H is generated by G, C* and
transposition. |
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Corollary 6.3. (See[12]). Let Gp be the subgroup of GL(gl,) which preserves
the G := PGL(n)-orbit F of an element xy of gl, which has nonzero trace and
distinct eigenvalues. Then Gr is generated by G and transposition.

Proof.  The condition on xy implies that F' is a smooth fiber of the quotient
mapping (see Remark 5.3). Write o = ul + yo where u € C*, yo € sl,, and [
is the n x n identity matrix. Then F' is just ul + F; where F} = G - yo. We
may write an element of G as (i /\Og) where ¢ € sl,, g € GL(sl,) is a linear
mapping preserving the schematic null cone of sl, and A € C* (use 3.10 and 5.1).
Then ¢ is in G or ¢ is an element of G composed with transposition. Applying
the inverse of ¢ we obtain an element A of the form y — Ay + ¢, y € F;. We
need to show that ¢ = 0. Suppose not. Let g € G such that gc # c¢. Then
h=tghg ' (y) =y+,0# €sl,, ye€ Fy. Thus F} = F} + . Tt follows that for
any invariant polynomial p on sl,, p(y + ncd) = p(y) for all y € Fy and n € Z.
Thus dp(y)(¢) = 0 for any y € F;. But the covectors dp(y) for y € F; span

(sl,)*. Thus ¢ =0, a contradiction. n
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