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A note on the Bruhat decomposition
of semisimple Lie groups
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Abstract. Let a split element of a connected semisimple Lie group act on
one of its flag manifolds. We prove that each connected set of fixed points of this
action is itself a flag manifold. With this we can obtain a generalized Bruhat
decomposition of a semisimple Lie group by entirely dynamical arguments.
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0. Introduction

Let a split element h of a connected semisimple Lie group G act on one of its flag
manifolds FΘ (notation of semisimple Lie groups and its flag manifolds is recalled
in Section 1). We prove that each connected set of fixed points of this action is
itself a flag manifold, but a flag manifold of a semisimple Lie subgroup of G . This
generalizes directly the fact that each connected fixed point set of a diagonalizable
matrix acting on a projective space is given by a projective subspace. Apart from
being interesting in itself, this result also allows us to obtain generalized Bruhat
decomposition of a semisimple Lie group by dynamical arguments, as we explain
below.

Standard textbooks on semisimple Lie groups [2, 5] prove by algebraic
arguments what we will call the regular Bruhat decomposition of a connected
semisimple Lie group G , namely

G =
∐

w∈W

PwP =
∐

w∈W

N+wP,

where P is the minimal parabolic and W the Weyl group of G . This decom-
position is equivalent to the regular Bruhat decomposition of the maximal flag
manifold F = Ad(G)p of G , given by

F =
∐

w∈W

Pwp =
∐

w∈W

N+wp,

∗ Supported by FAPESP grant n◦ 07/52390-6

ISSN 0949–5932 / $2.50 c© Heldermann Verlag



726 Seco

which can be seen as the decomposition of F into unstable manifolds of the action
of a split-regular element h ∈ A+ (cf. Section 3 of [1] for a proof of this by
dynamical arguments). From this regular Bruhat decomposition on the maximal
flag manifold F one readily obtains the regular Bruhat decomposition on the partial
flag manifolds FΘ = Ad(G)pΘ given by

FΘ =
∐

w∈W/WΘ

PwpΘ =
∐

w∈W/WΘ

N+wpΘ, (1)

where the argument goes as follows. Projecting the regular Bruhat decomposition
of F onto FΘ one needs only to show the disjointedness of the decomposition in
(1). If the unstable manifolds N+wpΘ and N+spΘ meet, for s, w ∈ W , then there
exists n ∈ N+ such that wpΘ = nspΘ . Taking the regular element h ∈ A+ we
have for k ∈ Z that wpΘ is a fixed point so that

wpΘ = h−kwpΘ = h−knspΘ → spΘ,

when k → +∞ . It follows that wpΘ = spΘ , so that s−1wpΘ = pΘ which, by the
Langlands decomposition PΘ = KΘAN

+ , implies that s−1w ∈ KΘ ∩M∗ so that
s−1w ∈ WΘ , that is, w ∈ sWΘ , as claimed. The corresponding decomposition in
G is the regular Bruhat decomposition

G =
∐

w∈W/WΘ

PwPΘ =
∐

w∈W/WΘ

N+wPΘ.

Usually much harder to obtain is what we will call a generalized Bruhat
decomposition of G , given by

G =
∐

w∈W∆\W/WΘ

P∆wPΘ,

where P∆ and PΘ are standard parabolic subgroups of G . This is proved in [5]
by using Tits Systems (see Section 1.2 of [5]). This decomposition is equivalent to
the generalized Bruhat decomposition of the partial flag manifold FΘ given by

FΘ =
∐

w∈W∆\W/WΘ

P∆wpΘ =
∐

w∈W∆\W/WΘ

N+
∆Z∆wpΘ. (2)

Dynamically, this can be seen as the decomposition of FΘ into unstable manifolds
of the action of an non-regular split-element h ∈ clA+ , h = exp(H), where ∆ is
the set of simple roots which annihilate H . In this case, the fixed points of h in
FΘ degenerate into the fixed point manifolds given by (see Proposition 1.2 of [1])

fix(H,w)Θ = Z∆wpΘ. (3)

Equation (1) already imply that the orbits P∆wpΘ in equation (2) exhaust FΘ .
To show that these orbits are disjoint we can argue as in the previous paragraph
to get rid of the unstable part N+

∆ of P∆ = N+
∆Z∆ so that the only difficulty is

to show that fixed point manifolds are disjoint when we take w ∈ W∆\W/WΘ .
At this point of the argument [1] appeals to a general theorem of Borel-Tits (see
Proposition 1.3 of [1]).
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In this note we show the disjointedness of the above fixed point manifolds
(Corollary 2.3) as a byproduct of showing that each of these fixed point mani-
folds is itself equivariantly diffeomorphic to a flag manifold (Theorem 2.2). With
this, one can obtain a generalized Bruhat decomposition of a semisimple Lie group
by entirely dynamical arguments: one follows Section 3 of [1] to prove the reg-
ular Bruhat decomposition and then uses the result of this article to prove the
generalized Bruhat decomposition.

In the first section we recall notation and preliminary results on semisimple
Lie theory and in the second section we prove the main results.

1. Preliminaries on Semi-simple Lie Theory

For the theory of semi-simple Lie groups and their flag manifolds we refer to
Duistermat-Kolk-Varadarajan [1], Helgason [2] and Warner [5]. To set notation
let G be a connected noncompact semi-simple Lie group with Lie algebra g . We
assume throughout that G has finite center. Fix a Cartan involution θ of g with
Cartan decomposition g = k⊕ s . The form Bθ (X, Y ) = −〈X, θY 〉 , where 〈·, ·〉 is
the Cartan-Killing form of g , is an inner product.

Fix a maximal abelian subspace a ⊂ s and a Weyl chamber a+ ⊂ a . We
let Π be the set of roots of a , Π+ the positive roots corresponding to a+ and Σ
the set of simple roots in Π+ . The Iwasawa decomposition of the Lie algebra g

reads g = k⊕ a⊕n+ with n+ = ⊕α∈Π+gα where gα is the root space associated to
α . As to the global decompositions of the group we write G = KAN+ , where K ,
A , N+ are the connected subgroups with Lie algebra k , a , n+ respectively. The
Weyl group W associated to a is the finite group generated by the reflections over
the root hyperplanes α = 0 in a , α ∈ Π. W acts on a by isometries and can be
alternatively be given as W = M∗/M where M∗ and M are the normalizer and
the centralizer of A in K , respectively. We write m for the Lie algebra of M .

Associated to a subset of simple roots Θ ⊂ Σ there are several Lie algebras
and groups (cf. Section 1.2.4 of [5]): We write g (Θ) for the (semi-simple) Lie
subalgebra generated by gα , α ∈ Θ, and put k(Θ) = g(Θ) ∩ k , a (Θ) = g (Θ) ∩ a ,
and n± (Θ) = g (Θ)∩n± . The simple roots of g(Θ) are given by Θ, more precisely,
by restricting the functionals of Θ to a(Θ). Let G (Θ), K(Θ), A(Θ), N+(Θ)
be the connected groups with Lie algebra g (Θ) k (Θ), a(Θ), n+(Θ) respectively.
Then G(Θ) is a connected semisimple Lie group with finite center and we have the
Iwasawa decomposition G(Θ) = K(Θ)A(Θ)N+(Θ). Let aΘ = {H ∈ a : α(H) =
0, α ∈ Θ} be the orthocomplement of a(Θ) in a with respect to the Bθ -inner
product and put AΘ = exp aΘ . The subset Θ singles out the subgroup WΘ of
the Weyl group which acts trivially on aΘ . Alternatively WΘ can be given as
the subgroup generated by the reflections with respect to the roots α ∈ Θ. The
restriction of w ∈ WΘ to a(Θ) furnishes an isomorphism between WΘ and the
Weyl groyp W (Θ) of G(Θ)

Denote by ZΘ the centralizer of aΘ in G and KΘ = ZΘ∩K . We have that
KΘ decomposes as KΘ = MK(Θ) and that ZΘ decomposes as

ZΘ = G(Θ)MAΘ. (4)

For H ∈ a we denote by ZH , KH , WH the centralizer of H in G , K , W
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respectively. When H ∈ cla+ we put

Θ(H) = {α ∈ Σ : α(H) = 0},

and we have that ZH = ZΘ(H) , KH = KΘ(H) and WH = WΘ(H) .

The standard parabolic subalgebra of type Θ is defined by

pΘ = m⊕ a⊕ n+ ⊕ n− (Θ) ,

and the corresponding standard parabolic subgroup PΘ is the normalizer of pΘ

in G . It has the Langlands decomposition PΘ = KΘAN
+ . The empty set

Θ = Ø gives the minimal parabolic subalgebra p = m ⊕ a ⊕ n+ whose minimal
parabolic subgroup P = PØ has Langlands decomposition P = MAN+ . Let n+

Θ =
⊕α∈Π±−〈Θ〉gα and N+

Θ = exp(n+
Θ). We have that PΘ decomposes as PΘ = ZΘN

+
Θ .

Take H ∈ cla+ , Θ = Θ(H) and h = exp(H). Then for n ∈ N+
Θ we have

h−knhk → 1, t→ +∞.

Define the flag manifold of type Θ by the orbit

FΘ = Ad(G)pΘ,

which identifies with the homogeneous space G/PΘ . Since the center of G nor-
malizes pΘ , the flag manifold depends only on the Lie algebra g of G . The empty
set Θ = Ø gives the maximal flag manifold F = FØ . The flag manifolds of g

can be defined alternatively by the choice of an element H ∈ a as follows. The
parabolic subalgebra of type H is defined by

pH = ⊕{gα : α(H) ≥ 0},

where α runs through all the weights Π ∪ 0, and the corresponding parabolic
subgroup PH is the normalizer of pH . Define the flag manifold of type H by the
orbit

FH = Ad(G)pH .

Now choose a chamber a+ of a which contains H in its closure, consider the simple
roots Σ associated to a+ and take Θ(H) ⊂ Σ. We have that pH = pΘ(H) , so it
follows that

FH = FΘ(H),

and that PH = PΘ , so it decomposes as PH = KΘ(H)AN
+ = KHAN

+ . We can
proceed reciprocally. That is, if a+ and Θ are given, we can choose an H ∈ cla+

such that Θ(H) = Θ and describe the objects that depend on a+ and Θ by H
(clearly, such an H is not unique.) Note that we have

wpΘ(H) = wpH = pwH . (5)

Finally, let H ∈ cla+ and put ∆ = Θ(H). From equation (3) and from the
decomposition (4) applied to Z∆ we have

fix(H,w) = Z∆wpΘ = G(∆)wpΘ, (6)

since w normalizes MA which fixes pΘ .
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2. Fixed points as flag manifolds

Let πΘ : a → a(Θ) be the orthogonal projection parallel to aΘ .

Lemma 2.1. The following assertions are true.

1. The projection by πΘ of a regular element of a is a regular element of a(Θ).

2. The projection by πΘ of a chamber in a is contained inside a chamber of
a(Θ).

3. For w ∈ W denote by a(Θ)w the chamber of a(Θ) which contains the
projection πΘ(wa+). Then the nilpotent subalgebras n+ and n(Θ)w w.r.t.
the chambers a+ and a(Θ)w , respectively, satisfy

n(Θ)w ⊂ wn+.

Proof. We first observe that for α ∈ Θ we have α|aΘ
= 0 so that for H ∈ a

we have α(πΘ(H)) = α(H). Since Θ is the set of simple roots of a(Θ), it follows
that πΘ(H) is regular in a(Θ) if H is regular in a . This proves the first item. For
the second item we observe that the projection of a chamber of a is a convex set
of a(Θ) which, by the first item, consists of regular elements of a(Θ), hence it is
contained in a chamber of a(Θ). For the third item let α ∈ Θ. If α > 0 in the
chamber a(Θ)w then α > 0 in πΘ(wa+) hence, by the first remark of the proof,
we have that α > 0 in wa+ . It follows that

n(Θ)w = ⊕{gα : α|a(Θ)w > 0, α ∈
∏

Θ} ⊂ ⊕{gα : α|wa+ > 0, α ∈ Π} = wn+,

as desired.

In what follows fix H ∈ cla+ and Θ ⊂ Σ.

Theorem 2.2. Let ∆ = Θ(H) and take HΘ ∈ cla+ such that Θ(HΘ) = Θ.
Then, for w ∈ W , the map

ψ : fix(H,w)Θ → Fπ∆(wHΘ)(g(∆)), gpwHΘ
7→ gpπ∆(wHΘ), g ∈ G(∆),

is a well defined G(∆)-equivariant diffeomorphism.

Proof. From equations (5) and (6) we have fix(H,w)Θ = G(∆)pwHΘ
. We prove

that ψ is well defined and injective. Both facts will follow if we show that the
isotropy of pwHΘ

in G(∆) coincides with the isotropy of pπ∆(wHΘ) of the G(∆)-
action. For this, let a(∆)w be the chamber of a(∆) which contains the projection
π∆(wa+). Consider the Iwasawa decomposition of G and PwHΘ

w.r.t. the chamber
wa+

G = KAwN+w−1, PwHΘ
= KwHΘ

AwN+w−1.

Consider also the Iwasawa decomposition of G(∆) w.r.t. the chamber a(∆)w

G(∆) = K(∆)A(∆)N(∆)w,
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where N(∆)w = exp(n(∆)w). By item (3) of the previous Lemma, we have that

N(∆)w ⊂ wN+w−1.

Thus, by the uniqueness of the Iwasawa decomposition of G , it follows that the
isotropy of pwHΘ

in G(∆) is given by

G(∆) ∩ PwHΘ
= (K(∆) ∩KwHΘ

)A(∆)N(∆)w.

The first term in the right hand side can be written as

K(∆) ∩KwHΘ
= K(∆)wHΘ

= K(∆)π∆(wHΘ),

where in the last equality we used that K(∆) already centralizes a∆ . It follows
that

G(∆) ∩ PwHΘ
= K(∆)π∆(wHΘ)A(∆)N(∆)w = P (∆)π∆(wHΘ),

which is precisely the isotropy of pπ∆(wHΘ) in G(∆). It is immediate that ψ is
equivariant and that the inverse of ψ is given by gpπ∆(wHΘ) 7→ gpwHΘ

, g ∈ G(∆).
This shows that ψ is an G(∆)-equivariant diffeomorphism.

Corollary 2.3. Let w,w′ ∈ W . If fix(H,w′)Θ ∩ fix(H,w)Θ 6= Ø then w′ ∈
W∆wWΘ , where ∆ = Θ(H).

Proof. If fix(H,w′)Θ ∩ fix(H,w)Θ 6= Ø then there exists g ∈ G(∆) such that
w′pΘ = gwpΘ . Take a regular h ∈ A(∆), using the G(∆)-equivariance of ψ we
have for k ∈ Z

w′pΘ = hkw′pΘ = hkgwpΘ = hkgpwHΘ
= ψ−1(hkgpπ∆(wHΘ)) = (∗).

By the regular Bruhat decomposition of the flag manifold Fπ∆(wHΘ)(g(∆)) (cf.
equation (1)), letting k → ∞ we have that there exists s ∈ W (∆) = W∆ such
that

(∗) → ψ−1(spπ∆(wHΘ)) = spwHΘ
= swpΘ.

It follows that w−1s−1w′pΘ = pΘ , so that w−1s−1w′ ∈ M∗ ∩ KΘ , which implies
that w−1s−1w ∈ WΘ . Hence w ∈ swWΘ ⊂ W∆wWΘ , as desired.
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