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Abstract. We consider purely algebraic data generalizing the notion of a
smooth differentiable manifold. It is given by a triple X, R, W where X is a set,
R a commutative associative algebra over the ground field, W a Lie subalgebra
and an R -submodule in the derivation algebra of R . Geometric structures
studied in differential geometry can be defined on such triples. The main result
answers the question about the existence and the uniqueness of an L-invariant
unimodular, hamiltonian, contact, or pseudo-riemannian structure in terms of
the isotropy subalgebras of points of X . The second major result generalizes a
classical fact which says that the Lie algebra of infinitesimal automorphisms of
a Riemann metric on a connected manifold is finite dimensional.
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structures, Riemann pseudometrics.

Given a transitive Lie algebra L of vector fields on a differentiable manifold X of
class C∞ , one may search for a geometric structure on X having all vector fields
in L as infinitesimal automorphisms. The simplest conditions that can be imposed
are formulated in terms of the representations of the isotropy subalgebras of L in
the tangent spaces of X . The above problem is probably better known in the
setup of formal transitive Lie algebras developed by Guillemin and Sternberg [8].
Here L is a Lie algebra with a subalgebra of finite codimension L0 which contains
no nonzero ideals of L . Denoting by ρ the representation of L0 in L/L0 , it is
possible to determine L to a large extent by knowing the image of L0 in gl(L/L0).

For example, if ρ(L0) is the Lie algebra of linear transformations of L/L0

with zero trace, then L is realized as a Lie algebra of formal vector fields an-
nihilating the standard volume form dt1 ∧ · · · ∧ dtn where t1, . . . , tn are formal
coordinates. If ρ(L0) is a symplectic Lie algebra, then L annihilates the standard
hamiltonian form in a similar realization. These assertions are special cases of
the embedding theorem for transitive Lie algebras due to Rim [18] and Hayashi
[10]. In those papers an embedding of one transitive Lie algebra into another one
is constructed by a sequence of approximations. At each step the embedding is
determined modulo some terms of the canonical filtrations in the two Lie algebras.
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The possibility of making an adjustment to obtain an embedding modulo higher
order terms depends on vanishing of some Spencer homology groups. In this ap-
proach the geometric structure associated with the given Lie algebra does not arise
naturally. It is also desirable to have a global version of the result.

In the present paper we develop a purely algebraic framework in which the
problem posed above can be generalized and solved. We work over the ground
field F , and the setup includes a triple X , R , W where X is just a set, R
a commutative associative unital algebra, W ⊂ DerR a Lie subalgebra and an
R-submodule in the derivation algebra of R . Furthermore, associated with each
element of R there is an F-valued function on X , although some nonzero elements
of R may produce identically zero function. The precise conditions on X , R , W
are listed in section 3, and the main result is presented in section 5.

Especially, our set of conditions is satisfied when X is a Hausdorff C∞ -
manifold, R = C∞(X) the ring of smooth functions, W = Vect(X) the Lie
algebra of smooth vector fields on X . A Lie subalgebra L ⊂ W is transitive if
L contains vector fields in every direction. For each point x ∈ X the isotropy
subalgebra L0

x consists of all vector fields in L with zero value at x . The linear
bijection Tx(X) ∼= L/L0

x gives rise to a representation of L0
x in the tangent space

Tx(X). As an illustration we reformulate below one part of Theorem 5.1 for the
triple X , R , W just defined:

Theorem. Let L be a transitive Lie algebra of smooth vector fields on X such
that for each x ∈ X the image of L0

x in the Lie algebra of linear transformations
of Tx(X) is the symplectic Lie algebra sp(αx) associated with a nondegenerate
alternating bilinear form αx on Tx(X). Then there exists a smooth line bundle E
over X , a flat connection on E , and an L-invariant E -valued hamiltonian form
ω on X . This data is determined uniquely up to a naturally defined equivalence.

There is a covering of X by open subsets Ui over which the bundle E and
the connection on E trivialize. The restriction of ω to each Ui is represented by
an ordinary hamiltonian form determined uniquely only up to a scalar multiple.
Glueing of such local data necessitates introducing a more general class of hamilto-
nian forms. The bundle E is actually constructed as a factor bundle of

∧2 T (X);
the connection on E and the form ω arise naturally. A similar result is valid for
different geometric structures. Besides hamiltonian forms we will consider volume
forms, contact forms, and Riemann pseudometrics.

There are many other possible choices for X , R , W . For example, over
a field of characteristic p > 0 the finite dimensional analogs of the infinite di-
mensional Lie algebras of Cartan type correspond to geometric structures on such
triples where X contains just a single point and dimR < ∞ . This class of Lie
algebras was introduced by Kostrikin and Shafarevich [15]. A thorough exposition
of the characteristic p theory can be found in a treatise of Strade [22].

In section 6 we will generalize a classical fact which says that the Lie algebra
of infinitesimal automorphisms of a Riemann metric on a connected manifold
is finite dimensional. This assertion may be viewed as the infinitesimal part
of a result, due to Myers and Steenrod, according to which the isometries of a
Riemannian manifold form a Lie group. Our result is proved in the setup already
described, but we need an additional assumption on the W -invariant ideals of R
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which excludes, for example, nonconnected differentiable manifolds. In differential
geometry a more general result on automorphisms of G-structures is known for a
Lie group G with the Lie algebra of finite type (see [13, Ch. 1, Th. 5.1]). We
do not attempt to obtain our result in this generality since this would involve a
considerable amount of extra work.

One complication in our approach arise from the fact that we aim at
algebraic versions of results which include fully the case of a differentiable manifold
without the compactness assumption. To achieve this we have to work with
a not so familiar class of R-modules studied in section 1 of the paper. Some
readers might be content with simpler versions of results where one needs just the
standard properties of finitely generated projective modules (see the last paragraph
of section 1). Section 2 provides crucial arguments to verify the local freeness of
certain modules which will be encountered later.

The research in this paper was stimulated by the author’s participation in
the ESF conference on Algebraic Methods in Geometry held in Bedlewo, Poland.
The author wishes to thank Janusz Grabowski and Norbert Poncin for the invita-
tion.

1. Vector bundles interpreted in terms of modules

Given a smooth vector bundle E over a manifold X of class C∞ , the smooth
global sections form a C∞(X)-module Γ(X,E). When X is connected and second
countable, E is a direct summand of a trivial vector bundle [7], which means that
Γ(X,E) is a direct summand of a finitely generated free C∞(X)-module, i.e. a
projective module. In this case the category of smooth vector bundles is equivalent
to the category of finitely generated projective C∞(X)-modules. The assignment

x 7→ mx = {f ∈ C∞(X) | f(x) = 0}

allows us to identify points of X with certain maximal ideals of C∞(X). Unless
X is compact, we obtain only a part of maximal ideals in this way (Grabowski [6]
gives a characterization of the maximal ideals corresponding to points and discusses
further subtleties). Note that the fibre of a vector bundle E above x ∈ X can be
reconstructed from the module M = Γ(X,E) as

E(x) ∼= M/mxM.

Let R be a commutative ring, X ⊂ SpecR a set of prime ideals of R . The
aim of this section is to introduce a class of R-modules which may be thought of
as representing vector bundles on X . Our intention is to fully subsume the C∞ -
example above. However, we won’t be able to prove the projectivity of certain
modules in the algebraic setup of section 3. For this reason we will have to be
content with less restrictive conditions on modules.

For each f ∈ R let Rf denote the ring of fractions of R with respect to the
multiplicatively closed set of powers of f and Mf = Rf ⊗RM the corresponding
localization of an R-module M . Denote by vf the image in Mf of an element
v ∈M . For a homomorphism of R-modules ϕ : M → N let ϕf : Mf → Nf stand
for its Rf -linear extension.
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We say that M is locally free near p ∈ SpecR if there exists f ∈ R r p

such that Mf is a free Rf -module. For instance, a finitely generated R-module
is projective if and only if it is locally free near all maximal ideals of R [1, Ch.
II, §5, Th. 1]. We say that M is locally free near X if M is locally free near all
p ∈ X . The rank function of such a module M assigns to each p ∈ X the rank
of the free module Mf with f chosen in R r p . This function is locally constant
with respect to the Zariski topology.

A similar terminology will be used for several other concepts. For instance,
M is locally finitely generated near X if for each p ∈ X there exists f ∈ R r p

such that Mf is a finitely generated Rf -module. A submodule N of M is a direct
summand locally near X if for each p ∈ X there exists f ∈ R r p such that Nf

is a direct summand of the Rf -module Mf .

Denote
F = {ideals I of R | I 6⊂ p for any p ∈ X}.

An R-module M is F -torsion if every element of M is annihilated by an ideal in
F . Given an exact sequence of R-modules 0 → M ′ → M → M ′′ → 0, it is easy
to see that M is F -torsion if and only if so are both M ′ and M ′′. An arbitrary
R-module M contains a largest F -torsion submodule tF(M). These properties
mean that F is a localizing filter (also called an idempotent topologizing filter or a
Gabriel topology) [4], [5], [21].

One says that M is F -torsionfree if tF(M) = 0. Next, M is called
F -closed if M is F -torsionfree and M is not a submodule of any larger
F -torsionfree module N such that the factor module N/M is F -torsion. There
are several equivalent characterizations of F -closedness. In particular, M is
F -closed if and only if for each homomorphism of R-modules P → Q with
F -torsion kernel and cokernel the induced map HomR(Q,M) → HomR(P,M) is
bijective. The localization functor ?F assigns to an arbitrary R-module M an
F -closed R-module

MF = lim
−−→
I∈F

HomR

(
I, M/tF(M)

)
.

There is a canonical R-linear map M →MF with F -torsion kernel and cokernel.
In particular, for any F -closed R-module N the R-linear maps M → N are
in a canonical bijective correspondence with the R-linear maps MF → N . In
order that M be F -torsionfree (resp. F -closed), it is necessary and sufficient that
M → MF be injective (resp. bijective). The general theory of localization in
arbitrary abelian categories was created by Gabriel [5].

Lemma 1.1. Let ϕ : M → N be a homomorphism of R-modules, and let
K = Kerϕ.

(i) If M and N are both F -closed, then so is K .

(ii) If K and N are F -closed, and if ϕ(M) = N , then M is F -closed.

Proof. Both assertions are valid for an arbitrary localizing filter and are easy
consequences of the fact that the functor ?F is left exact (see, e.g., [21, p. 199]).
Thus this functor takes the exact sequence of R-modules 0 → K → M → N
to an exact sequence 0 → KF → MF → NF . Under the hypothesis of (i) both
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M → MF and N → NF are bijective, whence so is K → KF . In (ii) K → KF
and N → NF are bijective, and standard diagram chasing shows that M → MF
is bijective.

For p ∈ X denote by κ(p) the field of fractions of the domain R/p . Put

M(p) = κ(p)⊗RM,

which is a vector space over κ(p). In particular, κ(m) = R/m and M(m) ∼=
M/mM when m is a maximal ideal of R . For any f ∈ R r p the canonical ring
homomorphism R → κ(p) factors through Rf , whence M(p) ∼= κ(p) ⊗Rf

Mf .
When Mf is a free Rf -module of rank r , we get dimM(p) = r .

Lemma 1.2. Let M be locally finitely generated near X . Then M is F -torsion
if and only if M(p) = 0 for all p ∈ X , if and only if for each p ∈ X there exists
f ∈ Rr p such that Mf = 0.

A homomorphism of R-modules ϕ : N → M has an F -torsion cokernel
if and only if the induced maps N(p) → M(p) are surjective for all p ∈ X , if
and only if for each p ∈ X there exists f ∈ R r p such that ϕf : Nf → Mf is
surjective.

Proof. For p ∈ X we have M(p) ∼= Mp/pMp where Mp = Rp⊗RM is a finitely
generated module over the local ring Rp of p . By Nakayama’s Lemma M(p) = 0
if and only if Mp = 0. Since M is locally finitely generated near p , the latter
equality is equivalent to the existence of f ∈ Rr p for which Mf = 0, and this is
also equivalent to the condition that none of the annihilators of elements of M is
contained in p .

The second assertion of the lemma follows from the first one applied to the
locally finitely generated R-module L = Cokerϕ . Indeed, L(p) is isomorphic to
the cokernel of N(p) →M(p) and Lf to the cokernel of Nf →Mf .

Lemma 1.3. Let ϕ : N → M be a homomorphism of R-modules with
F -torsion cokernel. Denote K = Kerϕ. If M is locally free of finite rank near
X , then K is locally near X a direct summand of N and for each p ∈ X the
sequence of vector spaces 0 → K(p) → N(p) →M(p) → 0 is exact.

Proof. In view of Lemma 1.2 for each p ∈ X there exists f ∈ Rr p such that
ϕf is surjective. We may also assume that Mf is a free Rf -module, refining our
choice of f . The exact sequence of Rf -modules 0 → Kf → Nf → Mf → 0 then
has to split. Hence Kf is a direct summand of Nf and the previous sequence
remains exact after tensoring with κ(p).

Lemma 1.4. Let ϕ : M ′ → M and ψ : M → M ′′ be homomorphisms of
R-modules such that ψ ◦ ϕ = 0. Suppose that M ′ is locally finitely generated, M
and M ′′ are locally free of finite rank near X , and the sequences

0 −→M ′(p)
ϕ(p)−−−→M(p)

ψ(p)−−−→M ′′(p) −→ 0
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are exact for all p ∈ X . Then for each p ∈ X there exists f ∈ Rr p such that

0 −→M ′
f

ϕf−−→Mf

ψf−−→M ′′
f −→ 0

is a split exact sequence of free Rf -modules. Furthermore, if M ′ is F -closed and

M is F -torsionfree, then 0 →M ′ ϕ−→M
ψ−→M ′′ is an exact sequence.

Proof. Note that ϕ(M ′) ⊂ K where K = Kerψ . By Lemma 1.2 Cokerψ is
F -torsion. Lemma 1.3 shows that for each p ∈ X there exists g ∈ R r p such
that Mg , M

′′
g are both free over Rg and 0 → Kg → Mg → M ′′

g → 0 is a split
exact sequence. In particular, K is locally free of finite rank. We see also from
Lemma 1.3 that for each p the sequence 0 → K(p) → M(p) → M ′′(p) → 0 is
exact; hence M ′(p) → K(p) is a bijection. By another invocation of Lemmas 1.2,
1.3 the R-linear map ϕ : M ′ → K has F -torsion kernel and cokernel, and both
are locally finitely generated. Hence for each p ∈ X there exists h ∈ R r p such
that M ′

h → Kh is bijective; we may also assume Kh to be free over Rh . Taking
f = gh , we obtain the required split exact sequence of free Rf -modules. If M is
F -torsionfree, then so is K ; hence M ′ → K has to be bijective in the case of an
F -closed M ′ .

Lemma 1.5. Let ϕ : N →M be a homomorphism of R-modules. Suppose that
N is F -closed and locally finitely generated near X , while M is F -torsionfree
and locally free of finite rank near X . In order that ϕ be an isomorphism, it is
necessary and sufficient that the maps N(p) →M(p) induced by ϕ be bijective for
all p ∈ X .

Proof. Necessity is obvious, while sufficiency follows from the special case of
Lemma 1.4 when M ′′ = 0.

Lemma 1.6. Let H = HomR(M,N) where M is an arbitrary R-module. If
N is an F -torsionfree (resp. F -closed) R-module, then so too is H .

Proof. All maps M → N in the F -torsion submodule of HomR(M,N) have
images in tF(N). Hence the first assertion. Suppose next that N is F -closed.
Given a homomorphism of R-modules ϕ : P → Q with F -torsion kernel and
cokernel, the induced map HomR(Q,N) → HomR(P,N) is bijective. Since

HomR(?, H) ∼= HomR(?⊗RM,N) ∼= HomR

(
M, HomR(?, N)

)
naturally, the map HomR(Q,H) → HomR(P,H) induced by ϕ is also bijective.

In Lemmas 1.7–1.16 we will need the following assumption about the ring
R which will not be repeated in the statements:

(A)
there is an integer e > 0 with the property that f eg = 0 for any pair of
elements f, g ∈ R such that g is annihilated by a power of f .

For instance, if R is reduced, i.e. R has no nonzero nilpotent elements, then e = 1
will do. Note that for any h ∈ R the ring Rh also satisfies (A) with the same e .
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Lemma 1.7. Suppose that M is F -torsionfree and locally free near X . Then
Mf is F -torsionfree for any f ∈ R and one has

Ker(M →Mf ) = {v ∈M | f ev = 0}.

Proof. The kernel K of the canonical map M → Mf consists of all elements
of M annihilated by a power of f . We have to show that f ev = 0 for any v ∈ K .
If M is a free module with a basis {uα} , then v =

∑
gαuα where gα ∈ R , gα 6= 0

for finitely many α ’s, and each gα is annihilated by a power of f . Therefore
f egα = 0 for each α , which yields our claim. The general case reduces to the
case of a free module as follows. For each p ∈ X there exists h ∈ R r p such
that Mh is a free Rh -module. Denote by vh and fh the images of v and f in
Mf and Rf , respectively. Since vh lies in the kernel of the map Mh → (Mh)fh

,
we get f ehvh = 0. Hence f ev lies in the kernel of the map M → Mh , i.e. f ev
is annihilated by a power of h . Denoting by I the annihilator of f ev in R , we
deduce that I 6⊂ p . Since this holds for any p ∈ X , it follows that I ∈ F . Thus
f ev ∈ tF(M) = 0.

Each element of Mf can be written as w/fn for some w ∈ M and an
integer n ≥ 0. If w/fn ∈ tF(Mf ), then Jw ⊂ Ker(M → Mf ) for some J ∈ F ;
hence f eJw = 0, and therefore f ew ∈ tF(M) = 0, yielding w/fn = 0. This shows
that tF(Mf ) = 0.

Lemma 1.8. Let ϕ : N → M be a homomorphism of R-modules such that
ϕf = 0 for some f ∈ R . If M is F -torsionfree and locally free near X , then
f eϕ = 0.

Proof. Since ϕ(N) ⊂ Ker(M →Mf ), the conclusion follows from Lemma 1.7.

Lemma 1.9. Let M,N,P be locally free R-modules such that M is F -closed,
P is F -torsionfree, M and N have rank r , while P has rank 1 near X . Let
β : M × N → P be an R-bilinear pairing, and ϕ : M → HomR(N,P ) the
R-linear map defined by the rule ϕ(u)(v) = β(u, v) for u ∈M and v ∈ N . If the
induced pairings of vector spaces M(p)×N(p) → P (p) are nondegenerate for all
p ∈ X , then ϕ is bijective.

Proof. For each p there exists f ∈ Rrp such that the Rf -modules Mf and Nf

are free of rank r , while Pf ∼= Rf . Denote by d the determinant of the matrix of
the Rf -bilinear pairing βf : Mf×Nf → Pf induced by β in any bases of the three
Rf -modules. Since the image of d in κ(p) is the determinant of a nondegenerate
pairing of vector spaces, it is nonzero. Hence d ∈ Rrp . Replacing f with fd , we
find such an f for which βf is perfect, so that the corresponding Rf -linear map
ϕf is bijective. The commutative diagram

M
ϕ−−−−→ HomR(N,P )

can.
y y can.

Mf

ϕf−−→ HomRf
(Nf , Pf )
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shows that Kerϕ ⊂ Ker(M → Mf ). Applying this observation to various p , we
deduce that Kerϕ is F -torsion. Since M is F -torsionfree, ϕ has to be injective.
Given ξ ∈ HomR(N,P ), there exists u ∈ M and an integer n ≥ 0 such that
ξf = ϕf (u/f

n). Putting η = fnξ−ϕ(u), we get ηf = 0, i.e. η(N) ⊂ Ker(P → Pf ).
It follows from Lemma 1.8 that f eη = 0, and therefore fn+eξ = ϕ(f eu) ∈ ϕ(M).
Hence Cokerϕ is F -torsion. By Lemma 1.6 the R-module HomR(N,P ) is
F -torsionfree, and it remains to use the F -closedness of M .

In order to obtain analogs of dual vector bundles we need yet another
condition on modules. Assume an R-module M to be locally free of finite rank
near X . Denote M∗

R = HomR(M,R). We say that M is dualizable near X if for
each p ∈ X there exists f ∈ R r p such that Mf is a free Rf -module and the
canonical map

Rf ⊗RM
∗
R → HomRf

(Mf , Rf )

is bijective. Note that this map is automatically injective in view of (A), and
therefore we only have to check that the Rf -module HomRf

(Mf , Rf ) is generated
by the image of M∗

R .

Lemma 1.10. If M is finitely generated and locally free near X , then it is
dualizable.

Proof. Given p ∈ X , take any f ∈ R r p for which Mf is a free Rf -module
of finite rank. Let ψ : Mf → Rf be any Rf -linear map. Denote by M ′ the image
of M in Mf , by R′ the image of R in Rf . Since M is finitely generated, there
exists an integer r ≥ 0 such that f rψ(M ′) ⊂ R′ . By assumption (A) the kernel
of the canonical surjection R → R′ coincides with {g ∈ R | f eg = 0} . Hence the
multiplication by f e in R induces an R-linear map λ : R′ → R . Denoting by ϕ
the composite

M
can.−−−→M ′ frψ−−−→ R′

λ−−→ R,

we get a commutative diagram

M
ϕ−−−−→ R

can.
y y can.

M ′ fe+rψ−−−−→ R′

which shows that ϕf = f e+rψ , i.e. ψ = f−e−rϕf with ϕ ∈M∗
R .

If M is not finitely generated, but only locally finitely generated near X ,
then the conclusion of Lemma 1.10 remains valid when X is Zariski quasicompact
and R is F -closed. Indeed, under these assumptions there exists a finitely gen-
erated submodule N ⊂ M such that M/N is F -torsion. Since N is necessarily
locally free, N is dualizable by Lemma 1.10. Since the map M∗

R → N∗
R is bijective,

M is also dualizable.

Lemma 1.11. Suppose that M is locally free of finite rank near X . If for each
p ∈ X the κ(p)-vector space M(p)∗ = Homκ(p)

(
M(p), κ(p)

)
is linearly spanned by

the image of M∗
R , then M is dualizable.
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Proof. Fixing some p ∈ X , we can find R-linear maps ϕ1, . . . , ϕr : M → R
such that κ(p) ⊗R ϕ1, . . . , κ(p) ⊗R ϕr are a basis for M(p)∗ over κ(p). Take
f ∈ R r p for which Mf is a free Rf -module. The rank of Mf is equal to
r = dimM(p). The dual Rf -module HomRf

(Mf , Rf ) is also free of rank r .
Picking any basis ε1, . . . , εr for this module, we have (ϕi)f =

∑r
j=1 aijεj with

aij ∈ Rf . Denote d = det(aij). Since

M(p)∗ ∼= κ(p)⊗Rf
HomRf

(Mf , Rf ),

the images of aij ’s in κ(p) are entries of the transition matrix between two bases
for M(p)∗ . Since this matrix is invertible, we have d /∈ pRf . Adjusting f if
necessary, we may assume therefore that d is invertible in Rf , which means that
(ϕ1)f , . . . , (ϕr)f are a basis for HomRf

(Mf , Rf ) over Rf .

Lemma 1.12. Let M be locally free of finite rank and dualizable near X . For
p ∈ X there exists f ∈ Rr p such that Mf is a free Rf -module and the canonical
map

Rf ⊗R HomR(M,N) → HomRf
(Mf , Nf ) (∗)

is surjective for any R-module N . If N is F -torsionfree and locally free near X ,
then (∗) is bijective. In this case H = HomR(M,N) is locally free near X and
we have H(p) ∼= Homκ(p)

(
M(p), N(p)

)
for all p ∈ X .

Proof. There exist f ∈ R r p and R-linear maps ϕ1, . . . , ϕr : M → R such
that Mf is a free Rf -module of rank r and (ϕ1)f , . . . , (ϕr)f are a basis for
HomRf

(Mf , Rf ) over Rf . Each Rf -linear map ψ : Mf → Nf can be expressed as

ψ(u) =
∑

(ϕi)f (u)vi, u ∈Mf ,

for some v1, . . . , vr ∈ Nf . We have vi = wi/f
n with w1, . . . , wr ∈ N and a

sufficiently large integer n > 0. Now the assignment u 7→
∑
ϕi(u)wi defines an

R-linear map ϕ : M → N such that fnψ = ϕf . Hence (∗) is surjective.

Suppose that N is F -torsionfree and locally free near X . If the homomor-
phism ϕ ∈ HomR(M,N) satisfies ϕf = 0, then f eϕ = 0 by Lemma 1.8, which
means that (∗) is injective. We can find an element f with the additional property
that Nf is also a free Rf -module. Then so too is Hf

∼= HomRf
(Mf , Nf ). Finally,

Homκ(p)

(
M(p), N(p)

) ∼= Homκ(p)

(
κ(p)⊗Rf

Mf , κ(p)⊗Rf
Nf

)
∼= κ(p)⊗Rf

HomRf
(Mf , Nf ) ∼= κ(p)⊗R H = H(p).

Lemma 1.13. Suppose that R is F -torsionfree, M is locally free of finite rank
and dualizable near X . Then:

(i) tF(M) =
⋂
ξ∈M∗

R
Ker ξ and M/tF(M) is locally free of finite rank near X .

(ii) If R is F -closed, then MF is locally free of finite rank near X .
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Proof. Denote by T the intersection of kernels of all R-linear maps M → R .
Then

Tf =
⋂

ξ∈M∗
R

Ker ξf

for any f ∈ R . Indeed, vf ∈ Ker ξf for some v ∈ M if and only if ξ(v) has zero
image in Rf , which is equivalent to the equality f eξ(v) = 0 by assumption (A);
when this equality holds for every ξ ∈M∗

R , we get f ev ∈ T .

For each p ∈ X there exist f ∈ Rr p and ϕ1, . . . , ϕr ∈M∗
R such that Mf

is a free Rf -module of rank r and (ϕ1)f , . . . , (ϕr)f are a basis for HomRf
(Mf , Rf )

over Rf . Since
⋂r
i=1 Ker(ϕi)f = 0, we get Tf = 0 by the previous description,

which yields (M/T )f ∼= Mf . Letting p vary, we deduce that T ⊂ tF(M) and
M/T is locally free near X . If v ∈ tF(M), then ξ(v) ∈ tF(R) = 0 for all ξ ∈M∗

R ,
whence tF(M) ⊂ T .

Suppose that R is F -closed. Then each ξ ∈ M∗
R extends uniquely to an

R-linear map ξ̃ : MF → R . By (i) the submodule

T̃ =
⋂

ξ∈M∗
R

Ker ξ̃

of MF has zero intersection with the image of M in MF . Hence T̃ embeds in the
cokernel of M → MF , and therefore T̃ is F -torsion. Since MF is F -torsionfree,
we conclude that T̃ = 0. The maps ϕ̃1, . . . , ϕ̃r with ϕ1, . . . , ϕr chosen as in the
previous paragraph give a homomorphism of R-modules α : MF → Rr where Rr

is the direct sum of r copies of R . Since the composite of αf : (MF)f → Rr
f with

Mf → (MF)f is an isomorphism of Rf -modules, αf is surjective. Note that

Kerαf =
r⋂
i=1

Ker (ϕ̃i)f .

If ξ ∈ M∗
R , then fnξf =

∑
gi(ϕi)f for some integer n ≥ 0 and g1, . . . , gr ∈ R .

This entails f e(fnξ−
∑
giϕi) = 0, and fn+eξ̃ =

∑
f egiϕ̃i . Passing to localizations

at f , we deduce that Kerαf ⊂ Ker ξ̃f . Hence Kerαf ⊂ T̃f = 0. This shows that
αf is an isomorphism of Rf -modules, and therefore (MF)f is free of rank r over
Rf .

Lemma 1.14. Suppose that R is F -closed and M ′, M , M ′′ satisfy the hy-
pothesis of Lemma 1.4. Then M is dualizable near X if and only if so are both
M ′ and M ′′ .

Proof. When χ : P → Q is a homomorphism of locally free R-modules of finite
rank with F -torsion kernel and cokernel, χ induces an isomorphism P ∗R

∼= Q∗R and
for each p ∈ X there exists f ∈ Rr p such that χf is an isomorphism Pf ∼= Qf .
It follows that P is dualizable if and only if so is Q . Denoting K = Kerψ , we
deduce that M ′ is dualizable if and only if so is K , while M ′′ is dualizable if and
only if so is M/K . Thus it suffices to consider the case where M ′ is a submodule
of M and M ′′ = M/M ′ .

Suppose that M is dualizable. Given p ∈ X , pick f as in Lemma 1.4.
By further refining our choice of f , we may assume that each Rf -linear map
η : Mf → Rf can be written as f−nξf with n ≥ 0 and ξ ∈ M∗

R . Clearly
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η|M ′
f

= f−n(ξ|M ′)f . As M ′
f is a direct summand of Mf , each Rf -linear map

M ′
f → Rf extends to Mf , which shows that the Rf -module HomRf

(M ′
f , Rf ) is

generated by the image of (M ′)∗R , i.e. M ′ is dualizable. If η = η′′ ◦ ψf where η′′

is an Rf -linear map M ′′
f → Rf , then η vanishes on M ′

f . In this case f eξ|M ′ = 0
by Lemma 1.8, whence f eξ = ξ′′ ◦ ψ for some ξ′′ ∈ (M ′′)∗R , so that η′′ = f−n−eξ′′f .
Hence M ′′ is dualizable.

Suppose now that M ′ and M ′′ are dualizable. Put T = tF(M ′′), and
denote by N the preimage of T in M . Then M ′ ⊂ N with N/M ′ ∼= T and
M/N ∼= M ′′/T . By Lemma 1.13 T and M ′′/T are locally free of finite rank near
X . The same holds then for N . The observation at the beginning of the proof
applied to the canonical homomorphisms M ′ → N and M ′′ →M ′′/T shows that
N and M/N are both dualizable. Replacing M ′ with N and M ′′ with M/N , we
may assume from the very beginning that M ′′ is F -torsionfree.

Let f ∈ R r p be an element for which both the conclusion of Lemma 1.4
and the conclusion of Lemma 1.12 with M ′′ in place of M are true. The split
epimorphism ψf : Mf → M ′′

f admits an Rf -linear retraction M ′′
f → Mf . The

latter can be written as f−nσf for some integer n ≥ 0 and σ ∈ HomR(M ′′,M).
Since (fn Id−ψ ◦ σ)f = 0, Lemma 1.8 yields f e(fn Id−ψ ◦ σ) = 0. Hence

τ = fn+e Id−f eσ ◦ ψ : M →M

satisfies ψ ◦ τ = 0, i.e. τ(M) ⊂ M ′ . Given an Rf -linear map η : Mf → Rf , we
have

fn+eη = f eη ◦ σf ◦ ψf + η ◦ τf .

There exist an integer m ≥ 0 and R-linear maps ξ′ : M ′ → R and ξ′′ : M ′′ → R
such that

fmη|M ′
f

= ξ′f and fm+eη ◦ σf = ξ′′f .

Hence fm+n+eη = ξf where ξ = ξ′′ ◦ ψ + ξ′ ◦ τ . This shows that M is dualizable.

Lemma 1.15. If two R-modules M , N are locally free of finite rank and
dualizable near X , then so are the tensor product M⊗RN , arbitrary tensor powers⊗k

RM , exterior powers
∧k
RM , symmetric powers SkRM .

Proof. Given any p ∈ X , we can find f ∈ R r p such that the Rf -modules
Mf , Nf are both free of finite rank and their dual modules are generated by the
images of M∗

R and N∗
R , respectively. Then (M⊗RN)f ∼= Mf⊗Rf

Nf is free of finite
rank over Rf and its dual module is generated by {(ϕ⊗ ψ)f | ϕ ∈M∗

R, ψ ∈ N∗
R}

where ϕ⊗ψ : M ⊗RN → R is defined by the rule u⊗ v 7→ ϕ(u)ψ(v). This proves
the conclusion for M ⊗R N , and by induction for

⊗k
RM .

The symmetric and exterior powers of finitely generated free modules are
finitely generated free. Since the formation of symmetric and exterior powers
commutes with the localization at f , the R-modules SkRM ,

∧k
RM are locally

free of finite rank. Each ϕ ∈ M∗
R extends to a homomorphism of R-algebras⊕∞

k=0 S
k
RM → R . Let us denote by ϕ(k) the restriction of the latter to SkRM .

When M is free of finite rank, HomR(SkRM,R) is the R-linear span of all ϕ(k) ’s.
In general this observation shows that the Rf -module HomRf

(
(SkRM)f , Rf

)
is
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generated by all ϕ
(k)
f with ϕ ∈ M∗

R . Similarly, any ϕ1, . . . ϕk ∈ M∗
R give rise

to an R-linear map
∧k
RM → R sending u1 ∧ · · · ∧ uk to det[ϕi(uj)], and

HomRf

(
(
∧k
RM)f , Rf

)
is generated by extensions of such maps. Hence SkRM and∧k

RM are dualizable.

The next lemma shows that the F -closedness of locally free modules is
related to the glueing property for a collection of sections of a vector bundle over
open subsets covering the base space.

Lemma 1.16. Suppose that M is locally free near X . In order that M be
F -closed, it is necessary and sufficient that for any indexed set {fα} ⊂ R contained
in none of the ideals p ∈ X and any collection of elements vα ∈Mfα such that vα
and vβ have the same image in Mfαfβ

for each pair of indices α, β there exists a
unique v ∈M whose image in Mfα coincides with vα for each α.

This lemma will not be used, and we will only indicate the main steps of the
proof. The uniqueness in the statement of the lemma is equivalent to the condition
that tF(M) = 0. Therefore M may be assumed to be F -torsionfree. Then M
embeds in

Ȟ0({fα},M) = {(vα) ∈
∏

Mfα | (vα)fαfβ
= (vβ)fαfβ

for all α, β}

where the subscript fαfβ indicates taking the image in Mfαfβ
. The formula above

defines a submodule of the F -torsionfree R-module
∏
Mfα . The crucial argument

is that the factor module Ȟ0({fα},M)/M is F -torsion; here assumption (A) is
needed. The F -closedness of M entails Ȟ0({fα},M) = M . In the opposite
direction, let N be any F -torsionfree R-module containing M as a submodule
with an F -torsion factor module N/M . Given w ∈ N , there exists I ∈ F such
that Iw ⊂M . If {fα} is any generating set for the ideal I , then wfα , the image of
w in Nfα , actually belongs to Mfα , and (wfα) ∈ Ȟ0({fα},M). The isomorphism
Ȟ0({fα},M) ∼= M yields w ∈M . We omit further details of the proof.

Lemma 1.16 admits the following reformulation: if M denotes the quasico-
herent sheaf associated with M on the affine scheme SpecR , then M is F -closed
if and only if the canonical map M → Γ(U,M) is bijective for any open neigh-
bourhood U of X with respect to the Zariski topology.

Thus the class of R-modules which are F -closed, locally free of finite rank
and dualizable near X provides all basic features of the category of vector bundles.
When X contains all maximal ideals of R , all these concepts become trivial.
Indeed, in this case the only F -torsion module is 0, and therefore all modules
are F -closed. The term “locally finitely generated” is equivalent to “finitely
generated”, while “locally free of finite rank” means “finitely generated projective”,
and such modules are dualizable. Given a finitely generated projective module M ,
any its finitely generated submodule which is locally a direct summand of M is a
direct summand by [1, Ch. II, §3, Cor. 1 to Prop. 12].

2. Detecting local freeness

Let R be a commutative associative algebra with 1 over a field F , and let X be
a set of prime ideals of R . The vector space DerR of all F-linear derivations of
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R is a Lie algebra over F with respect to the commutators of derivations. There
is also an R-module structure on DerR such that

(fD)(g) = f ·D(g) for f, g ∈ R and D ∈ DerR.

We will assume in this section that L is a Lie algebra over F which acts on R
via derivations, so that a Lie algebra homomorphism L → DerR is given. By a
Lie algebra action of L on a vector space V we mean any representation given by
a Lie algebra homomorphism L → gl(V ). An (R,L)-module is an R-module M
equipped with a Lie algebra action L×M →M such that

D(fu) = (Df)u+ f(Du) for all D ∈ L, f ∈ R, u ∈M.

Each derivation of R extends in a unique way to a derivation of Rh for any h ∈ R .
In particular, L acts on Rh as a Lie algebra of derivations. Similarly, the induced
action of L on Mh makes Mh into an (Rh, L)-module.

One can define several operations on (R,L)-modules. Given two (R,L)-
modules M and N , there are actions of L on M ⊗R N and HomR(M,N) com-
patible with the R-module structures. Explicitly,

D(u⊗ v) = Du⊗ v + u⊗Dv, (Dϕ)(u) = Dϕ(u)− ϕ(Du)

where D ∈ L , u ∈ M , v ∈ N and ϕ ∈ HomR(M,N). In particular, the k th
tensor power

⊗k
RM is an (R,L)-module for any k > 0. The symmetric and

exterior powers of M carry the induced (R,L)-module structures.

Recall that κ(p) denotes the field of fractions of R/p and M(p) denotes
the vector space κ(p)⊗RM over κ(p). The family of ideals F was introduced in
section 1. For each ideal I of R denote by (I : L) the largest L-invariant ideal of
R contained in I . It consists of all elements a ∈ I such that D1 · · ·Dka ∈ I for
any finite sequence of elements D1, . . . , Dk ∈ L .

Theorem 2.1. Suppose that
⋂

p∈X(p : L) = 0, i.e. R has no nonzero
L-invariant ideals contained in all p ∈ X . Let M be an (R,L)-module locally
finitely generated near X as an R-module. If r ≥ 0 is an integer such that
dimM(p) = r for all p ∈ X , then M is locally free of rank r near X .

The proof of Theorem 2.1 is preceded by two lemmas.

Lemma 2.2. Let p be a prime ideal of R . If char F = 0, then the ideal (p : L)
is also prime. If char F = p > 0 and f, g ∈ R satisfy fng ∈ (p : L) for some
n > 0, then either fp ∈ (p : L) or g ∈ (p : L).

Proof. The statement in the zero characteristic case is contained in [2, Lemma
3.3.2] (it is valid even for noncommutative algebras). Suppose that char F = p > 0.
Then D(fp) = pfp−1D(f) = 0 for all D ∈ DerR and f ∈ R . Hence each ideal
Rfp is stable under all derivations. If f ∈ p , then this ideal is contained in p , and
therefore also in (p : L). Suppose that f /∈ p . Then {h ∈ R | fph ∈ (p : L)} is an
L-invariant ideal of R contained in p , and therefore in (p : L). This shows that
the image of fp in the factor ring R/(p : L) is not a zero divisor, and the same
holds then for any power of f . Hence g ∈ (p : L).
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When M is a finitely generated R-module, valuable information can be
derived from certain ideals of R called Fitting invariants of M (see, e.g., [3,
Ch. 20]). Since we do not require M to be finitely generated, we are forced
to consider Fitting invariants of finitely generated submodules. For each finite
sequence v1, . . . , vn ∈M let

Rel(v1, . . . , vn) = {(a1, . . . , an) ∈ Rn | a1v1 + · · ·+ anvn = 0}

and denote by Ik(v1, . . . , vn) the ideal of R generated by the k × k minors of all
k × n matrices whose rows belong to Rel(v1, . . . , vn). Obviously, these ideals do
not depend on the order of v1, . . . , vn . Our convention is that I0(v1, . . . , vn) = R .
In the next lemma we recall several well-known properties of Fitting invariants.

Lemma 2.3. Let v1, . . . , vn and w1, . . . , wm be two finite sequences in M .

(i) If wj ∈ Rv1 + · · ·+Rvn for all j , then

Ik(v1, . . . , vn) = Ik+m(v1, . . . , vn, w1, . . . , wm) for all k ≥ 0.

(ii) Ik
(
(v1)f , . . . , (vn)f

)
= Ik(v1, . . . , vn)Rf for any f ∈ R .

(iii) If I1(v1, . . . , vn) = 0, then v1, . . . , vn are linearly independent over R .

(iv) If Rv1 + · · · + Rvn = M and Ik(v1, . . . , vn) = R , Ik+1(v1, . . . , vn) = 0 for
some integer k ≥ 0, then k ≤ n and M is a projective R-module of rank
n− k .

(v) If M is an (R,L)-module and Rv1 + · · · + Rvn = M , then I1(v1, . . . , vn) is
an L-invariant ideal.

Proof. (i) Since we may proceed by induction on m , it suffices to consider the
case m = 1. Let w1 = c1v1 + · · · + cnvn for some c1, . . . , cn ∈ R . Each (n + 1)-
tuple in Rel(v1, . . . , vn, w1) can be written as r · (c1, . . . , cn,−1) + (a1, . . . , an, 0)
with r ∈ R and (a1, . . . , an) ∈ Rel(v1, . . . , vn). The conclusion now follows from
elementary properties of determinants.

(ii) Note that Rel
(
(v1)f , . . . , (vn)f

)
is the Rf -submodule of Rn

f generated
by the image of Rel(v1, . . . , vn).

(iii) The equality I1(v1, . . . , vn) = 0 is equivalent to Rel(v1, . . . , vn) = 0.

(iv) We have to prove that for each prime ideal p of R there exists f ∈ Rrp

such that Mf is a free Rf -module of rank n − k . Let us fix p . The κ(p)-vector
space M(p) is spanned by the images v′1, . . . , v

′
n of v1, . . . , vn . Hence M(p) has

dimension r ≤ n . After renumbering we may assume that v′1, . . . , v
′
r are a basis for

M(p). By Nakayama’s Lemma there exists f ∈ R r p such that the Rf -module
Mf is generated by (v1)f , . . . , (vr)f . Part (ii) allows us to replace R with Rf and
M with Mf . So we may assume that v1, . . . , vr generate M . By (i)

Ij(v1, . . . , vr) = Ij+n−r(v1, . . . , vn)

for all j . Since these ideals form a descending chain when j grows, the hypothesis
shows that Ij(v1, . . . , vr) is equal to R when j+n−r ≤ k and is 0 otherwise. Note
that I1(v1, . . . , vr) ⊂ p since v′1, . . . , v

′
r are linearly independent over κ(p). On the
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other hand, I0(v1, . . . , vr) = R . This entails n− r = k and I1(v1, . . . , vr) = 0. By
(iii) v1, . . . , vr are a basis for M over R , which completes the proof.

(v) Let D ∈ L . Then for each i we have Dvi =
∑n

j=1 cijvj for some
cij ∈ R . If (a1, . . . , an) ∈ Rel(v1, . . . , vn), then

0 = D
( n∑
i=1

aivi
)

=
n∑
j=1

(
Daj +

n∑
i=1

aicij
)
vj

Hence Daj +
∑n

i=1 aicij , and therefore Daj , lie in I1(v1, . . . , vn), for all j .

Proof of Theorem 2.1. Fixing some p ∈ X , take any v1, . . . , vr ∈ M whose
images in M(p) form a basis for that vector space over κ(p). There exists h ∈ Rrp

such that Mh is a finitely generated Rh -module. Hence Mp = Rp ⊗R M ∼=
Rp ⊗Rh

Mh is a finitely generated module over the local ring Rp of p . By
Nakayama’s Lemma the images of v1, . . . , vr in Mp generate that module. It
follows that there exists f ∈ R r p such that (v1)f , . . . , (vr)f generate the Rf -
module Mf .

Denote I = I1(v1, . . . , vr). By (ii) and (v) of Lemma 2.3 IRf is an
L-invariant ideal of Rf . Hence the preimage I ′ of IRf in R is an L-invariant
ideal of R . In any relation a1v1 + · · · + arvr = 0 with coefficients in R we have
ai ∈ p for all i by our choice of vi ’s. Hence I ⊂ p . Since for each g ∈ I ′ there
exists n > 0 such that fng ∈ I , it follows that I ′ ⊂ p by the primeness of p , but
then I ′ ⊂ (p : L).

Consider an arbitrary q ∈ X . Let w1, . . . , wr ∈ M be any elements whose
images in M(q) form a basis over κ(q). Put J = Ir+1(v1, . . . , vr, w1, . . . , wr). By
(i) and (ii) of Lemma 2.3 JRf = IRf . Then J ⊂ I ′ , and therefore J ⊂ (p : L),
as was shown in the previous paragraph. Interchanging p and q , we deduce that
J ⊂ (q : L) by symmetry. Since for each g ∈ I there exists n > 0 such that
fng ∈ J , Lemma 2.2 yields f eg ∈ (q : L) where e = 1 if char F = 0 and e = char F
otherwise.

We conclude that f eI ⊂
⋂

q∈X(q : L) = 0, and therefore IRf = 0. Parts
(ii) and (iii) of Lemma 2.3 show that Mf is a free Rf -module.

Theorem 2.4. Suppose that none of the primes p ∈ X contains any nonzero
L-invariant locally finitely generated near X ideal of R . If N is an (R,L)-module,
locally free of finite rank and dualizable near X as an R-module, then the rank
function of N is constant on X , i.e. dimN(p) does not depend on p ∈ X .
Moreover, given a homomorphism of (R,L)-modules ϕ : M → N where M , as
an R-module, is locally finitely generated near X , there is an integer r ≥ 0 such
that :

(i) the κ(p)-linear map M(p) → N(p) induced by ϕ has rank r for each p ∈ X ,

(ii) the R-module ϕ(M) is locally near X a rank r direct summand of N .

In the proof we will need another descending chain of ideals of R which can
be defined for an arbitrary R-module N and its submodule M . Recall that N∗

R

stands for HomR(N,R). Denote by Jk(N
∗
R,M) the ideal of R generated by the

determinants of all k × k matrices of the form[
ξj(vi)

]
1≤i,j≤k with ξ1, . . . , ξk ∈ N∗

R and v1, . . . , vk ∈M ;
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when k = 0 put J0(N
∗
R,M) = R . For each f ∈ R the previous definition applies

to the Rf -module Nf and its submodule Mf , giving an ideal of Rf .

Lemma 2.5. Suppose that M is a submodule of an R-module N .

(i) If (Nf )
∗
Rf

∼= Rf⊗RN
∗
R for some f ∈ R then Jk

(
(Nf )

∗
Rf
,Mf

)
= Jk(N

∗
R,M)Rf .

(ii) If N∗
R and M are finitely generated R-modules then so is the ideal Jk(N

∗
R,M).

(iii) If M is generated by q elements then Jk(N
∗
R,M) = 0 for all k > q .

(iv) If e1, . . . , en are a basis for N and ē1, . . . , ēn denote their images in N/M
then Jk(N

∗
R,M) = Ik(ē1, . . . , ēn).

(v) If N is an (R,L)-module and M is L-stable then so is Jk(N
∗
R,M).

Proof. If S and T are any generating sets for the R-modules M and N∗
R ,

respectively, then the ideal Jk(N
∗
R,M) is generated by the determinants of k × k

matrices
[
ξj(vi)

]
with ξ1, . . . , ξk ∈ T and v1, . . . , vk ∈ S . When S and T are

finite, we obtain a finite set of generators for Jk(N
∗
R,M). This proves (ii). If S

has cardinality q , while k > q , then any sequence v1, . . . , vk ∈ S contains at least
two equal elements. Then the matrix

[
ξj(vi)

]
has two equal rows, and therefore its

determinant is zero. Hence (iii). For (i) it remains to observe that the Rf -modules
(Nf )

∗
Rf

and Mf are generated by the images of N∗
R and M , respectively.

In (iv) N∗
R is a free R-module of rank n . Let T = {e∗1, . . . , e∗n} be its

basis dual to e1, . . . , en . The ideal Jk(N
∗
R,M) is generated by the determinants

of all k × k matrices
[
ξj(vi)

]
with ξ1, . . . , ξk ∈ T and v1, . . . , vk ∈ M . If

v = a1e1 + . . . + anen with a1, . . . , an ∈ R , then e∗j(v) = aj ; furthermore, the
inclusion v ∈ M is equivalent to the equality a1ē1 + . . . + anēn = 0 in N/M .
Hence Jk(N

∗
R,M) is generated by the k × k minors of the k × n matrices whose

rows belong to Rel(ē1, . . . , ēn). This verifies the required equality of ideals.

Under the hypothesis of (v) N∗
R has a canonical (R,L)-module structure,

and the map N∗
R ⊗R M → R given by the assignment ξ ⊗ v 7→ ξ(v) is a

homomorphism of (R,L)-modules. It follows that for each permutation π of
integers 1, . . . , k the map ϕπ : (

⊗k
RN

∗
R)⊗R (

⊗k
RM) → R such that

(ξ1 ⊗ · · · ⊗ ξk)⊗ (v1 ⊗ · · · ⊗ vk) 7→
k∏
i=1

ξi(vπi)

is a homomorphism of (R,L)-modules, and so too is ψ =
∑

sgn(π)ϕπ where the
sum is taken over all permutations π . Since

ψ
(
(ξ1 ⊗ · · · ⊗ ξk)⊗ (v1 ⊗ · · · ⊗ vk)

)
= det

[
ξj(vi)

]
,

the ideal Jk(N
∗
R,M) coincides with the image of ψ , whence the conclusion.

Proof of Theorem 2.4. Replacing M with ϕ(M), we reduce the proof to the
case where M is an (R,L)-submodule of N and ϕ is the inclusion. Since N is
dualizable, for each p ∈ X there exists f ∈ R r p such that Nf is free of finite
rank over Rf and (Nf )

∗
Rf

∼= Rf ⊗R N
∗
R ; we may also assume that Mf is finitely
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generated as an Rf -module. Then by (i) and (ii) of Lemma 2.5 Jk(N
∗
R,M)Rf is

a finitely generated ideal of Rf for any k . Thus all ideals Jk(N
∗
R,M) are locally

finitely generated near X . Furthermore, these ideals are L-invariant by Lemma
2.5(v). The hypothesis in Theorem 2.4 ensures that, whenever Jk(N

∗
R,M) ⊂ p for

at least one p ∈ X , we must have Jk(N
∗
R,M) = 0.

If f is chosen as before and the Rf -module Mf is generated, say, by q
elements, then Jq+1(N

∗
R,M)Rf = 0 by (i) and (iii) of Lemma 2.5. Therefore

each element of Jq+1(N
∗
R,M) is annihilated by a power of f , which implies that

Jq+1(N
∗
R,M) ⊂ p . It follows that there exists an integer r ≥ 0 such that

Jr(N
∗
R,M) 6⊂ p for all p ∈ X , while Jr+1(N

∗
R,M) = 0.

Let us fix some p again and refine our choice of f . Multiplying f by an
arbitrary element in Jr(N

∗
R,M)rp , we may assume that f ∈ Jr(N∗

R,M). Lemma
2.5(i) now yields

Jr
(
(Nf )

∗
Rf
,Mf

)
= Rf , Jr+1

(
(Nf )

∗
Rf
,Mf

)
= 0.

If ē1, . . . , ēn denote the images in Nf/Mf of a basis for the free
Rf -module Nf , then Lemma 2.5(iv) allows us to rewrite the previous equalities as

Ir(ē1, . . . , ēn) = Rf , Ir+1(ē1, . . . , ēn) = 0.

By Lemma 2.3(iv) Nf/Mf is a projective Rf -module of rank n − r , whence Mf

is a direct summand of Nf . We may assume both Mf and Nf/Mf to be free over
Rf , refining our choice of f once again. Then

rankMf = rankNf − rankNf/Mf = r,

so that dimM(p) = r as well, and this number does not depend on p . Tensoring
with κ(p) over Rf , we deduce that M(p) → N(p) is injective. In the special case
where M = N we obtain the conclusion about the rank function of N .

Corollary 2.6. Suppose that R has no L-invariant finitely generated ideals
other than 0 and R itself. Let ϕ : M → N be a homomorphism of (R,L)-modules.
If M is a finitely generated R-module, while N is finitely generated projective, then
ϕ(M) is an R-module direct summand of N and ϕ(M) is projective of constant
rank.

This is a special case of Theorem 2.4 where we take X to be the set of
all maximal ideals of R . The next proposition and its corollary present algebraic
formulations of the fact that certain systems of linear differential equations have
finite dimensional space of solutions. In differential algebra a result of this kind
is known for differential vector spaces (cf. [23, (1.3)]). For an (R,L)-module M
denote

ML = {v ∈M | Dv = 0 for all D ∈ L}.
In particular, RL is a subring of R . Clearly ML is an RL -submodule of M .

Proposition 2.7. Suppose that R is F -closed and none of the primes p ∈ X
contains any nonzero L-invariant locally finitely generated near X ideal of R .
Then RL is a field. If an (R,L)-module M is F -torsionfree, locally free of finite
rank and dualizable near X as an R-module, then ML is a finite dimensional
vector space over RL . Moreover, any basis for ML over RL is a basis for a free
R-submodule of M which is locally near X a direct summand of M .
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Proof. If v ∈ ML , then Rv is an (R,L)-submodule of M . By Theorem 2.4
there is an integer r such that the R-module Rv is locally free of rank r and
is locally a direct summand of M . Since Rv is generated as an R-module by
a single element, we must have r ≤ 1. If r = 0, then Rv is F -torsion; in this
case v = 0 since M is F -torsionfree. Assuming that v 6= 0, we have therefore
r = 1. Then for each p ∈ X there exists f ∈ Rrp such that vf generates a cyclic
free Rf -submodule of Mf ; therefore the annihilator of v in R is contained in the
kernel of R → Rf . It follows that this annihilator is contained in the F -torsion
submodule of R , which is zero by the hypothesis. Thus v is a free generator of
the R-module Rv .

In particular, for each 0 6= a ∈ RL the R-module Ra is free of rank 1. Since
Ra 6⊂ p for any p ∈ X by the hypothesis, we have Ra ∈ F . Hence the R-module
R/Ra is F -torsion. Since R and Ra ∼= R are F -closed, we get Ra = R , i.e. a
is invertible. It follows that the map R → R given by the multiplication by a is
an isomorphism of (R,L)-modules. Hence so too is the inverse map given by the
multiplication by a−1 . This entails a−1 ∈ RL , which verifies that RL is a field.

We now prove that, whenever v1, . . . , vk ∈ML are linearly independent over
RL , then v1, . . . , vk are linearly independent over R and the R-module generated
by these elements is locally a direct summand of M . The case k = 1 has been
considered at the beginning of the proof. In particular, Rv1 is locally a direct
summand of M . Since M is locally free of finite rank, so too is M ′ = M/Rv1 .
Any R-submodule T of M containing Rv1 such that T/Rv1 is F -torsion must
coincide with Rv1 since Rv1

∼= R is F -closed, while T is F -torsionfree. In other
words, M ′ is F -torsionfree. Since M is dualizable, so is M ′ by Lemma 1.14.

Denote by v′i the image of vi in M ′. Clearly v′i ∈M ′L. If

λ2v2 + · · ·+ λkvk = fv1

for some λ2, . . . , λk ∈ RL and f ∈ R , then fv1 ∈ ML ; since the map g 7→ gv1

gives an isomorphism of (R,L)-modules R → Rv1 , we deduce that f ∈ RL , and
the linear independence of v1, . . . , vk yields λi = 0 for all i . This shows that
v′2, . . . , v

′
k are linearly independent over RL . Proceeding by induction on k , we

may assume that v′2, . . . , v
′
k are linearly independent over R and the R-module

M/(Rv1 + . . .+Rvk) ∼= M ′/(Rv′2 + . . .+Rv′k)

is locally free. Now our claim is immediate.

We conclude that the number k in the previous argument is bounded by
the rank of M , and the proof is completed.

It will later be convenient to have a reformulation of Proposition 2.7 in
which the Lie algebra L is not mentioned explicitly. Let M be an R-module. An
F-linear transformation D of M will be called a quasiderivation if there exists
D ∈ DerR such that

D(fv) = D(f)v + fD(v)

for all f ∈ R and v ∈M ; we will also say that D is a D -compatible quasideriva-
tion. The identity above can be rewritten as an equality of operators

[D, fM ] = D(f)M
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where gM ∈ EndFM for g ∈ R is afforded by the R-module structure on M . If M
is a faithful R-module, so that gM 6= 0 whenever g 6= 0, then each quasiderivation
D is D -compatible for a uniquely determined D . In particular, this occurs when
R is F -torsionfree, M is locally free near X , and the rank function of M is
nonzero at each p ∈ X . Indeed, under such assumptions any g ∈ R with gM = 0
has zero image in each localization Rf for which Mf is a nonzero free Rf -module,
and therefore g ∈ tF(R) = 0.

Denote by QderM the vector space of all quasiderivations of M . It is a
Lie algebra with the Lie product given by commutators of operators. There is also
an R-module structure on QderM defined by the rule

fD = fM ◦ D for f ∈ R and D ∈ QderM .

Corollary 2.8. Let {Dα} ⊂ DerR and {Dα} ⊂ QderM be indexed sets such
that Dα is a Dα -compatible quasiderivation for each α. Suppose that R is
F -closed and none of the primes p ∈ X contains any nonzero locally finitely
generated near X ideal of R stable under all Dα . Put

K = {f ∈ R | Dαf = 0 for all α}, V = {v ∈M | Dαv = 0 for all α}.

Then K is a field and V is a vector space over K . If M is F -torsionfree, locally
free of rank r and dualizable near X , then dimK V ≤ r .

Proof. Denote by L the set of all pairs (D,D) where D is a derivation of R
and D is a D -compatible quasiderivation of M . We have (Dα,Dα) ∈ L for each
α . We will view L as a Lie algebra with respect to componentwise operations.
In particular, the Lie product in L is given by componentwise commutators. The
projection L→ DerR is a Lie algebra homomorphism. The Lie algebra L acts on
M via second components, and this structure makes M into an (R,L)-module.
We now meet all hypotheses of Proposition 2.7. It remains to note that K = RL

and V = ML .

Remark. The hypotheses of Theorems 2.1 and 2.4 include two different con-
ditions on L-invariant ideals of R whose meaning is easy to understand in the
case where X is a C∞ -manifold, R = C∞(X) and L = Vect(X). The intersec-
tion

⋂
x∈X mx is zero since it consists of functions vanishing at all points of X .

In this case one has a much simpler version of Theorem 2.1 since any assump-
tion about the Lie algebra may be omitted. Smooth functions flat at a chosen
point x constitute an L-invariant ideal contained in mx . However, this ideal is
infinitely generated, even locally. Suppose that I is an L-invariant locally finitely
generated ideal of R . Fixing x , pick finitely many functions f1, . . . , fk ∈ I whose
images in Rh generate the ideal Ih of Rh for some h ∈ R with h(x) 6= 0. Let
D1, . . . , Dn ∈ L be vector fields whose values at x give a basis for the tangent
space Tx(X). Since Difj ∈ I , there are smooth functions gijl on the open neigh-
bourhood U = {y ∈ X | h(y) 6= 0} of x such that

Difj =
k∑
l=1

gijlfl.
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Thus f1|U , . . . , fk|U are a solution of a system of differential equations. The initial
values at x determine the solution uniquely in a neighbourhood of x . In particular,
f1, . . . , fk are identically zero in a neighbourhood of x whenever I ⊂ mx . This
shows that the set of points where all functions in I attain zero value is not
only closed, but also open. When X is connected, none of the ideals mx can
contain any nonzero L-invariant locally finitely generated ideal. Thus Theorem
2.4 applies in this case. Its geometric meaning is as follows. Let ϕ : E → E ′ be a
morphism of smooth vector bundles over X . Suppose that for each vector field D
there are D -compatible quasiderivations on the modules of global sections of the
two bundles and the map Γ(X,E) → Γ(X,E ′) induced by ϕ intertwines the two
quasiderivations. Then ϕ(E) is a subbundle of E ′ . A geometer would prove this
statement by using local flows.

3. The setup

Let F be the ground field. We will consider a triple X,R,W where X is a
set, R a commutative associative unital algebra, W a Lie subalgebra and an
R-submodule of the derivation algebra DerR . Furthermore, a homomorphism
from R to the algebra of F-valued functions on X is given, and the value of the
function corresponding to an element f ∈ R at a point x ∈ X will be denoted by
f(x). With x we associate a maximal ideal

mx = {f ∈ R | f(x) = 0}

of R for which R = F + mx , so that R/mx
∼= F . This data is supposed to satisfy

the following five assumptions:

(A1) none of the nonzero W -invariant ideals of R is contained in
⋂
x∈X mx ,

(A2) as an R-module, W is locally finitely generated near X ,

(A3) there is an integer n ≥ 0 such that dimW/mxW = n for all x ∈ X ,

(A4) mxW coincides with the stabilizer of mx in W ,

(A5) R and W are F -closed with respect to the localizing filter

F = {ideals I of R | I 6⊂ mx for any x ∈ X}.

All local conditions near X should be understood as defined in section 1
with respect to the set of maximal ideals {mx | x ∈ X} . In a sense the set X is
considered with additional structure which serves as an algebraic replacement of
the structure of an n-dimensional differentiable manifold. Here are three examples:

Example 1. Let F be the field of reals, X a Hausdorff C∞ -manifold, R =
C∞(X) the ring of smooth functions, W = Vect(X) the Lie algebra of smooth
vector fields on X . In this case

⋂
x∈X mx = 0, so that (A1) is immediate. Applying

the next lemma to the trivial onedimensional bundle and to the tangent bundle,
we derive (A2), (A3) and (A5). Condition (A4) is also clear since D ∈ W leaves
mx stable if and only if D(x) = 0 in the tangent space Tx(X) ∼= W/mxW .
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Lemma 3.1. Let E be a smooth vector bundle over X . Then the R-module
M = Γ(X,E) is F -closed and locally free of finite rank near X . The evaluation
at any x ∈ X gives a surjection M → E(x) whose kernel coincides with mxM .

Proof. Each f ∈ R determines an open subset Xf = {y ∈ X | f(y) 6= 0} of
X , and one has a canonical map Mf → Γ(Xf , E). This map is injective since
fs = 0 whenever s ∈M satisfies s|Xf

= 0.

Fixing some x ∈ X , let us choose an open neighbourhood U of x over which
E trivializes and a function f ∈ R with support in U such that f(x) = 1. Let
s1, . . . , sk be any basis for the free C∞(U)-module Γ(U,E). Each local section fsi
extends to a global section vi ∈M by assigning zero values outside the support of
f . For any w ∈M we have w|U =

∑
gisi with g1, . . . , gk ∈ C∞(U), and therefore

f 2w =
∑

hivi

where h1, . . . , hk ∈ R are extensions of fg1, . . . , fgk . Furthermore, if p1, . . . , pk ∈
R satisfy

∑
pivi = 0, then pi|Xf

= 0 for each i since v1(y), . . . , vk(y) are a
basis for the fibre E(y) when y ∈ Xf . It follows that fpi = 0 for all i . Hence
(v1)f , . . . , (vk)f are a basis for the Rf -module Mf , which verifies the local freeness,
as defined in section 1.

Since v1(x), . . . , vk(x) are a basis for E(x), the map M → E(x) is surjec-
tive. The kernel of this map consists of those w ∈ M for which w(x) = 0. Given
such a w , we have hi(x) = 0 for all i in the argument above, whence

w = (1− f 2)w +
∑

hivi ∈ mxM.

The F -closedness of M can be verified by applying Lemma 1.16. Let
{fα} ⊂ R be an indexed subset such that for each x ∈ X there exists α with
fα(x) 6= 0, and let (vα) be a collection of elements vα ∈Mfα such that vα and vβ
have the same image in Mfαfβ

for each pair of indices. Each vα may be understood
as a section of E over the open subset Xfα ⊂ X , and each pair of these local
sections agree on the overlap of their domains. Hence there exists a unique v ∈M
such that v|Xfα

= vα for each α . The injectivity of the map Mfα → Γ(Xfα , E)
implies that the image of v in Mfα coincides with vα .

Example 2. Let F be any field of zero characteristic, X = {pt} a singleton,
R = F[[t1, . . . , tn]] the formal power series algebra, W = DerR the Lie algebra
of formal vector fields. We define f(pt) ∈ F to be the constant term of f ∈ R .
Here R has a single maximal ideal m = mpt , and all R-modules are F -closed.
Since W is a free R-module with a basis consisting of the partial derivatives in
t1, . . . , tn , conditions (A2), (A3), (A4) are easily checked. Condition (A1) can
be reformulated as follows: for each 0 6= f ∈ R there exist x ∈ X and a finite
sequence D1, . . . , Dk ∈ W such that (D1 · · ·Dkf)(x) 6= 0. In the case considered
here the last inequality can always be achieved by using a suitable sequence of
partial derivatives. This example explains why we want to allow more general
algebras R than just the function algebras on X .
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Example 3. Assume that F is algebraically closed of zero characteristic. Let
X̃ be a normal irreducible affine algebraic variety, X its nonsingular locus, R
the ring of regular functions, W = DerR the Lie algebra of regular vector fields
on X̃ . Denote by ΩR the R-module of Kähler differentials of the F-algebra R .
Since R is a finitely generated algebra, this module is finitely presented. We have
W ∼= HomR(ΩR, R) and, by [1, Ch. II, §2, Prop. 19], for each maximal ideal m of
R

Wm = Rm ⊗RW ∼= HomRm(Rm ⊗R ΩR, Rm)

where Rm is the local ring of m . By [9, Ch. II, Prop. 8.2A] Rm ⊗R ΩR
∼= ΩRm ,

the Kähler differentials of the F-algebra Rm . If m = mx for x ∈ X , then [9, Ch.
II, Th. 8.8] tells us that ΩRm is a free Rm -module of rank n = dimX since x is a

nonsingular point of X̃ . It follows that the Rm -module Wm is also free of rank n ,
and so too is the Rf -module Wf for a suitable f ∈ Rrm . Thus W is locally free
of rank n near X , which verifies (A2) and (A3). The freeness of ΩRm also yields

W/mW ∼= Wm/mWm
∼= HomRm(ΩRm, Rm/mRm) ∼= HomR(ΩR, R/m).

Furthermore, the R-linear maps ΩR → R/m are in a bijective correspondence
with the F-linear derivations R → R/m . Let D ∈ W . Since R = F + m , the
containment D(m) ⊂ m is equivalent to D(R) ⊂ m , which holds precisely when
D ∈ mW as the previous isomorphisms show. Hence (A4) is true.

Next, the m-adic completion R̂m of Rm is isomorphic to the algebra of
formal power series in n indeterminates. The action of W on R extends to R̂m ,
and the image of W in Der R̂m generates the latter as an R̂m -module. It follows
that for any W -invariant ideal I of R the ideal IR̂m of R̂m has to be stable under
all derivations of R̂m . If I ⊂ m , then IR̂m is contained in the maximal ideal of
R̂m , whence IR̂m = 0, as we have seen in Example 2. Since R is a noetherian
domain, R embeds in R̂m , and we deduce that I = 0. Thus none of the ideals mx

with x ∈ X contains any nonzero W -invariant ideal of R , which is stronger than
(A1).

The normality of X̃ is needed only to deduce (A5). This property implies

that any rational function on X̃ regular at all points of X is regular everywhere.
Suppose that R embeds as a submodule in an F -torsionfree R-module N with
an F -torsion factor module N/R . Then N embeds in the field of fractions of R ,

i.e. the field of rational functions on X̃ . If g ∈ N , then for any x ∈ X there
exists s ∈ R r mx such that sg ∈ R . Therefore g is regular on X , which yields
g ∈ R . Thus N = R , and we conclude that R is F -closed. By Lemma 1.6 W is
F -closed as well.

Remark. Our interpretation of X as a set of points makes the situation closer
to particular cases of geometric origin. However, not X itself, but only the
corresponding set of maximal ideals mx is relevant for further results. Therefore
one might prefer to take X to be a set of maximal ideals of R such that the
residue field κ(m) of each m ∈ X coincides with F . The assumption κ(m) = F is
actually not needed, but without it one will have to redefine the isotropy algebra
L0

m as a subalgebra of the Lie algebra κ(m)⊗ L over κ(m) obtained from a given
Lie algebra L ⊂ W by field extension.
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Up to the end of the paper we will keep our assumptions about X , R , W
unchanged. In conformance with earlier notation put

M(x) = M/mxM

for x ∈ X and an R-module M . In particular, W (x) = W/mxW . Recall that
(I : L) denotes the largest L-invariant ideal of R contained in an ideal I . For
example, (A1) can be rewritten as

⋂
x∈X(mx : W ) = 0. A Lie subalgebra L ⊂ W

will be called transitive if

W = L+ mxW for all x ∈ X.

Lemma 3.2. If L ⊂ W is a transitive Lie subalgebra, then:

(i) The R-module W/RL is F -torsion.

(ii) For each x ∈ X we have (mx : L) = (mx : W ). Hence
⋂
x∈X(mx : L) = 0.

Proof. Since R/mx⊗RW/RL = 0 for all x ∈ X , part (i) follows from Lemma
1.2. Denote I = (mx : L) for some fixed x . Since I is an L-invariant ideal of R ,
so is

I ′ = I +
∑
D∈W

D(I),

as one checks straightforwardly. By (i) for any D ∈ W there exists f ∈ R r mx

such that fD ∈ RL . Then fD(I) ⊂ I ⊂ mx , whence D(I) ⊂ mx by the primeness
of mx . This shows that I ′ ⊂ mx , but then we must have I ′ = I . Thus I is a W -
invariant ideal contained in mx , which yields I ⊂ (mx : W ). The inverse inclusion
is obvious since any W -invariant ideal is L-invariant.

Corollary 3.3. Let L ⊂ W be a transitive Lie subalgebra and M an (R,L)-
module, locally finitely generated near X as an R-module. If r ≥ 0 is an integer
such that dimM(x) = r for all x ∈ X , then M is locally free of rank r near
X . Any (R,L)-submodule N of M contained in

⋂
x∈X mxM is F -torsion, i.e.

N ⊂ tF(M).

Proof. In view of Lemma 3.2 we meet the hypotheses of Theorem 2.1 which
ensures the local freeness of M . Consider M ′ = M/N . Since N(x) → M(x) is
a zero map, we get M ′(x) ∼= M(x), and in particular dimM ′(x) = r , for each
x ∈ X . Thus Theorem 2.1 shows that M ′ is also locally free. By Lemma 1.3
N is locally a direct summand of the R-module M , whence N is locally finitely
generated. The same lemma shows that all maps N(x) → M(x) are injective, so
that N(x) = 0 for each x . Now Lemma 1.2 completes the proof.

Lemma 3.4. The ring R satisfies assumption (A) from section 1 with e = 1
when char F = 0 and e = char F otherwise. If char F = 0, then R is reduced.

Proof. Let f, g ∈ R be two elements such that fmg = 0 for some m > 0.
By Lemma 2.2 we have f eg ∈ (mx : W ) for all x ∈ X , and it follows from (A1)
that f eg = 0. If char F = 0, then each factor ring R/(mx : W ) is a domain, and
therefore R cannot have any nonzero nilpotent elements.
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Lemma 3.5. The R-module W is locally free of finite constant rank and du-
alizable near X . Hence so are all its tensor, exterior and symmetric powers.

Proof. We may regard W as an (R,W )-module with respect to the adjoint
action of W . The local freeness of W follows from Corollary 3.3 applied to L = W ,
M = W , r = n . For x ∈ X and f ∈ R define a linear function ξx,f : W (x) → F
by the rule

ξx,f (D + mxW ) = (Df)(x), D ∈ W.

The set V = {ξx,f | f ∈ R} is a subspace of the dual vector space W (x)∗ .
If D ∈ W satisfies ξx,f (D + mxW ) = 0 for all f ∈ R , then D(R) ⊂ mx ,
whence D ∈ mxW by (A4). Thus

⋂
ξ∈V Ker ξ = 0, which is only possible when

V = W (x)∗ . For any f ∈ R the assignment D 7→ Df defines an R-linear map
ϕ : W → R such that the diagram

W
can.−−−−−−−−−→ W (x)

ϕ
y y ξx,f

R
can.−−−→ R/mx

∼= F

commutes. Hence W is dualizable by Lemma 1.11. The last assertion follows from
Lemma 1.15.

4. Lie algebroids, connections, differential forms

Here we recall several notions which have been used in purely algebraic context in
many papers. Let R be a commutative algebra over a field F . A Lie algebroid2 over
R is a pair (L, a) where L is a Lie F-algebra and an R-module, a : L→ DerR is
a homomorphism of Lie algebras and R-modules such that

[D, fD′] = f [D,D′] + a(D)(f)D′ for all D,D′ ∈ L, f ∈ R.

One calls a the anchor map of the Lie algebroid (see [16]). We will often omit the
explicit indication of a from the notation and write Df = a(D)(f) for D ∈ L and
f ∈ R . For example, if L is a Lie subalgebra and an R-submodule of DerR , then
L is a Lie algebroid over R with a : L→ DerR being the inclusion.

Let L be a Lie algebroid over R , and let M be an R-module. An L-
connection on M is an F-linear map ∇ : L→ EndFM , D 7→ ∇D , such that

∇fDv = f ∇Dv, ∇D (fv) = f ∇Dv + (Df)v

for all D ∈ L , f ∈ R and v ∈ M . With each connection ∇ one associates its
curvature R : L× L→ EndRM defined by the rule

R(D1, D2) = ∇D1∇D2 −∇D2∇D1 −∇[D1,D2], D1, D2 ∈ L.

Note that R is an alternating R-bilinear map. A connection ∇ is called flat if
R = 0, i.e. if ∇ gives a Lie algebra action of L on M . When there is no need of

2Such structures appeared in the literature under different names (see [11], [12], [17], [19]).
Mackenzie [16] reserves the term “Lie algebroid” only for structures defined on modules of sections
of vector bundles.
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distinction between different Lie algebra actions on M we will write Dv = ∇Dv
with D ∈ L and v ∈ M in case of a flat connection. Thus an R-module M
equipped with a flat L-connection is an (R,L)-module such that the Lie algebra
action of L on M satisfies the additional condition that

(fD)v = f(Dv) for all f ∈ R, D ∈ L, v ∈M.

We will call any Lie algebra action of L on an R-module M which makes M into
an (R,L)-module and satisfies the above property a Lie algebroid action. This is
just an alternative name for a flat L-connection.

Since the anchor map a is R-linear, the action of L on R is a Lie algebroid
action. Given Lie algebroid actions of L on R-modules M and N , the induced
actions of L on M⊗RN, HomR(M,N), all tensor, exterior and symmetric powers
of M are Lie algebroid actions as well.

An M -valued differential form of degree k ≥ 0 on L is an element of the
R-module

Ck
R(L,M) = HomR(

∧k
RL,M).

There are several classical operations on differential forms (see [16], [17]). We
denote by D ω ∈ Ck−1

R (L,M) the contraction of D ∈ L and ω ∈ Ck
R(L,M)

defined as

(D ω)(D1 ∧ · · · ∧Dk−1) = ω(D ∧D1 ∧ · · · ∧Dk−1), D1, . . . , Dk−1 ∈ L.

When M is equipped with a flat L-connection, one has a Lie algebra action of
L on each Ck

R(L,M) and the exterior differential d which increases the degree of
differential forms by 1. Explicitly,

(Dω)(D1 ∧ · · · ∧Dk) = Dω(D1 ∧ · · · ∧Dk)−
k∑
i=1

ω(D1 ∧ · · · ∧ [D,Di] ∧ · · · ∧Dk),

(dω)(D1 ∧ · · · ∧Dk+1) =
k+1∑
i=1

(−1)i−1Di ω(D1 ∧ · · · D̂i · · · ∧Dk+1)

+
∑

1≤i<j≤k+1

(−1)i+jω([Di, Dj] ∧D1 ∧ · · · D̂i · · · D̂j · · · ∧Dk+1).

Further on X,R,W are assumed to satisfy all assumptions from section 3.

Lemma 4.1. Let L be a Lie algebroid over R with the anchor map
a : L → DerR . Then any (flat) L-connection ∇ on an R-module M extends
to a (flat) L-connection ∇′ on the F -closure MF . If a(L) is a transitive Lie
subalgebra of W and

∇D (M) ⊂ tF(M) for all D ∈ Ker a,

then there is a (flat) W -connection ∇′′ on MF such that ∇′
D = ∇′′

a(D) for all
D ∈ L. Moreover, given a homomorphism of R-modules ϕ : M → N which
intertwines ∇ and an L-connection on N satisfying the same condition, the map
ϕF : MF → NF intertwines the induced W -connections on MF and NF .
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Proof. Denote EL(M) = HomR(L,M) ⊕ M with the R-module structure
defined by the rule

f · (ξ, v) = (fξ + αv,f , fv) for f ∈ R, ξ ∈ HomR(L,M), v ∈M

where αv,f (D) = (Df)v for D ∈ L . The projection πM : EL(M) → M onto the
second summand is an epimorphism of R-modules with Ker πM ∼= HomR(L,M).
There is a bijective correspondence between L-connections on M and R-linear
splittings of πM . The splitting σ : M → ED(M) corresponding to ∇ is defined
by the assignment v 7→ (βv, v) where βv(D) = ∇Dv for v ∈M and D ∈ L .

Formation of EL(M) is functorial in M . So, replacing M with MF ,
we obtain an R-module EL(MF) which is F -closed since so are both MF and
HomR(L,MF) in view of Lemma 1.6 and since the class of F -closed modules is
closed under extensions (see Lemma 1.1). It follows that there exists a unique
R-linear map σ′ rendering commutative the diagram

M
σ−−−→ EL(M)

πM−−−→ My y y
MF

σ′−−−→ EL(MF)
πMF−−−→ MF .

Since πM ◦σ = Id and since the map HomR(MF ,MF) → HomR(M,MF) obtained
by taking composites with M → MF is bijective by the F -closedness of MF , we
deduce that πMF ◦ σ′ = Id. Hence σ′ corresponds to an L-connection ∇′ on MF
such that the diagrams

M
∇D−−→ My y

MF
∇′

D−−→ MF .

commute for all D ∈ L . Let R and R′ be the curvatures of ∇ and ∇′ ,
respectively. For D1, D2 ∈ L the R-linear transformation R′(D1, D2) of MF
extends the R-linear transformation R(D1, D2) of M . If R(D1, D2) = 0, we
must have R′(D1, D2) = 0.

In the proof of the second assertion let K = Ker a , and let M ′ denote the
image of M in MF . Since MF is F -torsionfree, the condition on ∇ shows that
∇′
D(M ′) = 0 for all D ∈ K . Note that ∇′

D is an R-linear transformation of MF
for each D ∈ K . Since MF/M

′ is an F -torsion R-module, so too is the image of
∇′
D , i.e. ∇′

D = 0. Hence ∇′ induces a (flat) a(L)-connection on MF . Replacing
L with a(L), we may assume from the very beginning that L is a transitive Lie
subalgebra and an R-submodule of W . Since W/L is F -torsion by Lemma 3.2,
we have HomR(W,MF) ∼= HomR(L,MF), and therefore EW (MF) ∼= EL(MF).
This yields a bijective correspondence between L-connections and W -connections
on MF . Denote by R′′ the curvature of ∇′′ . If R′ = 0, we get R′′ = 0 on L×L .
Then R′′(W,W ) is contained in the F -torsion submodule of MF , whence R′′ = 0
everywhere.

The intertwining of L-connections by ϕ and ϕF can be expressed by means
of commutative diagrams

M −→ EL(M) MF −→ EL(MF)y y and
y y

N −→ EL(N) NF −→ EL(NF),
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respectively, where horizontal arrows represent the splittings corresponding to the
L-connections involved. By composing the two composite maps MF → EL(NF)
in the second diagram with the canonical map M → MF , the verification of
commutativity reduces to that for the first diagram. Hence ϕF intertwines the
induced L-connections on MF and NF . Passing further to W -connections, we
may assume that L is a Lie subalgebroid of W and use the fact that the functors
EL and EW take the same values on F -closed modules.

5. Recognizing a geometric structure by a Lie algebra

We will now define volume forms, hamiltonian forms, contact forms, and Riemann
pseudometrics. The first three notions were considered earlier in a purely algebraic
framework which didn’t include any set X as a part of the data [20]. We will work
in the setup of section 3.

Let P be an F -closed R-module, locally free of rank 1 near X . In
particular, the vector space P (x) = P/mxP has dimension 1 for each x ∈ X .
We also assume that P is equipped with a flat W -connection in all cases except
when contact forms are considered. Given ω ∈ Ck

R(W,P ), denote by

ωx :
∧kW (x) → P (x)

the linear map obtained from ω by reduction modulo mx . Lemmas 1.6, 1.12 and
3.5 show that the R-module Ck

R(W,P ) is F -closed and locally free of rank
(
n
k

)
near X . In particular, Ck

R(W,P ) = 0 for k > n and Cn
R(W,P ) is locally free of

rank 1.

A differential form ω ∈ Cn
R(W,P ) is a volume form on X if ωx 6= 0 for

each x ∈ X . Lemma 1.5 applied to the R-linear map R → Cn
R(W,P ), f 7→ fω ,

shows that ω is a volume form if and only if Cn
R(W,P ) is a cyclic free R-module

generated by ω . Another equivalent condition is the bijectivity of the R-linear
map

iω : W → Cn−1
R (W,P ), D 7→ D ω.

A differential form ω ∈ C2
R(W,P ) is a hamiltonian form on X if ω is closed,

i.e. dω = 0, and ωx gives a nondegenerate alternating bilinear form on W (x) for
each x ∈ X . By Lemma 1.9 the nondegeneracy condition implies that

iω : W → C1
R(W,P ), D 7→ D ω,

is an isomorphism of R-modules. We say that D ∈ W is an infinitesimal auto-
morphism of ω if Dω = 0, and the same definition will be used for volume forms.
Since dω = 0, the classical formula

Dω = d(D ω) +D dω

shows that Dω = 0 if and only if iω(D) is a closed 1-form (a closed (n− 1)-form
in the case of a volume form).

Given ω ∈ C1
R(W,P ), denote Q = Kerω and define an alternating

R-bilinear map β : Q×Q→ P by the rule

β(D,D′) = ω([D,D′]) for D,D′ ∈ Q.
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We call ω a contact form on X if the linear maps ωx are surjective and the
alternating bilinear forms

βx : Q(x)×Q(x) → P (x)

induced by β are nondegenerate for all x ∈ X . In this case Q is a contact
distribution in W . Suppose that ω is a contact form. By Lemma 1.4 Q is locally
free of rank n− 1 near X . Moreover, Q is F -closed since so are W and P (see
Lemma 1.1). By Lemma 1.9 the R-linear map Q→ HomR(Q,P ) induced by β is
bijective. This map extends to an F-linear map

ϕ : W → HomR(Q,P )

defined by the rule ϕ(D)(D′) = ω([D,D′]) for D ∈ W and D′ ∈ Q . The bijectivity
of ϕ|Q entails W = Q ⊕ Kerϕ . Note that ϕ(D) = 0 if and only if [D,Q] ⊂ Q .
Hence W = Q⊕NW (Q) where

NW (Q) = {D ∈ W | [D,Q] ⊂ Q}.

We say that D ∈ W is an infinitesimal automorphism of the contact structure on
X if D ∈ NW (Q).

Assume that char F 6= 2. A Riemann pseudometric on X is an R-bilinear
symmetric map ω : W ×W → P such that the induced bilinear forms

ωx : W (x)×W (x) → P (x)

are nondegenerate for all x ∈ X . The R-bilinear symmetric maps W ×W → P
may be identified with elements of the (R,W )-module HomR(S2

RW,P ). Thus we
have a Lie algebra action of W on such bilinear maps. We say that D ∈ W is an
infinitesimal automorphism of ω if Dω = 0, i.e. if

Dω(D1, D2) = ω([D,D1], D2) + ω(D1, [D,D2]) for all D1, D2 ∈ W.

Given another differential form of the same type or a pseudometric ω′ with
values in an F -closed rank 1 locally free R-module P ′ equipped with a flat
W -connection (when needed), we say that ω is equivalent to ω′ if there exists
an isomorphism of (R,W )-modules (an isomorphism of R-modules in the contact
case) ξ : P → P ′ such that ω′ = ξ ◦ ω .

A unimodular, hamiltonian, contact or pseudo-Riemannian structure on
X is just a volume, a hamiltonian, a contact form or a Riemann pseudometric,
respectively. Such a structure is L-invariant where L ⊂ W is a Lie subalgebra if
all elements of L are infinitesimal automorphisms of this structure.

Let L be a transitive Lie subalgebra of W . For each x ∈ X denote by L0
x

the stabilizer of mx in L , so that L0
x = L ∩mxW according to (A4). Put

g−1
x = L/L0

x.

By transitivity the inclusion L → W induces a linear isomorphism g−1
x
∼= W (x).

The adjoint action induces a representation of L0
x in g−1

x . We denote by g0
x the

image of L0
x in the Lie algebra of linear transformation of g−1

x . In fact g−1
x and g0

x

are two homogeneous components of the graded Lie algebra
⊕∞

i=−1 gix associated
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with a certain filtration of L . However, we will not need the components of higher
degree. Consider the following conditions:

(a) g0
x ⊂ sl(g−1

x ), i.e. g0
x consists of linear transformations with trace 0;

(b) g0
x = sp(αx), the symplectic Lie algebra associated with a nondegenerate

alternating bilinear form αx on g−1
x ;

(c) the subspace Vx = [g0
x, g

0
x] · g−1

x has codimension 1 in g−1
x and the alternating

bilinear form αx : Vx × Vx → g−1
x /Vx induced by the Lie product in L is

nondegenerate;

(d) g0
x = o(σx), the orthogonal Lie algebra associated with a nondegenerate sym-

metric bilinear form σx on g−1
x .

Theorem 5.1. Suppose that L ⊂ W is a transitive Lie subalgebra such that one
of conditions (a)–(d) holds for all x ∈ X . Then in the respective cases there exists
an L-invariant unimodular, hamiltonian, contact or pseudo-Riemannian structure
on X . It is unique up to equivalence.

Proof. Consider R⊗ L (tensor product over F) with the R-module structure
given by multiplications on the first tensorand and the Lie bracket defined by the
rule

[f ⊗D, g ⊗ E] = fg ⊗ [D,E] + fD(g)⊗ E − gE(f)⊗D

where f, g ∈ R and D,E ∈ L . Then R⊗ L is a Lie algebroid with respect to the
anchor map a : R ⊗ L → W sending f ⊗ D to fD . The image of a coincides
with RL . Denote K = Ker a . Since W/RL is F -torsion by Lemma 3.2, it follows
from Lemma 1.3 that the reduction of a modulo a maximal ideal mx with x ∈ X
yields an exact sequence of vector spaces

0 −→ K(x) −→ R/mx ⊗R (R⊗ L) ∼= L
ax−→ W (x) −→ 0

where ax is just the projection. Thus Ker ax = L0
x .

There is a Lie algebroid action of R⊗ L on W defined by the rule

(f ⊗D) · E = f [D,E] for f ∈ R, D ∈ L, E ∈ W.

It induces a Lie algebroid action on exterior powers
∧k
RW and symmetric powers

SkRW . In general, given a Lie algebroid action of R ⊗ L on an R-module N , the
restriction K ×N → N of this action is R-bilinear. The latter gives rise to a Lie
algebra action of K(x) ∼= L0

x on N(x). When N = W , we obtain the action of L0
x

on W (x) induced by the adjoint action of L on W . Furthermore, W (x) ∼= g−1
x ,

and L0
x acts on this vector space via the projection onto g0

x . We now consider
separately the four cases of Theorem 5.1.

(a) The R-module M =
∧n
RW is locally free of rank 1. By the assumption

about g0
x the Lie algebra L0

x annihilates M(x) ∼=
∧nW (x). This means that

K · M ⊂ mxM for each x ∈ X . Note that K · M is an (R,L)-submodule of
M since K is an ideal of R ⊗ L . By Corollary 3.3 K ·M ⊂ tF(M). Now put
P = MF , so that P is F -closed and locally free of rank 1 by Lemma 1.13. The
Lie algebroid action of R ⊗ L on M gives rise to a Lie algebroid action of W on
P by Lemma 4.1.
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Let ω : M → P be the canonical map. All maps ωx : M(x) → P (x) are
bijective by Lemmas 1.2, 1.3 and ω is L-equivariant by construction. Thus ω is an
L-invariant volume form. Let ω′ : M → P ′ be another L-invariant volume form.
Since P ′ is an F -closed R-module, there is a bijective correspondence between the
R-linear maps M → P ′ and the R-linear maps P → P ′ , so that ω′ = ξ ◦ ω for a
homomorphism of R-modules ξ : P → P ′ . We have ω′x 6= 0 for each x ∈ X . Since
both vector spaces M(x) and P ′(x) have dimension 1, ω′x is bijective, whence so
too is the linear map P (x) → P ′(x) induced by ξ . By Lemma 1.5 ξ is bijective.
With the identification P ′ ∼= P ′F the localization functor ?F takes ω′ to ξ . Since
ω′ intertwines the Lie algebra action of L , and therefore also the Lie algebroid
action of R ⊗ L , in M and P ′ , the last assertion of Lemma 4.1 shows that ξ
intertwines the action of W in P and P ′ . In other words, ξ is an isomorphism of
(R,W )-modules, and so ω′ is equivalent to ω .

(b) For each x ∈ X the vector space of all g0
x -invariant alternating bilinear

forms on g−1
x is one-dimensional. In other words, Ux = L0

x ·
∧2W (x) is a subspace

of codimension 1 in
∧2W (x). Denoting

M =
∧2
RW/ (K ·

∧2
RW ),

we get M(x) ∼=
∧2W (x) /Ux , and therefore dimM(x) = 1, for each x . Clearly

the Lie algebroid action of R ⊗ L on
∧2
RW passes to M . In particular, we may

regard M as an (R,L)-module. Hence M is locally free of rank 1 near X by
Corollary 3.3. Now Lemma 1.14 ensures that M is dualizable near X since so is∧2
RW . By Lemma 1.13 the F -closed R-module P = MF is locally free of rank

1 near X . Since K annihilates M , Lemma 4.1 gives a flat W -connection on P .
Now ω is taken to be the composite

∧2
RW → M → P of two canonical maps.

Applying Lemma 1.3, we deduce that M(x) ∼= P (x) and

Kerωx = Ker
(∧2W (x) →M(x)

)
= Ux.

This means that the bilinear form on W (x) given by ωx is nonzero and g0
x -

invariant. Hence ωx is a nonzero scalar multiple of αx ; in particular, ωx is
nondegenerate.

We have to check that dω = 0. Since the exterior differential d commutes
with the Lie algebra action of W , the 3-form θ = dω is L-invariant. Hence the
reduction θx :

∧3W (x) → P (x) is L0
x -invariant with the action of L0

x on P (x)
being trivial. Now note that g0

x has no nonzero invariant elements in the dual
of

∧3
g−1
x . In fact, the weights of any maximal diagonalizable subalgebra of g0

x

on g−1
x are of the form ±ε1, . . . ,±εn with linearly independent ε1, . . . , εn , and it

follows that all weights on
∧3

g−1
x are nonzero. Hence θx = 0 for all x . This

means that the image of θ is an (R,L)-submodule of P contained in
⋂
x∈X mxP .

By Corollary 3.3 θ = 0, as claimed.

Thus ω is a hamiltonian form. It is L-invariant by construction. Suppose
now that ω′ :

∧2
RW → P ′ is another L-invariant hamiltonian form. Letting

R⊗L operate on P ′ via the action of W , we may regard ω′ as a homomorphism
of R ⊗ L-modules. Since K · P ′ = 0, we must have K ·

∧2
RW ⊂ Kerω′ . Hence

ω′ factors through M and moreover through P by the F -closedness of P ′ . Thus
ω′ = ξ ◦ ω where ξ : P → P ′ is an R-linear map. Since ωx (resp. ω′x ) is a linear
surjection of

∧2W (x) onto the onedimensional vector space P (x) (resp. P ′(x)),
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the map P (x) → P ′(x) induced by ξ is bijective, for each x ∈ X . The same
argument as in (a) shows that ξ is an isomorphism of (R,W )-modules.

(c) Denote M = W/([K,K] ·W ) and P = MF . Since K is a Lie ideal of
R⊗L , the Lie algebroid action of R⊗L on W passes to M and P . In particular,
M and P are (R,L)-modules. However, K does not annihilate P in this case, so
that there is no canonical way to obtain an action of W on P . All vector spaces

M(x) ∼= W (x)/
(
[g0
x, g

0
x] ·W (x)

) ∼= g−1
x /Vx, x ∈ X,

have dimension 1 by condition (3). Hence M is locally free of rank 1 near X
by Corollary 3.3, and so too is the F -closed R-module P by Lemmas 1.13, 1.14.
Take ω to be the composite W → M → P . Then ωx is surjective for each
x . Since ω is R-linear and L-equivariant by construction, its kernel Q = Kerω
is an (R,L)-submodule of W . By Lemma 1.3 ω induces an exact sequence of
g0
x -modules

0 → Q(x) → W (x) → P (x) → 0

for each x . Since P (x) ∼= M(x), we have Q(x) ∼= Vx . Consider the R-bilinear
map β : Q × Q → W/P associated with ω and its reduction βx at some fixed
x . Given D1, D2 ∈ Q , there exist D′

1, D
′
2 ∈ L such that Di −D′

i ∈ mxW . Since
mxW is a Lie subalgebra of W , we get

[D1 −D′
1, D2 −D′

2] ∈ mxW,

and the inclusion [L,Q] ⊂ Q yields [D1, D2] + [D′
1, D

′
2] ∈ Q+ mxW . Hence

ω([D1, D2]) + ω([D′
1, D

′
2]) ∈ mxP.

Since D′
i + mxW ∈ Q(x), we have D′

i + L0
x ∈ Vx for i = 1, 2, and making use of

the linear bijection g−1
x /Vx

∼= P (x) induced by ωx , we get

βx(D1 + mxQ, D2 + mxQ) = −αx(D′
1 + L0

x, D
′
2 + L0

x).

Now the nondegeneracy of βx follows from the nondegeneracy of αx . Thus ω
is indeed a contact form. Since [L,Q] ⊂ Q , all elements of L are infinitesimal
automorphisms of the contact structure on X given by ω .

Consider another contact form ω′ : W → P ′ on X with the contact
distribution Q′ = Kerω′ satisfying [L,Q′] ⊂ Q′ . Then Q′ is stable under the
action of R ⊗ L on W . The R-module W/Q′ embeds in P ′ . Since P ′ is F -
closed, while Cokerω′ is F -torsion by Lemma 1.2, we may identify P ′ with the
F -closure (W/Q′)F . By Lemma 4.1 the Lie algebroid action of R ⊗ L on W/Q′

extends to one on P ′ . All elements of K act on P ′ as R-linear transformations.
Hence [K,K] annihilates each onedimensional vector space P ′(x), i.e.

[K,K] · P ′ ⊂
⋂
x∈X

mxP
′.

Since [K,K] ·P ′ is an (R,L)-submodule of P ′ , it must be equal to 0 according to
Corollary 3.3. This means that [K,K] ·W ⊂ Q′ . But then ω′ factors through M
and P . We get ω′ = ξ ◦ω for some R-linear map ξ : P → P ′ . Since both ωx and



806 Skryabin

ω′x are surjective, the map ξx : P (x) → P ′(x) has to be bijective for each x ∈ X .
It follows that ξ is an isomorphism of R-modules.

(d) Here P = MF where M = S2
RW/(K · S2

RW ), and ω : W ×W → P
is taken to be the symmetric R-bilinear map corresponding to the composite of
the canonical R-linear maps S2

RW → M → P . The nondegeneracy of ω and the
uniqueness are checked as in (b).

6. Infinitesimal automorphisms of Riemann pseudometrics

This section generalizes one classical fact to the algebraic setup of section 3. Let
ω : W × W → P be a Riemann pseudometric on X . There is a unique W -
connection on W , the Levi-Civita connection, such that the two identities

Dω(D′, D′′) = ω(∇DD′, D′′) + ω(D′,∇DD′′),

∇DD′ −∇D′D = [D,D′]

hold for all D,D′, D′′ ∈ W . This is established exactly as in the classical differential
geometry, e.g. [14, Ch. IV]: the value ∇DD′ is determined from the identity

2ω(∇DD′, D′′) = Dω(D′, D′′) +D′ω(D,D′′)−D′′ω(D,D′)
+ ω([D,D′], D′′)− ω(D′, [D,D′′])− ω(D, [D′, D′′]),

(∗)

which is possible since, by Lemma 1.9, the contraction with ω gives an R-linear
bijection

iω : W → HomR(W,P ).

Theorem 6.1. Suppose that none of the ideals mx with x ∈ X contains any
nonzero W -invariant locally finitely generated near X ideal of R . Then the Lie
algebra L of all infinitesimal automorphisms of a Riemann pseudometric ω has
finite dimension not exceeding (n2 + n)/2.

The proof will be preceded by a lemma which characterizes elements of L .
For each E ∈ W denote by adE the adjoint linear transformation of W given by
the assignment D 7→ [E,D] for D ∈ W .

Lemma 6.2. If A ∈ L, then [adA,∇D ] = ∇[A,D] for all D ∈ W .

Proof. Denote by ϕ(D,D′, D′′) the right hand side of (∗). Since ω is
L-invariant, so too is the multilinear map ϕ : W×W×W → P (in other words, the
corresponding linear map W ⊗FW ⊗FW → P is a homomorphism of L-modules).
Define a bilinear map ψ : W ×W → W by the rule ψ(D,D′) = ∇DD′ . Equality
(∗) shows that iω ◦ ψ is an L-invariant bilinear map W ×W → HomR(W,P ).
Since the bijection iω is also L-invariant, we conclude that ψ is L-invariant. This
means that

[A,∇DD′] = ∇[A,D]D
′ +∇D

(
[A,D′]

)
for all A ∈ L and D,D′ ∈ W , which can be rewritten as the desired equality.
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Proof of Theorem 6.1. We may exclude from consideration the trivial case
W = 0. Then W is a faithful R-module since W is locally free of nonzero
rank near X . If M is any faithful R-module, then we may regard QderM
as a Lie algebroid with the anchor map a : QderM → DerR that assigns
to a quasiderivation D of M the unique derivation D of R such that D is
D -compatible (see section 2). This will be used for M = W . Put

J1W = {D ∈ QderW | a(D) ∈ W},

which is a Lie subalgebroid of QderW (we interpret J1W as the first order jet
prolongation of W ). For each D ∈ W both adD and ∇D are D -compatible
quasiderivations of W . Hence a(J1W ) = W . Clearly Ker a = EndRW , the
R-linear endomorphisms. As W is F -torsionfree, so is EndRW by Lemma 1.6,
and it follows from the exact sequence

0 → EndRW → J1W → W → 0

that J1W is also an F -torsionfree R-module. For each E ∈ W define an F-linear
transformation ϕE of J1W by the formula

ϕE(D) = [∇E ,D] +∇D(E), D ∈ J1W.

Note that the map D 7→ ∇D(E) is R-linear. On the other hand,

[∇E , fW ◦ D] = [∇E , fW ] ◦ D + fW ◦ [∇E ,D] = (Ef)D + f [∇E ,D]

for f ∈ R . Therefore ϕE is an E -compatible quasiderivation of the R-module
J1W . Now Corollary 2.8 applied to the set of derivations W and the set of
quasiderivations {ϕE | E ∈ W} shows that the subring of W -invariant elements
RW is a field and

V = {D ∈ J1W | ϕE(D) = 0 for all E ∈ W}

is a finite dimensional vector space over RW . Since F ⊂ RW , while RW embeds
in R/mx

∼= F for any x ∈ X , we deduce that RW = F . If A ∈ L , then

ϕE(adA) = [∇E , adA] +∇[A,E] = 0

by Lemma 6.1. Thus the assignment A 7→ adA gives an F-linear map L → V .
Since a(adA) = A , this map is injective, and so dimL ≤ dimV . As the rank of
the locally free R-module J1W equals n2 + n , this does not yet give the required
bound.

Denote by B the R-module of all R-bilinear symmetric maps W×W → P .
There is a Lie algebroid action of J1W on B defined by the rule

(Dβ)(D1, D2) = a(D)β(D1, D2)− β
(
D(D1), D2

)
− β

(
D1,D(D2)

)
for D ∈ J1W, β ∈ B and D1, D2 ∈ W . The Lie subalgebroid

Stab(ω) = {D ∈ J1W | Dω = 0} ⊂ J1W
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coincides with the kernel of the R-linear map ψ : J1W → B , D 7→ Dω . For each
β define Dβ ∈ EndRW by the rule Dβ = i−1

ω ◦ iβ where iβ : W → HomR(W,P ) is
the R-linear map corresponding to β . Then

β(D1, D2) = ω
(
Dβ(D1), D2

)
for all D1, D2 ∈ W.

Since ω and β are symmetric, we also have β(D1, D2) = ω
(
D1,Dβ(D2)

)
. Noting

that a(Dβ) = 0, we get β = −1
2
ψ(Dβ). This shows that ψ is surjective. Since B

is locally free of rank (n2 + n)/2 near X , the R-module Stab(ω) is also locally
free of rank

rank Stab(ω) = rank J1W − rankB = (n2 + n)/2.

The first identity defining the Levi-Civita connection ensures that ∇E ∈
Stab(ω) for all E ∈ W . Therefore Stab(ω) is stable under all quasiderivations ϕE ,
and we may apply Corollary 2.8 as earlier, but replacing J1W with Stab(ω). Fi-
nally, since adA ∈ Stab(ω) for all A ∈ L , we conclude that dimL ≤ rank Stab(ω).

Remark. The upper bound dimL = (n2 +n)/2 is attained under the assump-
tions of case (d) in Theorem 5.1 (actually dimL can be larger if no connectedness
assumptions are imposed). Furthermore, the curvature R of the Levi-Civita con-
nection in that case is explicitly determined as

R(D,D′)D′′ = kω(D′, D′′)D − kω(D,D′′)D′ for D,D′, D′′ ∈ W

where k ∈ RW is some fixed W -invariant element of R . In differential geometry
this identity with a scalar k ∈ R characterizes spaces of constant curvature. To
prove the above identity one may use the following lemma:

Lemma 6.3. Let L ⊂ W be a transitive Lie subalgebra, M an (R,L)-module,
and u ∈M an L-invariant element. Suppose that M is F -torsionfree and locally
free of constant rank near X . Suppose also that for each x ∈ X the subspace of
gx0 -invariant elements in M(x) is onedimensional and is spanned by the coset of
u. Then ML is a cyclic free RW -module generated by u.

When n 6= 1, 4 take M = HomR

(∧2
RW, o(ω)

)
where

o(ω) = Stab(ω) ∩ EndRW

is the orthogonal Lie algebra associated with ω . Define u, v ∈ML by the formulas

u(D1 ∧D2)D3 = ω(D2, D3)D1 − ω(D1, D3)D2,
v(D1 ∧D2)D3 = R(D1, D2)D3

for D1, D2, D3 ∈ W . We have R/mx ⊗R o(ω) ∼= o(ωx) ∼= g0
x for each x ∈ X . Note

that g0
x is a central simple Lie algebra when n > 4 or when n = 3. If n = 2, then

dim g0
x = 1. Furthermore, the g0

x -module
∧2W (x) is isomorphic to the adjoint

module. The absolute irreducibility of these modules entails dimM(x)g0
x = 1.

Thus Lemma 6.3 applies, yielding v ∈ RWu . In the case n = 4 take M to be the
module of R-linear maps ξ :

∧2
RW → o(ω) satisfying the additional condition

ξ(D1 ∧D2)D3 + ξ(D2 ∧D3)D1 + ξ(D3 ∧D1)D2 = 0.

Then the equalities dimM(x)g0
x = 1 can be verified and u, v ∈ ML . Finally,

R = 0 in the case n = 1.
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