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Abstract. We collect information about the Klein quadric which is useful to
determine the orbits of the group of all linear bijections of a four-dimensional
vector space on the Grassmann manifolds of the exterior product. This informa-
tion is used to classify nilpotent Lie algebras of small dimension, over arbitrary
fields (including the characteristic 2 case). The invariants used are easy to read
off from any set of structure constants.
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1. Introduction

The aim of the present paper is to give an easy, yet conceptual, approach to
the classification of Lie algebras L with L′ := [L,L] ≤ z(L), for small values of
dim(L/z(L)) and over arbitrary fields (including the characteristic two case). The
need for a conceptual approach is felt sharply, we quote [13] p. 624: “Probably,
all classifications that we know of 7-dimensional nilpotent Lie algebras contain
some mistakes”. As a consequence of our investigation, we spotted an error in [21]
(see 7.9 below), and another error in [11] (see 7.10). Most of the existing attempts
at classifications use special (and sometimes quite arbitrary) choices of structure
constants. The invariants that we use are easy to read off from any given set of
structure constants: one has to determine and compare quadratic forms on vector
spaces of small dimension, up to similitudes. This facilitates the comparison with
previous lists: our present approach allows to identify or distinguish isomorphism
types in different lists easily, cf. 8.3, 8.4, 7.9, 7.10, or 7.8.

Classification lists of (nilpotent) Lie algebras appear to be an often used
tool in the mathematical foundations of physics. The present investigation was
motivated by such applications in [22] and in [21].

A thorough treatment of nilpotent Lie algebras over C is undertaken in
the monograph [12]. While the classification of nilpotent Lie algebras becomes
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impractical for higher dimensions, it is still possible (but tedious) for algebras of
dimension at most 7. A first attempt is found in Umlauf’s thesis [32] as early
as 1891. Dixmier [10] showed that over any field, there are 16 types of nilpotent
Lie algebras of dimension at most 5. Skjelbred and Sund [28] announced (in a more
general setting) a result that includes a classification of all nilpotent Lie algebras
of dimension 6 over the field R. Unfortunately, the proofs were only published
in preprint form, and are not available for the author. Gauger [11] introduces a
conceptual approach, suitable for nilpotent algebras of class 2 over algebraically
closed fields of odd characteristic. Lists of nilpotent Lie algebras of dimension at
most 7 are found (among other places) in [1], [2], [20], and [23] (unfortunately, a
list without any indications of proofs). A computer approach to the classification
of finite nilpotent Lie algebras is presented in [27]: presently, this works for the
fields of order 2, 3, 5, and 7.

Any attempt at such a classification will, in some way or other, use a clas-
sification of the orbits of GL (V ) on the exterior product V ∧ V , cf. [13] Prop. 32,
p. 636. Fortunately, there are quite beautiful geometric methods to treat this ques-
tion in the case where dimV = 4.

Our approach to the classification is similar to the one in [11]. However,
we treat fields that are not algebraically closed. While Gauger [11] classifies Lie
algebras with a given number of generators, we are interested in a classification
that starts with the invariants (dimL, dim z(L), dimL′), or, equivalently, with
(dim(L/z(L)), dim(z(L)/L′), dimL′). Note that dim(L/z(L))+dim(z(L)/L′) gives
the (minimal) number of generators for a nilpotent Lie algebra of class 2. In order
to show that there are infinitely many isomorphism types of nilpotent Lie algebras
with prescribed values for certain invariants, Gauger’s methods are very useful,
cf. 7.8 below. Gauger’s duality (cf. also [26]) works well with his approach, but
may be misleading in the present situation, cf. 7.2 below. Our present approach
also makes it easy to find explicit structure constants, cf. [17], and to determine
the group Aut(L) and its orbits on L, see [14] and [15].

For every vector space V , the group GL (V ) acts linearly on the tensor
product V ⊗ V and on the exterior product V ∧ V . Using the universal property
of the tensor product offers an elegant way to prove this. However, we need
an explicit version, later on. For this reason, we collect explicit definitions and
the results we need in the first sections. Proofs are included, for the readers’
convenience.

1.1 Notation. Let K be a field, and let b0, . . . , bn−1 denote the standard basis
for Kn . We will think of elements v =

∑
i<n vibi ∈ Kn as columns, the transpose

is written v′ := (v0, . . . , vn−1). For v, w ∈ Kn we obtain the decomposable tensor

v⊗w := vw′ = (viwj)i,j<n . The elements bi⊗ bj , with i, j < n, form the standard
basis for the space Kn×n of n× n – matrices with entries from K.

The set of alternating tensors is the linear span Kn ∧ Kn of the elements
of the form v ∧w := v⊗w −w⊗ v . These are the skew-symmetric matrices with
zero diagonal (the latter condition follows from the former unless char K = 2).
The elements Sjk := bj ∧ bk with j < k ≤ n form a basis for Kn ∧ Kn . With the
bilinear map η : Kn × Kn Kn ∧ Kn : (v, w) 7→ v ∧ w , we have (Kn ∧ Kn, η)
as an explicit model for the exterior product, satisfying the universal property:
for every alternating bilinear map β : V × V Z , there is a unique linear map
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β̂ : Kn ∧ Kn → Z such that β = β̂ ◦ η .

The (linear) action of the group GLnK on Kn induces a linear action
ω : GLnK × (Kn ⊗ Kn) → Kn ⊗ Kn , determined via extension of (A, (v ⊗ w)) 7→
Av⊗Aw = (Av)(Aw)′ = Avw′A′ . Thus ω(A,M) = AMA′ holds for all A ∈ GLnK
and all M ∈ Kn×n . Obviously, the space of alternating tensors is invariant under
this action. We will write A.X := AXA′ .

1.2 Remarks. For fields of characteristic 2, one cannot distinguish between sym-
metric and skew-symmetric matrices, and skew-symmetric matrices are not neces-
sarily alternating.

Using the linear map d : Kn×n → Kn×n : A 7→ A− A′ we see that Kn ∧ Kn

is the correct model for the space of alternating tensors: the kernel K of d is the
subspace generated by all tensors of the form v ⊗ v , whence the image (which
consists of all alternating matrices) is isomorphic to (Kn ⊗ Kn)/K , which is the
abstract definition of the space of alternating tensors. The map d is GLnK-
equivariant, thus this model also gives the correct interpretation of the action.

If char K 6= 2 then the relation d2 = 2 d gives that 1
2
d is a projection. For

char K = 2 we obtain that d is a nilpotent endomorphism of Kn×n .

2. Orbits on the Space of Alternating Tensors

The action ω : GLnK×(Kn∧Kn) → Kn∧Kn is an action by linear transformations,
and induces an action on the Grassmann manifold Gr∧d,n (consisting of all subspaces
of dimension d in Kn ∧ Kn ) for each d . The classification of alternating forms
(cf. [3] Thm. 3.3 and Thm. 3.7 or [9] § 11 and § 6) yields:

2.1 Proposition. The GLnK-orbits on Kn ∧ Kn are represented by the tensors
0 , S0

1 , S0
1 +S2

3 , . . . ,
∑

m<n
2

S2m
2m+1 , and the GLnK-orbits on Gr∧1,n are represented

by the elements of the set
{〈∑

m<j S
2m
2m+1

〉

K

∣∣∣ j ≤ n
2

}
.

For general n and d > 1, the orbit decomposition of Gr∧d,n will be quite
complicated because GLnK induces a rather small1 subgroup of GL (Kn ∧ Kn):
in fact, the dimension of the first group is n2 , while the latter has dimension
(1

2
n(n−1))2 = 1

4
(n4−2n3 +n2). The case d = n−2 amounts to the study of pairs

of alternating forms; this is treated (for general n and over general fields) in [24].

One of the biggest cases for n where a complete determination of the orbits
seems feasible is the case n = 4. Fortunately, we have an additional, strong tool
at hand in this case: the orbit Gr∧1,4 forms a quadric (known as the Klein quadric),
and GL4K is a normal subgroup in the corresponding group of similitudes. On
the projective space, the group GL4K induces a subgroup of index 2 in PGO6K,
see 3.11 below.

3. The Klein Quadric

The contents of this section belong to classical projective geometry; for instance,
see [16] Kap. I. Apparently, they are no longer known as well as they deserve to be.

1 In fact, the number of orbits becomes infinite if n ≥ 6 and 3 ≤ d ≤
(

n

2

)
− 3, see [11] 7.8.

Cf. also [4].
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For the reader’s convenience, we give a formulation suitable to our present needs,
and include proofs (for a slightly different approach, see [31] Ch. 12).

According to 2.1, we have exactly three orbits on K4 ∧ K4 , represented
by 0, S0

1 and S0
1 + S2

3 . Therefore, there are two orbits on Gr∧1,4 . The orbit of
〈S0

1〉K
consists of subspaces 〈X〉

K
with X ∈ K4 ∧ K4 \ {0} and detX = 0. With

respect to the basis S0
1 , S

0
2 , S

0
3 , S

1
2 , S

1
3 , S

2
3 we introduce homogeneous coordinates

[x0, . . . , x5] for 〈X〉
K
, where

X =




x0S

0
1 + x1S

0
2 + x2S

0
3

+ x3S
1
2 + x4S

1
3

+ x5S
2
3



 =




0 x0 x1 x2

−x0 0 x3 x4

−x1 −x3 0 x5

−x2 −x4 −x5 0


 .

The orbit of 〈S0
1〉K

may then be described as the set of zeros of the homogeneous
polynomial

detX = p(x0, x1, x2, x3, x4, x5) = x0(−x1x4x5 + x2x3x5 + x0x5x5)

−x1(−x1x4x4 + x2x3x4 + x0x4x5)

+x2( x0x3x5 − x1x3x4 + x2x3x3)

= (x0x5 − x1x4 + x2x3)
2 .

We have p = q2 with q(x0, x1, x2, x3, x4, x5) := x0x5 − x1x4 + x2x3 , and the
polynomial q is a quadratic form of Witt index 3 on K4 ∧ K4 . This gives:

3.1 Proposition. The orbit of 〈S0
1〉K

in Gr∧1,4 forms a hyperbolic quadric Q,
known as the Klein quadric. The complement of that quadric is the second orbit
in Gr∧1,4 .

3.2 Notation. We re-arrange the basis, using S0
1 , S

0
2 , S

0
3 , S

2
3 ,−S

1
3 , S

1
2 . With re-

spect to the new basis, the quadratic form itself may be described2 as q(v) =
v′Mqv , and the polar form fq for the quadratic form q has the Gram matrix J ,
where Mq and J are defined as follows:

Mq :=




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




, J :=




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0




.

The description with respect to this basis makes it easier to compute the group
GO(q) of similitudes, its elements are described by the matrices in

GO6K :=






(
A C
B D

) ∣∣∣∣∣∣

A,B,C,D ∈ K3×3

∃ a ∈ K \ {0} : A′D +B′C = a 1
A′B and C ′D are alternating




 ,

2 We have to use a (somewhat arbitrary) non-symmetric matrix Mq since we include the
characteristic two case.
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where X ′ denotes the transpose of X . The orthogonal group O (q) is characterized
by a = 1.

Note that the conditions on A′B and C ′D reduce to A′B + B′A = 0 and
C ′D +D′C = 0 if char K 6= 2. In that case, the similitudes of q and those of the
polar form fq are the same.

3.3 Remarks. The group GL4K acts by similitudes with respect to q . This
yields a homomorphism δ : GL4K → GO(q), and a corresponding homomorphism
δ̃ : GL4K → GO6K. The kernel of these homomorphisms is {1,−1} .

We will be interested in the induced groups PGL4K and PGO6K on the
projective spaces (or on the quadric). In fact, we shall see that δ̃ induces an
isomorphism π from PGL4K onto a subgroup of index 2 in PGO6K, see 3.11
below.

The Klein quadric provides a model for the space L of lines in the 3-
dimensional projective space over K, as follows:

3.4 Lemma. The map λ : L → Q : 〈u, v〉
K
7→ 〈u ∧ v〉

K
is well-defined and bijec-

tive.

Proof. Replacing u, v by some other basis au + bv, cu + dv for 〈u, v〉
K

and
then expanding (au+ bv)∧ (cu+dv) bilinearly, we see that λ is well-defined. The
rest is straightforward.

3.5 Lemma. The group GL4K acts with three orbits on the set of pairs of
lines, represented by (L0, L0), (L0, K0), and (L0, K1), where L0 := 〈b0, b1〉K

, and
Kj := 〈b0 + jb2, b3〉K

.

3.6 Lemma. Two lines K,L ∈ L share a point if, and only if, their images λ(K)
and λ(L) are orthogonal with respect to q .

Proof. Using 3.5, we may assume L = 〈b0, b1〉K
and K = 〈b0 + kb2, b3〉K

, for
some k ∈ {0, 1} . Then λ(L) = 〈S0

1〉K
and λ(K) = 〈S0

3 +kS2
3〉K

, and λ(K) ⊥ λ(L)
means

0 = q(S0
3 + kS2

3 + S0
1) − q(S0

3 + kS2
3) − q(S0

1) = k − 0 − 0 = k .

Now K ∩ L = {0} ⇐⇒ k 6= 0 yields the claimed equivalence.

3.7 Proposition. The maximal totally singular subspaces with respect to q are
just the images of maximal sets of pairwise confluent lines. There are two types
of such sets: pencils Lp :=

{
L ∈ L | p < L

}
or, dually, line sets of planes LP :={

L ∈ L | L < P
}

.

Proof. After 3.6, it suffices to show that a maximal set K of pairwise confluent
lines is either contained in Lp , or in LP , for some point p or some plane P . So
assume that K contains three lines forming a triangle: the plane P we need is
spanned by that triangle.
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3.8 Corollary. The action of GL4K on the set M3 of maximal totally singular
subspaces has two orbits, represented by λ(Lp) = 〈S0

1 , S
0
2 , S

0
3〉K

and J(λ(Lp)) =
λ(LP ) = 〈S1

2 , S
1
3 , S

2
3〉K

, where p = 〈b0〉K
, and P = 〈b1, b2, b3〉K

.

Since GL4K is transitive on pairs of different but confluent lines, we have:

3.9 Corollary. The group GL4K acts transitively on the set M2 of 2-dimensional
maximal totally singular subspaces.

3.10 Definition. Let PGO+
6 K denote the subgroup of PGO6K that leaves the

two orbits under GL4K in M3 invariant. Clearly, the homomorphism δ̃ induces
a homomorphism π : PGL4K → PGO+

6 K, and PGO+
6 K is a (normal) subgroup of

index 2 in PGO6K.

3.11 Theorem. The map π : PGL4K → PGO+
6 K is an isomorphism. The sub-

group generated by the image of the involution J in PGO6K forms a complement
to PGO+

6 K.

Proof. Every element of PGO+
6 K acts on the two GL4K-orbits in M3 . Via the

inverse of λ, the group PGO+
6 K thus acts on the sets of points, lines, and planes

of the projective space in such a way that incidences are preserved. This gives a
homomorphism µ from PGO+

6 K to the group PΓL4K of all automorphisms of the
projective space. It is easy to see that µ ◦ π is the identity. Thus π is injective, it
remains to show surjectivity.

The subgroup PGL4K of PΓL4K acts transitively on the set of ordered line
sets of tetrahedra in the projective space. One of these is

S :=
(
〈S0

1〉K
, 〈S0

2〉K
, 〈S0

3〉K
, 〈S1

2〉K
, 〈−S2

3〉K
, 〈S1

3〉K

)
.

The stabilizer Σ of S in PGO+
6 K consists of diagonal matrices. Using 3.2,

we find that each element of Σ is induced by some diagonal matrix in GL4K.
Thus Σ is contained in π(PGL4K). Frattini’s lemma (see 4.1 below) now yields
π(PGL4K) = PGO+

6 K.

4. Frattini’s Lemma

The following very general but quite useful result is usually attributed to Frattini:

4.1 Lemma. Let G be a group acting transitively on X , and consider a point
a ∈ X and a subgroup H of G. Then H is transitive on X if, and only if, there
exists a subset R of the stabilizer Ga such that HR = G.

Proof. Assume first that H is transitive. For each g ∈ G, there exists hg ∈ H
such that hg.a = g.a. Now rg := h−1

g g belongs to Ga , and R := {rg | g ∈ G}
satisfies our requirement.

Conversely, if there is R ⊆ Ga such that HR = G, we compute the orbit
G.a = HR.a = H.a, and H is transitive.
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We will apply 4.1 to transitive actions (i.e., orbits) of PGO6K, in the
following form:

4.2 Corollary. Let H be a subgroup of G, of index 2 . Then the orbit G.a
coincides with H.a if, and only if, the set Ga \H is not empty. Explicitly, choose
J ∈ G \H : then the orbits coincide if, and only if, there exists ϕa ∈ H such that
ϕa.a = J.a.

5. Orbits in the Four-dimensional Case

The orbits on Gr∧2,4 , Gr∧3,4 , Gr∧4,4 and Gr∧5,4 (i.e., on the sets of lines, planes, three-
spaces, and hyperplanes, respectively, in the projective space P coordinatized
by K4 ∧ K4 ) may be described using the Klein quadric Q. We introduce some
more notation.

5.1 Definitions. We consider the following lines in P :

E := 〈S0
1 , S

0
2〉K

, T := 〈S0
1 , S

0
3 + S1

2〉K
, and S := 〈S0

1 , S
2
3〉K

.

The orthogonal spaces (with respect to q ) are

E⊥ = 〈S0
1 , S

0
2 , S

0
3 , S

1
2〉K

,

T⊥ = 〈S0
1 , S

0
2 , S

0
3 − S1

2 , S
1
3〉K

and S⊥ = 〈S0
2 , S

0
3 , S

1
2 , S

1
3〉K

, respectively.

We will also use the planes

F := 〈S0
1 , S

0
2 , S

0
3〉K

, E + T := 〈S0
1 , S

0
2 , S

0
3 + S1

2〉K
,

E + S := 〈S0
1 , S

0
2 , S

2
3〉K

, T + S := 〈S0
1 , S

0
3 + S1

2 , S
2
3〉K

.

With respect to the given bases, the restriction of q to the subspace X may be
described by an upper triangular matrix mX , where

mE =

(
0 0
0 0

)
, mT =

(
0 0
0 1

)
, mS =

(
0 1
0 0

)
, mF =




0 0 0
0 0 0
0 0 0



 ,

mE+T =




0 0 0
0 0 0
0 0 1



 , mE+S =




0 0 1
0 0 0
0 0 0



 , mT+S =




0 0 1
0 1 0
0 0 0



 ,

mE⊥ =




0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 , mT⊥ =




0 0 0 0
0 0 0 −1
0 0 1 0
0 0 0 0


 , mS⊥ =




0 0 0 −1
0 0 1 0
0 0 0 0
0 0 0 0


 .

Note that the Gram matrix for the polar form of the restriction is mX + (mX)′ .

For some of these subspaces, geometric arguments are available to determine
the orbits:
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5.2 Examples. 1. The line S joins two points of the quadric that correspond
to a pair of skew lines in the projective space. As GL4K acts transitively on
the pairs of skew lines, the orbits under GL4K and under GO6K coincide.

2. The plane T + S meets Q in a non-degenerate conic, and is spanned by
three points of Q that correspond to pairwise skew lines. Again, the orbits
under GL4K and under GO6K coincide, because GL4K acts transitively on
the triplets of pairwise skew lines.

3. The restriction of q to the plane E+S is degenerate. This plane is spanned
by a triplet of points on Q that corresponds to two skew lines and one line
meeting both. Again, we have transitivity of GL4K on these configurations,
and the orbits coincide.

It is well known (e.g., see [25] 1.3.5 p. 7 for the case char K 6= 2 and [25]
p. 339 for char K = 2) that every quadratic form on a vector space of finite
dimension can be described by an upper triangular matrix of quite restricted shape.
We give an explicit formulation for the special cases that we need:

5.3 Lemma. Let W be a vector space of finite dimension d over K, and let
p : W → K be a quadratic form. In coordinates with respect to a suitable basis,
we have p(v) = v′Av , where A may be chosen as follows:

1. For d = 2 , there are a, c ∈ K such that A ∈

{(
a 0
0 c

)
,

(
a 1
0 c

)}
.

2. For d = 3 , there are a, b, c ∈ K such that A ∈









a 0 0
0 b 0
0 0 c



 ,




a 0 1
0 b 0
0 0 c








 .

3. If d = 3 and p has an isotropic vector in W then we may assume b = 0 .

The non-diagonal matrices are only needed if char K = 2 .

5.4 Lemma. Let p : W → K be any quadratic form with dimW ≤ 3 . Then there
exists W ′ ∈ Gr∧d,4 such that the restriction of q to W ′ is isometric to p.

Proof. Without loss, we may assume dimW = 3. In coordinates with respect
to some suitable basis for W , the form p is given as p(x, y, z) = ax2 + by2 +
cz2 + txz , with t ∈ {0, 1} . Now p is isometric to the restriction of q to the space
〈S0

1 + aS2
3 , S

0
2 − bS1

3 , S
0
3 + cS1

2 + tS2
3〉K

.

The subspaces introduced in the proof of 5.4 will be denoted by

P t
a,c :=

〈
S0

1 + aS2
3 , S

0
3 + cS1

2 + tS2
3

〉
K

P t
a,b,c :=

〈
S0

1 + aS2
3 , S

0
2 − bS1

3 , S
0
3 + cS1

2 + tS2
3

〉
K
.

Note that T = P 0
0,1 and E + T = P 0

0,0,1 , and that P t
a,c ⊆ P t

a,0,c ⊆ (S0
2)

⊥ .
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For c 6= 0 the space P 0
0,c is clearly similar, but not necessarily isometric to

P 0
0,1 . A similitude is induced by a diagonal element of GL4K, and we find:

5.5 Lemma. The GL4K-orbit of P 0
0,1 contains

{
P 0

0,c

∣∣ c ∈ K×
}

, and the orbit of

P 0
0,0,1 contains

{
P 0

0,0,c

∣∣ c ∈ K×
}

.

5.6 Theorem. 1. The GL4K-orbits in Gr∧2,4 are represented by some set

{E, T, S} ∪ P1 ,

where P1 denotes a (possibly empty) set of nonsingular lines.

2. The GL4K-orbits in Gr∧3,4 are represented by some set

{F, J(F ), E + T ,E + S, T + S} ∪ P2 ∪ P3 ,

where P2 denotes a (possibly empty) set of nonsingular planes, and P3 is a
(possibly empty) set of planes of the form 〈S0

2〉K
+ℓ, where ℓ is a nonsingular

line contained in (S0
2)

⊥ .

3. The GL4K-orbits in Gr∧4,4 are represented by R⊥ := {R⊥ | R ∈ R}, where
R is an arbitrary set of representatives in Gr∧2,4 .

Proof. The orthogonality relation induced by q is invariant under the action
of GL4K. Thus the last assertion will follow from the first one.

Using 5.2, 5.5 and Witt’s Theorem (see [25] § 9 or [9] § 11, p. 21 and
§ 16, p. 35, cf. [31] 7.4 or [3] Thm. 3.9 for char K 6= 2), we infer that the given
sets contain representatives for the orbits under the full group PGO6K of simil-
itudes. If the PGO+

6 K-orbit of some element of Pj should be smaller than the
PGO6K-orbit, we could simply enlarge the set Pj . However, Lemma 5.7 below
will show that this is never necessary.

The orbits of F , J(F ), and E have been discussed in 3.8 and 3.9, and
those of S , T + S and E + S were determined in 5.2.

According to 4.2, it remains to find for each subspace X ∈ {T,E + T} an
element of PGO6K \ PGO+

6 K that leaves X invariant. In other words, we search
for an element ϕX ∈ GL4K moving J(X) back to X : we use

ϕT :=




0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


 , and ϕE+T :=




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 .

5.7 Lemma. For each element of P1∪P2∪P3 , the orbits under GO6K and under
GL4K coincide.

Proof. According to 5.4, the orbits of elements of P1 ∪ P2 ∪ P3 under GO6K

contain representatives of the form P t
a,c or P t

a,b,c , where a, b, c ∈ K and t ∈ {0, 1} .
Our assumptions about anisotropy secure a 6= 0 6= c. Now the matrix

ψc :=




0 0 0 c
0 0 −1 0
0 1 0 0
−c 0 0 0


 ∈ GL4K
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maps P t
a,b,c to 〈cS2

3 + acS0
1 , cS

1
3 − bcS0

2 , cS
1
2 + c2S0

3 + tcS0
1〉K

= J(P t
a,b,c) and P t

a,c

to J(P t
a,c), respectively. According to 4.2, the orbits of P t

a,b,c or P t
a,c under GO6K

and under GL4K coincide: we use ϕP t
a,b,c

:= ψc =: ϕP t
a,c

.

5.8 Remarks. 1. If K is a euclidian field (i.e., an ordered field such that
every positive element is a square, e.g. K = R), each of the sets Pj
contains exactly one element. For instance, we may choose the subspaces
P 0

1,1 , P 0
1,1,1 , and P 0

1,0,1 from 5.4: the diagonal matrix diag(1,−1,−1,−1) ∈
GL4K interchanges the positive (semi-)definite spaces P 0

1,1 , P 0
1,1,1 , and P 0

1,0,1

with the negative (semi-)definite ones P 0
−1,−1 , P 0

−1,−1,−1 , and P 0
−1,0,−1 .

2. Let X be a line that contains no point of the Klein quadric: this means that
the restriction of q to X is anisotropic. We know that there are a, c ∈ K

and t ∈ {0, 1} such that X is isometric to (and thus in the GL4K-orbit of)
P t
a,c . Using the diagonal matrix diag(1, a, 1, 1) ∈ GL4K we see that X is in

the orbit of P t
1,d , where d = ac. Since the restricted form is anisotropic, the

polynomial X2 + tX + d is irreducible over K.

Adjoining a root of this polynomial, we obtain a quadratic field extension
L over K, giving rise to an interesting Heisenberg algebra corresponding to

the orthogonal spaces
(
P 0

1,d

)⊥
= 〈S0

2 , S
1
3 , S

0
1 − S2

3 , S
0
3 − dS1

2〉K
and

(
P 1

1,d

)⊥
=

〈S0
2 , S

1
3 , S

0
1 − S2

3 − S1
2 , S

0
3 − dS1

2〉K
, cf. 8.3 below.

3. There is a connection between nonsingular subspaces of dimension 3 and
Heisenberg algebras defined using a quaternion field over K, see 8.4 below.

4. If K is quadratically closed (e.g., if K = C) then there are no nonsingular
lines, and each of the sets Pj is empty.

5. If K is a finite field then there are nonsingular lines (leading to elements
in P1 and in P3 ), but no nonsingular planes, see [31] 11.2, cf. [3] III.6
or [18] 2.41 (where only the case char K 6= 2 is treated), and P2 is empty.
From Remark 2 above we know that any two non-singular lines belong to the
same orbit under GL4K, represented by the subspace P t

1,d where X2+tX+d
is irreducible over K and t = 0 or t = 1 if char K 6= 2 or char K = 2,
respectively: with respect to the basis S0

1 +S2
3 , S0

3 +dS1
2 +tS2

3 , the restriction
of the form is then given as q̃(x, y) = x2 + dy2 + txy . The space P t

1,0,d may
be used as the (unique) element of P3 .

6. Heisenberg Algebras

6.1 Definitions. Let V and Z be vector spaces, and let β : V × V Z be an
alternating bilinear map (i.e., such that β(v, v) = 0 holds for each v ∈ V ). On the
vector space V × Z , define the binary operation [(v, x), (w, y)]β := (0, β(v, w)).
Then gh(V, Z, β) := (V × Z, [·, ·]β) is called the generalized Heisenberg algebra

corresponding to β .

If the image β(V ×V ) generates Z , and {v ∈ V | ∀w ∈ V : β(v, w) = 0} =
{0} , we call gh(V, Z, β) a reduced Heisenberg algebra.
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6.2 Theorem. Every nilpotent Lie algebra of class 2 is isomorphic to the direct
sum of a reduced Heisenberg algebra and an abelian Lie algebra.

Proof. Let L be a nilpotent Lie algebra of class 2, this means L′ ≤ z(L).
Choose a vector space complement V for z(L) in L, and a complement A for
L′ in z(L). Now β(v, w) := [v, w] defines a bilinear map β : V × V L′ , and
((v, x), a) 7→ v + x+ a defines an isomorphism from gh(V, L′, β) × A onto L.

6.3 Remark. The bilinear map β constructed in the proof of 6.2 does not depend
on the choice of the complements. Thus the resulting reduced Heisenberg algebra
is determined, up to isomorphism, by the isomorphism type of L.

In order to classify the nilpotent Lie algebras of class 2, it remains to classify
the reduced Heisenberg algebras.

Using the universal property of the tensor product, we obtain:

6.4 Lemma. For every reduced Heisenberg algebra gh(V, Z, β), there is a unique
linear surjection β̂ : V ∧ V → Z such that β̂(v ∧ w) = β(v, w), for all v, w ∈ V .
Moreover, the kernel of β̂ satisfies

∀ v ∈ V \ {0} : η({v} × V ) 6⊆ ker β̂ . (∗)

Conversely, every linear surjection γ : V ∧ V → Z satisfying condition (∗) yields
a reduced Heisenberg algebra gh(V, Z, γ ◦ η)).

6.5 Lemma. Let ϕ : gh(V,X, β) → gh(W,Y, γ) be an isomorphism between re-
duced Heisenberg algebras. Then there are linear bijections σ : V → W and
σ′ : X → Y and a linear map τ : V → Y such that ϕ(v, x) = (σ(v), σ′(x) + τ(v)),
and

∀u, v ∈ V : σ′(β(u, v)) = γ(σ(u), σ(v)) . (∗∗)

Writing σ ∧ σ := ψ̂ , where ψ := ηW ◦ (σ × σ) : (u, v) 7→ σ(u) ∧ σ(v), we can
translate the latter condition into σ′ ◦ β̂ = γ̂ ◦ (σ ∧ σ). In particular, the linear
bijection σ ∧ σ maps the kernel of β̂ onto the kernel of γ̂ .

V

σ

V × V
β

ηV

ψ

σ×σ

X

σ′

V ∧ V
β̂

σ∧σ

W ∧W
γ̂

W W ×W

η
W

γ Y

Proof. We use the fact that ϕ maps the commutator algebra {0} × X of
gh(V,X, β) onto the commutator algebra {0}× Y of gh(W,Y, γ) to obtain σ , σ′ ,
and τ . The condition ϕ([(u, x), (v, z)]β) = [(σ(u), σ′(x)+τ(u), (σ(v), σ′(z)+τ(v))]γ
then means condition (∗∗).
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7. Classification of Nilpotent Lie Algebras

In order to determine the reduced Heisenberg algebras gh(V, Z, β) for a given
ground field K and a given pair of dimensions (dimV, dimZ), we may fix V
and Z . After 6.5, it remains to study the effect of the actions of GL (V ) on
V ∧ V and GL (Z) on Z on the set of linear surjections β̂ : V ∧ V → Z that
satisfy condition (∗). Since we consider surjections, this reduces to the problem
of determination of the orbits of GL (V ) on the set of possible kernels: that is, on
the Grassmann space of all subspaces of codimension dimZ in V ∧ V .

Recall that dim(V ∧V ) = 1
2
(dimV )(dimV −1), that dimZ ≤ dim(V ∧V ),

and note also that Z = {0} 6= V makes it impossible to satisfy condition (∗). In
particular, it suffices to consider the case where dimV ≥ 2.

7.1 Theorem. We consider reduced Heisenberg algebras gh(V, Z, β) such that
dimV = n ≥ 2 .

1. If n is even, there is exactly one isomorphism type with dimZ = 1 .

2. If n is odd, the case dimZ = 1 does not occur.

3. For any n, there is exactly one isomorphism type with dimZ = 1
2
n(n− 1).

4. If n > 2 then there are exactly ⌊n
2
⌋ types with dimZ = 1

2
n(n− 1) − 1 .

Proof. In the case dimZ = 1, the map β : V×V → Z ∼= K1 may be interpreted
as a non-degenerate alternating form on V . The classification of alternating forms
(cf. [3] Thm. 3.3 and Thm. 3.7 or [9] § 11 and § 6) gives the first assertion. For
dimZ = 1

2
n(n− 1), the map β̂ is an isomorphism, and ker β̂ = {0} .

Now assume dimZ = 1
2
n(n− 1)− 1, then the kernel of β̂ has dimension 1.

According to 2.1, there are ⌊n
2
⌋ different GL4K-orbits on Kn ∧ Kn , represented

by the elements of the set {S0
1 , S

0
1 + S2

3 , . . . ,
∑

m<n
2

S2m
2m+1} . In order to verify

condition (∗) we note that η({v}× V ) has dimension n− 1 whenever v 6= 0, and
cannot be contained in ker β̂ if n > 2.

7.2 Remarks. Let V be a vector space of finite dimension n with dual space V ∗ .

Mapping λ∧µ to the linear form f defined by f(x∧ y) = det
(
λ(x) µ(x)
λ(y) µ(y)

)
extends

to an isomorphism from V ∗ ∧V ∗ onto (V ∧V )∗ , cf.3 [5] § 8, Thme. 1, p. 102. This
isomorphism yields a non-degenerate pairing (·|·) : (V × V ) × (V ∗ × V ∗) → K,
extending (v ∧ w | λ ∧ µ) = f(x ∧ y). We let σ ∈ GL (V ) act on the dual
space V ∗ as σ∗ : V ∗ → V ∗ : λ 7→ λ ◦ σ−1 . Then the pairing is GL (V )-equivariant
(cf. [11] Prop. 3.1), and one may translate the orbit decomposition of Gr∧d,n to that
of Gr∧n−d,n . However, condition (∗) in 6.4 is not preserved by the pairing, cf. 7.3.

We discuss the cases where dimV ≤ 4:

7.3 Theorem. 1. There are no reduced Heisenberg algebras with dim V = 1 .

2. If dimV = 2 then dimZ = 1 = dim(V ∧ V ), and we have exactly one
isomorphism type.

3 The treatment in [5] is quite different from the presentation in later editions [6], [7].
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3. For dimV = 3 , there is one type with dimZ = 2 , and one with dimZ =
3 = dim(V ∧ V ).

4. For dimV = 4 , there is one isomorphism type with dimZ = 1 , one with
dimZ = 6 , and two types with dimZ = 5 (see 7.1). Apart from these four
types, there are exactly 3+ |P1| types with dimZ = 4 , exactly 4+ |P2|+ |P3|
types with dimZ = 3 , and exactly 2 + |P1| types with dimZ = 2 . Here Pj
is a suitable subset of Gr∧j,4 , as introduced in 5.6.

Proof. After 7.1, it only remains to discuss the cases where dimV = 4 and
dimZ ∈ {2, 3, 4} ; we use the classification of orbits obtained in 5.6. Because of
condition (∗) we have to exclude those elements of

{E, T, S, F, J(F ), E + T,E + S, T + S, E⊥, T⊥, S⊥} ∪ P1 ∪ P2 ∪ P3 ∪ P⊥

1

that contain η({v} × V ) = {v} ∧ V for some v ∈ V \ {0} . We note that
η({b0} × V ) = F implies that the elements that we have to exclude are those
that contain an element of the GL4K-orbit of F . Apart from F itself and
E⊥ = F +〈S1

2〉K
, the only candidates for exclusion are the four-dimensional spaces

T⊥ and S⊥ .

Since the restriction of the polar form fq to S is non-degenerate, the
restriction to S⊥ is non-degenerate, as well. Thus S⊥ does not contain any element
of M3 . The restriction of fq to T⊥ is degenerate, the radical equals 〈S0

1〉K
if

char K 6= 2, it equals 〈S0
1 , S

0
3 − S1

2〉K
if char K = 2. In the first case the induced

form on the three-dimensional space T⊥/〈S0
1〉K

is non-degenerate, and T⊥ does
not contain any element of M3 . In the case where char K = 2 every element
of M3 inside T⊥ would contain the radical, contradicting q(S0

3 − S1
2) = −1 6= 0.

Thus we have shown that every element of

{E, T, S} ∪ P1 , {J(F ), E + T,E + S, T + S} ∪ P2 ∪ P3 , {T⊥, S⊥} ∪ P⊥

1 ,

represents an isomorphism type of reduced Heisenberg algebras gh(K4, Z, β),
where dimZ equals 4, 3, and 2, respectively.

7.4 Remark. Using 6.2, we may interpret 7.3 as a classification of nilpotent Lie
algebras of class 2, with small values for the invariant v := dim(L/z(L)), but no
restriction on dimL.

Applying 5.8 and 7.1, we obtain:

7.5 Corollary. We consider isomorphism types of reduced Heisenberg algebras
gh(V, Z, β), with dimV = 4 and dimZ = z .

1. In any case, there are 2 types with z = 5 , one type with z = 6 , and one
type with z = 1 .

2. If K is a euclidian field (e.g. K = R) then there are

3 + 1 = 4 types with z = 4,
4 + 1 + 1 = 6 types with z = 3,

2 + 1 = 3 types with z = 2.
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3. If K is a finite field then there are

3 + 1 = 4 types with z = 4,
4 + 0 + 1 = 5 types with z = 3,

2 + 1 = 3 types with z = 2.

4. If K is quadratically closed (i.e., if there are no quadratic field extensions
of K — surely this is the case if K is algebraically closed) then there are 3 ,
4 , and 2 types with z = 4, 3, 2 , respectively.

7.6 Remark. The classification in the cases discussed in 7.5 also yields explicit
structure constants. However, since our description avoids any choice of struc-
ture constants it allows to determine the full group of automorphisms easily,
cf. [14], [15].

7.7 Theorem. Let L be a nilpotent Lie algebra of class 2 , and abbreviate v :=
dim(L/z(L)), c := dim(z(L)/L′), z := dimL′ . The number of isomorphism types
is as follows:

dimL ≤ 3: a single type, with (v, z, c) = (2, 1, 0).
dimL = 4: a single type, with (v, z, c) = (2, 1, 1).
dimL = 5: three types, with (v, z, c) ∈ {(2, 1, 2), (3, 2, 0), (4, 1, 0)}.

dimL = 6: 7 + |P1| types, with (v, z, c) ∈

{
(2, 1, 3), (3, 2, 1), (3, 3, 0),

(4, 1, 1), (4, 2, 0)

}

(where only (4, 2, 0) occurs more than once).

For dimL = 7 , we have 12 + |P1| + |P2| + |P3| types with

(v, z, c) ∈ {(2, 1, 4), (3, 2, 2), (3, 3, 1), (4, 1, 2), (4, 2, 1), (4, 3, 0), (6, 1, 0)}

(where only (4, 2, 1) and (4, 3, 0) occur more than once), and an unknown number
of types with (v, z, c) = (5, 2, 0). See 7.11 below for a discussion of the latter case
over an algebraically closed field K.

Note that we have excluded the abelian algebras in 7.7.

7.8 Remarks. Recall from 5.8 that P1 has exactly one element if K is finite, or
a euclidian field.

For K = Q, the sets P1 and P3 become infinite: in fact, the quadratic
forms qa and c · qb given by qa(x, y) := x2 + ay2 and c · qb(x, y) := c(x2 + by2) are
equivalent only if there exists (u, v) ∈ Q2 and f ∈ Q\{0} such that 1 = c ·qb(u, v)
and a = c · qb(fbv,−fu). But this means a = f 2b, and a, b belong to the same
class modulo squares.

Even if the ground field is algebraically closed, one obtains infinitely many
types of Heisenberg algebras gh(V, Z, β) of fixed dimension, if only v := dim V ≥ 6
and 3 ≤ dimZ ≤

(
v

2

)
− 3. For dimV ≥ 8, there are also infinitely many types

with dimZ = 2. See [11] 7.8, 7.10.
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7.9 Remarks. Table III in [21] claims to list the isomorphism types of those real
nilpotent algebras of order six that are not direct products of smaller algebras, the
text refers to [20]. The table contains three entries for algebras of class 2, denoted
by A6,3 , A6,4 , and Aa6,5 , respectively. The entries A6,3 and A6,4 describe algebras
that are isomorphic to Heisenberg algebras gh(R3,R3, γ) and gh(R4,R2, β), where
γ̂ is the identity, and the kernel of β̂ is T⊥ , see 5.1. The last entry describes a
family4 of algebras (with a 6= 0), given by the commutator relations [e1, e3] = e5 ,
[e1, e4] = e6 , [e2, e3] = ae6 , and [e2, e4] = e5 , all the remaining commutators
between basis elements being zero.

According to our result 7.7, the table should contain three single isomor-
phism types: one corresponding to (v, z, c) = (3, 3, 0), and two with (v, z, c) =
(4, 2, 0). (The third algebra with (v, z, c) = (4, 2, 0) occurring in 7.7 is isomorphic
to a direct product of two algebras of type (2, 1, 0), cf. 8.2.)

In fact, our method allows to spot the isomorphism types in the family
(Aa6,5 | a 6= 0) easily, as follows. First of all, we adapt the notation, writing
bj−1 for ej . The algebras in question are Heisenberg algebras gh(V, Z, βa), where

V = 〈b0, b1, b2, b3〉R
∼= R4 , Z = 〈b4, b5〉R

∼= R2 , and the kernel Na of β̂a is generated
by S0

1 , S2
3 , S0

2 − S1
3 , and aS0

3 − S1
2 . The orthogonal space N⊥

a is generated by
S0

2 + S1
3 and S0

3 + aS1
2 . With respect to these bases, the restrictions of q to Na

and N⊥

a are described by the matrices




0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 −a


 and

(
−1 0
0 a

)
, respectively.

For a > 0, the space N⊥

a is in the orbit of S , see 5.1. Therefore, the algebras
gh(V, Z, βa) with a > 0 are isomorphic to gh(R2,R, det)× gh(R2,R, det), see 8.2.

For a < 0, the space N⊥

a is anisotropic, and belongs to the orbit of P 0
1,1 =

〈S0
1 +S2

3 , S
0
3 +S1

2〉R
, see 5.8. In particular, all the algebras gh(V, Z, βa) with a < 0

belong to a single isomorphism type: they are all isomorphic to gh(C2,C, det),
cf. 8.3.

In order to describe explicit isomorphisms from gh(V, Z, βa) onto standard

representatives of the isomorphism classes, we put t := |a|−
1

2 , and extend b0 7→ b0 ,
b1 7→ b1 , b2 7→ tb2 , b3 7→ tb3 , b4 7→ tb4 , b5 7→ b5 linearly: this gives an isomorphism
from gh(V, Z, βσt−2) onto gh(V, Z, βσ), where σ ∈ {1,−1} .

An explicit isomorphism from the Lie algebra gh(R2,R, det)×gh(R2,R, det)
onto gh(V, Z, β1) is given by

((
(1, 0), 0

)
,
(
(0, 0), 0

))
7→ b0 + b1 ,

((
(0, 0), 0

)
,
(
(1, 0), 0

))
7→ b0 − b1 ,((

(0, 1), 0
)
,
(
(0, 0), 0

))
7→ b2 + b3 ,

((
(0, 0), 0

)
,
(
(0, 1), 0

))
7→ b2 − b3 ,((

(0, 0), 1
)
,
(
(0, 0), 0

))
7→ 2(b4 + b5),

((
(0, 0), 0

)
,
(
(0, 0), 1

))
7→ 2(b4 − b5).

7.10 Remarks. Gauger’s enumeration [11] 7.19 of 4-generator, 3-relation met-
abelian Lie algebras (i.e., Heisenberg algebras gh(V, Z, β) with dimV = 4 and

4 In Morozov’s list [20], there is a hint that a should not be a square. In fact, the remarks
following the list make clear that classes modulo squares describe the isomorphism types in the
family Aa

6,5 .
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surjective β̂ such that dim(ker β̂) = 3) over an algebraically closed field K counts
one of the isomorphism types twice. This also entails an error in the counting of
types in [11] 7.20.

In fact, Gauger gives the following list of subspaces of K4 ∧ K4 :

I1 = 〈x1 ∧ x2, x1 ∧ x3, x2 ∧ x3〉K
, I4 = 〈x1 ∧ x2, x3 ∧ x4, (x1 + x3) ∧ (x2 + x4)〉K

,

I2 = 〈x1 ∧ x2, x1 ∧ x3, x1 ∧ x4〉K
, I5 = 〈x1 ∧ x2 + x3 ∧ x4, x2 ∧ x4, x1 ∧ x4〉K

,

I3 = 〈x1 ∧ x2, x1 ∧ x3, x2 ∧ x4〉K
, I6 = 〈x1 ∧ x2 + x3 ∧ x4, x2 ∧ x4, x1 ∧ x3〉K

.

In [11] 7.19 it is claimed that these ideals of the universal algebra N(2, 4) ∼=
gh(K4,K4 ∧ K4, η) yield quotients that form a system of representatives for the
isomorphism types in question.

Translating from Gauger’s notation into our terminology5, we obtain the
algebras N(2, 4)/Ij = gh(K4, Zj, πj), where π̂j : K4 ∧ K4 → Zj := (K4 ∧ K4)/Ij is
the canonical projection. Determining the (Gram matrices of the) restriction qj
of the quadratic form q to Ij , and using 5.6, we find:

1. The subspace I1 is equivalent to J(F ).

2. The subspace I2 is equivalent to F .

3. The restriction q3 has a radical of dimension 1, and I3 is equivalent to E+S .

4. The restriction q4 is non-degenerate, and I4 is equivalent to T + S .

5. The restriction q5 has a radical of dimension 2, and I5 is equivalent to E+T .

6. The restriction q6 is non-degenerate, and I6 is equivalent to T + S .

Thus I4 and I6 yield isomorphic algebras. Explicitly, an isomorphism from
gh(K4, Z4, π4) onto gh(K4, Z6, π6) is induced by linear extension of b0 7→ b0 ,
b1 7→ b3 , b2 7→ b1 , b3 7→ b2 .

It appears that the error in [11] 7.15 is caused by the assumption that I6
cannot be spanned by decomposables. However, this is wrong; one has S0

1 + S2
3 =

S1
3 − S0

2 + (b0 − b3) ∧ (b1 + b2).

7.11 Remark. Assume that K is algebraically closed, and that char K 6= 2. Ac-
cording to Gauger’s results [11] 7.13, the orbits of GL5K on Gr∧2,5 are represented
by 〈S0

1 , S
2
3〉K

, 〈S0
3 + S1

2 , S
1
3〉K

, 〈S0
1 + S3

4 , S
2
4〉K

, 〈S2
4 , S

3
4〉K

, and 〈S0
4 + S1

3 , S
1
4 + S2

3〉K
.

The classification problem appears to be open for general fields.

We are interested in the orbits on Gr∧8,5 , because these subspaces occur as

kernels of maps β̂ : K5 ∧ K5 → Z with 2-dimensional image. The pairing that we
have described in 7.2 can be used to obtain a set of representatives for the orbits
on Gr∧8,5 from the representatives for the orbits on Gr∧2,5 .

However, only the subspaces Ψ(〈S0
1 +S3

4 , S
2
4〉K

) and Ψ(〈S0
4 +S1

3 , S
1
4 +S2

3〉K
)

lead to reduced Heisenberg algebras: we find that {b4} ∧ K5 is annihilated both
by Ψ(〈S0

1 , S
2
3〉K

) and by Ψ(〈S0
3 + S1

2 , S
1
3〉K

), and that 〈b0, b1〉K
∧ K5 is annihilated

by Ψ(〈S2
4 , S

3
4〉K

).

5 We use the basis xj = bj−1 .
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8. Examples Involving Field Extensions and Quaternion Algebras

Subspaces that meet the Klein quadric in only few points (or even no points at
all) present particular problems when classifying them or when determining the
automorphism groups of the corresponding Heisenberg algebras. Therefore, we
will now discuss connections between anisotropic subspaces, quadratic extension
fields, quaternion fields, and constructions of Heisenberg algebras related to these
structures.

8.1 Example. An explicit model for the (unique) isomorphism type of reduced
Heisenberg algebra gh(V, Z, β) with dimV = 2 and dimZ = 1 is gh(K2,K, det),
where det(v, w) is the usual determinant of the 2 × 2 matrix with columns v, w .
This algebra is the Heisenberg algebra used to explain the uncertainty principle.

8.2 Example. Among the reduced Heisenberg algebras gh(V, Z, β) with dim V =
4 and dimZ = 2, we find the direct product gh(K2,K, det) × gh(K2,K, det).
This algebra is isomorphic to gh(K4,K2, β), where the kernel of β̂ is S⊥ =
〈S0

2 , S
0
3 , S

1
2 , S

1
3〉K

, see 5.1.

8.3 Examples from quadratic extensions. Let L be a quadratic extension
field of K. As a K-algebra, the Heisenberg algebra gh(L2,L, det) is then iso-
morphic to gh(K4,K2, β), with suitable β . In order to show that the kernel of β̂
is a member of P⊥

1 , we pick any irreducible polynomial X2 + tX + d over K that
has a root u in L. Note that we may choose t ∈ {0, 1} , and that t = 1 is only
needed if char K = 2 and the extension is a separable one (cf. [25] 8.11, p. 313).
We put b0 := (−d

0 ), b1 := ( 0
1 ), b2 := ( u0 ), b3 := ( 0

u ) and compute the commutator
relations

[b0, b1] = −d, [b0, b2] = 0, [b0, b3] = −du = d[b1, b2],
[b1, b3] = 0, [b2, b3] = u2 = −tu− d = t[b1, b2] + [b0, b1].

This yields ker β̂ = 〈S0
2 , S

1
3 , S

0
3 − dS1

2 , S
2
3 − tS1

2 − S0
1〉K

= (P t
1,d)

⊥ , cf. 5.8.

8.4 Examples from quaternion algebras. Assume that H = H
u,v
K

is a quater-
nion algebra over a field K with char K 6= 2, i. e. there is a basis 1, i, j , k of
H as a vector space over K and an associative and K-bilinear multiplication such
that 1 is the unit element, u := i2 and v := j2 belong to K1, and ij = k = −ji
holds. We identify K and K1 in the sequel.

Such a multiplication also satisfies ik = uj = −ki, jk = −vi = −kj and
k2 = −uv . Mapping x = x11 + xii + xjj + xkk ∈ H (with x1, xi, xj , xk ∈ K) to
x := x11 − xii− xjj − xkk defines a K-linear involution such that xy = yx .

For each x ∈ H, one has xx = xx = x2
1 − x2

iu − x2
jv + x2

kuv ∈ K, and
N(x) := xx defines a quadratic form N on H. Note that N(x)−1x is an inverse for
x whenever N(x) 6= 0. If (H, N) is nonsingular then H is a non-commutative field.
(For instance, this happens if we take a subfield of R for K and use u := −1 =: v ;
the resulting algebra H

−1,−1
R

is the classical one introduced by Hamilton.)

Now βH(x, y) := xy − yx defines an alternating map from H to P :={
p ∈ H | p = −p

}
. We compute βH(−k, 1) = 2k = −βH(i, j), βH(−k, i) = −2uj =

−uβH(1, j), and βH(−k, j) = 2vi = vβH(1, i). Identifying H and K4 via b0 = −k ,

b1 = 1, b2 = i, b3 = j , we find ker β̂H = 〈S0
1 +S2

3 , S
0
2 +uS1

3 , S
0
3 −vS

1
2〉K

= P 0
1,−u,−v .
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In particular, the classical quaternion algebra H
−1,−1
K

over K ≤ R corresponds to
the standard representative P 0

1,1,1 in P2 .

8.5 Lemma. The multiplicative group of a quaternion algebra H can be used to
construct many automorphisms of gh(H, P, βH), as follows. For any pair (a, c) of
invertible quaternions, let σa,c(x) := axc . Then βH(axc, ayc) = axcayc−aycaxc =
aa c(xy − yx)c = aa cβH(x, y)c shows that σa,c is induced by an automorphism
of gh(H, P, βH).

If H = H
−1,−1
R

is the classical quaternion field over the field R, these au-
tomorphisms show that Aut(gh(H, P, βH)) acts with three orbits on gh(H, P, βH).
Thus gh(H, P, βH) is an almost homogeneous Heisenberg algebra (in the sense
of [29], [30] and [17]) in that case. The algebra gh(H, P, βH) is denoted H4

H
in

those papers.

In general, there may be more than two orbits on P under the action of the
maps σa,c ; in fact, the number of these orbits reflects the arithmetical structure
of K.

8.6 Proposition. Let a, b, c ∈ K with a 6= 0 , and let t ∈ {0, 1} .

1. The diagonal matrix diag(1, a, 1, 1) ∈ GL4K maps P t
a,b,c to P t

1,ab,ac .

2. If char K 6= 2 then H
−ab,−ac
K

is a quaternion algebra such that the Lie algebra

gh(H−ab,−ac
K

, P, β
H

−ab,−ac

K

) is isomorphic to gh(K4, (K4 ∧K4)/ ker β̂, β), where

ker β̂ = P 0
a,b,c .

3. If char K 6= 2 and P 0
a,b,c is anisotropic then H

−ab,−ac
K

is a quaternion field.

8.7 Split quaternions in odd characteristic. If char K 6= 2 then an isomor-
phism ϕ from the quaternion algebra H

−1,1
K

onto the algebra K2×2 is obtained
by linear extension of ϕ(1) := ( 1 0

0 1 ), ϕ(i) := ( 0 1
−1 0 ), ϕ(j) := ( 1 0

0 −1 ) and

ϕ(k) :=
(

0 −1
−1 0

)
. The involution is then given by ( a bc d ) =

(
d −b
−c a

)
. In partic-

ular, we have N(x) = det x, and P is the space of matrices with vanishing trace.
We find ker β̂ = 〈S0

1 + S2
3 , S

0
2 − S1

3 , S
0
3 − S1

2〉K
= P 0

1,1,−1 , independent of the ground

field. Since we assume char K 6= 2 here, the intersection of ker β̂ with the Klein
quadric is a non-degenerate conic. Thus ker β̂ belongs to the orbit of T +S under
the group GL4K.

The situation is completely different if char K = 2. In that case, the
intersection of P 0

1,1,−1 with the Klein quadric degenerates: it becomes a (double)
line, and the space belongs to the orbit of E + T .

8.8 Quaternions in characteristic 2. Quaternion algebras do exist in charac-
teristic 2, but they are quite different from the case where the characteristic is
different from 2, cf. [8] 5.4: we have the relations i2 = u ∈ K, j2 + j = v ∈ K,
ji = ij + i. The involution and the norm are given as

x11 + xii+ xjj + xkk = (x1 + xj)1 + xii+ xjj + xkk and

N(x11 + xii+ xjj + xkk) = x2
1 + x2

iu+ x2
jv + x2

kuv + x1xj + xixku .
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The bilinear map β becomes an alternating form, with one-dimensional image,
and β̂ has a kernel of dimension 5.

If we try and replace the involution by any other K-linear involutory anti-
automorphism σ of this quaternion algebra, nothing new happens: according
to the Skolem–Noether Theorem (e.g., cf. [25] 8.4.2), there exists an invertible
quaternion s such that σ(x) = s−1xs, and s = s ∈ 〈1, i, ij〉

K
is required to ensure

that σ2 = id (cf. [25] 8.7.4). A straightforward (but tedious) computation yields
βσ(x, y) := σ(x)y − σ(y)x = s−1 (xsy − ysx) ∈ s−1K, and βσ is an alternating
form, like β .

8.9 Split quaternions. Independently of the characteristic of the ground field K,
each quaternion algebra containing zero divisors (i.e., elements x 6= 0 = N(x)) is
isomorphic to K2×2 (cf. [8] 5.4 or [19] 7.6). For char K 6= 2, an isomorphism from
H

−1,1
K

onto K2×2 has been given in 8.7. For char K = 2, the quaternion algebra
satisfying i2 = 1, j2 = j and ij = ji + i is isomorphic to K2×2 via ϕ(i) = ( 0 1

1 0 )
and ϕ(j) = ( 1 0

0 0 ). An obvious involution on K2×2 is given by transposition.
According to the Skolem–Noether Theorem, every other anti-automorphism of the
(centrally simple) algebra K2×2 is of the form σS : X 7→ S−1X ′S . We obtain an
involution σS only if S is symmetric or alternating. We consider βS : (X, Y ) 7→
S−1X ′SY − S−1Y ′SX = S−1(X ′SY − Y ′SX).

If S is symmetric, the images under βS are contained in the one-dimensional
space spanned by S−1 ( 0 1

−1 0 ), and βS describes an alternating form.

If S is alternating, we may assume S = ( 0 1
−1 0 ), and end up with the case

discussed in 8.7. In particular, we could also obtain the results of 8.8 by extending
the field of scalars such that the algebra splits.
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