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1. Introduction

Let Cn×n be the set of n× n complex matrices and let

‖X‖ := max
‖v‖2=1

‖Xv‖2

denote the spectral norm of X ∈ Cn×n . We have the following norm inequalities.

Theorem 1.1. 1. (Heinz-Kato [16, Theorem 3]) If A, B ∈ Cn×n are positive
semi-definite and X ∈ Cn×n , then

‖AtXBt‖ ≤ ‖X‖1−t‖AXB‖t, 0 ≤ t ≤ 1. (1)

2. (Heinz-Kato [17]) If A, B ∈ Cn×n are positive semi-definite and X ∈ Cn×n ,
then

‖AtXB1−t‖ ≤ ‖AX‖t‖XB‖1−t, 0 ≤ t ≤ 1, (2)

3. (McIntosh [23], Bhatia-Davis [4]) For A, B, X ∈ Cn×n ,

‖A∗XB‖ ≤ ‖AA∗X‖1/2‖XBB∗‖1/2. (3)

See [1, 9, 10, 15, 16, 17, 18, 25] for the inequalities and related inequalities.

By continuity it suffices to consider the general linear group GLn(C) instead
of Cn×n . Moreover by the homogeneous property of ‖ · ‖ we can restrict ourselves
to SLn(C).

We will obtain some extensions of the above inequalities and other related
inequalities in the context of semisimple connected noncompact Lie groups.
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2. Log majorization

If we order the singular values of X ∈ Cn×n in descending order

s1(X) ≥ · · · ≥ sn(X),

then (2), for example, can be written as

s1(A
tXB1−t) ≤ st

1(AX)s1−t
1 (XB), 0 ≤ t ≤ 1. (4)

Let Rn
+ denote the set of positive n-tuples and let a, b ∈ Rn

+ . Then a is said to
be log majorized by b , denoted by a ≺log b if

max
σ∈Sn

k∏
i=1

aσ(i) ≤ max
σ∈Sn

k∏
i=1

bσ(i), k = 1, . . . , n− 1,

n∏
i=1

ai =
n∏

i=1

bi,

where Sn denotes the symmetric group on {1, . . . , n} . Write

s(X) := (s1(X), . . . , sn(X)), st(X) := (st
1(X), . . . , st

n(X)), t ≥ 0.

Suppose 1 ≤ k ≤ n . The k th compound of X ∈ Cn×n is defined to be the(
n
k

)
×

(
n
k

)
complex matrix Ck(X) [22] whose elements are defined by

Ck(X)α,β = det X[α|β],

where α, β ∈ Qk,n and Qk,n = {ω = (ω(1), . . . , ω(k)) : 1 ≤ ω(1) < · · · < ω(k) ≤ n}
is the set of increasing sequences of length k chosen from 1, . . . , n . For example,
if n = 3 and k = 2, then

C2(X) =

det X[1, 2|1, 2] det X[1, 2|1, 3] det X[1, 2|2, 3]
det X[1, 3|1, 2] det X[1, 3|1, 3] det X[1, 3|2, 3]
det X[2, 3|1, 2] det X[2, 3|1, 3] det X[2, 3|2, 3]

 .

In general C1(X) = X and Cn(X) = det X . Compound matrix has very nice
properties: (i) Ck(AB) = Ck(A)Ck(B) for all A, B ∈ Cn×n , (ii) the eigenvalues
of Ck(X) are

∏k
j=1 λω(j)(X), ω ∈ Qk,n , where λ1, . . . , λn are the eigenvalues

of X , (iii) the singular values of Ck(X) are
∏k

j=1 sω(j)(X), ω ∈ Qk,n . The
compound matrix Ck(X) is indeed the matrix representation (with respect to some
induced basis) of the induced operator Ck(T ) on the exterior space ∧kCn where
T : Cn → Cn is an operator: Ck(T )v1∧· · ·∧vk = Tv1∧· · ·∧Tvk , v1, . . . , vk ∈ Cn .

The following is an extension of Theorem 1.1. We will prove the second
inequality and the rest are similar.

Theorem 2.1. 1. If A, B ∈ Cn×n are positive semi-definite and X ∈ Cn×n

and 0 ≤ t ≤ 1, then

s(AtXBt) ≺log s1−t(X)st(AXB).
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2. If A, B ∈ Cn×n are positive semi-definite and X ∈ Cn×n and 0 ≤ t ≤ 1,
then

s(AtXB1−t) ≺log st(AX)s1−t(XB).

3. For A, B, X ∈ Cn×n ,

s(A∗XB) ≺log s1/2(AA∗X)s1/2(XBB∗).

Proof. Let Ck(X) ∈ C(n
k)×(n

k)
denote the k th compound of X , k = 1, . . . , n .

Notice that s1(Ck(X)) =
∏k

i=1 si(X), Ck(XY ) = Ck(X)Ck(Y ), X, Y ∈ Cn×n ,
and Ck(X) is positive semi-definite if X is positive semi-definite. So

k∏
i=1

si(A
tXB1−t) = s1(Ck(A

tXB1−t))

= s1(Ck(A)tCk(X)Ck(B)1−t)

≤ st
1(Ck(AX))s1−t

1 (Ck(XB)) by (4)

=
k∏

i=1

st
i(AX)

k∏
i=1

s1−t
i (XB).

When k = n ,

n∏
i=1

si(A
tXB1−t) = | det(AtXB1−t)| = (det A)t | det X| (det B)1−t

and

n∏
i=1

st
i(AX)

n∏
i=1

s1−t
i (XB) = | det(AX)|t | det(XB)|1−t

= (det A)t | det X| (det B)1−t.

3. A pre-order of Kostant

We now take a close look of Theorem 2.1 for X ∈ GLn(C). Let A+ ⊂ GLn(C)
denote the set of all positive diagonal matrices with diagonal entries in descending
order. Recall that the singular value decomposition of X ∈ GLn(C) asserts that
there exist unitary matrices U , V such that

X = Ua+(X)V, (5)

where a+(X) = diag (s1(X), . . . , sn(X)) ∈ A+ . Though U and V in the decom-
position (5) are not unique, a+(X) ∈ A+ is uniquely defined.

Let G be a semisimple noncompact connected Lie group having g as its
Lie algebra. Let g = k + p be a fixed Cartan decomposition of g . Let K ⊂ G
be the analytic subgroup with Lie algebra k . Then Ad K is a maximal compact
subgroup of Ad G . Let a ⊂ p be a maximal abelian subspace. The exponential
map exp : a → A is bijective.
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Set
P := exp p.

The map K × P → G , (k, p) 7→ kp is a diffeomorpism. In particular

G = KP

and every element g ∈ G can be uniquely written as

g = kp, k ∈ K, p ∈ P. (6)

The map Θ : G → G

Θ(kp) = kp−1, k ∈ K, p ∈ P,

is an automorphism of G [19, p.387]. The map ∗ : G → G defined by

g∗ := Θ(g−1) = pk−1, g ∈ G

is clearly a diffeomorphism. Let W be the Weyl group of (a, g) which may be
defined as the quotient of the normalizer of A in K modulo the centralizer of
A in K . The Weyl group operates naturally in a and A and the isomorphism
exp : a → A is a W -isomorphism.

Fix a closed Weyl chamber a+ in a and set A+ := exp a+ . We have [11] the
Cartan decomposition

G = KA+K.

Though k1, k2 ∈ K are not unique in g = k1ak2 (g ∈ G , k1, k2 ∈ K , a ∈ A+ ), the
element a = a+(g) ∈ A+ is unique.

Proposition 3.1. The following maps are continuous.

1. a′+ : p → a+ where for each X ∈ p , a′+(X) is the unique element in a+ such
that a′+(X) = Ad(s)X for some s ∈ K . Indeed it is a contraction.

2. a+ : G → A+ where a+(g) ∈ A+ is the unique element in g = k1a+(g)k2 ∈
G , where k1, k2 ∈ K .

Proof. (1) By Berezin-Gelfand’s result [2], a′+(X+Y ) ∈ a′+(X)+conv Wa′+(Y )
for any X, Y ∈ p . So a′+(X) = a′+(Y + (X − Y )) ∈ a′+(Y ) + conv W (a′+(X − Y )).
Hence a′+(X) − a′+(Y ) ∈ conv Wa′+(X − Y ). Also see [13, Corollary 3.10]. Let
‖ · ‖ be the norm on p induced by the Killing form of g . Since ‖ · ‖ is K -invariant
and strictly convex, ‖a′+(X) − a′+(Y )‖ ≤ ‖a′+(X − Y )‖ = ‖X − Y ‖ . So the map
a′+ is a contraction and thus continuous.

(2) Since the map G → P such that g = kp 7→ p is differentiable and
a+(g) = a+(p), it suffices to establish the continuity of a+ : P → A+ . The map
exp : p → P is a surjective diffeomorphism and the inverse log : P → p is well
defined. So a+ = exp ◦ a′+ ◦ log on P is continuous.

Define a pre-order ≺ in A . Given a, b ∈ A , a ≺ b means

exp(conv W (log a)) ⊂ exp(conv W (log b)).

The set exp(conv W (log a)) is multiplicatively the convex hull of the compact
convex set having the Weyl group orbit W (log a) as its extreme points.
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Example 3.2. Let G = SL(n, C). We pick

k = su(n),

K = SU(n),

p = isu(n), i.e., the set of Hermitian matrices of zero trace

P = the set of positive definite matrices in SLn(C)

A = {diag (a1, . . . , an) : a1, . . . , an > 0,
n∏

i=1

ai = 1},

A+ = {diag (a1, . . . , an) : a1 ≥ · · · ≥ an > 0,
n∏

i=1

ai = 1}.

Let a = diag (a1, . . . , an), b = diag (b1, . . . , bn) ∈ A . Since the Weyl group is
the symmetric group Sn on {1, . . . , n} , conv W (log a) = conv Sn(log a). So a ≺ b
amounts to log a ∈ conv Sn(log b) and by Hardy-Littlewood-Poyla’s theorem, a ≺ b
is equivalent to the log majorization inequalities

k∏
i=1

a[i] ≤
k∏

i=1

b[i], k = 1, . . . , n− 1,

n∏
i=1

a[i] =
n∏

i=1

b[i],

where a[1] ≥ · · · ≥ a[n] denote the rearranged a1, . . . , an in descending order.

The following nice result of Kostant describes the pre-order ≺ in A via
the representations of G . We remark that Kostant’s pre-order [21, p.426] is more
general and is defined in G via the complete multiplicative Jordan decomposition
and hyperbolic elements (see Section 5 and [21]).

Theorem 3.3. (Kostant [21, Theorem 3.1]) Let f, g ∈ A . Then f ≺ g if and
only if |π(f)| ≤ |π(g)| for all finite dimensional representations π of G , where | · |
denotes the spectral radius.

One may derive the log majorization in Example 3.2 via Theorem 3.3 and the
fundamental representations on the exterior space ∧kCn , k = 1, . . . , n − 1, since
|πk(a)| = a1 · · · ak .

4. Extension of the inequalities

Lemma 4.1. Let g ∈ G . Then a+(g) = a+(g∗) = a
1/2
+ (gg∗) = a

1/2
+ (g∗g).

Proof. Let g = kp be the Cartan decomposition of g ∈ G , k ∈ K , p ∈ P .
Notice that g∗ = pk−1 so that a+(g) = a+(p) = a+(g∗). Now g∗g = p2 and

gg∗ = kp2k−1 . So a
1/2
+ (gg∗) = a

1/2
+ (g∗g) = a

1/2
+ (p2). Since each element in P is

K -conjugate to some element in A+ [19, p.320]. Thus a
1/2
+ (p2) = a+(p) = a+(g).
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Lemma 4.2. Let h1, h2 ∈ A+ . For any finite dimensional representation π :
G → GL(V ), |π(h1h2)| = |π(h1)| |π(h2)| , where | · | denotes the spectral radius.

Proof. Since the spectral radius of an operator is invariant under similarity, by
the complete reducibility [5, p.50], [14, p.28] of π , we may assume that π is irre-
ducible. We also use the same notation dπ to denote the irreducible representation
of the complexification gC := g⊕ ig (direct sum) of g , induced by dπ : g → gl(V ),
i.e., dπ(X + iY ) = dπ(X) + i dπ(Y ), X,Y ∈ g .

Let g = k + p be the Cartan decomposition of g . Since u := k + ip is a
compact real form of gC , there is an inner product (unique up to scalar multiple)
on V [6, p.217] such that dπ(u) are skew Hermitian. So dπ(k) are skew Hermitian
and dπ(p) are Hermitian. Thus the elements of

π(P ) = π(exp p) = exp dπ(p)

[11, p.110] are positive definite operators. Since A ⊂ P and is abelian, π(A) is
an abelian subgroup of positive definite operators. Thus the elements of π(A) are
positive diagonal operators under an appropriate orthonormal basis (once fixed and
for all) of V . For each H ∈ a , exp dπ(H) = π(exp H) ∈ π(A) so that dπ(H) are
real diagonal operators. Let H1, H2 ∈ a+ such that h1 = exp H1, h2 = exp H2 ∈
A+ . Then

π(h1)π(h2) = exp dπ(H1) exp dπ(H2) = exp dπ(H1 + H2)

since a is abelian and dπ respects the bracket. Notice that |π(h1)π(h2)| is the
exponent of the largest diagonal entry of the diagonal operator dπ(H1) + dπ(H2).
To arrive at |π(h1h2)| = |π(h1)| |π(h2)| , it is sufficient to show that the sum of the
largest diagonal entries dπ(H1) and dπ(H2) is also a diagonal entry of dπ(H1+H2).
To this end, we will use the theory of highest weights [14, p.108] on the finite
dimensional irreducible representations of the complex semisimple Lie algebra gC
(since g is semisimple).

Let
g = (a⊕ m)⊕

∑
α∈Σ

gα

be the restricted root decomposition of g [11, p.263], where m is the centralizer
of a in k and Σ is the set of restricted roots of (g, a). Let h be the maximal
abelian subalgebra of g containing a . Then a = h ∩ p and we set hk := h ∩ k . It
is known that hC := h ⊕ ih , the complexification of h , is a Cartan subalgebra of
the complex semisimple gC [11, p.259]. Let ∆ be the set of roots of (gC, hC) and
set hR :=

∑
α∈∆ RHα , where Hα ∈ hC is defined by the restriction to hC of the

Killing form, i.e., B(Hα, H) = α(H) for all H ∈ hC . Then hC = hR ⊕ ihR and
hR = a ⊕ ihk . Each root α ∈ ∆ is real-valued on hR [11, p.170]. Let ∆p ⊂ ∆ be
the set of roots which do not vanish identically on a . It is known that Σ is the set
of restrictions of ∆p to a [11, p.263]. Furthermore we can choose a positive root
system ∆+ ⊂ ∆ so that a+ is in the corresponding Weyl chamber (in hR ) [21,
p.431], that is, α(H) ≥ 0 for all H ∈ a+ , α ∈ ∆+ . So any root of ∆+ restricts to
either zero or an element in Σ+ as a linear functional on a [11, p.263].

The diagonal entries of the diagonal operator dπ(H), H ∈ a+ ⊂ hC are the
eigenvalues of dπ(H) so that they are of the form µ(H), where µ are the weights
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of the representation dπ of gC [14, p.107-108]. Let λ ∈ h′ be the highest weight
of dπ , where h′ denotes the dual space of h . From the theory of representation
λ− µ is a sum of positive roots, i.e.,

λ− µ =
∑

α∈∆+

kαα, kα ∈ N.

Since the restrictions of the positive roots in ∆+ to a are either zero or elements in
Σ+ , we conclude λ(H) ≥ µ(H) for all H ∈ a+ . Since a+ is a cone, H1 + H2 ∈ a+ .
Thus λ(H1 +H2) = λ(H1)+λ(H2) is the largest diagonal entry (eigenvalue) of the
diagonal operator dπ(H1 + H2) and λ(H1), and λ(H2) are the largest diagonal
entries (eigenvalues) of dπ(H1) and dπ(H2), respectively.

The following theorem is an extension of Theorem 2.1.

Theorem 4.3. The following are equivalent and are valid.

a+(atgb1−t) ≺ [a+(ag)]t[a+(gb)]1−t, 0 ≤ t ≤ 1, a, b ∈ P, g ∈ G, (7)

a+(atgbt) ≺ [a+(g)]1−t[a+(agb)]t, 0 ≤ t ≤ 1, a, b ∈ P, g ∈ G, (8)

a+(a∗gb) ≺ [a+(aa∗g)]1/2 [a+(gbb∗)]1/2, a, b, g ∈ G. (9)

Proof. We will first establish (7) and then the equivalence among the relations.
Let g ∈ G and write g = k1a+(g)k2 , where a+(g) ∈ A+ , k1, k2 ∈ K . Let π be
any representation of G . Since the elements of dπ(k) are skew Hermitian,

‖π(g)‖ = ‖π(k1a+(g)k2)‖ = ‖π(k1)π(a+(g))π(k2)‖ = ‖π(a+(g))‖.

Since the spectral norm ‖·‖ is invariant under unitary equivalence, and ‖X‖ = |X|
for each positive definite operator X , ‖π(a+(g))‖ = |π(a+(g))| and thus

‖π(g)‖ = ‖π(a+(g))‖ = |π(a+(g))|. (10)

Suppose 0 ≤ t ≤ 1. Since the elements of dπ(p) are Hermitian operators, π(a)
and π(b) are positive definite operators,

|π(a+(atgb1−t))| = ‖π(atgb1−t)‖ by (10)

= ‖πt(a)π(g)π1−t(b)‖
≤ ‖π(a)π(g)‖t‖π(g)π(b)‖1−t by (2)

= ‖π(ag)‖t‖π(gb)‖1−t

= |π(a+(ag))|t |π(a+(gb))|1−t by (10)

The elements of π(A) are positive diagonal operators under an appropriate or-
thonormal basis. Since at

+(ag), a1−t
+ (gb) ∈ A+ , |π(a+(ag))|t = |π(at

+(ag))| and
|π(a+(gb))|1−t = |π(a1−t

+ (gb))| . So

|π(a+(ag))|t |π(a+(gb))|1−t = |π(at
+(ag))| |π(a1−t

+ (gb))|
= |π(at

+(ag) π(a1−t
+ (gb))| by Lemma 4.2

= |π(at
+(ag)a1−t

+ (gb))|.
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As a result, |π(a+(atgb1−t))| ≤ |π(at
+(ag)a1−t

+ (gb))| for any representation π of G .
By Theorem 3.3 we have (7).

(7) ⇒ (8): If 0 ≤ t ≤ 1, then 0 ≤ 1 − t ≤ 1. If a, b ∈ P , so are their
inverses. From (7)

a+(atgbt) = a+((a−1)1−tagb1−(1−t))

≺ a1−t
+ (a−1ag)at

+(agb)

= a1−t
+ (g)at

+(agb),

i.e., (8) is established.

(8) ⇒ (9): Let a, b ∈ G . Write a∗ = kp , b∗ = k′p′ according to their
Cartan decompositions. Then b = p′k′−1 . By (8) with t = 1/2,

a+(a∗gb) = a+(kpgp′k′−1)

= a+(pgp′)

= a+((p−2)1/2(p2g)(p′2)1/2)

≺ a
1/2
+ (p2g)a

1/2
+ (p−2p2gp′

2
)

= a
1/2
+ (p2g)a

1/2
+ (gp′

2
).

Since aa∗ = p2 and bb∗ = p′2 , (9) follows.

(9) ⇒ (7): Let a, b ∈ P . For t = 0, 1, (7) is trivial and for t = 1/2, it
follows from (9). We will prove by induction for all t = k

2n , where k = 0, 1, . . . , 2n

[3]. Let t = 2k+1
2n . Then t = s + ρ , where s = k

2n−1 and ρ = 1
2n . Suppose that (7)

is valid for all dyadic rationals with denominator 2n−1 . Then by induction and
(9), with λ := s + 2ρ , we have

a+(atgb1−t) = a+(aρ(asgb1−λ)bρ)

≺ a
1/2
+ (a2ρasgb1−λ)a

1/2
+ (asgb1−λb2ρ)

= a
1/2
+ (aλgb1−λ)a

1/2
+ (asgb1−s)

≺ a
λ/2
+ (ag)a

(1−λ)/2
+ (gb)a

s/2
+ (ag)a

(1−s)/2
+ (gb)

= a
(λ+s)/2
+ (ag)a

1−(λ+s)/2
+ (gb)

= at
+(ag)a1−t

+ (gb).

The general case follows from continuity of the spectral radius and Theorem 3.3.

Furuta’s inequality [8] asserts that if A, B ∈ Cn×n are positive semi-definite,
then

‖AtBt‖ ≤ ‖AB‖t, 0 ≤ t ≤ 1. (11)

It is equivalent to say that

‖AsBs‖ ≥ ‖AB‖s, s ≥ 1. (12)

See [1, 7, 24]. We have the following extension of Furuta’s inequality.
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Corollary 4.4. Let a, b ∈ P . Then

1. a+(atbt) ≺ at
+(ab), 0 ≤ t ≤ 1.

2. at
+(ab) ≺ a+(atbt), t ≥ 1.

Hence ϕ(t) = [a+(a1/tb1/t)]t is a decreasing function on t > 0 with respect to the
partial order ≺ , i.e., ϕ(s) ≺ ϕ(t) if s ≥ t > 0.

Proof. By setting g to be the identity in (8) we have a+(atbt) ≺ at
+(ab),

0 ≤ t ≤ 1. When t ≥ 1, a+(a1/tb1/t) ≺ a
1/t
+ (ab). Then replace a, b by at and bt

respectively to have a+(ab) ≺ a
1/t
+ (atbt). Let s ≥ t > 0. Then s/t > 1 and

a+(asbs) = a+((at)s/t(bt)s/t) = a
s/t
+ (atbt)

so that ϕ(t) is decreasing on t > 0.

Corollary 4.5. For f, g ∈ G, a+(fg) ≺ a+(f)a+(g).

Proof. By (9),

a+(fg) ≺ a
1/2
+ (f ∗f)a

1/2
+ (gg∗).

Use Lemma 4.1 to obtain a+(fg) ≺ a+(f)a+(g).

Remark 4.6. When G = GLn(C), by Corollary 4.5 the singular values of a
product AB is log majorized by the product of the singular values of A, B ∈ Cn×n ,
assuming that singular values are all arranged in descending order.

Nakamoto [9] showed that (12) holds for normal matrices A, B ∈ Cn×n and
natural numbers s . An element g ∈ G is said to be normal if gg∗ = g∗g . It is
equivalent to say that kp = pk , where g = kp is the Cartan decomposition of g .
Since Cartan decomposition is unique up to conjugation [11, p.183], normality is
independent of the choice of K and P . Clearly the elements of P are normal.
Normality is reduced to the usual normality when G = SLn(C). Now we extend
Nakamoto’s result.

Corollary 4.7. Let f, g ∈ G be normal. Then an
+(fg) ≺ a+(fngn), n ∈ N .

Proof. Let f = kp , g = k′p′ be the Cartan decompositions of f, g ∈ G = KP .
Since f, g are normal, we have kp = pk and k′p′ = p′k′ . Then

an
+(fg) = an

+(kpk′p′) = an
+(kpp′k′) = an

+(pp′).

By Corollary 4.4,

an
+(pp′) ≺ a+(pnp′n) = a+(knpnp′nk′n) = a+((kp)n(k′p′)n) = a+(fngn).
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5. Inequalities for hyperbolic components

Furuta’s inequality (11) is equivalent to the following inequality: for any positive
semi-definite A, B ∈ Cn×n ,

λ1(A
tBt) ≤ λt

1(AB), 0 ≤ t ≤ 1. (13)

One can deduce the equivalence by

|AB| = λ1(AB), (14)

where λ1(AB) is the largest eigenvalue of the matrix AB whose eigenvalues are
those of the positive semi-definite B1/2AB1/2 .

Inequality (13) concerns about the largest eigenvalues of AB and AtBt

when A, B ∈ Cn×n are positive semi-definite. Since the eigenvalues of AB are
nonnegative, (13) can be viewed as a result on the largest eigenvalue modulus.
So we will consider the hyperbolic component of g ∈ G of a semisimple connected
noncompact Lie group G for an appropriate extension.

An element X ∈ g is called real semisimple if ad X ∈ End (g) is diagonal-
izable over R . It is equivalent to say that ad (X) is diagonalizable over C and
the eigenvalues of ad (X) are real. An element X ∈ g is called nilpotent if ad X
is nilpotent. An element g ∈ G is called hyperbolic if g = exp(X) where X ∈ g is
real semisimple and is called unipotent if g = exp(X) where X ∈ g is nilpotent.
An element g ∈ G is elliptic if Ad(g) ∈ Aut (g) is diagonalizable over C with
eigenvalues of modulus 1. The complete multiplicative Jordan decomposition [21,
Proposition 2.1] for G asserts that each g ∈ G can be uniquely written as g = ehu,
where e is elliptic, h is hyperbolic and u is unipotent and the three elements e ,
h , u commute. We write

g = e(g)h(g)u(g).

It turns out that h ∈ G is hyperbolic if and only if it is conjugate to a
unique element b(h) ∈ A+ [21, Proposition 2.4]. Denote

b(g) := b(h(g)).

It is known that [21, Proposition 6.2] P 2 is the set of all hyperbolic elements and
b(g) ≺ a+(g) for all g ∈ G [21, Theorem 5.4].

Example 5.1. When G = SLn(C), g = ehu is the usual complete multiplica-
tive Jordan decomposition [11, p.431] and

b(g) = diag (|λ1|, . . . , |λn|),

where λ1, . . . , λn are the eigenvalues of g with descending moduli.

Lemma 5.2. 1. Let f, g ∈ G . Then h(fg) = g−1h(gf)g and b(fg) = b(gf).

2. If f ∈ P , then b(f) = a+(f). So a+(g∗g) = a+(gg∗) = b(g∗g) = b(gg∗) for
all g ∈ G .

3. Let f, g ∈ P . Then b(f 2g2) = a2
+(fg) = a2

+(gf).
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Proof. (1) Let fg = ehu be the CMJD of fg where f, g ∈ G . Then
gf = g(fg)g−1 = (geg−1)(ghg−1)(gug−1). By the uniqueness of CMJD, h(fg) =
g−1h(gf)g follows immediately. Now b(fg) = b(h(fg)) = b(g−1h(gf)g) = b(gf).

(2) Since P is K -conjugate to some element in A+ , b(f) = a+(f).

(3) By (1) h(f 2g2) = g−1h(gf2g)g so that

b(f 2g2) = b(g−1h(gf2g)g) = b(gf2g) = b((gf)(gf)∗).

The element (gf)(gf)∗ is in P so that by (2) and Lemma 4.1

b(f 2g2) = b((gf)(gf)∗) = a+((gf)(gf)∗) = a2
+(fg).

Theorem 5.3. Let a, b ∈ P . The following are equivalent and are valid.

1. a+(atbt) ≺ at
+(ab), 0 ≤ t ≤ 1.

2. b(f tgt) ≺ bt(fg), 0 ≤ t ≤ 1.

In other words, for any hyperbolic element ` ∈ G , if we write ` = fg , where
f, g ∈ P , then b(f tgt) ≺ bt(`), 0 ≤ t ≤ 1.

Proof. Statement (1) is Corollary 4.4 (1). The set of all hyperbolic elements
is P 2 . Since f, g ∈ P , f t, gt ∈ P and thus fg, f tgt ∈ P 2 are hyperbolic for all
t ∈ R . By Lemma 5.2 and Corollary 4.4

b1/2(f 2tg2t) = a+(f tgt) ≺ at
+(fg) = bt/2(f 2g2).

So b(f 2tg2t) ≺ bt(f 2g2). Then replace f 2 and g2 by f and g , respectively, to
obtain the desired result.

Conversely, suppose that b(f tgt) ≺ bt(fg) for all 0 ≤ t ≤ 1, where f, g ∈ P .
Then

a+(f tgt) = b1/2(f 2tg2t) ≺ bt/2(f 2g2) = at
+(fg).
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