Heinz-Kato's Inequalities for Lie Groups

Tin-Yau Tam

Communicated by E. B. Vinberg

Abstract. Extensions of Heinz-Kato's inequalities and related inequalities are obtained for semisimple connected noncompact Lie groups. Mathematics Subject Index 2000:Primary 22E46; Secondary 15A45. Keywords and phrases: Heinz-Kato's inequalities, McIntosh's inequality, Cartan decomposition, Kostant's pre-order.

1. Introduction

Let $\mathbb{C}_{n \times n}$ be the set of $n \times n$ complex matrices and let

$$||X|| := \max_{\|v\|_2=1} ||Xv||_2$$

denote the spectral norm of $X \in \mathbb{C}_{n \times n}$. We have the following norm inequalities.

Theorem 1.1. 1. (Heinz-Kato [16, Theorem 3]) If $A, B \in \mathbb{C}_{n \times n}$ are positive semi-definite and $X \in \mathbb{C}_{n \times n}$, then

$$\|A^{t}XB^{t}\| \le \|X\|^{1-t} \|AXB\|^{t}, \qquad 0 \le t \le 1.$$
(1)

2. (Heinz-Kato [17]) If $A, B \in \mathbb{C}_{n \times n}$ are positive semi-definite and $X \in \mathbb{C}_{n \times n}$, then

$$\|A^{t}XB^{1-t}\| \le \|AX\|^{t}\|XB\|^{1-t}, \qquad 0 \le t \le 1,$$
(2)

3. (McIntosh [23], Bhatia-Davis [4]) For $A, B, X \in \mathbb{C}_{n \times n}$,

$$||A^*XB|| \le ||AA^*X||^{1/2} ||XBB^*||^{1/2}.$$
(3)

See [1, 9, 10, 15, 16, 17, 18, 25] for the inequalities and related inequalities. By continuity it suffices to consider the general linear group $\operatorname{GL}_n(\mathbb{C})$ instead of $\mathbb{C}_{n \times n}$. Moreover by the homogeneous property of $\|\cdot\|$ we can restrict ourselves to $\operatorname{SL}_n(\mathbb{C})$.

We will obtain some extensions of the above inequalities and other related inequalities in the context of semisimple connected noncompact Lie groups.

ISSN 0949–5932 / \$2.50 © Heldermann Verlag

2. Log majorization

If we order the singular values of $X \in \mathbb{C}_{n \times n}$ in descending order

$$s_1(X) \ge \cdots \ge s_n(X)$$

then (2), for example, can be written as

$$s_1(A^t X B^{1-t}) \le s_1^t(A X) s_1^{1-t}(X B), \qquad 0 \le t \le 1.$$
 (4)

Let \mathbb{R}^n_+ denote the set of positive *n*-tuples and let $a, b \in \mathbb{R}^n_+$. Then *a* is said to be *log majorized* by *b*, denoted by $a \prec_{\log} b$ if

$$\max_{\sigma \in S_n} \prod_{i=1}^k a_{\sigma(i)} \leq \max_{\sigma \in S_n} \prod_{i=1}^k b_{\sigma(i)}, \quad k = 1, \dots, n-1,$$
$$\prod_{i=1}^n a_i = \prod_{i=1}^n b_i,$$

where S_n denotes the symmetric group on $\{1, \ldots, n\}$. Write

$$s(X) := (s_1(X), \dots, s_n(X)), \quad s^t(X) := (s_1^t(X), \dots, s_n^t(X)), \quad t \ge 0.$$

Suppose $1 \le k \le n$. The *k*th compound of $X \in \mathbb{C}_{n \times n}$ is defined to be the $\binom{n}{k} \times \binom{n}{k}$ complex matrix $C_k(X)$ [22] whose elements are defined by

$$C_k(X)_{\alpha,\beta} = \det X[\alpha|\beta],$$

where $\alpha, \beta \in Q_{k,n}$ and $Q_{k,n} = \{\omega = (\omega(1), \dots, \omega(k)) : 1 \le \omega(1) < \dots < \omega(k) \le n\}$ is the set of increasing sequences of length k chosen from $1, \dots, n$. For example, if n = 3 and k = 2, then

$$C_2(X) = \begin{pmatrix} \det X[1,2|1,2] & \det X[1,2|1,3] & \det X[1,2|2,3] \\ \det X[1,3|1,2] & \det X[1,3|1,3] & \det X[1,3|2,3] \\ \det X[2,3|1,2] & \det X[2,3|1,3] & \det X[2,3|2,3] \end{pmatrix}.$$

In general $C_1(X) = X$ and $C_n(X) = \det X$. Compound matrix has very nice properties: (i) $C_k(AB) = C_k(A)C_k(B)$ for all $A, B \in \mathbb{C}_{n \times n}$, (ii) the eigenvalues of $C_k(X)$ are $\prod_{j=1}^k \lambda_{\omega(j)}(X)$, $\omega \in Q_{k,n}$, where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of X, (iii) the singular values of $C_k(X)$ are $\prod_{j=1}^k s_{\omega(j)}(X)$, $\omega \in Q_{k,n}$. The compound matrix $C_k(X)$ is indeed the matrix representation (with respect to some induced basis) of the induced operator $C_k(T)$ on the exterior space $\wedge^k \mathbb{C}^n$ where $T: \mathbb{C}^n \to \mathbb{C}^n$ is an operator: $C_k(T)v_1 \wedge \cdots \wedge v_k = Tv_1 \wedge \cdots \wedge Tv_k, v_1, \ldots, v_k \in \mathbb{C}^n$.

The following is an extension of Theorem 1.1. We will prove the second inequality and the rest are similar.

Theorem 2.1. 1. If $A, B \in \mathbb{C}_{n \times n}$ are positive semi-definite and $X \in \mathbb{C}_{n \times n}$ and $0 \le t \le 1$, then

$$s(A^tXB^t) \prec_{\log} s^{1-t}(X)s^t(AXB).$$

2. If $A, B \in \mathbb{C}_{n \times n}$ are positive semi-definite and $X \in \mathbb{C}_{n \times n}$ and $0 \le t \le 1$, then

$$s(A^tXB^{1-t}) \prec_{\log} s^t(AX)s^{1-t}(XB).$$

3. For $A, B, X \in \mathbb{C}_{n \times n}$,

$$s(A^*XB) \prec_{\log} s^{1/2}(AA^*X)s^{1/2}(XBB^*).$$

Proof. Let $C_k(X) \in \mathbb{C}_{\binom{n}{k} \times \binom{n}{k}}$ denote the *k*th compound of *X*, k = 1, ..., n. Notice that $s_1(C_k(X)) = \prod_{i=1}^k s_i(X), C_k(XY) = C_k(X)C_k(Y), X, Y \in \mathbb{C}_{n \times n}$, and $C_k(X)$ is positive semi-definite if *X* is positive semi-definite. So

$$\begin{split} \prod_{i=1}^{k} s_i(A^t X B^{1-t}) &= s_1(C_k(A^t X B^{1-t})) \\ &= s_1(C_k(A)^t C_k(X) C_k(B)^{1-t}) \\ &\leq s_1^t(C_k(AX)) s_1^{1-t}(C_k(XB)) \qquad \text{by (4)} \\ &= \prod_{i=1}^{k} s_i^t(AX) \prod_{i=1}^{k} s_i^{1-t}(XB). \end{split}$$

When k = n,

$$\prod_{i=1}^{n} s_i (A^t X B^{1-t}) = |\det(A^t X B^{1-t})| = (\det A)^t |\det X| (\det B)^{1-t}$$

and

$$\prod_{i=1}^{n} s_{i}^{t}(AX) \prod_{i=1}^{n} s_{i}^{1-t}(XB) = |\det(AX)|^{t} |\det(XB)|^{1-t}$$
$$= (\det A)^{t} |\det X| (\det B)^{1-t}.$$

3. A pre-order of Kostant

We now take a close look of Theorem 2.1 for $X \in \operatorname{GL}_n(\mathbb{C})$. Let $A_+ \subset \operatorname{GL}_n(\mathbb{C})$ denote the set of all positive diagonal matrices with diagonal entries in descending order. Recall that the singular value decomposition of $X \in \operatorname{GL}_n(\mathbb{C})$ asserts that there exist unitary matrices U, V such that

$$X = Ua_+(X)V,\tag{5}$$

where $a_+(X) = \text{diag}(s_1(X), \ldots, s_n(X)) \in A_+$. Though U and V in the decomposition (5) are not unique, $a_+(X) \in A_+$ is uniquely defined.

Let G be a semisimple noncompact connected Lie group having \mathfrak{g} as its Lie algebra. Let $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ be a fixed Cartan decomposition of \mathfrak{g} . Let $K \subset G$ be the analytic subgroup with Lie algebra \mathfrak{k} . Then Ad K is a maximal compact subgroup of Ad G. Let $\mathfrak{a} \subset \mathfrak{p}$ be a maximal abelian subspace. The exponential map exp : $\mathfrak{a} \to A$ is bijective. Set

$$P := \exp \mathfrak{p}.$$

The map $K \times P \to G$, $(k, p) \mapsto kp$ is a diffeomorphism. In particular

$$G = KP$$

and every element $g \in G$ can be uniquely written as

$$g = kp, \qquad k \in K, \ p \in P. \tag{6}$$

The map $\Theta: G \to G$

$$\Theta(kp) = kp^{-1}, \quad k \in K, \ p \in P$$

is an automorphism of G [19, p.387]. The map $*: G \to G$ defined by

$$g^* := \Theta(g^{-1}) = pk^{-1}, \qquad g \in G$$

is clearly a diffeomorphism. Let W be the Weyl group of $(\mathfrak{a}, \mathfrak{g})$ which may be defined as the quotient of the normalizer of A in K modulo the centralizer of A in K. The Weyl group operates naturally in \mathfrak{a} and A and the isomorphism $\exp : \mathfrak{a} \to A$ is a W-isomorphism.

Fix a *closed* Weyl chamber \mathfrak{a}_+ in \mathfrak{a} and set $A_+ := \exp \mathfrak{a}_+$. We have [11] the Cartan decomposition

$$G = KA_+K.$$

Though $k_1, k_2 \in K$ are not unique in $g = k_1 a k_2$ ($g \in G, k_1, k_2 \in K, a \in A_+$), the element $a = a_+(g) \in A_+$ is unique.

Proposition 3.1. The following maps are continuous.

- 1. $a'_+: \mathfrak{p} \to \mathfrak{a}_+$ where for each $X \in \mathfrak{p}$, $a'_+(X)$ is the unique element in \mathfrak{a}_+ such that $a'_+(X) = \operatorname{Ad}(s)X$ for some $s \in K$. Indeed it is a contraction.
- 2. $a_+: G \to A_+$ where $a_+(g) \in A_+$ is the unique element in $g = k_1 a_+(g) k_2 \in G$, where $k_1, k_2 \in K$.

Proof. (1) By Berezin-Gelfand's result [2], $a'_+(X+Y) \in a'_+(X) + \operatorname{conv} Wa'_+(Y)$ for any $X, Y \in \mathfrak{p}$. So $a'_+(X) = a'_+(Y + (X - Y)) \in a'_+(Y) + \operatorname{conv} W(a'_+(X - Y))$. Hence $a'_+(X) - a'_+(Y) \in \operatorname{conv} Wa'_+(X - Y)$. Also see [13, Corollary 3.10]. Let $\|\cdot\|$ be the norm on \mathfrak{p} induced by the Killing form of \mathfrak{g} . Since $\|\cdot\|$ is K-invariant and strictly convex, $\|a'_+(X) - a'_+(Y)\| \leq \|a'_+(X - Y)\| = \|X - Y\|$. So the map a'_+ is a contraction and thus continuous.

(2) Since the map $G \to P$ such that $g = kp \mapsto p$ is differentiable and $a_+(g) = a_+(p)$, it suffices to establish the continuity of $a_+ : P \to A_+$. The map $\exp : \mathfrak{p} \to P$ is a surjective diffeomorphism and the inverse $\log : P \to \mathfrak{p}$ is well defined. So $a_+ = \exp \circ a'_+ \circ \log$ on P is continuous.

Define a pre-order \prec in A. Given $a, b \in A, a \prec b$ means

 $\exp(\operatorname{conv} W(\log a)) \subset \exp(\operatorname{conv} W(\log b)).$

The set $\exp(\operatorname{conv} W(\log a))$ is multiplicatively the convex hull of the compact convex set having the Weyl group orbit $W(\log a)$ as its extreme points.

Example 3.2. Let $G = SL(n, \mathbb{C})$. We pick

 $\begin{aligned} \mathfrak{k} &= \mathfrak{su}(n), \\ K &= \mathrm{SU}(n), \\ \mathfrak{p} &= i\mathfrak{su}(n), \text{ i.e., the set of Hermitian matrices of zero trace} \\ P &= \text{ the set of positive definite matrices in } \mathrm{SL}_n(\mathbb{C}) \\ A &= \{ \mathrm{diag}\,(a_1, \ldots, a_n) : a_1, \ldots, a_n > 0, \ \prod_{i=1}^n a_i = 1 \}, \end{aligned}$

$$A_+ = \{ \text{diag}(a_1, \dots, a_n) : a_1 \ge \dots \ge a_n > 0, \prod_{i=1}^n a_i = 1 \}.$$

Let $a = \text{diag}(a_1, \ldots, a_n), b = \text{diag}(b_1, \ldots, b_n) \in A$. Since the Weyl group is the symmetric group S_n on $\{1, \ldots, n\}$, conv $W(\log a) = \text{conv} S_n(\log a)$. So $a \prec b$ amounts to $\log a \in \text{conv} S_n(\log b)$ and by Hardy-Littlewood-Poyla's theorem, $a \prec b$ is equivalent to the log majorization inequalities

$$\prod_{i=1}^{k} a_{[i]} \leq \prod_{i=1}^{k} b_{[i]}, \quad k = 1, \dots, n-1,$$

$$\prod_{i=1}^{n} a_{[i]} = \prod_{i=1}^{n} b_{[i]},$$

where $a_{[1]} \geq \cdots \geq a_{[n]}$ denote the rearranged a_1, \ldots, a_n in descending order.

The following nice result of Kostant describes the pre-order \prec in A via the representations of G. We remark that Kostant's pre-order [21, p.426] is more general and is defined in G via the complete multiplicative Jordan decomposition and hyperbolic elements (see Section 5 and [21]).

Theorem 3.3. (Kostant [21, Theorem 3.1]) Let $f, g \in A$. Then $f \prec g$ if and only if $|\pi(f)| \leq |\pi(g)|$ for all finite dimensional representations π of G, where $|\cdot|$ denotes the spectral radius.

One may derive the log majorization in Example 3.2 via Theorem 3.3 and the fundamental representations on the exterior space $\wedge^k \mathbb{C}^n$, $k = 1, \ldots, n-1$, since $|\pi_k(a)| = a_1 \cdots a_k$.

4. Extension of the inequalities

Lemma 4.1. Let $g \in G$. Then $a_+(g) = a_+(g^*) = a_+^{1/2}(gg^*) = a_+^{1/2}(g^*g)$.

Proof. Let g = kp be the Cartan decomposition of $g \in G$, $k \in K$, $p \in P$. Notice that $g^* = pk^{-1}$ so that $a_+(g) = a_+(p) = a_+(g^*)$. Now $g^*g = p^2$ and $gg^* = kp^2k^{-1}$. So $a_+^{1/2}(gg^*) = a_+^{1/2}(g^*g) = a_+^{1/2}(p^2)$. Since each element in P is K-conjugate to some element in A_+ [19, p.320]. Thus $a_+^{1/2}(p^2) = a_+(p) = a_+(g)$. **Lemma 4.2.** Let $h_1, h_2 \in A_+$. For any finite dimensional representation $\pi : G \to \operatorname{GL}(V), |\pi(h_1h_2)| = |\pi(h_1)| |\pi(h_2)|$, where $|\cdot|$ denotes the spectral radius.

Proof. Since the spectral radius of an operator is invariant under similarity, by the complete reducibility [5, p.50], [14, p.28] of π , we may assume that π is irreducible. We also use the same notation $d\pi$ to denote the irreducible representation of the complexification $\mathfrak{g}_{\mathbb{C}} := \mathfrak{g} \oplus i\mathfrak{g}$ (direct sum) of \mathfrak{g} , induced by $d\pi : \mathfrak{g} \to \mathfrak{gl}(V)$, i.e., $d\pi(X + iY) = d\pi(X) + i d\pi(Y)$, $X, Y \in \mathfrak{g}$.

Let $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ be the Cartan decomposition of \mathfrak{g} . Since $\mathfrak{u} := \mathfrak{k} + i\mathfrak{p}$ is a compact real form of $\mathfrak{g}_{\mathbb{C}}$, there is an inner product (unique up to scalar multiple) on V [6, p.217] such that $d\pi(\mathfrak{u})$ are skew Hermitian. So $d\pi(\mathfrak{k})$ are skew Hermitian and $d\pi(\mathfrak{p})$ are Hermitian. Thus the elements of

$$\pi(P) = \pi(\exp\mathfrak{p}) = \exp d\pi(\mathfrak{p})$$

[11, p.110] are positive definite operators. Since $A \subset P$ and is abelian, $\pi(A)$ is an abelian subgroup of positive definite operators. Thus the elements of $\pi(A)$ are positive diagonal operators under an appropriate orthonormal basis (once fixed and for all) of V. For each $H \in \mathfrak{a}$, $\exp d\pi(H) = \pi(\exp H) \in \pi(A)$ so that $d\pi(H)$ are real diagonal operators. Let $H_1, H_2 \in \mathfrak{a}_+$ such that $h_1 = \exp H_1, h_2 = \exp H_2 \in$ A_+ . Then

$$\pi(h_1)\pi(h_2) = \exp d\pi(H_1) \exp d\pi(H_2) = \exp d\pi(H_1 + H_2)$$

since \mathfrak{a} is abelian and $d\pi$ respects the bracket. Notice that $|\pi(h_1)\pi(h_2)|$ is the exponent of the largest diagonal entry of the diagonal operator $d\pi(H_1) + d\pi(H_2)$. To arrive at $|\pi(h_1h_2)| = |\pi(h_1)| |\pi(h_2)|$, it is sufficient to show that the sum of the largest diagonal entries $d\pi(H_1)$ and $d\pi(H_2)$ is also a diagonal entry of $d\pi(H_1+H_2)$. To this end, we will use the theory of highest weights [14, p.108] on the finite dimensional irreducible representations of the complex semisimple Lie algebra $\mathfrak{g}_{\mathbb{C}}$ (since \mathfrak{g} is semisimple).

Let

$$\mathfrak{g} = (\mathfrak{a} \oplus \mathfrak{m}) \oplus \sum_{\alpha \in \Sigma} \mathfrak{g}_{lpha}$$

be the restricted root decomposition of \mathfrak{g} [11, p.263], where \mathfrak{m} is the centralizer of \mathfrak{a} in \mathfrak{k} and Σ is the set of restricted roots of $(\mathfrak{g}, \mathfrak{a})$. Let \mathfrak{h} be the maximal abelian subalgebra of \mathfrak{g} containing \mathfrak{a} . Then $\mathfrak{a} = \mathfrak{h} \cap \mathfrak{p}$ and we set $\mathfrak{h}_{\mathfrak{k}} := \mathfrak{h} \cap \mathfrak{k}$. It is known that $\mathfrak{h}_{\mathbb{C}} := \mathfrak{h} \oplus \mathfrak{i}\mathfrak{h}$, the complexification of \mathfrak{h} , is a Cartan subalgebra of the complex semisimple $\mathfrak{g}_{\mathbb{C}}$ [11, p.259]. Let Δ be the set of roots of $(\mathfrak{g}_{\mathbb{C}}, \mathfrak{h}_{\mathbb{C}})$ and set $\mathfrak{h}_{\mathbb{R}} := \sum_{\alpha \in \Delta} \mathbb{R} H_{\alpha}$, where $H_{\alpha} \in \mathfrak{h}_{\mathbb{C}}$ is defined by the restriction to $\mathfrak{h}_{\mathbb{C}}$ of the Killing form, i.e., $B(H_{\alpha}, H) = \alpha(H)$ for all $H \in \mathfrak{h}_{\mathbb{C}}$. Then $\mathfrak{h}_{\mathbb{C}} = \mathfrak{h}_{\mathbb{R}} \oplus \mathfrak{i}\mathfrak{h}_{\mathbb{R}}$ and $\mathfrak{h}_{\mathbb{R}} = \mathfrak{a} \oplus \mathfrak{i}\mathfrak{h}_{\mathfrak{k}}$. Each root $\alpha \in \Delta$ is real-valued on $\mathfrak{h}_{\mathbb{R}}$ [11, p.170]. Let $\Delta_{\mathfrak{p}} \subset \Delta$ be the set of roots which do not vanish identically on \mathfrak{a} . It is known that Σ is the set of restrictions of $\Delta_{\mathfrak{p}}$ to \mathfrak{a} [11, p.263]. Furthermore we can choose a positive root system $\Delta^+ \subset \Delta$ so that \mathfrak{a}_+ is in the corresponding Weyl chamber (in $\mathfrak{h}_{\mathbb{R}}$) [21, p.431], that is, $\alpha(H) \geq 0$ for all $H \in \mathfrak{a}_+$, $\alpha \in \Delta^+$. So any root of Δ^+ restricts to either zero or an element in Σ^+ as a linear functional on \mathfrak{a} [11, p.263].

The diagonal entries of the diagonal operator $d\pi(H)$, $H \in \mathfrak{a}_+ \subset \mathfrak{h}_{\mathbb{C}}$ are the eigenvalues of $d\pi(H)$ so that they are of the form $\mu(H)$, where μ are the weights

of the representation $d\pi$ of $\mathfrak{g}_{\mathbb{C}}$ [14, p.107-108]. Let $\lambda \in \mathfrak{h}'$ be the highest weight of $d\pi$, where \mathfrak{h}' denotes the dual space of \mathfrak{h} . From the theory of representation $\lambda - \mu$ is a sum of positive roots, i.e.,

$$\lambda - \mu = \sum_{\alpha \in \Delta^+} k_\alpha \alpha, \qquad k_\alpha \in \mathbb{N}.$$

Since the restrictions of the positive roots in Δ^+ to \mathfrak{a} are either zero or elements in Σ^+ , we conclude $\lambda(H) \ge \mu(H)$ for all $H \in \mathfrak{a}_+$. Since \mathfrak{a}_+ is a cone, $H_1 + H_2 \in \mathfrak{a}_+$. Thus $\lambda(H_1 + H_2) = \lambda(H_1) + \lambda(H_2)$ is the largest diagonal entry (eigenvalue) of the diagonal operator $d\pi(H_1 + H_2)$ and $\lambda(H_1)$, and $\lambda(H_2)$ are the largest diagonal entries (eigenvalues) of $d\pi(H_1)$ and $d\pi(H_2)$, respectively.

The following theorem is an extension of Theorem 2.1.

Theorem 4.3. The following are equivalent and are valid.

$$a_{+}(a^{t}gb^{1-t}) \prec [a_{+}(ag)]^{t}[a_{+}(gb)]^{1-t}, \ 0 \le t \le 1, \ a, b \in P, \ g \in G,$$
 (7)

$$a_{+}(a^{t}gb^{t}) \prec [a_{+}(g)]^{1-t}[a_{+}(agb)]^{t}, \ 0 \le t \le 1, \ a, b \in P, \ g \in G,$$
(8)

$$a_{+}(a^{*}gb) \prec [a_{+}(aa^{*}g)]^{1/2} [a_{+}(gbb^{*})]^{1/2}, \quad a, b, g \in G.$$
 (9)

Proof. We will first establish (7) and then the equivalence among the relations. Let $g \in G$ and write $g = k_1 a_+(g) k_2$, where $a_+(g) \in A_+$, $k_1, k_2 \in K$. Let π be any representation of G. Since the elements of $d\pi(\mathfrak{k})$ are skew Hermitian,

$$\|\pi(g)\| = \|\pi(k_1a_+(g)k_2)\| = \|\pi(k_1)\pi(a_+(g))\pi(k_2)\| = \|\pi(a_+(g))\|.$$

Since the spectral norm $\|\cdot\|$ is invariant under unitary equivalence, and $\|X\| = |X|$ for each positive definite operator X, $\|\pi(a_+(g))\| = |\pi(a_+(g))|$ and thus

$$\|\pi(g)\| = \|\pi(a_+(g))\| = |\pi(a_+(g))|.$$
(10)

Suppose $0 \le t \le 1$. Since the elements of $d\pi(\mathfrak{p})$ are Hermitian operators, $\pi(a)$ and $\pi(b)$ are positive definite operators,

$$\begin{aligned} |\pi(a_{+}(a^{t}gb^{1-t}))| &= \|\pi(a^{t}gb^{1-t})\| & \text{by (10)} \\ &= \|\pi^{t}(a)\pi(g)\pi^{1-t}(b)\| \\ &\leq \|\pi(a)\pi(g)\|^{t}\|\pi(g)\pi(b)\|^{1-t} & \text{by (2)} \\ &= \|\pi(ag)\|^{t}\|\pi(gb)\|^{1-t} \\ &= |\pi(a_{+}(ag))|^{t}|\pi(a_{+}(gb))|^{1-t} & \text{by (10)} \end{aligned}$$

The elements of $\pi(A)$ are positive diagonal operators under an appropriate orthonormal basis. Since $a_+^t(ag), a_+^{1-t}(gb) \in A_+, \ |\pi(a_+(ag))|^t = |\pi(a_+^t(ag))|$ and $|\pi(a_+(gb))|^{1-t} = |\pi(a_+^{1-t}(gb))|$. So

$$\begin{aligned} |\pi(a_{+}(ag))|^{t} |\pi(a_{+}(gb))|^{1-t} &= |\pi(a_{+}^{t}(ag))| |\pi(a_{+}^{1-t}(gb))| \\ &= |\pi(a_{+}^{t}(ag) \pi(a_{+}^{1-t}(gb))| \\ &= |\pi(a_{+}^{t}(ag)a_{+}^{1-t}(gb))|. \end{aligned}$$
 by Lemma 4.2

TAM

As a result, $|\pi(a_+(a^tgb^{1-t}))| \leq |\pi(a_+^t(ag)a_+^{1-t}(gb))|$ for any representation π of G. By Theorem 3.3 we have (7).

 $(7) \Rightarrow (8)$: If $0 \leq t \leq 1$, then $0 \leq 1-t \leq 1$. If $a,b \in P,$ so are their inverses. From (7)

$$\begin{aligned} a_{+}(a^{t}gb^{t}) &= a_{+}((a^{-1})^{1-t}agb^{1-(1-t)}) \\ &\prec a_{+}^{1-t}(a^{-1}ag)a_{+}^{t}(agb) \\ &= a_{+}^{1-t}(g)a_{+}^{t}(agb), \end{aligned}$$

i.e., (8) is established.

(8) \Rightarrow (9): Let $a, b \in G$. Write $a^* = kp$, $b^* = k'p'$ according to their Cartan decompositions. Then $b = p'k'^{-1}$. By (8) with t = 1/2,

$$\begin{aligned} a_{+}(a^{*}gb) &= a_{+}(kpgp'k'^{-1}) \\ &= a_{+}(pgp') \\ &= a_{+}((p^{-2})^{1/2}(p^{2}g)(p'^{2})^{1/2}) \\ &\prec a_{+}^{1/2}(p^{2}g)a_{+}^{1/2}(p^{-2}p^{2}gp'^{2}) \\ &= a_{+}^{1/2}(p^{2}g)a_{+}^{1/2}(gp'^{2}). \end{aligned}$$

Since $aa^* = p^2$ and $bb^* = p'^2$, (9) follows.

(9) \Rightarrow (7): Let $a, b \in P$. For t = 0, 1, (7) is trivial and for t = 1/2, it follows from (9). We will prove by induction for all $t = \frac{k}{2^n}$, where $k = 0, 1, \ldots, 2^n$ [3]. Let $t = \frac{2k+1}{2^n}$. Then $t = s + \rho$, where $s = \frac{k}{2^{n-1}}$ and $\rho = \frac{1}{2^n}$. Suppose that (7) is valid for all dyadic rationals with denominator 2^{n-1} . Then by induction and (9), with $\lambda := s + 2\rho$, we have

$$\begin{aligned} a_{+}(a^{t}gb^{1-t}) &= a_{+}(a^{\rho}(a^{s}gb^{1-\lambda})b^{\rho}) \\ &\prec a_{+}^{1/2}(a^{2\rho}a^{s}gb^{1-\lambda})a_{+}^{1/2}(a^{s}gb^{1-\lambda}b^{2\rho}) \\ &= a_{+}^{1/2}(a^{\lambda}gb^{1-\lambda})a_{+}^{1/2}(a^{s}gb^{1-s}) \\ &\prec a_{+}^{\lambda/2}(ag)a_{+}^{(1-\lambda)/2}(gb)a_{+}^{s/2}(ag)a_{+}^{(1-s)/2}(gb) \\ &= a_{+}^{(\lambda+s)/2}(ag)a_{+}^{1-(\lambda+s)/2}(gb) \\ &= a_{+}^{t}(ag)a_{+}^{1-t}(gb). \end{aligned}$$

The general case follows from continuity of the spectral radius and Theorem 3.3.

Furuta's inequality [8] asserts that if $A, B \in \mathbb{C}_{n \times n}$ are positive semi-definite, then

$$||A^t B^t|| \le ||AB||^t, \quad 0 \le t \le 1.$$
 (11)

It is equivalent to say that

$$||A^{s}B^{s}|| \ge ||AB||^{s}, \qquad s \ge 1.$$
(12)

See [1, 7, 24]. We have the following extension of Furuta's inequality.

Corollary 4.4. Let $a, b \in P$. Then

1. $a_{+}(a^{t}b^{t}) \prec a_{+}^{t}(ab), \ 0 \le t \le 1.$ 2. $a_{+}^{t}(ab) \prec a_{+}(a^{t}b^{t}), \ t > 1.$

Hence $\varphi(t) = [a_+(a^{1/t}b^{1/t})]^t$ is a decreasing function on t > 0 with respect to the partial order \prec , i.e., $\varphi(s) \prec \varphi(t)$ if $s \ge t > 0$.

Proof. By setting g to be the identity in (8) we have $a_+(a^tb^t) \prec a_+^t(ab)$, $0 \leq t \leq 1$. When $t \geq 1$, $a_+(a^{1/t}b^{1/t}) \prec a_+^{1/t}(ab)$. Then replace a, b by a^t and b^t respectively to have $a_+(ab) \prec a_+^{1/t}(a^tb^t)$. Let $s \geq t > 0$. Then s/t > 1 and

$$a_{+}(a^{s}b^{s}) = a_{+}((a^{t})^{s/t}(b^{t})^{s/t}) = a_{+}^{s/t}(a^{t}b^{t})$$

so that $\varphi(t)$ is decreasing on t > 0.

Corollary 4.5. For $f, g \in G$, $a_+(fg) \prec a_+(f)a_+(g)$.

Proof. By (9),

$$a_+(fg) \prec a_+^{1/2}(f^*f)a_+^{1/2}(gg^*).$$

Use Lemma 4.1 to obtain $a_+(fg) \prec a_+(f)a_+(g)$.

Remark 4.6. When $G = \operatorname{GL}_n(\mathbb{C})$, by Corollary 4.5 the singular values of a product AB is log majorized by the product of the singular values of $A, B \in \mathbb{C}_{n \times n}$, assuming that singular values are all arranged in descending order.

Nakamoto [9] showed that (12) holds for normal matrices $A, B \in \mathbb{C}_{n \times n}$ and natural numbers s. An element $g \in G$ is said to be *normal* if $gg^* = g^*g$. It is equivalent to say that kp = pk, where g = kp is the Cartan decomposition of g. Since Cartan decomposition is unique up to conjugation [11, p.183], normality is independent of the choice of K and P. Clearly the elements of P are normal. Normality is reduced to the usual normality when $G = \mathrm{SL}_n(\mathbb{C})$. Now we extend Nakamoto's result.

Corollary 4.7. Let $f, g \in G$ be normal. Then $a_+^n(fg) \prec a_+(f^ng^n), n \in \mathbb{N}$.

Proof. Let f = kp, g = k'p' be the Cartan decompositions of $f, g \in G = KP$. Since f, g are normal, we have kp = pk and k'p' = p'k'. Then

$$a_{+}^{n}(fg) = a_{+}^{n}(kpk'p') = a_{+}^{n}(kpp'k') = a_{+}^{n}(pp').$$

By Corollary 4.4,

$$a_{+}^{n}(pp') \prec a_{+}(p^{n}p'^{n}) = a_{+}(k^{n}p^{n}p'^{n}k'^{n}) = a_{+}((kp)^{n}(k'p')^{n}) = a_{+}(f^{n}g^{n}).$$

5. Inequalities for hyperbolic components

Furuta's inequality (11) is equivalent to the following inequality: for any positive semi-definite $A, B \in \mathbb{C}_{n \times n}$,

$$\lambda_1(A^t B^t) \le \lambda_1^t (AB), \qquad 0 \le t \le 1.$$
(13)

One can deduce the equivalence by

$$|AB| = \lambda_1(AB),\tag{14}$$

where $\lambda_1(AB)$ is the largest eigenvalue of the matrix AB whose eigenvalues are those of the positive semi-definite $B^{1/2}AB^{1/2}$.

Inequality (13) concerns about the largest eigenvalues of AB and A^tB^t when $A, B \in \mathbb{C}_{n \times n}$ are positive semi-definite. Since the eigenvalues of AB are nonnegative, (13) can be viewed as a result on the largest eigenvalue modulus. So we will consider the *hyperbolic component* of $g \in G$ of a semisimple connected noncompact Lie group G for an appropriate extension.

An element $X \in \mathfrak{g}$ is called *real semisimple* if ad $X \in \text{End}(\mathfrak{g})$ is diagonalizable over \mathbb{R} . It is equivalent to say that ad (X) is diagonalizable over \mathbb{C} and the eigenvalues of ad (X) are real. An element $X \in \mathfrak{g}$ is called nilpotent if ad Xis nilpotent. An element $g \in G$ is called hyperbolic if $g = \exp(X)$ where $X \in \mathfrak{g}$ is real semisimple and is called unipotent if $g = \exp(X)$ where $X \in \mathfrak{g}$ is nilpotent. An element $g \in G$ is elliptic if $\operatorname{Ad}(g) \in \operatorname{Aut}(\mathfrak{g})$ is diagonalizable over \mathbb{C} with eigenvalues of modulus 1. The *complete multiplicative Jordan decomposition* [21, Proposition 2.1] for G asserts that each $g \in G$ can be uniquely written as g = ehu, where e is elliptic, h is hyperbolic and u is unipotent and the three elements e, h, u commute. We write

$$g = e(g)h(g)u(g).$$

It turns out that $h \in G$ is hyperbolic if and only if it is conjugate to a unique element $b(h) \in A_+$ [21, Proposition 2.4]. Denote

$$b(g) := b(h(g)).$$

It is known that [21, Proposition 6.2] P^2 is the set of all hyperbolic elements and $b(g) \prec a_+(g)$ for all $g \in G$ [21, Theorem 5.4].

Example 5.1. When $G = SL_n(\mathbb{C})$, g = ehu is the usual complete multiplicative Jordan decomposition [11, p.431] and

$$b(g) = \operatorname{diag}(|\lambda_1|, \ldots, |\lambda_n|),$$

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of g with descending moduli.

Lemma 5.2. 1. Let $f, g \in G$. Then $h(fg) = g^{-1}h(gf)g$ and b(fg) = b(gf).

- 2. If $f \in P$, then $b(f) = a_+(f)$. So $a_+(g^*g) = a_+(gg^*) = b(g^*g) = b(gg^*)$ for all $g \in G$.
- 3. Let $f, g \in P$. Then $b(f^2g^2) = a_+^2(fg) = a_+^2(gf)$.

Proof. (1) Let fg = ehu be the CMJD of fg where $f,g \in G$. Then $gf = g(fg)g^{-1} = (geg^{-1})(ghg^{-1})(gug^{-1})$. By the uniqueness of CMJD, $h(fg) = g^{-1}h(gf)g$ follows immediately. Now $b(fg) = b(h(fg)) = b(g^{-1}h(gf)g) = b(gf)$.

- (2) Since P is K-conjugate to some element in A_+ , $b(f) = a_+(f)$.
- (3) By (1) $h(f^2g^2) = g^{-1}h(gf^2g)g$ so that

$$b(f^2g^2) = b(g^{-1}h(gf^2g)g) = b(gf^2g) = b((gf)(gf)^*).$$

The element $(gf)(gf)^*$ is in P so that by (2) and Lemma 4.1

$$b(f^2g^2) = b((gf)(gf)^*) = a_+((gf)(gf)^*) = a_+^2(fg).$$

Theorem 5.3. Let $a, b \in P$. The following are equivalent and are valid.

- 1. $a_+(a^t b^t) \prec a_+^t(ab), \ 0 \le t \le 1.$
- 2. $b(f^t g^t) \prec b^t (fg), \ 0 \le t \le 1.$

In other words, for any hyperbolic element $\ell \in G$, if we write $\ell = fg$, where $f, g \in P$, then $b(f^t g^t) \prec b^t(\ell), 0 \leq t \leq 1$.

Proof. Statement (1) is Corollary 4.4 (1). The set of all hyperbolic elements is P^2 . Since $f, g \in P$, $f^t, g^t \in P$ and thus $fg, f^tg^t \in P^2$ are hyperbolic for all $t \in \mathbb{R}$. By Lemma 5.2 and Corollary 4.4

$$b^{1/2}(f^{2t}g^{2t}) = a_+(f^tg^t) \prec a_+^t(fg) = b^{t/2}(f^2g^2).$$

So $b(f^{2t}g^{2t}) \prec b^t(f^2g^2)$. Then replace f^2 and g^2 by f and g, respectively, to obtain the desired result.

Conversely, suppose that $b(f^tg^t)\prec b^t(fg)$ for all $0\leq t\leq 1,$ where $f,g\in P.$ Then

$$a_+(f^tg^t) = b^{1/2}(f^{2t}g^{2t}) \prec b^{t/2}(f^2g^2) = a_+^t(fg).$$

References

- [1] Andruchow, E., G. Corach, and D. Stojanoff, *Geometrical significance of Löwner-Heinz inequality*, Proc. Amer. Math. Soc. **128** (2000), 1031–1037.
- Berezin, F. A., and I. M. Gel'fand, Some remarks on the theory of spherical functions on symmetric Riemannian manifolds, Tr. Mosk. Mat. Obshch. 5 (1956), 311–351 (English transl. in Amer. Math. Soc. Transl. (2) 21 (1962)).
- [3] Bhatia, R., "Matrix Analysis," Springer, New York, 1997.
- [4] Bhatia, R., and C. Davis, A Cauchy-Schwartz inequality for operators with applications, Linear Algebra Appl. **223/224** (1995), 119–129.
- [5] Bourbaki, N., "Lie Groups and Lie Algebras, Chapter 1–3," Springer-Verlag, Berlin, 1989.
- [6] Duistermaat, J. J., and J. A. C. Kolk, "Lie Groups," Springer, Berlin, 1999.
- [7] Furuta, T., Norm inequalities equivalent to Löwner-Heinz theorem, Rev. Math. Phys. 1 (1989), 135–137.
- [8] —, Equivalence relations among Reid, Löwner-Heinz and Heinz-Kato inequalities, and extensions of these inequalities, Integral Equations Operator Theory 29 (1997), 1–9.
- [9] Furuta, T., and J. Hakeda, Applications of norm inequalities equivalent to Löwner-Heinz theorem, Nihonkai Math. J. **1** (1990), 11–17.
- [10] Fujii, M., and R. Nakamoto, Rota's theorem and Heinz inequalities, Linear Algebra Appl. 214 (1995), 271–275.
- [11] Helgason, S., "Differential Geometry, Lie Groups, and Symmetric Spaces," Academic Press, New York, 1978.
- [12] Heinz, E., Beitra
 ë zur Störungstheoric der Spektralzerlegung, Math. Ann. 123 (1951), 415–438.
- [13] Holmes, R. R., and T. Y. Tam, Distance to the convex hull of an orbit under the action of a compact Lie group, J. Austral. Math. Soc. Ser. A 66 (1999), 331–357.
- [14] Humphreys, J.E., "Introduction to Lie Algebras and Representation Theory", Springer, New York, 1972.
- [15] Kato, T., Notes on some inequalities for linear operators, Math. Ann. 125 (1952), 208–212.
- [16] —, A generalization of the Heinz inequality, Proc. Japan Acad. **37** (1961), 305–308.
- [17] Kittaneh, F., Norm inequalities for fractional powers of positive operators, Lett. Math. Phys. 27 (1993), 279–285.
- [18] Kittaneh, F., Some norm inequalities for operators, Canad. Math. Bull.
 42 (1999), 87–96.
- [19] Knapp, A. W., "Lie Groups Beyond an Introduction," Birkhäuser, Boston, 1996.
- [20] Kosaki, H., Arithmetic-geometric mean and related inequalities for operators, J. Funct. Anal. 156 (1998), 429–451.

- [21] Kostant, B., On convexity, the Weyl group and Iwasawa decomposition, Ann. Sci. Ecole Norm. Sup. (4), 6 (1973), 413–460.
- [22] Merris, R., "Multilinear Algebra," Gordan and Breach Science Publishers, Amsterdam, 1997.
- [23] McIntosh, A., *Heinz inequalities and perturbation of spectral families*, Macquarie Mathematics Reports 79-0006, Macquarie University, 1979.
- [24] Yoshino, T., Note on Heinz's inequality, Proc. Japan Acad. Ser. A, Math. Sci. 64 (1988), 325–326.
- [25] Zhan, X., "Matrix inequalities," Lecture Notes in Mathematics **1790**, Springer-Verlag, Berlin, 2002.

Tin-Yau Tam Department of Mathematics and Statistics Auburn University Auburn, AL 36849-5310, USA tamtiny@auburn.edu

Received Feb 25, 2008 and in final form Jan 3, 2009 $\,$