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Abstract. The long–standing Frobenius conjecture on the unicity of ordered
solutions for the Markoff equation is translated in a very simple way into an arith-
metic statement on the existence of integral points on certain hyperbolas. Some
previous work of Kang and Melville can then be used for relating the problem
to a statement concerning rank 2 symmetric hyperbolic Kac–Moody algebras.
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1. Introduction

The Markoff equation is the Diophantine equation

x2 + y2 + z2 = 3xyz; x, y, z ∈ Z+;

which was studied first by Markoff in [7, 8]. Markoff proved many interesting
properties related to the solutions of this equation. Among other things, he
proved there were infinitely many solutions and gave a procedure to construct
new solutions from old ones.

However, it was Frobenius [4], while studying Markoff equations over Gauss
integers, who noticed that, for a given ordered solution x ≤ y ≤ z , there was
no other ordered solution x′ ≤ y′ ≤ z . This conjecture, widely known as the
Frobenius unicity conjecture, has remained open since, despite some important
partial results have been settled. To mention the most popular ones:

• If either z , 3z − 2 or 3z + 2 has the form 2ap , for a = 0, 1, 2 and p prime,
the conjecture is known to be true [1]. The case z = p was also solved
independently in [2, 9].

• If z = kpr , with p prime and k4 < m , the conjecture is also known to hold,
as proved in [3].
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These results, combined with brute force computational attacks have proved
the conjecture to be true for z < 10140 so far. Many other mathematicians
(I. Borosh, R.T. Mumby, H. Cohn, M.L. Lang, J.H. Silverman, S.P. Tang, D.
Zagier,...) have worked in and around this fascinating problem.

Also it should be mentioned here that the Markoff equation has appeared
in a number of apparently disconnected fields as quadratic forms whose values are
one-third their discriminant or more, closed geodesics on certain Riemann surfaces
or modular groups.

Rather than building over these strong (and, in some cases, quite highbrow)
techniques, we decided to approach the problem in a naive, yet not reported, way.
Fix a positive integer c , and consider the conic defined by

Hc : x2 − 3cxy + y2 + c2 = 0,

by the way a hyperbola. It is then plain than the Frobenius unicity conjectured
can be expressed in the following terms:

Conjecture 1.1. There is, at most, one integral point (x, y) in the hyperbola
Hc verifying x ≤ y ≤ c .

This paper is based in the fact that integral points in hyperbolas of the
form

x2 − axy + y2 = k, a ≥ 3, k ≤ 1

have been studied by S.J. Kang and D.J. Melville as a by–product of their work on
certain Kac–Moody algebras [6]. We will apply Kang and Melville results to our
hyperbola Hc in order to look for a different version of the Frobenius conjecture.
In order to do that, we will first review briefly some results from [6].

2. Review of the Kang–Melville procedure

Consider a rank 2 symmetric hyperbolic Kac–Moody algebra g(a) given by a
Cartan matrix (

2 −a
−a 2

)
, a ≥ 3.

In [6] Kang and Melville show that the set of roots of g(a) is connected
to the diophantine problem of finding points with integral coordinates in certain
hyperbolas. More specifically:

• There is a one–to–one correspondence between the set of real roots of g(a)
and the set of integral points on Hreal : x2 − axy + y2 = 1.

• There is a one–to–one correspondence between the set of imaginary roots of
length −2k of g(a) and the set of integral points on Hk : x2−axy+y2 = −k ,
for k ≥ 1.

They went further in order to describe the root system of g(a). We will
review only the necessary information for what follows, but much more can be
found in their paper. Consider the sequence {Bj}j≥0 , defined by

B0 = 0, B1 = 1, Bj+2 = aBj+1 −Bj, for j ≥ 0.
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Also let Ωk be the following set

Ωk =

{
(m, n) ∈ Z+ × Z+ |

2
√

k√
a2 − 4

≤ m ≤
√

k

a− 2
,

n =
am−

√
(a2 − 4)m2 − 4k

2

}
.

Then the set of all imaginary roots of g(a) with length −2k is given by

∆k = Ωk ∪ {(mBj+1 − nBj, mBj+2 − nBj+1) | (m, n) ∈ Ωk} ∪
{(nBj+1 −mBj, nBj+2 −mBj+1) | (m, n) ∈ Ωk}

= Ωk ∪∆
(1)
k ∪∆

(2)
k

up to permutation of coordinates (Hk is obviously invariant w.r.t. these trans-
formations) and sign changes (the displayed roots being the positive ones, up to
permutation of coordinates).

For a given pair (a, k) the explicit computation of Ωk is fairly easy, and
so is the obtained recurrent formula for the set of integral points on Hk . The
elements Bj can also be expressed in terms of a close formula (à la Fibonacci)
which we will not be concerned about.

This algorithm is, according to the authors, much faster than the usual
number–theoretic option which involves finding a point and then using a stereo-
graphic projection. The process will be called KM process from now on.

We must remark that the Kang–Melville procedure sketched above is an
application of the much more general results on positive imaginary roots one can
find in [5], where the set Ωk is actually introduced. It is also shown that any
positive imaginary root lies in the orbit of some element in Ωk by the Weyl group

From that it is plain that the set Ωk has an interesting connection with the
root multiplicities. In fact, if |Ωk| = 1 then clearly all roots of length −2k must
have the same multiplicity. This might not be the case if |Ωk| > 1, as [6] show
with specific counterexamples.

3. The KM procedure for Hc

Our aim is to apply the KM process to Hc , hence we are considering a rank
2 hyperbolic symmetric Kac–Moody algebra g(3c), with c ∈ Z+ and we are
interested primarily on the imaginary roots of length −2c2 , which correspond
to integral points on Hc . In our case the situation of the previous section can be
now written as:

B0 = 0, B1 = 1, Bj+2 = 3cBj+1 −Bj, for j ≥ 0;

and

Ωc2 =

{
(m, n) ∈ Z+ × Z+ |

2c√
9c2 − 4

≤ m ≤ c√
3c− 2

,

n =
3cm−

√
(9c2 − 4)m2 − 4c2

2

}
,
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where some rather popular expressions (as 3c− 2 or 9c2 − 4) from the literature
concerning Markoff equation appear.

Now we will devote ourselves some time for showing some special features
of Ωc2 and {Bj} in this case.

Lemma 3.1. 0 ≤ m ≤ n ≤ c.

Proof. We will only do m ≤ n , as the other two inequalities follow easily.

n ≥ m ⇐⇒ 3cm−
√

(9c2 − 4)m2 − 4c2 ≥ 2m

⇐⇒ (3c− 2)m ≥
√

(9c2 − 4)m2 − 4c2

⇐⇒ (9c2 − 12c + 4)m2 ≥ (9c2 − 4)m2 − 4c2

⇐⇒ m2 ≤ c2

3c− 2

which is guaranteed by the definition of Ωk .

In order to make the statements simpler, for a fixed pair (m, n) ∈ Ωc2 , let
us write:

αj = mBj+1 − nBj

βj = nBj+1 −mBj

so that

∆
(1)

c2 = { (αj, αj+1) | j ≥ 0 }, ∆
(2)

c2 = { (βj, βj+1) | j ≥ 0 }

Lemma 3.2. The sequence {Bj}j≥0 is a strictly increasing sequence.

Proof. Straightforward (since c > 0).

Lemma 3.3. The sequence {βj}j≥0 is a strictly increasing sequence of positive
terms.

Proof. From Lemmas 1 and 2 it is straightforward

βj = nBj+1 −mBj > 0.

On the other hand

Bj+2 −Bj+1 = (3c− 1)Bj+1 −Bj ≥ Bj+1 −Bj;

hence

βj = nBj+1 −mBj = (n−m)Bj+1 + m(Bj+1 −Bj)

< (n−m)Bj+2 + m(Bj+2 −Bj+1

= nBj+2 −mBj+1 = βj+1

So the result is proved.
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Lemma 3.4. The sequence {αj}j≥0 is a strictly increasing sequence of positive
terms.

Proof. Obviously α0 = mB1 − nB0 = m > 0. In the general case

αj = m(3cBj −Bj−1)−Bj

3cm−
√

(9c2 − 4)m2 − 4c2

2

= Bj

3cm +
√

(9c2 − 4)m2 − 4c2

2
−mBj−1

> mBj − nBj−1 = αj−1

taking into account Lemma 1 and c > 0.

Corollary 3.5. ∆
(1)

c2 and ∆
(2)

c2 have no points (x, y) with 0 ≤ x ≤ y ≤ c. That
is to say, the interesting points from the point of view of the unicity conjecture lie
in Ωc2 .

Proof. After Lemmas 3 and 4 it is enough proving α1 > c and β1 > c . But:

α1 = 3cm− n

=
3cm +

√
(9c2 − 4)m2 − 4c2

2

≥ 3c

2
· 2c√

9c2 − 4

=
3c√

9c2 − 4
· c > c

β1 = 3cn−m ≥ c(3n− 1) > c

Hence the result is proved.

The main result of the paper goes then as follows:

Proposition 3.6. The Frobenius conjecture for the Markoff equation is equiv-
alent to |Ωc2| ≤ 1 for all c ∈ N.
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