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Abstract. A subalgebra B of a Lie algebra L is c-supplemented in L if there
is a subalgebra C of L with L = B+ C and BNC < By, where By, is the core
of B in L. This is analogous to the corresponding concept of a c-supplemented
subgroup in a finite group. We say that L is c-supplemented if every subalgebra
of L is c-supplemented in L. We give here a complete characterisation of c-
supplemented Lie algebras over a general field.
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1. Introduction

The concept of a c-supplemented subgroup of a finite group was introduced by
Ballester-Bolinches, Wang and Xiuyun in [2] and has since been studied by a
number of authors. The purpose of this paper is study the corresponding idea for
Lie algebras. As we shall see, stronger results can be obtained in this context.

Throughout L will denote a finite-dimensional Lie algebra over a field F'.
If B is a subalgebra of L we define By, the core (with respect to L) of B to
be the largest ideal of L contained in B. We say that B is core-free in L if
Br = 0. A subalgebra B of L is c-supplemented in L if there is a subalgebra C'
of L with L =B+ C and BNC < Bp. We say that L is c-supplemented if every
subalgebra of L is c-supplemented in L. We shall give a complete characterisation
of c-supplemented Lie algebras over a general field.

Following [4] we will say that L is completely factorisable if for every
subalgebra B of L there is a subalgebra C' such that L = B+ C and BNC =
0. It turns out that c-supplemented Lie algebras are intimately related to the
completely factorisable ones, and our results generalise some of those obtained in
[4]. Incidentally, it is claimed in [4] that if F' has characteristic zero then L is
completely factorisable if and only if the Frattini subalgebra of every subalgebra
of L is trivial. We shall see that this is false.

If A and B are subalgebras of L for which L = A+ B and AN B =0 we
will write L = A+B; if, furthermore, A, B are ideals of L we write L = A® B.
The notation A < B will indicate that A is a subalgebra of B, and A < B will
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mean that A is a proper subalgebra of B. The derived series for L is defined
inductively by L") = L, L0+ = [LM™ LM] for n > 1.

2. Preliminary results

First we give some basic properties of c-supplemented subalgebras

Lemma 2.1.  Let B, K be subalgebras of the Lie algebra L.

(i) If B is c-supplemented in L and B < K < L then B is c-supplemented in
K.

(i) If I is an ideal of L and I < B then B is c-supplemented in L if and only
if B/ is c-supplemented in L/I.

(11i) If X is the class of all c-supplemented Lie algebras then X is subalgebra and
factor algebra closed.

Proof. (i) Suppose that B is c-supplemented in L and B < K < L. Then
there is a subalgebra C' of L with L = B+ C and BN C < By. It follows
that K =(B+C)NK=B+CNK and BNCNK < B,NK < Bg, and
so B is c-supplemented in K .

(ii) Suppose first that B/I is c-supplemented in L/I. Then there is a subalgebra
C/I of L/I such that L/I = B/I+ C/I and (B/I)N(C/I) < (B/I)p =
Br/I. Tt follows that L = B+ C and BN C < Bp, whence B is c-
supplemented in L.

Suppose conversely that [ is an ideal of L with I < B such that B
is c-supplemented in L. Then there is a subalgebra C' of L such that
L =B+ C ad BNC < B,. Now L/I = B/I + (C + I)/I and
(B/D)N(C+ 1)/ = (BA(C+D)/I = (I+BNC)/1< By/I = (B/Dui,
and so B/I is c-supplemented in L/I.

(iii) This follows immediately from (i) and (ii).
]

The Frattini ideal of L, ¢(L), is the largest ideal of L contained in all
maximal subalgebras of L. We say that L is ¢-free if ¢(L) = 0. The next result
shows that subalgebras of the Frattini ideal of a c-supplemented Lie algebra L are
necessarily ideals of L.

Proposition 2.2.  Let B, D be subalgebras of L with B < ¢(D). If B is c-
supplemented in L then B is an ideal of L and B < ¢(L).

Proof. Suppose that L = B+ C and BNC < By. Then D = DNL =
DN(B+C)=B+DNC=DNC since B < ¢(D). Hence B < D < (', giving
B =BNC < By, and B is an ideal of L. It then follows from [6, Lemma 4.1]
that B < ¢(L). m

The Lie algebra L is called elementary if ¢(B) = 0 for every subalgebra B
of L;itis an F-algebraif ¢(B) < ¢(L) for all subalgebras B of L. Then we have
the following useful corollary.
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Corollary 2.3.  If L is c-supplemented then L is an FE -algebra.

Proof.  Simply put B = ¢(D) in Proposition 2.2. [

It is clear that if L is completely factorisable then it is c-supplemented.
However, the converse is false. Every completely factorisable Lie algebra must be
¢-free, whereas the same is not true for c-supplemented algebras. For example,
the three-dimensional Heisenberg algebra is c-supplemented but not ¢-free. This
will be clear after the next result which gives the true relationship between these
two classes of algebras.

Proposition 2.4.  Let L be a Lie algebra. Then the following are equivalent:
(i) L is c-supplemented.

(i) L/¢(L) is completely factorisable and every subalgebra of ¢(L) is an ideal
of L.

Proof. (i) = (ii): Suppose first that L is ¢-free and c-supplemented, and let
B be a subalgebra of L. Then there is a subalgebra C' of L such that L = B+ C'.
Choose D to be a subalgebra of L minimal with respect to L = B 4+ D. Then
BnD < ¢(D), by [6, Lemma 7.1], whence BN D = 0 since L is elementary, by
Corollary 2.3. Hence L is completely factorisable, and (ii) follows from Lemma
2.1(iii) and Proposition 2.2.

(ii) = (i): Suppose that (ii) holds and let B be a subalgebra of L. Then
there is a subalgebra C'/¢(L) of L/¢(L) such that L/¢(L) = (B+¢(L))/o(L))+
(C/6(L)) and 0= ((B+6(L))/6(L)) N (C/9(L)) = (BNC +6(L))/6(L). Hence
L=B+C and BNC < ¢(L),so BNC is an ideal of L and BNC < By ; that
is, L is c-supplemented. [ |

Note that if L is the three-dimensional Heisenberg algebra, then condition
(ii) in the above result holds, since ¢(L) = L® is one dimensional and L/¢(L)
is abelian. Finally we shall need the following result concerning direct sums of
completely factorisable Lie algebras.

Lemma 2.5. If A and B are completely factorisable, then so is L =A@ B.

Proof.  Suppose that A, B are completely factorisable and put L = A @ B.
Let U be a subalgebra of L. If A < U, then U = A@ (BNU). Since B is
completely factorisable there is a subalgebra C' of B such that B = BNU + C
and UNC =BNUNC =0. Hence L =U+C.

Now A < A+ U so, by the above, there is a subalgebra C' of B with
L=A+U+C and (A+U)NC = 0. Moreover, since A is completely factorisable,
there is a subalgebra D of A such that A= ANU+D and UND = ANUND = 0.
This yields that L=U+ (D& C) and UN(D+C) <UN[A+U)N(D+C)] =
UND+(A+U)NC]=UnND =0. It follows that L is completely factorisable.

[
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Note that the corresponding result for c-supplemented Lie algebras is false.
For,let Ly = Fe+Fy+Fz with [z,y] = —[y, 2] = y+2, [z, 2] = —[2,2] = 2z and all
others products equal to zero. Then it is straightforward to check that ¢(L;) = F'z
and that L, is c-supplemented. Now take L to be a direct sum of two copies of L;:
say, L=A® B where A=Fx+ Fy+Fz, B=Fa+ Fb+ Fc, [z,y]| = —|y,z] =
y+z,x, 2] =—[z,2] = z, [a,b] = —[b,a] =b+¢,[a,c] = —[c,a] = ¢ and all others
products equal to zero. Suppose that F'(z+c¢) is c-supplemented in L. Then there
is a subalgebra M of L with L = F(z+c¢)+ M and F(z+c¢)NM < (F(z+4c¢))yL.
If z+c¢ M then M is a maximal subalgebra of L, contradicting the fact that
z4+ce (p(A) @ ¢(B)) = ¢(L), by [6, Theorem 4.8]. It follows that z +c € M,
whence F(z + c¢) is an ideal of L. But [z,z + ¢] = z ¢ F(z + ¢), a contradiction.
Thus F(z + ¢) is not c-supplemented in L, and L is not c-supplemented.

3. The structure theorems

We can now give the main structure theorems for c-supplemented Lie algebras.
First we determine the solvable ones.

Theorem 3.1.  Let L be a solvable Lie algebra. Then the following are equiva-
lent:

(i) L is c-supplemented.

(ii) L is supersolvable and every subalgebra of ¢(L) is an ideal of L.

Proof. (i) = (ii): We have that every subalgebra of ¢(L) is an ideal of L by
Proposition 2.4, so we have only to show that L is supersolvable. Let L be a
minimal counter-example. Then all proper subalgebras and factor algebras of L
are supersolvable, by Lemma 2.1(iii). If we can show that all maximal subalgebras
have codimension one in L, we shall have the desired contradiction, by [3, Theorem
7]; so let M be any maximal subalgebra of L. Since the result is clear if My # 0,
we may assume that My = 0.

Pick a minimal ideal A of L. Then L = A+M and A is the unique minimal
ideal of L, by [7, Lemma 1.4]. Let a € A. Then Fa is c-supplemented in L, and
so there is a subalgebra B of L such that L = Fa+ B and FanN B < (Fa). If
a € B then Fa is an ideal of L, whence A = Fla and M has codimension one in
L.

So suppose that L = Fa+B. Since A £ B we have B;, = 0. But then
L = A+B by [7, Lemma 1.4] again. It follows that dim A = 1 and M has
codimension one in L.

(ii) = (i): By Proposition 2.4, it suffices to show that if L is supersolvable
and ¢-free then it is completely factorisable. Let L be a minimal counter-example.
Then L is elementary, by [5, Theorem 1], and so every proper subalgebra of L is
completely factorisable. Also L = A+B where A = Fa, ®...® Fa, is the abelian
socle of L and B is abelian, by [7, Theorem 7.3]. Let U be a subalgebra of L.
If A<U itis clear that there is a subalgebra C' of L such that L = U 4+ C and
UNC =0. So suppose that a; ¢ U for some 1 < i < n; we may as well assume
that ¢ = 1. Then L/Fa; = (Fay®...® Fa,)+B, which is a proper subalgebra of
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L and so is completely factorisable. Hence there is a subalgebra C' of L such that
L/Fa; = ((U+ Fay)/Fay)+ (C/Fay) and Fay = (U+ Fa;)NC =UNC+ Fay.
It follows that L=U +C and UNC < Fay. But a; ¢ UNC so UNC =0 and
L is completely factorisable, a contradiction. [ ]

We recall the definition of the algebras L,,(I") over a field F' of characteristic
zero or p, where p is prime, as given by Amayo in [1, page 46]. Let m be a positive
integer satisfying

m=1, orif pisodd, m=p" =2 (r>1),
orifp=2 m=2"-2orm=2"-3 (r >2).
Let T' = {70,71,...} C F subject to
(m+1—1)y =Ymyi-1 =0 foralli > 1, and
Nik+1—iVe+1 = 0 for all 4,k with 1 <¢ < k.
Let L,,(I") be the Lie algebra over F' with basis v_1,vg,v1, ..., v, and products
[v_1,vi] = —[vi, v_1] = vicy + ViV, [v_1,v4] =0,
[Vi,v;] = Nijviy; for all 4,5 with 0 <4, 5 <m,

where v, 41 = ... = vy, =0.
We shall need the following classification of Lie algebras with core-free
subalgebras of codimension one as given in [1].

Theorem 3.2.  ([1, Theorem 8.1]) Let L have a core-free subalgebra of codi-
mension one. Then either (i) dim L < 2, or else (ii) L = L,,(T") for some m and
I’ satisfying the above conditions.

We shall also need the following properties of L,,(I') which are given by
Amayo in [1].
Theorem 3.3.  ([1, Theorem 3.2])

(i) If m > 1 and m is odd, then L,,(T") is simple and has only one subalgebra
of codimension one.

(i) If m > 1 and m is even, then L,,(I") has a unique proper ideal of codimen-
sion one, which is simple, and precisely one other subalgebra of codimension
one.

(1) Li(T) has a basis {u_q,up,u1} with multiplication [u_1,ue] = u_q + Youq
(0 € Fiyo =0 if I'={0}), [u—1,u1] = uo, [uo, us] = w1

() If F has characteristic different from two then Li(T') = Ly(0) = sly(F).
(v) If F' has characteristic two then Li(I') = Ly(0) if and only if o is a square
mn I

The above properties enable us to determine which of the algebras L, (I")
are c-supplemented.
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Proposition 3.4. If L = L, (") then L is c-supplemented if and only L =
L1(0) and F has characteristic different from two.

Proof.  Suppose that L = L, (I") and L is c-supplemented, and let = € L.
Then there is a subalgebra M; of L such that L = Fax + M;, and Fox N M; <
(Fz)p, = 0, since L,,(I") has no one-dimensional ideals. Choose y € M;. Then,
similarly, there is a subalgebra M, of codimension one in L such that L = Fy+ M,
and M, # M,. Since L = M; + M5 we have that My N My # 0. Let z € MyN M.
Then there is a subalgebra Mj; of codimension one in L such that L = Fz+ M3, so
L has at least three subalgebras of codimension one in L. It follows from Theorem
3.3 that m = 1.

Suppose that L 2 L;(0). Then F has characteristic two and 7y is not
a square in F. Since L is completely factorisable there is a two-dimensional
subalgebra M of L such that L = Fu; + M . It follows that M = F(u_y + auy) +
F(ug + Puy) for some a,3 € F. But then [u_; + auy,ug + fui] € M shows
that vy = 3%, a contradiction. A further straightforward calculation shows that if
L = L,(0) and F' has characteristic two, then Fu; is contained in every maximal
subalgebra of L, and so has no c-supplement in L.

Conversely, suppose that L = L;(0) and F' has characteristic different from
two. Then L = sly(F'), by Theorem 3.3 (iv) and it is easy to check that L is c-
supplemented. [ |

We can now determine the simple and semisimple c-supplemented Lie alge-
bras.

Corollary 3.5.  If L is simple then L is c-supplemented if and only L = L1(0)
and F has characteristic different from two.

Proof. Let L be simple and c-supplemented. Then L has a core-free maximal
subalgebra of codimension one in L and so L = L,,(I"), by Theorem 3.2. The
result now follows from Proposition 3.4. [

Notice, in particular, that sly(F) is the only simple completely factorisable
Lie algebra over any field. However, this is not the only simple elementary Lie
algebra, even over a field of characteristic zero: over the real field every compact
simple Lie algebra, and so(n,1) for n > 3, for example, are elementary, as is
shown in [8, Theorem 5.1]. This justifies the assertion made at the end of the
third paragraph of the introduction.

Proposition 3.6.  Let L be a semisimple Lie algebra over a field F'. Then the
following are equivalent:

(i) L is c-supplemented.

(ii)) L=5S1®...®S, where S; = sly(F) for 1 <i<n and F has characteristic
different from two.
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Proof. (i) = (ii): Let L be semisimple and c-supplemented and suppose the
result holds for all such algebras of dimension less than dim L. Then ¢(L) = 0,
since ¢(L) is nilpotent, and so L is completely factorisable. Let A be a minimal
ideal of L and pick a € A. Let M be a subalgebra of L such that L = Fa+M
and put B = A+ M. Then M;, < B and AN M, = 0, since a ¢ M. If
dim L/Mj <2 then A is abelian, contradicting the fact that L is semisimple. It
follows from Theorem 3.2 and Proposition 3.4 that L/M, = L,(0), whence B = L
and L = A® M. Since A, M; are semisimple and c-supplemented the result
follows.

(ii) = (i): The converse follows from Corollary 3.5 and Lemma 2.5. ]

Finally we have the main classification theorem.

Theorem 3.7.  Let L be Lie algebra. Then the following are equivalent:

(i) L is c-supplemented.

(ii)) L/p(L) = R @ S where R is supersolvable and ¢-free, either S = 0 or
S=51®...®8, where S; = sly(F) for 1 <i <mn and F has characteristic
different from two, and every subalgebra of ¢(L) is an ideal of L.

Proof. (i) = (ii): Factor out ¢(L) so that L is ¢-free and c-supplemented and
hence completely factorisable, by Proposition 2.4. Then L = R+S where R is the
radical of L and S is semisimple. It suffices to show that SR = 0; the rest follows
from Lemma 2.1, Corollary 2.3, Proposition 2.4, Theorem 3.1 and Proposition 3.6.
Suppose there is 0 # 2 € L® N R. Then there is a subalgebra M of L such
that L = Fz+M and L/Mj, is given by Theorem 3.2. If L/M; = L,,(T') then
L/M;, is simple, by Proposition 3.4, and M, < R+ My, so L = R+ M. But
then L/Mj, is solvable, a contradiction. It follows that dim L/M; < 2, whence
re LY NR<LO® < M, < M, a contradiction. Hence L® N R = 0. But
SR=S?R < S(SR) = S?P(SR) < L® N R =0, as required.

(ii) = (i): This follows from Proposition 2.4, Lemma 2.5, Theorem 3.1 and

Proposition 3.6. [ ]
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