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Abstract. In this postscript to our earlier note (J. Lie Theory 18 (2008),
295–299) we show that finite-dimensional Lie algebras over a field of charac-
teristic zero such that their high-degree cohomology in any finite-dimensional
non-trivial irreducible module vanishes, are, essentially, direct sums of semisim-
ple and nilpotent algebras.
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The classical First and Second Whitehead Lemmata state that the first and the
second cohomology group of a finite-dimensional semisimple Lie algebra over a field
of characteristic zero with coefficients in any finite-dimensional module vanishes.
This pattern breaks down, however, at the third cohomology: it is well-known
that the third cohomology of a simple Lie algebra with coefficients in the trivial
one-dimensional module is one-dimensional, the basic cocycle being constructed
from the Killing form. There is, however, a related and not less classical result
holding for all higher cohomology groups which is called sometimes the Whitehead
Theorem: for any finite-dimensional semisimple Lie algebra L and any non-trivial
finite-dimensional irreducible L-module V , Hn(L, V ) = 0 for any n ≥ 3.

It is very natural to ask whether a converse to these statements holds. A
converse to the Second Whitehead Lemma was established in [6]. The aim of this
note is to observe that a converse to the Whitehead Theorem readily follows from
the results already established in the literature.

In the following we assume that the base field is of characteristic zero and
that all algebras and modules are finite-dimensional. While some of the reasonings
below are valid in any characteristic, the case of positive characteristic is trivial
modulo existing results, as noted in [6]. Finite-dimensionality is obviously crucial
in most places.

Our notations and terminology are standard: for a Lie algebra L and an
L-module V , Hn(L, V ) denotes the nth cohomology of L with coefficients in V ,
V L denotes the submodule of L-invariant points, Z(L) and Rad(L) denotes the
center and the solvable radical of L respectively, V ∗ denotes an L-module adjoint
to V . When considered as an L-module, the base field K is understood as the
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trivial one-dimensional module. L is called unimodular if Tr(ad x) = 0 for any
x ∈ L , where Tr denotes the trace of a linear operator.

Theorem. For a Lie algebra L, the following are equivalent:

(i) L is the direct sum of a semisimple algebra and a nilpotent algebra.

(ii) Hn(L, V ) = 0 for any n and any non-trivial irreducible L-module V .

(iii) Hdim L−1(L, V ) = 0 for any non-trivial irreducible L-module V .

(iv) H1(L, V ) = 0 for any non-trivial irreducible L-module V .

Proof. (i) ⇒ (ii): For a nilpotent Lie algebra even a more general statement
is true: by [3, Théorème 1], the cohomology of a nilpotent Lie algebra vanishes
if coefficients are taken in a module without trivial submodules. The same is
true for a semisimple Lie algebra; this follows from the classical results mentioned
above, complete reducibility of representations of a semisimple Lie algebra, and
the additivity of cohomology (cohomology with coefficients in the direct sum of
modules decomposes as the direct sum of cohomologies with coefficients in direct
summands).

Now let L = S ⊕ N , the direct sum of a semisimple Lie algebra S and a
nilpotent Lie algebra N , and V be a non-trivial irreducible L-module. Suppose
that V , as an S -module, contains the trivial submodule K . As the actions of S
and N on V commute, S(N iK) = N i(SK) = 0 for any i ∈ N . Thus

∑
i N

iK is
an L-submodule of V and hence coincides with V , so V is a trivial S -module.
Then any trivial N -submodule of V will be also a trivial L-submodule of V ,
hence V does not contain trivial submodules as an N -module.

If in this reasoning we interchange the roles of S and N (we have not used
any properties of S and N , and it is valid for the direct sum of any Lie algebras)
then we see that at least for one of the algebras S , N , the module V over that
algebra does not contain trivial submodules.

By the Künneth formula, Hn(S ⊕ N, V ) '
⊕

i+j=n H i(S, V ) ⊗ Hj(N, V ),
and by the above, at least one of the tensor factors in each summand vanishes.

(ii) ⇒ (iii), as well as (ii) ⇒ (iv), is obvious.

(iii) ⇒ (iv): By the result of Hazewinkel [5], which is a generalization of
the well-known Poincaré duality for the cohomology of unimodular Lie algebras
([4, Chapter 1, §1.6B]) to all Lie algebras, Hn(L, (V tw)∗) ' Hdim L−n(L, V )∗ for
any 0 ≤ n ≤ dim L and any L-module V , where V tw is a “twisted” L-module
defined on the vector space V as follows: x 7→ ρV (x) − Tr(ad x)1V for x ∈ L ,
where x 7→ ρV (x) is the representation corresponding to the module V , and 1V

is the identity map on V .

Let V be a non-trivial irreducible L-module. By the Hazewinkel’s duality,

H1(L, (V tw)∗) ' Hdim L−1(L, V )∗ (1)

and
H1(L, V ) ' Hdim L−1(L, (V ∗)−tw)∗, (2)



Zusmanovich 813

where the “minus-twisted” module W−tw is obtained from the module W by the
formula x 7→ ρW (x) +Tr(ad x)1W . It is well-known (see, for example, [2, Chapter
1, §3.3]) that a module V is irreducible if and only if V ∗ is irreducible, and it is
obvious that V is irreducible if and only if V −tw is irreducible. Hence (V ∗)−tw is
an irreducible L-module.

If (V ∗)−tw is a trivial module, then V ∗ is an one-dimensional module Kv
defined by xv = −Tr(adx)v for x ∈ L , so V is an one-dimensional module Kv
defined by xv = Tr(adx)v , and V tw , as well as (V tw)∗ , is the one-dimensional
trivial L-module. Since Hdim L−1(L, V ) = 0, (1) implies H1(L, K) = 0, what is
equivalent to [L, L] = L . The latter, in its turn, implies that Tr(ad x) = 0 for any
x ∈ L (i.e. L is unimodular), so V is trivial, a contradiction.

Thus (V ∗)−tw is a non-trivial module, hence Hdim L−1(L, (V ∗)−tw) = 0, and
by (2), H1(L, V ) = 0.

Of course, very similar arguments could be used to prove the reverse impli-
cation (iv) ⇒ (iii).

(iv) ⇒ (i): In [1, Theorem 3] a very close statement is proved: a Lie
algebra L is the direct sum of a semisimple algebra and a supersolvable algebra
if and only if H1(L, V ) = 0 for any irreducible L-module V of dimension > 1.
Note a subtle but important difference between two conditions on L-modules:
solvable Lie algebras (and, more generally, Lie algebras with a nonzero radical)
may have (and necessarily have if the ground field is algebraically closed, by the
Lie Theorem) one-dimensional (and, hence, irreducible) non-trivial module. What
follows is, essentially, modified for our needs proof from [1].

First note that condition (iv) is closed under quotients. Indeed, let a Lie
algebra L satisfies (iv), I be an ideal of L , and V be a non-trivial irreducible L/I -
module. We can lift V to an L-module by letting I act on it trivially. Obviously,
the such lifted L-module is also non-trivial and irreducible. The beginning of the
standard 5-term long exact sequence which follows from the Hochschild–Serre
spectral sequence, reads: 0 → H1(L/I, V I) → H1(L, V ). As V I = V and
H1(L, V ) = 0, we have H1(L/I, V ) = 0.

Now we argue by induction on the dimension of L . The case of dimension 1
is obvious. Suppose L is not semisimple and satisfies (iv). Then L has a minimal
abelian ideal I , L/I also satisfies (iv), and by induction assumption satisfies
(i). Let L = S n Rad(L) be the Levi–Malcev decomposition of L . Obviously,
I ⊆ Rad(L), and L/I ' S n Rad(L)/I is the Levi–Malcev decomposition of
L/I . As (i) amounts to saying that the Levi–Malcev decomposition of a Lie
algebra degenerates to the direct sum and its radical is nilpotent, it follows that
L/I ' S⊕Rad(L)/I and Rad(L)/I is nilpotent. Note also that since I is minimal,
it is an irreducible L/I -module.

If I is a trivial L/I -module, then I ⊆ Z(L) ⊆ Z(Rad(L)). Since extension
of a nilpotent Lie algebra by an ideal lying in its center is obviously nilpotent,
Rad(L) is nilpotent. Also, since S acts on Rad(L)/I trivially, [S, Rad(L)] ⊆ I ,
and hence S acts on Rad(L) nilpotently. But since S is semisimple, this means
[S, Rad(L)] = 0.

Suppose that I is not a trivial L/I -module. By (i) ⇒ (ii), H2(L/I, I) = 0,
and hence the extension 0 → I → L → L/I → 0 splits, i.e. L ' S⊕Rad(L)/I⊕I ,
thus L is isomorphic to the direct sum of a semisimple algebra S and a nilpotent
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algebra Rad(L)/I ⊕ I .

Corollary. For a Lie algebra L, the following are equivalent:

(i) Hn(L, V ) = 0 for any n ≥ 3 and any non-trivial irreducible L-module V .

(ii) L is either the direct sum of a semisimple and a nilpotent algebra, or a
2-dimensional algebra, or a 3-dimensional unimodular algebra.

Proof. For dim L > 3, in one direction, put n = dim L − 1 and invoke
implication (iii) ⇒ (i) of the Theorem, and in another direction this is exactly
implication (i) ⇒ (ii) of the Theorem.

For dim L = 2, (i) is satisfied vacuously.

Let dim L = 3. (i) is non-vacuous only for n = 3. By the Hazewinkel’s
duality, H3(L, V ) ' H0(L, (V ∗)−tw)∗ ' (((V ∗)−tw)L)∗ . By the same arguments as
in the proof of implication (iii) ⇒ (iv) of the Theorem, (V ∗)−tw is irreducible if
and only if V is irreducible, and is trivial if and only if V is isomorphic to K−tw .
Consequently, (i) in this case is equivalent to the triviality of the module K−tw ,
what, in its turn, is equivalent to unimodularity of L .

The implication (i) ⇒ (ii) of the Corollary is the converse to the Whitehead
Theorem.

Using the well-known classification of three-dimensional Lie algebras (see,
for example, [2, Chapter 1, §6, Exercise 23]), it is easy to list all three-dimensional
unimodular Lie algebras. The list consists of the abelian algebra, the nilpotent
(Heisenberg) algebra, simple algebras, and solvable algebras with basis {x, y, z}
and multiplication table [x, y] = 0, [x, z] = ax + by [y, z] = cx − ay for certain
a, b, c, d ∈ K with a2 + bc 6= 0.
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