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Abstract. We give a new proof of the Howe duality theorem for the reduc-
tive dual pair (Sp(n, R), O(k)) by using the isotropy representations for unitary
lowest weight modules of the metaplectic group Mp(n, R). The irreducible rep-
resentations of O(k) appearing in the Howe duality correspondence are specified
explicitly by means of the branching rule of the representations of O(k) restricted
to orthogonal groups of smaller size.
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1. Introduction

This is a continuation of the articles [20] and [23] by the second named author. The
purpose of this note is to make a small observation on classical invariant theory
[8] in connection with geometric invariants for Harish-Chandra modules.

Let G be a connected reductive Lie group and K a maximal compact
subgroup of G . We write KC for the complexification of K . We denote by g = k⊕p

the complexified Cartan decomposition of the Lie algebra g = (Lie G)⊗R C with
k = Lie KC . Let X be a (g, KC)-module of finite length. By means of a graded
module gr X associated with X , one can attach to X a KC -stable affine algebraic
variety V(X) called the associated variety of X . V(X) is a union of (finitely many)
nilpotent KC -orbits in p .

The isotropy representation, attributed to David Vogan ([16], [17]), gives a
kind of refined geometric invariant for X . More precisely, it is a finite dimensional
representation of the isotropy subgroup KC(ξ) = ZKC(ξ) of a generic element
ξ in each irreducible component of V(X). The dimension of this representation
equals the multiplicity of gr X at the irreducible component Ad(KC)ξ (see also [23,
Section 2]). These kinds of geometric invariants play an essential role to understand
infinite dimensional representations of G in connection with nilpotent orbits in
the Lie algebra (see e.g., [1], [2], [5]). Especially, we expect strong relationships
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among the isotropy representations, Howe duality correspondence and generalized
Whittaker models for X , as seen partially in [21] for the case of unitary highest
(or lowest) weight representations.

In this paper, we consider the Howe duality correspondence ([8], [9]) for

the classical reductive dual pair (G,G′) = (Sp(n,R), O(k)). Let G̃ = Mp(n,R)
be the metaplectic group of rank n , the double cover of G . It is shown that the
Howe duality theorem (Theorem 4.1) for (G̃, G′) can be reproduced by using the
idea of isotropy representations for the irreducible constituents of tensor products
of the Weil representation studied in [21]. This provides us with a new proof of
some results of Kashiwara and Vergne [12] which are essential for the classification

of unitary lowest weight representations of G̃ . Note that the compact member
G′ = O(k) naturally arises in our theory of isotropy representations through

a group homomorphism p : K̃C(ξm) → G′ given in (8). Our argument allows
to identify the irreducible representations of G′ appearing in the Howe duality
correspondence (Theorem 4.4) explicitly by means of the branching rule of the
representations of G′ restricted to orthogonal groups of smaller size.

2. Isotropy representations

We start with a quick review on associated variety, associated cycle and isotropy
representations for Harish-Chandra modules. See [16] (and also [23]) for the detail.

Let G be a connected reductive Lie group. We assume that G is linear
or at most finite covering group of a linear group (see [17, Definition 2.5]). Let
K be a maximal compact subgroup of G . Keep the notation in Introduction.
We denote by U(g) the universal enveloping algebra of g , and let {Un(g)}n∈Z≥0

be the standard increasing filtration of U(g). The associated graded algebra
gr U(g) =

⊕
n Un(g)/Un−1(g) (with U(g)−1 = 0) is naturally isomorphic to the

symmetric algebra S(g) of g . We identity S(g) with the ring C[g] of polynomial
functions on g by means of a g-invariant nondegenerate symmetric bilinear form
B on g .

Now, let X be a (g, KC)-module of finite length. Take a finite dimensional
KC -stable subspace V of X such that X = U(g)V . Put Xn = Un(g)V . Then
{Xn}n∈Z≥0

gives a good filtration of X . The associated graded module gr X =⊕
n Xn/Xn−1 (with X−1 = 0) has a natural structure of (S(g), KC)-module. We

set
V(X) = {ξ ∈ g | f(ξ) = 0 for all f ∈ AnnS(g)(gr X)}, (1)

where AnnS(g)(gr X) denotes the annihilator of gr X in S(g). Note that the affine
variety V(X) is equal to the support of finitely generated module gr X over S(g).
V(X) is called the associated variety of X .

We consider the irreducible decomposition V(X) =
⋃l

j=1 Vj of the affine
variety V(X), and let Ij be the prime ideal of S(g) corresponding to the irreducible
component Vj . Then the formal sum

C(X) =
l∑

j=1

mj · [Vj] with mj = lengthS(g)Ij
(gr X)Ij

(2)

is called the associated cycle of X . Here (gr X)Ij
denotes the localization of gr X

at Ij , which becomes a module over S(g)Ij
of finite length. Let N be the set of
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nilpotent elements in g , and put Np = N ∩p . It is known that V(X) and C(X) are
independent of the choice of a KC -submodule V , and that V(X) is a KC -stable
cone contained in Np .

Now we assume that V(X) is irreducible, for simplicity. Then there exists a
KC -orbit O in Np such that V(X) is the closure of O . Put I =

√
AnnS(g)(gr X)

and take a positive integer n0 such that In0 gr X = 0. By assumption, I is
the prime ideal of S(g) defining V(X) = O . Take an element ξ ∈ O and put
KC(ξ) = {k ∈ KC | Ad(k)ξ = ξ} . Let m(ξ) be the maximal ideal of S(g)
defining one point {ξ} . Namely, m(ξ) is the ideal of S(g) generated by elements
Y −B(ξ, Y ) with all Y ∈ g . Then the module

W(X) =

n0−1⊕
j=0

(Ij gr X)/(m(ξ)Ij gr X) (3)

has a natural structure of a finite dimensional KC(ξ)-representation. This is called
the isotropy representation for X . By Vogan, W(X) is independent of the choice
of V as an element of the Grothendieck group of KC(ξ)-representations, and the
dimension of W(X) coincides with the multiplicity m = lengthS(g)I

(gr X)I in the

associated cycle C(X) = m · [O] of X .

3. Weil representations

Let G be the real symplectic group Sp(n,R) of rank n . We realize the group G
in GL(2n,C) as G = {cgc−1 | g ∈ GL(2n,R), tgJg = J} with

J =

(
0 1n

−1n 0

)
and c =

1

2

(
1n −

√
−1 1n

−
√
−1 1n 1n

)
,

where 1n is the identity matrix of size n . The complexification g of the Lie algebra
of G consists of matrices

X(A,B,C) =

(
A B
C −tA

)
with A ∈Mn(C) and B,C ∈ Symn(C).

Here Mm,n(C) denotes the totality of complex matrices of size (m,n), and we set
Mn(C) = Mn,n(C) and Symn(C) = {Z ∈ Mn(C) | tZ = Z} . Define a Cartan
involution θ of G by θ(g) = tg−1 . Then the groups K and KC turn to be

K = {diag(g, tg−1) | g ∈ U(n)} and KC = {diag(g, tg−1) | g ∈ GL(n,C)},

respectively. By the map diag(g, tg−1) 7→ g , we identify KC with GL(n,C). We
put

K̃C = {(g, ε) ∈ KC × C× | ε2 = det g}.

Then the map (g, ε) 7→ g from K̃C to KC gives a double covering of KC . The

group K̃C is naturally looked upon as the complexification of a maximal compact
subgroup K̃ of G̃ = Mp(n,R).

The Lie algebra k of KC consists of matrices X(A, 0, 0) with A ∈ Mn(C).
We set

p+ = {X(0, B, 0) | B ∈ Symn(C)} and p− = {X(0, 0, C) | C ∈ Symn(C)}.
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Then p = p++p− , and p± are KC -invariant abelian Lie subalgebras of g contained
in Np .

For m = 1, 2, . . . , n , define ξm ∈ p− by

ξm = X(0, 0, Cm) with Cm =
m∑

i=1

Eii =

(
1m 0m,n−m

0n−m,m 0n−m,n−m

)
, (4)

where Eij = (δipδjq)p,q ∈ Mn(C) is the (i, j) matrix unit. Put Om = Ad(KC)ξm .
The group GL(n,C) acts on Symn(C) by g · Z = gZ tg (g ∈ GL(n,C), Z ∈
Symn(C)), and the set {Z ∈ Symn(C) | rank Z = m} forms a single GL(n,C)-
orbit for every m = 0, 1, . . . , n . This implies the following well-known lemma.

Lemma 3.1. The set of KC -orbits in p− is {Om | m = 0, 1, . . . , n}, where
O0 = {0}. Moreover, the closure of Om is equal to O0 ∪ · · · ∪ Om .

We now introduce the (g, K̃C)-module of the (k -fold tensor product of)

Weil representation of G̃ = Mp(n,R), by using the Fock realization. For a positive
integer k , let P = C[Mn,k] be the ring of polynomials on Mn,k = Mn,k(C). We
write z = (zip)1≤i≤n,1≤p≤k for the variable of Mn,k . We take a basis of g as

Aij = X(Eij, 0, 0) ∈ k (i, j = 1, 2, . . . , n),

Bij = X(0, Eij + Eji, 0) ∈ p+ (1 ≤ i ≤ j ≤ n),

Cij = X(0, 0, Eij + Eji) ∈ p− (1 ≤ i ≤ j ≤ n).

Define an action of g and K̃C on P through

$k(Aij) =
k∑

p=1

zip
∂

∂zjp

+
k

2
δij,

$k(Bij) =
√
−1

k∑
p=1

zipzjp,

$k(Cij) =
√
−1

k∑
p=1

∂2

∂zip∂zjp

,

and
($k((g, ε))f)(z) = εkf(tgz)

(
f ∈ P, (g, ε) ∈ K̃C

)
.

Set G′ = O(k) and G′
C = O(k,C). We define a representation π′ of G′

C on P by
(π′(g′)f)(z) = f(zg′) for g′ ∈ G′

C . Let 〈·, ·〉 be the inner product on P defined by
〈f, g〉 = (f(∂)g)(0), where g(z) = g(z) and ∂ = (∂/∂zip)i,p .

Lemma 3.2. (cf. [3], [7]. See also [6], [24]) The action $k defines a unitary

(g, K̃C)-module P with respect to the inner product 〈·, ·〉. Moreover, the represen-
tation π′ of G′

C commutes with $k .

The representation $k is called the Weil representation. This comes from
a representation of the double cover G̃ of G , which does not factor through a
representation of G if k is odd.
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Let Ĝ′
C be the set of equivalence classes of finite dimensional irreducible

holomorphic representations of G′
C . Through Weyl’s unitarian trick, Ĝ′

C is iden-
tified with the unitary dual of the compact orthogonal group G′ = O(k). For

(σ, Vσ) ∈ Ĝ′
C , put L(σ) = HomG′

C
(Vσ,P). This is a (g, K̃C)-module, and P decom-

poses as

P '
⊕
σ∈Ξ

L(σ)⊗ Vσ as (g, K̃C)×G′
C -modules, (5)

where Ξ = {σ ∈ Ĝ′
C | L(σ) 6= 0} .

4. Howe duality theorem

We now state the Howe duality theorem (cf. [8]) for the dual pair (G,G′) =
(Sp(n,R), O(k)), which is essentially due to Kashiwara and Vergne [12].

Theorem 4.1. (1) L(σ) is an irreducible (g, K̃C)-module with lowest weight
for every σ ∈ Ξ.

(2) For σ1, σ2 ∈ Ξ, L(σ1) ' L(σ2) implies σ1 ' σ2 .

(3) Let H be the subgroup of G′
C consisting of matrices diag(1n, h) with

h ∈ O(k − n,C) for k > n, and let H be the identity group for k ≤ n. Then one
gets

Ξ = {σ ∈ Ĝ′
C | V

H
σ 6= 0}, (6)

where V H
σ denotes the space of H -fixed vectors in Vσ . In particular, it follows

that Ξ = Ĝ′
C if k ≤ n.

We will prove this theorem in Section 7 by using the idea of isotropy
representations for L(σ).

The characterization (6) of Ξ (cf. [21, Th. 5.14], see also [4]) allows to
specify the parameters of σ ∈ Ξ for k > n in the following way.

Define a subset Λ(k) of Zk by

Λ(k) = {(λ1, . . . , λl, 0k−l), (λ1, . . . , λl, 1k−2l, 0l) |
λ1 ≥ · · · ≥ λl > 0, 0 ≤ l ≤ [k/2]}.

Here εq = (ε, . . . , ε) (q copies of ε) for ε = 0, 1. Then the set Λ(k) parametrizes fi-
nite dimensional irreducible holomorphic representations of G′

C = O(k,C) (Weyl’s
construction, see [11, §19.5]). More precisely, we can attach to each λ ∈ Λ(k) an
irreducible representation σk,λ of O(k,C), as follows. Set V = Ck and, as usual,
we regard it as an O(k,C)-representation. Then V has an O(k,C)-invariant
nondegenerate symmetric bilinear form Q : V ⊗ V → C . We put d =

∑k
i=1 ai

for λ = (a1, . . . , ak) ∈ Λ(k). For 1 ≤ i < j ≤ d , Q defines a linear map
Qi,j : V ⊗d → V ⊗(d−2) by contraction:

v1 ⊗ · · · ⊗ vd 7−→ Q(vi, vj) v1 ⊗ · · · ⊗ v̂i ⊗ · · · ⊗ v̂j ⊗ · · · ⊗ vd.

Set V [d] =
⋂

1≤i<j≤d KerQi,j . Let Sλ be the Schur functor ([11, §6.1]). Then

SλV gives an irreducible GL(k,C)-subrepresentation of V ⊗d with highest weight
λ . Set σk,λ = V [d] ∩ SλV . This gives an irreducible O(k,C)-representation. The
trivial representation corresponds to (0k).

Then one gets the following branching rule.
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Lemma 4.2. (cf. [14, Proposition 10.1]. See also [13]) The restriction of σk,λ ∈ Ĝ′
C

to the subgroup O(k − 1,C) (⊂ G′
C as in Eq. (7) in Section 6) is of multiplicity

free. Moreover, we have HomO(k−1,C)(σk−1,µ, σk,λ) 6= 0 for λ = (a1, . . . , ak) ∈ Λ(k)
and µ = (c1, . . . , ck−1) ∈ Λ(k − 1) if and only if a1 ≥ c1 ≥ · · · ≥ ck−1 ≥ ak .

Remark 4.3. We thank Professor T. Kobayashi for informing us the paramet-
rization of irreducible representations of O(k) described in [13].

This lemma together with Theorem 4.1 (3) deduces the following theorem.

Theorem 4.4. Assume that k > n. The module L(σk,λ) is nonzero if and only
if

λ = (a1, . . . , ai, 0k−i)

for a1 ≥ · · · ≥ ai > 0 with i ≤ n, or

λ = (a1, . . . , ai, 1k−2i, 0i)

for a1 ≥ · · · ≥ ai > 0 with i ≥ k − n.

Proof. By virtue of (6) we have L(σk,λ) 6= 0 if and only if σk,λ|H ⊃ σk−n,(0k−n) .

First assume that λ = (a1, . . . , ai, 0k−i) for some a1 ≥ · · · ≥ ai > 0, i ≤ n .
Put λs = (a1, . . . , ai−s, 0k−i) ∈ Λ(k − s) for s ≤ i , and λs = (0k−s) ∈ Λ(k − s)
for s > i . Then by Lemma 4.2, we have σk−s,λs |O(k−s−1,C) ⊃ σk−s−1,λs+1 for
s = 0, 1, . . . , n− 1. Since λ0 = λ and λn = (0k−n), we have L(σk,λ) 6= 0.

Next assume that λ = (a1, . . . , ai, 1k−2i, 0i) for some a1 ≥ · · · ≥ ai > 0,
i ≥ k − n . Define λs ∈ Λ(k − s) as follows. We put λs = (a1, . . . , ai−s, 1k−2i, 0i)
for 0 ≤ s ≤ i , λs = (1k−i−s, 0i) for i < s ≤ k − i , and λs = (0k−s) for
k − i < s ≤ n . By Lemma 4.2, we have σk−s,λs |O(k−s−1,C) ⊃ σk−s−1,λs+1 . Since
λ0 = λ and λn = (0k−n), we find L(σk,λ) 6= 0.

Conversely, we prove that if λ = (a1, . . . , ak) ∈ Λ(k) satisfies σk,λ|H ⊃
σk−n,(0k−n) , then ai = 0 for i > n . For s ≤ n there exists λs = (a

(s)
1 , . . . , a

(s)
k−s) ∈

Λ(k − s) such that a
(s)
1 ≥ a

(s+1)
1 ≥ · · · ≥ a

(s+1)
k−s−1 ≥ a

(s)
k−s , λ0 = λ and λn = (0k−n).

If i > n then ai = a
(0)
i ≤ a

(1)
i−1 ≤ · · · ≤ a

(n)
i−n = 0. Hence one gets ai = 0 for i > n .

We thus complete the proof of the theorem.

Remark 4.5. We can establish the results corresponding to Theorems 4.1 and
4.4 also for the dual pairs (U(p, q), U(k)) and (SO∗(2n), Sp(k)). But, the argument
and the detail are considerably different from the present case (Sp(n,R), O(k)), if
G/K is of non-tube type. For this reason, we will treat them elsewhere (see also
[24]).

5. Pluriharmonic polynomials and associated graded modules

We put H = {f ∈ P | $k(p−)f = 0} . A polynomial in H is called pluriharmonic.

Since p− is stable under the adjoint action of K̃C , the subspace H is K̃C -stable.
It is stable under the representation π′ of G′

C also. This section introduces graded

(S(g), K̃C)-modules associated with irreducible constituents of P , in connection
with the pluriharmonic polynomials.

Let us begin with
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Proposition 5.1. ([12, Lemma (5.3)]) We have $k(U(p+))H = P.

We now set U(σ) = HomG′
C
(Vσ,H) ⊂ L(σ) for σ ∈ Ĝ′

C . U(σ) is a K̃C -
submodule of L(σ). It follows from the above proposition that

L(σ) = $k(U(p+))U(σ) = $k(U(g))U(σ).

Using the space H , we can define an increasing filtration of P by P(j) =
Uj(g)H (j = 0, 1, . . . ). Since U(p−) and U(k) preserve H , we have P(j) =
Uj(p+)H . Moreover, the action of S(p− ⊕ k) on the associated graded module
gr P =

⊕
j≥0 P(j)/P(j−1) is trivial. More precisely one gets

Proposition 5.2. The associated graded (S(g), K̃C)-module
gr P =

⊕
j≥0 P(j)/P(j−1)

is realized on the original P, where k+p− acts on P trivially, and S(p+) = U(p+),

K̃C act by $k .

Lemma 5.3. Let L be an irreducible (g, K̃C)-submodule of P. Then for every
j ≥ 0, dim(L ∩ P(j)) <∞, and {L ∩ P(j)}j=0,1,... gives a good filtration of L.

6. K̃C(ξm)-modules L(σ)/$k(m(ξm))L(σ)

In this section, we consider the associated graded (S(g), K̃C)-module gr P realized
on P , and we describe after [21, Section 5] the representation on the right hand

side of Eq. (3) for (g, K̃C)-modules L(σ). First, we define a map ψ : Mn,k → p−
by

ψ(z) =

(
0 0
z tz 0

)
(z ∈Mn,k),

and put m = min(n, k). The pair (G,G′) is called in the stable range if k ≤ n .

The following lemma is easy to prove by noting that the map ψ is KC -
equivariant, where KC = GL(n,C) acts on Mn,k by left multiplication.

Lemma 6.1. We have Imψ = Om , where Om = Ad(KC)ξm is the nilpotent
KC -orbit in p− in Lemma 3.1.

Define a g-invariant nondegenerate symmetric bilinear form B on g by
B(X, Y ) = (

√
−1/2) ·Tr(XY ) for X,Y ∈ g . We identify S(g) with C[g] through

B . The following lemma is clear from the definition of $k .

Lemma 6.2. We have ($k(D)f)(z) = D(ψ(z))f(z) for all D ∈ S(p+).

Set m(ξm) =
∑

X∈p+
(X − B(ξm, X))S(p+). Then m(ξm) is the maximal

ideal of S(p+) defining the point ξm ∈ p− = p∗+ .

Proposition 6.3. Put I(Om) = {D ∈ S(g) | D(ξ) = 0 (ξ ∈ Om)}.
(1) For all f ∈ P \ {0}, we have AnnS(g) f = I(Om). In particular, the

associated variety of every irreducible subrepresentation of P is equal to Om .

(2) For every irreducible subrepresentation L of P, the isotropy represen-

tation for L is given by L/$k(m(ξm))L on which K̃C(ξm) = ZfKC
(ξm) acts through

$k .
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Now, Lemma 6.2 implies that

{z ∈Mn,k | f(z) = 0 for all f ∈ $k(m(ξm))P} = ψ−1(ξm).

More precisely, Proposition 5.8 in [21], which amounts to a classical result of
Weyl [19, Th.(5.2.C)] on the orthogonal ideal for the case k ≤ n , assures that
$k(m(ξm))P is the defining ideal of ψ−1(ξm). Noting that ψ−1(ξm) is stable under
the action of KC(ξm)×G′

C , one thus gets the following lemma.

Lemma 6.4. The ideal $k(m(ξm))P of P = C[Mn,k] is reduced. Therefore we
have

P/$k(m(ξm))P ' C[ψ−1(ξm)],

L(σ)/$k(m(ξm))L(σ) ' HomG′
C
(Vσ,C[ψ−1(ξm)]).

In order to prove the Howe duality theorem, we are going to identify
the K̃C(ξm)-module L(σ)/$k(m(ξm))L(σ) that will turn out to be the isotropy
representation for L(σ) (Corollary 7.4). But it should be noticed that, at present,
we do not know yet whether L(σ) is of finite length or not. We now describe after

[21] the variety ψ−1(ξm) and the action of K̃C(ξm) on HomG′
C
(Vσ,C[ψ−1(ξm)]).

For l < k , we regard O(l,C) as a subgroup of G′
C = O(k,C) by

O(l,C) =

{(
1k−l 0
0 h

)
∈ G′

C

}
. (7)

If l ≤ 0, we put O(l,C) = {e} .

Lemma 6.5. (1) The isotropy subgroup K̃C(ξm) = ZfKC
(ξm) consists of g̃ =

(g, ε) ∈ K̃C with

g =

(
g11 0
g21 g22

)
, g11 ∈ O(m,C), g22 ∈ GL(n−m,C).

Here g stands for g = g11 ∈ O(n,C) if m = n (or equivalently if k ≥ n).

(2) We have ψ−1(ξm) ' H\G′
C as G′

C -varieties, where H = O(k − n,C).

Let p : K̃C(ξm) → O(k,C) and e : K̃C(ξm) → C× be group homomorphisms
defined by

p

(((
g11 0
g21 g22

)
, ε

))
=

(
g11 0
0 1k−m

)
, e

(((
g11 0
g21 g22

)
, ε

))
= εk (8)

for g11 ∈ O(m,C), g21 ∈Mn−m,m and g22 ∈ GL(n−m,C).

Lemma 6.6. The action of g̃ ∈ K̃C(ξm) on f ∈ C[ψ−1(ξm)] ' C[H\G′
C] is

given by
(g̃ · f)(Hg′) = e(g̃)f(H tp(g̃)g′) (g′ ∈ G′

C = O(k,C)).

Using the above three lemmas together with the theorem of Peter-Weyl, we
deduce the following description of L(σ)/$k(m(ξm))L(σ) for every finite dimen-
sional irreducible holomorphic representation (σ, Vσ) of G′

C .
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Proposition 6.7. For (σ, Vσ) ∈ Ĝ′
C , we have

L(σ)/$k(m(ξm))L(σ) ' (V ∗
σ )H as K̃C(ξm)-modules.

Here the action of g̃ ∈ K̃C(ξm) on (V ∗
σ )H is given by

g̃ · v = e(g̃)tp(g̃)−1v for v ∈ (V ∗
σ )H .

This immediately implies the following

Corollary 6.8. Assume that (G,G′) is in the stable range. The representation

L(σ)/$k(m(ξm))L(σ) of K̃C(ξm) is nonzero and irreducible for every σ ∈ Ĝ′
C .

7. Proof of Howe duality theorem

We are now in a position to prove the Howe duality Theorem (Theorem 4.1).

7.1. First, let us prepare the following basic proposition resulted from the unitarity
of the Weil representation.

Proposition 7.1. Let L be any nonzero (g, K̃C)-submodule of P = C[Mn,k].

(1) If N is a (g, K̃C)-submodule of L, then one gets L = N ⊕ N ′ as

(g, K̃C)-modules. Here N ′ = {f ∈ L | 〈f, g〉 = 0 (g ∈ N)} denotes the subspace of
L orthogonal to N with respect to the inner product 〈 · , · 〉.

(2) L decomposes into a direct sum of (at most countably many) irreducible

(g, K̃C)-submodules of L with lowest weights.

Proof. (1) The (g, K̃C)-submodule L of P = C[Mn,k] is stable under the action
of the Euler operator: ∑

i,p

zip
∂

∂zip

=
∑

i

$k(Aii)−
nk

2
Id.

This implies L =
⊕

j≥0 L(j) with L(j) = L ∩ P(j) , where P(j) denotes the (finite
dimensional) subspace of P consisting of homogeneous polynomials of degree j .
Similarly one sees N =

⊕
j≥0N(j) with N(j) = N ∩ P(j) ⊂ L(j) .

Noting that the subspaces P(j) (j = 0, 1, . . .) are orthogonal with respect
to the inner product 〈 · , · 〉 in question, the subspace N ′ of L orthogonal to N
turns to be a direct sum of the orthogonal complements N ′

(j) of N(j) in the finite
dimensional Hilbert spaces L(j) :

N ′ =
⊕
j≥0

N ′
(j), L(j) = N(j) ⊕N ′

(j),

which implies L = N ⊕ N ′. Moreover, N ′ is a (g, K̃C)-submodule of L by the
unitarity of the Weil representation $k .

(2) First, let j1 be the smallest integer such that L(j1) 6= 0, and consider

a finitely generated (g, K̃C)-submodule Nj1 = U(g)L(j1) of L generated by the
homogeneous component L(j1) of degree j1 . Let

L(j1) =
t⊕

r=1

Vr
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an irreducible decomposition of the K̃C -representation L(j1) , where the irreducible
constituents Vr are orthogonal to each other. Take a lowest weight vector vr of
the K̃C -module Vr . Then vr becomes a lowest weight vector with respect to g ,
since p−L(j1) ⊂ L(j1−2) = 0. We thus get

Nj1 =
t∑

r=1

U(g)Vr with U(g)Vr = U(p+)Vr = U(g)vr.

By virtue of the unitarity of $k , the sum in the right hand side is an orthogonal
direct sum, and each lowest weight submodule U(g)vr is irreducible (in general,
any unitary g-module generated by a single lowest weight vector is irreducible).
In this way, Nj1 is decomposed into an orthogonal direct sum of finitely many
(irreducible) unitary lowest weight modules.

In view of the assertion (1), the (g, K̃C)-module L decomposes as

L = Nj1 ⊕N ′
j1

with N ′
j1
⊂

⊕
j>j1

L(j).

Repeating the above argument (for L replaced by N ′
j1

) successively, we find an
increasing sequence of nonnegative integers j1 < j2 < · · · < jk < · · · and mutually
orthogonal (g, K̃C)-submodules Njk

of L such that

L =
⊕
jk

Njk
, Njk

⊂
⊕
j≥jk

L(j),

and that each Njk
is a direct sum of finite number of irreducible unitary (g, K̃C)-

submodules with lowest weights. We thus complete the proof of the proposition.

7.2. Now one obtains Theorem 4.1 (3) from the following lemma together with
Proposition 6.7. (Notice that V H

σ 6= 0 if and only if (V ∗
σ )H 6= 0.)

Lemma 7.2. Let L be a (g, K̃C)-submodule of P. The space L/m(ξm)L is zero
if and only if L is zero.

Proof. Assume that L/m(ξm)L is zero. By Proposition 7.1, L decomposes

into a direct sum of irreducible (g, K̃C)-submodules. Then we get Lm(ξm) = 0 by
applying Nakayama’s lemma to each irreducible constituent of L . Hence for all
f ∈ L there exists D ∈ S(p+) ' C[p−] such that D(ξm) 6= 0 and Df = 0. Then
D 6∈ I(Om). If f 6= 0 then we have AnnS(g) f = I(Om) by Proposition 6.3 (1).
This is a contradiction. One thus concludes L = 0.

7.3. We proceed to the proof of the assertions (1) and (2). First, let us consider
the case of stable range.

Proof. (of Theorem 4.1 (1) and (2): case of stable range) Assume that
(G,G′) is in the stable range with G′ a smaller member, i.e., k ≤ n . Then

by Corollary 6.8, the K̃C(ξm)-representation L(σ)/$k(m(ξm))L(σ) is irreducible

for every σ ∈ Ĝ′
C . Assume that L(σ) is reducible. Since L(σ) is isomorphic to a
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(g, K̃C)-submodule of P , there exist nonzero subrepresentations L1 and L2 of L(σ)
such that L(σ) = L1 ⊕ L2 . Then L(σ)/$k(m(ξm))L(σ) = (L1/$k(m(ξm))L1) ⊕
(L2/$k(m(ξm))L2). Hence we have L1/$k(m(ξm))L1 = 0 or L2/$k(m(ξm))L2 = 0
by the irreducibility of L(σ)/$k(m(ξm))L(σ). By Lemma 7.2, we get L1 = 0 or
L2 = 0. This is a contradiction. We have proved (1).

To prove (2), assume that L(σ1) ' L(σ2). Then one gets by virtue of
Proposition 6.7

V ∗
σ1
' L(σ1)/$k(m(ξm))L(σ1) ' L(σ2)/$k(m(ξm))L(σ2) ' V ∗

σ2

as K̃C(ξm)-modules. This implies σ1 ' σ2 as desired.

7.4. Second, we assume that k > n . Put ǧ = sp(k,C) and we regard g as a
subalgebra of ǧ by

g 3
(
A B
C −tA

)
7−→


A 0n,k−n B 0n,k−n

0k−n,n 0k−n,k−n 0k−n,n 0k−n,k−n

C 0n,k−n −tA 0n,k−n

0k−n,n 0k−n,k−n 0k−n,n 0k−n,k−n

 ∈ ǧ

for A ∈ gl(n,C) and B,C ∈ Symn(C). Let K̃C
∨

be the double cover of GL(k,C)

and $̌k be the Weil representation of (ǧ, K̃C
∨
) on P̌ = C[Mk,k] . We can define an

injective (g, K̃C)×G′
C -homomorphism P → P̌ , f 7→ f̌ , by

f̌

((
z
w

))
= f(z) for z ∈Mn,k and w ∈Mk−n,k.

Now, let b = t + n be a Borel subalgebra of g with t =
∑n

i=1 CAii and
n = p− +

∑
i<j CAij . We write ǩ, p̌+, p̌−, b̌ = ť + ň for the subalgebras of ǧ

corresponding to k, p+, p−, b = t + n for g , respectively. We extend a linear form
µ on t to µ̌ on ť by putting µ̌(Aii) = 0 for i > n . The following lemma is easily
proved.

Lemma 7.3. If f is a b-lowest weight vector of P with lowest weight µ, then
f̌ gives a b̌-lowest weight vector of P̌ with lowest weight µ̌.

Proof. (of Theorem 4.1 (1) and (2): out of stable range case) We put

Ľ(σ) = HomG′
C
(Vσ, P̌). Then Ľ(σ) is an irreducible (ǧ, K̃C

∨
)-module as already

proved in Section 7.3, because (Ǧ, G′) = (Sp(k,R), O(k)) is in the stable range.
Hence b̌-lowest weight vectors of Ľ(σ) are unique up to constant multiples. By
virtue of Lemma 7.3, the same holds for L(σ). This implies the irreducibility of
L(σ) in view of Proposition 7.1 (2).

Assume that L(σ1) ' L(σ2) for σ1, σ2 ∈ Ξ, and take a b-lowest weight
vector fi ∈ L(σi) (i = 1, 2). Then by Lemma 7.3, f̌i is a b̌-lowest weight vector of
Ľ(σi) and the weight of f̌1 is equal to that of f̌2 . Hence Ľ(σ1) ' Ľ(σ2). Therefore
we conclude σ1 ' σ2 as shown in Section 7.3.

Thus we have completed the proof of Theorem 4.1.

7.5. By Proposition 6.3 and the irreducibility of L(σ), we have the following
corollary that specifies the isotropy representation for L(σ).
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Corollary 7.4. Let L(σ) be the irreducible (g, K̃C)-module corresponding to
σ ∈ Ξ.

(1) The associated variety of L(σ) is Om .

(2) The isotropy representation W(L(σ)) for L(σ) equals
L(σ)/$k(m(ξm))L(σ) ' (V ∗

σ )H

described in Proposition 6.7. In particular, W(L(σ)) is irreducible if (G,G′) is in
the stable range.

We can show that the isotropy representation W(X) is irreducible for every
singular unitary highest (or lowest) weight representation X of a simple Lie group
of Hermitian type (including the exceptional case). This will be treated in another
paper [18] (see [22] for the announcement of the results).

It should be an interesting and important problem to study isotropy repre-
sentations for Harish-Chandra modules in connection with the transcending version
of the dual pair correspondence (cf. [9]), which we hope to study in near future.
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