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Abstract. Given a Lie group G with finitely many components and a
compact Lie group A which acts on G by automorphisms, we prove that there
always exists an A -invariant maximal compact subgroup K of G , and that
for every such K , the natural map H1(A,K) → H1(A,G) is bijective. This
generalizes a classical result of Serre and a recent result of the first and third
named authors of the current paper.
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1. Introduction

Let a group A act on a Lie group G by automorphisms. Recall that the set of
cocycles Z1(A,G) consists of maps γ : A → G satisfying γ(ab) = γ(a)a(γ(b))
for all a, b ∈ A , and that γ1, γ2 ∈ Z1(A,G) are cohomologous if for some g ∈ G
we have γ2(a) = g−1γ1(a)a(g) for all a ∈ A . The first nonabelian cohomology
H1(A,G) of A with coefficients in G is, by definition, the set of all cohomologous
classes in Z1(A,G) (c.f. [6]).

Because of its relation with number theory, most studies of this kind of
cohomology concentrate on the case that G is also algebraic. For example, a
classical result of Serre [6, III.4.5] asserts that if G is a complex reductive algebraic
group with a maximal compact subgroup K , and A ∼= Z/2Z acts on G by
the complex conjugation with respect to K , then the natural map H1(A,K) →
H1(A,G) is bijective. Recently, the case that G is an arbitrary connected Lie
group was considered in [1, 2]. In particular, it was proved that for any finite group
A and any connected Lie group G , there exists an A-invariant maximal compact
subgroup K of G , and the natural map H1(A,K) → H1(A,G) is bijective ([1,
Thm. 3.1]).

The goal of this paper is to generalize the above results to the case that A
is an arbitrary compact Lie group and G has finitely many components. In this
setting, by a cocycle γ : A → G we always mean a continuous one. Our main
theorem is as follows.
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Theorem 1.1. Let G be a Lie group with finitely many components, and let
A be a compact Lie group which acts on G by automorphisms. Then there exists
an A-invariant maximal compact subgroup K of G, and for every such K , then
natural map ι1 : H1(A,K) → H1(A,G) is bijective.

It should be pointed out that the main difficulty in the proof of Theorem 1.1
lies in the injectivity of the map ι1 . Recall that the proof of the corresponding part
for the special case of Theorem 1.1 where A is finite (and G is connected), which
is [1, Thm. 3.1], is based on the well-known fact that if K is a maximal compact
subgroup of a Lie group G with finitely many components, then there exist
AdG(K)-invariant subspaces p1, . . . , pr of L (G) with L (G) = L (K)⊕p1⊕· · ·⊕pr

such that the map K × p1 × · · · × pr → G , (k,X1, . . . , Xr) 7→ keX1 · · · eXr is a
diffeomorphism (c.f. [4, Thm. XV.3.1]). (Throughout this paper, we denote by
L the functor which takes a Lie group to its Lie algebra, and denote by eX the
image of X ∈ L (G) under the exponential map of a Lie group G .) To prove the
injectivity of ι1 in Theorem 1.1, we need the following generalization of this fact: If
a compact Lie group A acts on G by automorphisms and K is A-invariant, then
the subspaces p1, . . . , pr can be chosen to be A-invariant (for the precise statement,
c.f. Lemma 2.3 below). We will prove this result in Section 2. Theorem 1.1 will
be proved in Section 3.

2. Some lemmas

In this section we prove Lemmas 2.2 and 2.3 below. Lemma 2.2 ensures the first
assertion in Theorem 1.1, and Lemma 2.3 is a crucial tool to prove the injectivity
of the map ι1 in Theorem 1.1. We need the following well-known fact (c.f. [4,
Thm. XV.3.1] or [3, Thm. VII.1.2]).

Theorem 2.1. Let G be a Lie group with finitely many components, and let K
be a maximal compact subgroup of G. Then any compact subgroup of G can be
conjugated into K by G.

Lemma 2.2. Let G and A be as in Theorem 1.1, and let L be an A-invariant
compact subgroup of G. Then there exists an A-invariant maximal compact sub-
group K of G which contains L.

Proof. Denote H = G o A , and view G and A as subgroups of H in the
natural way. Since L o A is a compact subgroup of H , there exists a maximal
compact subgroup M of H which contains LoA . Let K = M ∩G . It is obvious
that the compact group K contains L and is A-invariant. We claim that K is
a maximal compact subgroup of G . Indeed, if K ′ is a compact subgroup of G
containing K , by Theorem 2.1, there exists h ∈ H with hK ′h−1 ⊂M . But since
G is normal in H , we also have hK ′h−1 ⊂ G . Thus hK ′h−1 ⊂ M ∩ G = K .
The facts that K ⊂ K ′ and hK ′h−1 ⊂ K imply that K ′ and K have the same
dimension and number of connected components. So we must have K ′ = K . This
proves that K is maximal compact subgroup in G .
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Our proof of the following lemma is motivated by that of [4, Thm. XV.3.1].

Lemma 2.3. Let G and A be as in Theorem 1.1, and let K be an A-invariant
maximal compact subgroup of G. Then there exist linear subspaces p1, . . . , pr

of L (G) which are invariant under both AdG(K) and A such that L (G) =
L (K)⊕p1⊕· · ·⊕pr , and such that the map ϕ : K×p1×· · ·×pr → G defined by

ϕ(k,X1, . . . , Xr) = keX1 · · · eXr

is a diffeomorphism.

Proof. We may assume that G is noncompact, and prove the lemma by
induction on dimG . Firstly, if G is not semisimple, we define a nontrivial A-
invariant closed connected normal abelian subgroup C of G as follows. Let
s be the solvable radical of L (G), and define si inductively as s0 = s and
si = [si−1, si−1] . Since s is solvable, there exists d such that sd 6= 0 and sd+1 = 0.
Then sd is abelian. Let Sd be the connected Lie subgroup of G with Lie algebra
sd . Then we define C as the closure of Sd in G . It is obvious that C satisfies the
required properties.

Now we define an A-invariant closed normal abelian subgroup D of G
according to the following three cases.

(1) If G is semisimple, we define D = Z(G0).

(2) If G is not semisimple and C is a vector group, we define D = C .

(3) If G is not semisimple and C is not a vector group, we define D as the
unique maximal compact subgroup of C .

Let G′ = G/D , and let π : G→ G′ be the quotient homomorphism. Then A acts
on G′ by automorphisms. By Lemma 2.2, we can choose an A-invariant maximal
compact subgroup K ′ of G′ which contains π(K). Let H = π−1(K ′), which is
an A-invariant subgroup of G . Clearly, K ⊂ H is a maximal compact subgroup
of H .

We first prove the following two claims.

Claim 1. Lemma 2.3 holds for the pair (G′, K ′).

For case (1), G′
0 is semisimple with trivial center. We choose p′ as the

orthogonal complement of L (K ′) in L (G′) with respect to the Killing form of
L (G′). Since the Killing form is preserved by any automorphism, we see that p′ is
invariant under both AdG′(K ′) and A . It is well-known that L (G′) = L (K ′)⊕p′ ,
and the Cartan decomposition ensures that the map ϕ′ : K ′×p′ → G′ , ϕ′(k′, X ′) =
k′eX′

is a diffeomorphism (for the case that G′ is non-connected, c.f. [3, Prop.
VII.2.3]). For the last two cases, we have dimG′ < dimG , and Claim 1 follows
from the induction hypothesis. This finishes the verification of Claim 1.

Claim 2. Lemma 2.3 holds for the pair (H,K).

For case (1), it is well-known that π−1(K ′
0) is connected (c.f. [5, Thm.

6.31(e)]). So H has finitely many components. Since G is noncompact, we have
dimK ′ < dimG′ . So dimH < dimG , and in this case Claim 2 follows from the
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induction hypothesis. For case (2), since D is a closed normal vector subgroup of
H and H/D is compact, by a theorem of Iwasawa (c.f. [4, Thm. III.2.3 and Lem.
XV.3.2] or [3, Thm VII.4.1]), we indeed have H = D o K . If we let p = L (D),
then the map ϕ0 : K × p → H , ϕ0(k,X) = keX is obviously a diffeomorphism.
This proves Claim 2 for case (2). For case (3), since D is compact, H is also
compact, and there is nothing to prove.

Now we have a surjective A-equivariant homomorphism π : G → G′

with kernel D , an A-invariant maximal compact subgroup K ′ of G′ containing
π(K), subspaces p′1, . . . , p

′
m of L (G′), and subspaces p1, . . . , pn of L (H), where

H = π−1(K ′), such that

(1) L (G′) = L (K ′)⊕ p′1 ⊕ · · · ⊕ p′m and L (H) = L (K)⊕ p1 ⊕ · · · ⊕ pn .

(2) Every p′i is invariant under AdG′(K ′) and A , and every pj is invariant under
AdG(K) and A .

(3) The maps ϕ′ : K ′ × p′1 × · · · × p′m → G′ and ϕ0 : K × p1 × · · · × pn → H
defined by

ϕ′(k′, X ′
1, . . . , X

′
m) = k′eX′

1 · · · eX′
m ,

ϕ0(k,X1, . . . , Xn) = keX1 · · · eXn

are diffeomorphisms.

Note that the compact group K o A acts linearly on each (dπ)−1(p′i), and the
subspace L (D) of (dπ)−1(p′i) is invariant under KoA . So there exists a subspace
qi of (dπ)−1(p′i) which is invariant under KoA such that (dπ)−1(p′i) = L (D)⊕qi .
Now the subspaces pj and qi are all invariant under AdG(K) and A , and it is
easy to see that L (G) = L (K) ⊕ p1 ⊕ · · · ⊕ pn ⊕ q1 ⊕ · · · ⊕ qm . It remains to
prove that the map ϕ : K × p1 × · · · × pn × q1 × · · · × qm → G defined by

ϕ(k,X1, . . . , Xn, Y1, . . . , Ym) = keX1 · · · eXneY1 · · · eYm

is a diffeomorphism. Since ϕ0 and ϕ′ are diffeomorphisms, there are smooth maps
k : H → K , Xj : H → pj , k′ : G′ → K ′ , and X ′

i : G′ → p′i such that

h = k(h)eX1(h) · · · eXn(h),

g′ = k′(g′)eX′
1(g′) · · · eX′

m(g′)

for all h ∈ H and g′ ∈ G′ . We define smooth maps Ỹi : G → qi , h̃ : G → H ,
k̃ : G→ K , X̃j : G→ pj as

Ỹi = (dπ|qi
)−1 ◦X ′

i ◦ π,

h̃(g) = g(eỸ1(g) · · · eỸm(g))−1 ∈ H,

k̃ = k ◦ h̃,

X̃j = Xj ◦ h̃.
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Let

ψ = (k̃, X̃1, . . . , X̃n, Ỹ1, . . . , Ỹm) : G→ K × p1 × · · · × pn × q1 × · · · × qm.

Then it is straightforward to check that both ϕ ◦ ψ and ψ ◦ ϕ are the identity
maps. Thus ϕ is a diffeomorphism. The proof of Lemma 2.3 is finished.

3. Proof of the main theorem

Now we prove our main Theorem 1.1.

Proof. The first assertion has been proved in Lemma 2.2. Now we prove the
surjectivity of ι1 : H1(A,K) → H1(A,G). We first recall that the group operations
in Go A are defined as

(g, a)(h, b) = (ga(h), ab), (g, a)−1 = (a−1(g−1), a−1).

We claim that for every A-invariant maximal compact subgroup K of G , K oA
is a maximal compact subgroup of G o A . Indeed, if L is a compact subgroup
of Go A containing K o A , then L ∩G is a compact subgroup of G containing
K . This forces L ∩ G = K . Now if h = (g, a) ∈ L , since A ⊂ L , we have
g = ha−1 ∈ L ∩G = K . Hence h ∈ K o A . This proves that K o A is maximal
compact subgroup in GoA . Now let γ : A→ G be a cocycle. Then it is easy to
check that the map γ̃ : A→ GoA defined as γ̃(a) = (γ(a), a) is a homomorphism.
Since γ̃ is continuous, we see that γ̃(A) is a compact subgroup of Go A . Hence
there exists (g, b) ∈ GoA such that (g, b)−1γ̃(A)(g, b) ⊂ KoA . This means that
(g, b)−1(γ(a), a)(g, b) ∈ K o A for all a ∈ A . But

(g, b)−1(γ(a), a)(g, b) = (b−1(g−1γ(a)a(g)), b−1ab).

So we have g−1γ(a)a(g) ∈ K for all a ∈ A . Hence γ is cohomologous to a cocycle
which takes values in K . This proves that H1(A,K) → H1(A,G) is surjective.

To prove that ι1 is injective, let γ1, γ2 : A → K be cocycles which are
cohomologous under G , i.e., there exists g ∈ G with γ2(a) = g−1γ1(a)a(g) for all
a ∈ A . By Lemma 2.3, there exist linear subspaces p1, . . . , pr of L (G) which are
invariant under AdG(K) and A such that L (G) = L (K) ⊕ p1 ⊕ · · · ⊕ pr , and
such that the map ϕ : K × p1 × · · · × pr → G defined by

ϕ(k,X1, . . . , Xr) = keX1 · · · eXr

is a diffeomorphism. Write g as g = ϕ(k,X1, . . . , Xr). Then for any a ∈ A , we
compute

ϕ(γ2(a)
−1kγ2(a),Ad(γ2(a)

−1)(X1), . . . ,Ad(γ2(a)
−1)(X1))

=γ2(a)
−1gγ2(a)

=γ2(a)
−1γ1(a)a(g)

=γ2(a)
−1γ1(a)a(k)e

da(X1) · · · eda(Xr)

=ϕ(γ2(a)
−1γ1(a)a(k), da(X1), . . . , da(Xr)).
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Since ϕ is injective, we get

γ2(a)
−1kγ2(a) = γ2(a)

−1γ1(a)a(k).

This means that γ2(a) = k−1γ1(a)a(k). So γ1 and γ2 are cohomologous under K .
This proves the injectivity of ι1 .
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