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Abstract. We prove the existence and uniqueness of a sequence of differential
intertwining operators for principal series representations, which are realized on
boundaries of anti-de Sitter spaces. Algebraically, these operators correspond to
homomorphisms of generalized Verma modules. We relate these families to the
asymptotics of eigenfunctions on anti-de Sitter spaces.
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1. Introduction

Let Êinn be the compact Lorentzian manifold S1×Sn−1 with the metric (−gS1)⊕
gSn−1 . The conformal group of Êinn , i.e., the group of all diffeomorphisms which
induce conformally equivalent metrics, can be identified with O(2, n). Let

i : Êinn−1 ↪→ Êinn

be the isometric embedding which is induced by the equatorial embedding Sn−2 →
Sn−1 of spheres. We construct a sequence D̂c

N(λ), N ≥ 0 of polynomial families

D̂c
N(λ) : C∞(Êinn) → C∞(Êinn−1)

of O(2, n− 1)-equivariant differential operators. Here equivariance is understood

with respect to respective principal series representations πc
λ on C∞(Êinn) and

C∞(Êinn−1).

The results extend corresponding results of [8] on SO(1, n)◦ -equivariant
families Dc

N(λ) : C∞(Sn) → C∞(Sn−1). In [8] the families Dc
N(λ) serve as

conformally flat models of corresponding conformally covariant “curved analogs”
C∞(M) → C∞(Σ) which are canonically associated to any hypersurface Σ in a
Riemannian manifold M . In [8] it is shown how such families contain information
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on Branson’s Q-curvature. In particular, combining the holographic formula for
Q-curvature ([5]) with the structure of the intertwining families, provides recursive
relations for Q-curvature.

In the present situation, the conformal action of O(2, n) on Êinn replaces
the conformal action of O(1, n) on Sn−1 . Whereas Sn−1 is the boundary at infinity

of the hyperbolic space Hn with the isometry group O(1, n), here Êinn appears
as the conformal boundary of the n + 1-dimensional anti-de Sitter space AdSn+1

with the isometry group O(2, n) (see Section 2). The universal covering space of

Êinn is given by
(R× Sn−1,−dr2 + gSn−1)

and is also known as Einstein’s static universe; [3].

For even N , the family D̂c
N(λ) drops down to a polynomial family

Dc
N(λ) : C∞(Einn) → C∞(Einn−1) (1)

of O(2, n− 1)-equivariant differential operators, where

Einn = (S1 × Sn−1)/Z2,

and the Z2 -action is coming from the involution S1×Sn−1 → S1×Sn−1 given by
(x, y) 7→ (−x,−y).

For odd N , the family D̂c
N(λ) does not drop down to a well-defined O(2, n−

1)-equivariant map C∞(Einn) → C∞(Einn−1). The non-existence of odd-order
families has a geometric reason. In [8] it is shown that for any (orientable)
hypersurface Σ of an (orientable) manifold M , the family

D1(λ) = i∗∇N + λHi∗ : C∞(M) → C∞(Σ)

is conformally covariant. Here N denotes a unit normal field on Σ and H is the
corresponding mean curvature. Êinn is an (orientable) hypersurface in Êinn+1 with
H = 0, and the family D1(λ) reduces to the equivariant family Dc

1 = i∗∇N given
by the normal derivative. Now for odd n , Einn is a non-orientable codimension one
submanifold of the orientable manifold Einn+1 , and the above construction does
not descend to Einn ↪→ Einn+1 . Similarly, for even n , Einn+1 is non-orientable,
and the above construction does not descend.

The space Êinn−1 can alternatively be described as the set of rays through
the origin in the light cone

Cn =
{
−t21 − t22 + x2

1 + · · ·+ x2
n−1 = 0

}
. (2)

Gn = O(2, n−1) acts transitively on Êinn−1 , and we let P̂ n ⊂ Gn be the isotropy
group of the ray generated by (1, 0, 0, 1, 0, . . . , 0) ∈ Rn+1 . In a similar way, Einn−1

is given by the set of lines in Cn through the origin, and we let P n ⊂ Gn denote
the isotropy group of the line through (1, 0, 0, 1, 0, . . . , 0) ∈ Rn+1 .

As in [8] we discuss two different types of constructions and prove that both
lead to the same result. One construction is in terms of representation theory and
one is in terms of spectral theory of an associated Laplacian.
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We start with the description of the Lie-theoretic construction. For n ≥ 4
let Gn = O(2, n− 1) with Lie algebra gn = o(2, n− 1). The isotropy group P n is
a maximal parabolic subgroup with Langlands decomposition P n = MnA(N+)n .
The Lie algebra pn of P n has the Langlands decomposition pn = mn ⊕ a ⊕ n+

n

with a one-dimensional space a . Here a is spanned by H and the Lie subalgebras
n±n are the respective ±-eigenspaces of ad(H). Let (N−)n = exp(n−n ).

For λ ∈ C we define the character ξλ : pn → C = Cλ by ξλ(tH) = tλ (ξλ

acts by 0 on mn ⊕ n+
n ). We shall use the same notation ξλ for the character of P

given by ξλ(exp(tH)) = eλt .

Let U(gn) be the universal enveloping algebra of gn . For λ ∈ C the
character ξλ of pn gives rise to the generalized Verma module (see (55))

Mλ(gn) = U(gn)⊗U(pn) Cλ.

Similarly, for the character ξλ of P we consider the induced representation IndG
P (ξλ)

of G .

Let i : U(gn) → U(gn+1) be the map induced by the inclusion gn ⊂ gn+1

given by (9).

Theorem 1.1. For any non-negative integer N there exists a polynomial family
D0

N(λ) ∈ U(n−n+1) such that the map

U(gn)⊗ Cλ−N 3 T ⊗ 1 7→ i(T )D0
N(λ)⊗ 1 ∈ U(gn+1)⊗ Cλ

induces a homomorphism

Mλ−N(gn) →Mλ(gn+1)

of U(gn)-modules for all λ. Furthermore, for any λ ∈ C, D0
N(λ) spans the space

of all homomorphisms Mλ−N(gn) →Mλ(gn+1) of U(gn)-modules.

In addition to the existence, we will actually show how to find explicit
formulas for the intertwining families D0

N(λ). Now viewing D0
N(λ) ∈ U(n−n+1) as a

left-invariant differential operator acting on C∞(Gn+1) from the right, we obtain
the following result.

Theorem 1.2. (a) For any non-negative integer N the polynomial family
D0

N(λ) ∈ U(n−n+1) induces a family of left Gn+1 -equivariant operators

D′
N(λ) : IndGn+1

P n+1(ξλ) → IndGn+1

P n (ξλ−N ⊗ σ),

where for even N , σ is the trivial representation of M , and for odd N , σ = σ−
(see section 2). The composition DN(λ) = i∗◦D′

N(λ) of D′
N(λ) with the restriction

map i∗ : C∞(Gn+1) → C∞(Gn) defines a family of left Gn -equivariant operators

DN(λ) : IndGn+1

P n+1(ξλ) → IndGn

P n(ξλ−N ⊗ σ). (3)

(b) For any non-negative integer N the polynomial family D0
N(λ) ∈ U(n−n+1)

induces a family of left Gn+1 -equivariant operators

D̂
′

N(λ) : IndGn+1

P̂ n+1(ξλ) → IndGn+1

P̂ n (ξλ−N).
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The composition D̂N(λ) = i∗ ◦ D̂′
N(λ) of D̂′

N(λ) with the restriction map
i∗ : C∞(Gn+1) → C∞(Gn) defines a a family of left Gn -equivariant operators

D̂N(λ) : IndGn+1

P̂ n+1(ξλ) → IndGn

P̂ n(ξλ−N). (4)

Using
Einm−1 ' Gm/Pm and Êinm−1 ' Gm/P̂m,

the representation spaces of principal series can be identified with

C∞(Einm−1) and C∞(Êinm−1),

respectively. The notation C∞(Einm)λ and C∞(Êinm)λ emphasizes the respective
module structure. In these terms, Theorem 1.1 admits the following interpretation.

Theorem 1.3. (a) For any even integer N ≥ 0 the polynomial family (3)
defines a family of Gn -equivariant operators

Dc
N(λ) : C∞(Einn)λ → C∞(Einn−1)λ−N .

(b) For any non-negative integer N the polynomial family (4) defines a family of
Gn -equivariant operators

D̂c
N(λ) : C∞(Êinn)λ → C∞(Êinn−1)λ−N .

Now let Mn be the Minkowski space with the Lorentzian metric

ds2 = −dx2
1 + dx2

2 + · · ·+ dx2
n. (5)

The families Dc
N(λ) in Theorem 1.3 give rise to families

Dnc
N (λ) : C∞(Mn) → C∞(Mn−1)

as follows. Einm is conformally flat. More precisely, the composition of the in-
clusion (N−)m → Gm with the projection Gm → Gm/Pm defines a conformal
embedding j : Mm−1 → Einm−1 . Here we identify Mm−1 ' (N−)m (see (20)) and
Einm−1 ' Gm/Pm . The embedding j yields a well-known conformal compactifi-
cation of Minkowski space; see also [1]. Now the families Dnc

N (λ) are defined by
restriction to the open sets j(Mm) ⊂ Einm .

The family Dnc
2N(λ) is a polynomial in the Laplacian ∆Mn−1 and ∂2/∂x2

n

with polynomial coefficients in λ . In particular,

Dnc
2N

(
−n

2
+N

)
= i∗∆N

Mn and Dnc
2N

(
−n−1

2
+N

)
= ∆N

Mn−1i∗.

where i is the inclusion map Mn−1 ↪→ Mn .

The powers (∆Mm)k of the Laplacian ∆Mm on flat Minkowski space are
very special cases of the conformally covariant powers of the Laplacian of pseudo-
Riemannian manifolds constructed in [4]. Their O(2, m)-equivariance is a conse-
quence of their conformal covariance; see also [13], [7].
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Now we turn to an alternative construction of the families Dnc
N (λ) in terms

of the asymptotics of eigenfunctions of the Laplacian on anti-de Sitter space AdSn .
In the language of [8] these are the residue families Dres

N (g, λ), where g is the metric
(5).

On the n-dimensional Lorentzian upper half space with the metric

x−2
n

(
−dx2

1 +
n∑

i=2

dx2
i

)

we consider formal approximate eigenfunctions of the Laplacian with eigenvalue
λ(n− 1− λ). The ansatz

u(x) ∼
∑
j≥0

xλ+2j
n c2j(x

′), x = (x′, xn),

yields recursive relations for the coefficients c2j so that all coefficients are deter-
mined by the leading one c0 . More precisely, there are differential operators

T2j(λ) : C∞(Rn−1) → C∞(Rn−1)

of order 2j (depending on λ) such that T2j(λ)c0 = c2j . It is easily seen that

T2j(λ) = A2j(λ)(∆Mn−1)j, (6)

where the coefficients A2j satisfy the recursive relations

A2j−2(λ) + 2j(2j + 2λ + 1− n)A2j(λ) = 0, A0(λ) = 1.

Here the d’Alembertian

∆Mn−1 = − ∂2

∂x2
1

+
n−1∑
i=2

∂2

∂x2
i

is the Laplacian of Minkowski space. Let

S2N(λ) : C∞(Rn) → C∞(Rn−1)

be defined by

S2N(λ) =
N∑

j=0

1

(2N−2j)!
T2j(λ)i∗

(
∂

∂xn

)2N−2j

. (7)

The following theorem shows that both constructions yield the same results (up
to normalization).

Theorem 1.4. The families S2N(λ + n− 1− 2N) and Dnc
2N(λ) coincide, up to

a rational function in λ.
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Moreover, if we define

S2N+1(λ) =
N∑

j=0

1

(2N+ 1−2j)!
T2j(λ)i∗

(
∂

∂xn

)2N+1−2j

,

we get the following analogous result:

Theorem 1.5. The families S2N+1(λ+n−1−(2N+1)) and Dnc
2N+1(λ) coincide,

up to a rational function in λ.

We expect that the analogous construction of equivariant differential op-
erators generalizes to pseudo-Riemannian spaces with constant negative curva-
ture of any signature. This would give differential intertwining operators between
principal series representations of O(p, q) and O(p, q + 1) induced from maximal
parabolic subgroups, for all q > p ≥ 1, analogous to the operator families treated
in this paper. Such equivariant families would be the analogs for non-trivial sig-
natures of the intertwining families discussed in [8] in connection with Branson’s
Q-curvature. The present results in the case of Lorentzian signature naturally sug-
gest that the methods of [8] extend beyond the Riemannian setting. In particular,
we expect that the recursive structure of Q-curvatures does not depend on the
signature. For related work concerning the indefinite orthogonal group we refer to
[11] and [12].

The paper is organized as follows. In Section 2 we describe the geometric
situation, the structure of the Lie groups involved and the principal series rep-
resentations induced by representations of the maximal parabolic subgroup Pm .
In Section 3 we treat the invariance of the d’Alembertian and describes algebraic
constructions which are necessary for the proof of equivariance of the differential
operators DN(λ). Section 4 contains the proof of Theorem 1.1 and Section 5 con-
tains the proof of Theorem 1.2. Section 6 describe the construction of the families
Dnc

N (λ) in terms of the asymptotics of eigenfunctions of the Laplacian on anti-de
Sitter space.

This article is part of the thesis of the author. I would like to thank my
advisor professor Andreas Juhl for suggesting the problem studied in this paper
and for many fruitful discussions. I also would like to thank Johan Öhman for
interesting discussions concerning this paper.

2. Geometric preliminaries and principal series representations

The n-dimensional anti-de Sitter space, AdSn , is the one-sheeted hyperboloid

−t21 − t22 + x2
1 + · · ·+ x2

n−1 = −1 (8)

in the space Rn+1 equipped with the pseudo-Riemannian metric

ds2 = −dt21 − dt22 + dx2
1 + · · ·+ dx2

n−1.

The group of isometries of AdSn is O(2, n− 1), that is, all linear transformations
of Rn+1 that preserve the hyperboloid (8). We let Gn = O(2, n−1). Furthermore,
we assume that n ≥ 4.
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The Lie algebra gn = g = o(2, n−1) consists of all traceless matrices of the
form (

A B
Bt D

)
,

where the 2×2-matrix A and the (n−1)×(n−1)-matrix D are skew-symmetric.
For n ≥ 4 we will use the inclusion

i : o(2, n− 1) → o(2, n)

given by

M 7→
(

M 0
0 0

)
. (9)

On the Lie group level we use the corresponding inclusion

i : O(2, n− 1) → O(2, n)

given by

M 7→
(

M 0
0 1

)
. (10)

The involution θ(A) = −At on o(2, n−1) yields a decomposition g = k⊕q ,
where k and q are the eigenspaces for the eigenvalue 1 and −1, respectively. We
choose a maximal abelian subspace of q by

aq = spanR(H, H2),

where

H =


0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0

 , H2 =


0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

Here and henceforth, we write elements in o(2, n − 1) as matrices of the block
forms (

4× 4 4× (n− 3)
(n− 3)× 4 (n− 3)× (n− 3)

)
.

We define fi ∈ (aq)
∗ by fi(Hj) = δij . We choose Σ+ = {f1, f2, f1 + f2, f1−

f2} as the set of positive restricted roots. The simple restricted roots are f1, f2

and f1 − f2 . The set of restricted roots is Σ = Σ+ ∪ −Σ+ , and we have the root
decomposition

g = g0 ⊕
∑
α∈Σ

gα , g0 = aq ⊕mq,

where mq is the centralizer of aq in k . We have

mq = spanR(Mij | 1 ≤ i, j ≤ n− 3),
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where for 1 ≤ i, j ≤ n− 3 we set

Mij =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 Rij

 with (Rij)rs = δirδjs − δisδjr.

We choose a basis of root vectors as follows. For 1 ≤ j ≤ n− 3, ej ∈ Rn−3 , let

Y +
j =


0 0 0 0 ej

0 0 0 0 0
0 0 0 0 0
0 0 0 0 ej

et
j 0 0 −et

j 0

 ∈ gf1 , Z+
j =


0 0 0 0 0
0 0 0 0 ej

0 0 0 0 ej

0 0 0 0 0
0 et

j −et
j 0 0

 ∈ gf2 ,

and let Y −
j = (Y +

j )t ∈ g−f1 , Z−
j = (Z+

j )t ∈ g−f2 . We define W1 and W2 by

W1 =


0 1 −1 0 0
−1 0 0 1 0
−1 0 0 1 0
0 1 −1 0 0
0 0 0 0 0

 ∈ gf1+f2 , W2 =


0 1 1 0 0
−1 0 0 1 0
1 0 0 −1 0
0 1 1 0 0
0 0 0 0 0

 ∈ gf1−f2 .

We have [Y +
j , Z+

k ] = δjkW1 and[Y +
j , Z−

k ] = δjkW2 . Moreover, we set

[Y −
j , Z+

k ] = δjkW3 = δjkθ(W2) ∈ g−f1+f2 ,

[Y −
j , Z−

k ] = δjkW4 = δjkθ(W1) ∈ g−f1−f2 .

It will be convenient to introduce the following elements.

Q+
1 =

W1 + W2

2
, Q−

1 = (Q+
1 )t =

−W3 −W4

2
, (11)

Q+
2 =

W2 −W1

2
, Q−

2 = (Q+
2 )t =

W4 −W3

2
. (12)

We define n+
q =

∑
λ∈Σ+ gλ . A minimal parabolic subalgebra is given by pmin =

mq ⊕ aq ⊕ n+
q , a maximal parabolic subalgebra is given by p = pmin ⊕ g−f2 , with

Langlands decomposition p = m⊕ a⊕ n+ , where

m = mq ⊕ gf2 ⊕ g−f2 ⊕ spanR(H2), a = spanR(H), n+ = gf1 ⊕ gf1+f2 ⊕ gf1−f2 .

We have n− = θ(n+) = g−f1 ⊕ g−f1−f2 ⊕ g−f1+f2 . We have the decomposition
g = n− ⊕ m ⊕ a ⊕ n+ . The commutator relations for o(2, n − 1) can be found in
the appendix. We have

[m, n+] ⊂ n+, [m, n−] ⊂ n−, [m, m] ⊂ m, [m, a] = 0, [n−, n−] = 0. (13)

We will also use the following basis for n−n :

Ij =


Y −

j for 1 ≤ j ≤ n− 3,

Q−
1 for j = n− 2,

Q−
2 for j = n− 1.

(14)
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Following [10, p. 133], we define K0 , A , N+ and M0 as the analytic
subgroups of Gn = O(2, n − 1) with Lie algebras k , a , n+ and m , respectively.
We let K be the maximal compact subgroup O(2)×O(n−1). We will also use the
notation Kn

0 , Kn , (N+)n and Mn
0 for these subgroups of Gn . The Lie algebras

n+ and a are abelian, and hence N+ = exp(n+), A = exp(a).

We have a bijection so(1, n−2) ' m which shows that M0 ' SO0(1, n−2).
In [14] it is proved that, for 0 ≤ p ≤ q , we have exp(so(p, q)) = SO0(p, q) if and
only if p = 0 or p = 1. This shows that exp(m) = M0 .

We have

ZK(a) = {k ∈ K | Ad(k) = 1 on a } = {k ∈ O(2)×O(n− 1) | kH = Hk}.

Every m ∈ ZK(a) satisfies

m =



a 0 0 0 0 . . . 0
0 b 0 0 0 . . . 0
0 0 m11 0 m13 . . . m1(n−1)

0 0 0 a 0 . . . 0
0 0 m31 0 m33 . . . m3(n−1)
...

...
...

...
...

...
0 0 m(n−1)1 0 m(n−1)3 . . . m(n−1)(n−1)


∈ O(2)×O(n− 1),

where a = ±1, b = ±1. We know that exp(Zk(a)) consists of matrices of the form

1 0 0 0 0 . . . 0
0 1 0 0 0 . . . 0
0 0 m11 0 m13 . . . m1(n−1)

0 0 0 1 0 . . . 0
0 0 m31 0 m33 . . . m3(n−1)
...

...
...

...
...

...
0 0 m(n−1)1 0 m(n−1)3 . . . m(n−1)(n−1)


∈ SO(2)× SO(n− 1),

and we conclude that

ZK(a) = {1(n), J(n)}〈w1, w2〉 exp(Zk(a)),

where

w1 =


1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , w2 =


1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 1

 , (15)

J(n) =


−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

 ,
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and 〈w1, w2〉 is the subgroup of O(2, n − 1) generated by w1 and w2 . Here 1(n)

is the identity element in Gn .

We observe that Zk(a) ⊂ m and exp(Zk(a)) ⊂ M0 . By definition, M =
ZK(a)M0 and hence

M = ZK(a)M0 =

(
{1(n), J(n)}〈w1, w2〉 exp(Zk(a))

)
M0

= {1(n), J(n)}〈w1, w2〉M0 ⊂ Gn = O(2, n− 1). (16)

We have M0 ' SO0(1, n− 2) and hence 〈w1, w2〉M0 ' O(1, n− 2). The maximal
parabolic subgroup is given by P = MAN+ .

Furthermore, we see that M0 ∩ K ' SO(n − 2), the elements of M0 ∩ K
are given by

1 0 0 0 0 . . . 0
0 1 0 0 0 . . . 0
0 0 d11 0 d12 . . . d1(n−2)

0 0 0 1 0 . . . 0
0 0 d21 0 d22 . . . d2(n−2)
...

...
...

...
...

...
0 0 d(n−2)1 0 d(n−2)2 . . . d(n−2)(n−2)


∈ SO(2, n− 1),

and the elements of 〈w1, w2〉M0 ∩K ' {±1} ×O(n− 2) are given by

1 0 0 0 0 . . . 0
0 ±1 0 0 0 . . . 0
0 0 d11 0 d12 . . . d1(n−2)

0 0 0 1 0 . . . 0
0 0 d21 0 d22 . . . d2(n−2)
...

...
...

...
...

...
0 0 d(n−2)1 0 d(n−2)2 . . . d(n−2)(n−2)


∈ O(2, n− 1).

Lemma 2.1. K/(〈w1, w2〉M0 ∩K) = S1 × Sn−2 , and

K/(M ∩K) ' (S1 × Sn−2)/Z2,

where the Z2 -action is defined by

(x, y) 7→ (−x,−y) on S1 × Sn−2. (17)

Proof. We have 〈w1, w2〉M0 ∩K ' O(1)×O(n− 2) and hence

K/(〈w1, w2〉M0 ∩K) ' (O(2)×O(n− 1))/(O(1)×O(n− 2)) ' S1 × Sn−2. (18)

Using M ∩K = {1(n), J(n)}(〈w1, w2〉M0 ∩K), we conclude that

K/(M ∩K) ' (S1 × Sn−2)/Z2. (19)

This completes the proof.
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Let Cn be given by (2). We define Einn−1 , the Einstein universe, as the set

of all straight lines in Cn through the origin; see [3] and [2]. We define Êinn−1 as the
set of all rays in Cn from the origin. The sphere with radius

√
2 in Rn+1 with center

at the origin intersects Cn in the set S1 × Sn−2 , and hence Êinn−1 ' S1 × Sn−2

and Einn−1 ' (S1× Sn−2)/Z2 , where the Z2 -action is coming from the involution
(17).

Lemma 2.2. Gn = O(2, n− 1) acts transitively on Êinn−1 , and

P̂ = 〈w1, w2〉M0AN+

is the isotropy group of the ray generated by (1, 0, 0, 1, 0, . . . , 0) ∈ Rn+1 . It follows
that

Êinn−1 ' Gn/P̂ n.

Proof. Let P̃ n denote the isotropy group of the ray generated by

(1, 0, 0, 1, 0, . . . , 0) ∈ Rn+1.

It is immediate that 〈w1, w2〉M0AN+ ⊂ P̃ n . We now prove P̃ n ⊂ P̂ n . Let g ∈ P̃ n .
First, assume that g ∈ P̃ n∩SO0(2, n−1) and write g = kan ∈ K0 exp(aq) exp(n+

q ).

We have exp(aq) ⊂ P̃ n , exp(n+
q ) ⊂ P̃ n and hence k ∈ P̃ n . It is easy to see that

K0 ∩ P̃ n ⊂ M0 and hence we conclude k ∈ M0 . Because exp(n+
q ) ⊂ N+ and

exp(aq) ⊂ M0A we conclude that g ∈ M0AN+ . Finally, using O(2, n − 1) =
〈w1, w2〉SO0(2, n− 1) we conclude that P̃ n ⊂ 〈w1, w2〉M0AN+ .

Lemma 2.3. Gn = O(2, n − 1) acts transitively on Einn−1 , and P n is the
isotropy group of the line generated by (1, 0, 0, 1, 0, . . . , 0) ∈ Rn+1 . It follows that

Einn−1 ' Gn/P n.

Proof. Let P̃ n denote the isotropy group of the line generated by

(1, 0, 0, 1, 0, . . . , 0) ∈ Rn+1.

It is immediate that P n ⊂ P̃ n . We now prove P̃ n ⊂ P n . Let g ∈ P̃ n . First,
assume that g ∈ P̃ n ∩ SO0(2, n − 1), and write g = kan ∈ K0 exp(aq) exp(n+

q ).

We have exp(aq) ⊂ P̃ n , exp(n+
q ) ⊂ P̃ n and hence k ∈ P̃ n . It is easy to see

that K0 ∩ P̃ n ⊂ M and hence we conclude k ∈ M . Because exp(n+
q ) ⊂ N+

and exp(aq) ⊂ MA we conclude that g ∈ P n . Finally, using O(2, n − 1) =
〈w1, w2〉SO0(2, n− 1), 〈w1, w2〉 ⊂ P n , we conclude that P̃ n ⊂ P n .

We will use the notation

n−(x1,x2,x3,...,xn−1) = exp(x1Q
−
1 + x2Q

−
2 +

n−1∑
i=3

xiY
−
i−2),

and (N−)n is identified with Rn−1 = Mn−1 by

Mn−1 3 (x1, x2, x3, . . . , xn−1) 7→ n−(x1,x2,x3,...,xn−1) ∈ (N−)n. (20)
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We let π : Cn \ {0} → Einn−1 denote the natural projection and define the map

p : Gn → Einn−1, x 7→ π (x(1, 0, 0, 1, 0n−3)) .

Here (1, 0, 0, 1, 0n−3) denotes the vector (1, 0, 0, 1, 0, . . . , 0) ∈ Rn+1 , and

x(1, 0, 0, 1, 0n−3)

denotes matrix multiplication of x ∈ (N−)n ⊂ Gn with the column matrix
(1, 0, 0, 1, 0n−3)

t .

Lemma 2.4. The injection

j : Mn−1 ' (N−)n → Einn−1, x 7→ p(x)

has image Einn−1 \ π(Dn), where

Dn = {(t1, t2, x1, x2, x3, . . . , xn−1) | t1 + x2 = 0}.

The injection j gives a conformal compactification of Mn−1 in Einn−1 .

Proof. We compute

exp(w1Q
−
1 + w2Q

−
2 +

n−3∑
j=1

wj−2Y
−
j )(1, 0, 0, 1, 0n−3) =

= (1− w2
1 + w2

2 + |w′|2, 2w1, 2w2, 1 + w2
1 − w2

2 − |w′|2, 2w3, 2w4, . . . , 2wn−1),

where we let w′ = (w3, . . . , wn−1). The equations

t1 = r(1− w2
1 + w2

2 + |w′|2),
t2 = 2rw1,

x1 = 2rw2,

x2 = r(1 + w2
1 − w2

2 − |w′|2),
x3 = 2rw3,

x4 = 2rw4,

. . .

xn−1 = 2rwn−1,

imply that r = t1+x2

2
and hence

w1 =
t2

t1 + x2

, w2 =
x1

t1 + x2

, w3 =
x3

t1 + x2

, w4 =
x4

t1 + x2

, . . . , wn−1 =
xn−1

t1 + x2

.

(21)
This completes the proof.

If we let Hn ⊂ Gn denote the elements g ∈ Gn such that p(g) ∈ π(Dn) we
get the Bruhat decomposition

Gn = (N−)nMnA(N+)n ∪Hn.

For g ∈ Gn, g 6∈ Hn we write g = η(g)m(g)a(g)n .
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Lemma 2.5. Let ξ be a character of A. Then every f ∈ C∞
0 ((N−)n) extends

to a function f̂ ∈ C∞(Gn) such that f̂(xm̃ãñ) = ξ(ã)f̂(x) for all m̃ãñ ∈ P n and
x ∈ Gn .

Proof. We define f̂(n−m̃ãñ) = f(n−)ξ(ã), where n− ∈ N−, m̃ ∈ M, ã ∈ A
and ñ ∈ N+ , and f̂(g) = 0 for g ∈ Hn . To prove that f̂ is smooth, it is sufficient
to prove that for every h ∈ Hn there exists an open neighborhood of h (in Gn ),
where f̂ is identically zero.

Assume that h ∈ Hn . Then p(h) ∈ π(Dn). For any ε > 0 the set

U(ε) := {π((t1, t2, x1, x2, x3, . . . , xn−1)) | t1 + x2 < ε}

is a neighborhood of p(h), and using the continuity of p the set p−1(U(ε))
is a neighborhood of h . Now let g ∈ Gn . If gP n ∈ Einn−1 is given by
π((t1, t2, x1, . . . , xn−1)) then using (21) we get

η(g) = n−“ t2
t1+x2

,
x1

t1+x2
,

x3
t1+x2

,...,
xn−1
t1+x2

”,

and using the compact support of f , we see that for sufficiently small ε > 0
the function f̂ is identically zero in p−1(U(ε)).

Let R be the right-regular representation of G on C∞(G), i.e., (R(g)u)(x) =
u(xg). We let U(g) operate from the right on C∞(G) through the extension of
its differential

(R(X)u)(x) =
d

dt

∣∣∣
t=0

u(x exp(tX)), X ∈ g. (22)

Observe that for any u ∈ C∞(G) and X ∈ g we have

R(Ad(g)X)u = R(g) ◦R(X) ◦R(g−1)u. (23)

Using R , elements of U(g) induce left-invariant differential operators on C∞(G).

We now define principal series representations of Gm = O(2, m − 1) in-
duced from the parabolic subgroups Pm, Pm

0 and P̂m with respective Langlands
decompositions

P = MAN+, P0 = M0AN+, P̂ = M̂AN+,

where M̂ = 〈w1, w2〉M0 .

We first define principal series as induced representations. For λ ∈ C with
corresponding character ξλ and a representation σ : M → C∗ let

IndGm

P m(ξλ ⊗ σ) =

{u ∈ C∞(Gm) |u(gm̃ãñ) = σ(m̃)ξλ(ã)u(g), m̃ãñ ∈ Pm, g ∈ Gm}.

Gm acts on IndGm

P m(ξλ ⊗ σ) by left translation, i.e.,

(πξλ⊗σ(g)u)(x) = u(g−1x).

Note that our definition differs from the convention in [10].



162 Bäcklund

We use the notation IndGm

P m(ξλ) = IndGm

P m(ξλ ⊗ σ+), where σ+ is the trivial
representation of M . We also use the notation πξλ

(g) = πξλ⊗σ+(g). Let the
representation σ− : Mm → C be the unique representation such that σ−(x) = 1
for x ∈ 〈w1, w2〉M0 , σ−(J(m)) = −1.

The principal series representations of Gm induced from P̂m and Pm
0 are

defined in a similar way.

Let KM := K ∩ M . In order to describe the compact realization of the
principal series representation of Gm (induced from Pm ), let

C∞(K)KM = {F ∈ C∞(K) | F (km̃) = F (k), m̃ ∈ KM}.

Let δ : IndG
P (ξλ) → C∞(K)KM be the restriction map. Using the decomposition

G = KMAN+ ([9, prop 7.83(g)]), we write g = κ(g)µ(g)eH(g)η(g) and find

δ−1(F )(g) = F (κ(g))ξλ(e
H(g)).

δ becomes an isomorphism of G-modules if on C∞(K)KM we define

(πc
λ(g)F )(kKM) = F (κ(g−1k)KM)ξλ(e

H(g−1k)). (24)

Now (18) gives a bijection

C∞(Km)Km
M → C∞(Einm−1), (25)

and the equation (24) defines a G-module structure on C∞(Einm−1). If we
want to emphasize the parameter λ ∈ C of πc

λ we write C∞(Einm−1)λ for the
representation space.

Let KM̂ = K ∩ M̂ . In order to describe the compact realization of the

principal series representation of Gm (induced from P̂m ) let

C∞(K)KM̂ = {F ∈ C∞(K) | F (km̂) = F (k), m̂ ∈ KM̂}.

Let δ̂ : IndG
P̂
(ξλ) → C∞(K)KM̂ be the restriction map. Using the decomposition

G = KM̂AN+ , we write g = κ(g)µ(g)eH(g)η(g) and find

δ̂−1(F )(g) = F (κ(g))ξλ(e
H(g)).

δ̂ becomes an isomorphism of G-modules if on C∞(K)KM̂ we define

(πc
λ(g)F )(kKM̂) = F (κ(g−1k)KM̂)ξλ(e

H(g−1k)).

Now (19) gives a bijection

C∞(Km)Km
M̂ → C∞(Êinm−1). (26)

If we want to emphasize the parameter λ ∈ C of πc
λ , we write C∞(Êinm−1)λ for

the representation space.

We describe the non-compact realization of the principal series representa-
tion (of Gm induced from Pm ). Let βξλ⊗σ : IndGm

P m(ξλ ⊗ σ) → C∞((N−)m) '
C∞(Rm−1) be the restriction map. We define

C∞((N−)m)ξλ⊗σ := βξλ⊗σ

(
IndGm

P m(ξλ ⊗ σ)
)
.
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We know that Gm = (N−)mMmA(N+)m ∪ Hm , where Hm ⊂ Gm is a lower-
dimensional set, and write g = η(g)m(g)a(g)n . We find

(βξλ⊗σ)−1(F )(n−man) = F (n−)σ(m)ξλ(a).

The definition

(πnc
ξλ⊗σ(g)F )(x) = F (η(g−1x))σ(m(g−1x))ξλ(a(g−1x)), F ∈ C∞((N−)m)ξλ⊗σ

for x ∈ (N−)m makes βξλ⊗σ : IndGm

P m(ξλ) → C∞((N−)m)ξλ⊗σ into a Gm -equivariant
map.

Lemma 2.6. Let u ∈ U(n−n+1) such that for every f ∈ IndGn+1

P n+1(ξλ) we have

(uf)(e) = 0,

where e is the identity element of Gn+1 . This implies that u = 0.

Proof. We use the notation (14). Observe that that N−
n+1 = exp(n−n+1). Let

f (exp(
∑n

i=1 xiIi)) = ξ(x1, . . . , xn)p(x1, . . . , xn), where p is a polynomial and ξ a
smooth cut-off function such that ξ(x1, . . . , xn) = 1 for x2

1 + · · · + x2
n < 1 and

ξ(x1, . . . , xn) = 0 for x2
1 + · · · + x2

n > 2. According to Lemma 2.5 f extends

to a smooth function f ∈ IndGn+1

P n+1(ξλ). Note that for any polynomial p and
u ∈ U(n−n+1), u = (I1)

k1 . . . (In)kn we get

(uf)(e) =

((
∂

∂x1

)k1
(

∂

∂x2

)k2

. . .

(
∂

∂xn

)kn
)

p(0).

We see that if we let p(x1, . . . , xn) = xl1
1 . . . xln

n then (uf)(e) = 0 if and only if
u ∈ U(n−n+1) contains no monomial of the form I l1

1 . . . I ln
n . This completes the

proof.

3. Powers of the Laplacian and algebraic constructions

Under the identification (20), the d’Alembertian ∆Mn−1 is induced by

∆n−1 = −(Q−
1 )2 + (Q−

2 )2 +
n−3∑
j=1

(Y −
j )2 ∈ U(n−n ) ⊂ U(gn). (27)

∆n−1 commutes with mn . Moreover,

Proposition 3.1. P ∈ U(n−n ) satisfies [X, P ] = 0 for all X ∈ mn if and only
if P is a polynomial in ∆n−1 .

Proof. Although the result is well-known, we give a proof for the sake of
completeness; the argument is similar to [6, p. 270-271]. It is easy to see that if
P is a polynomial in ∆n−1 , then [X,P ] = 0 for all X ∈ mn . We now prove that
if [X, P ] = 0 for all X ∈ mn , then P is a polynomial in ∆n−1 . Observe that
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Mn
0 = exp(mn) is generated by Aj(t), Bj(t), Cj(t), Dij(t), 1 ≤ i, j ≤ n− 3, t ∈ R ,

where

Aj(t) = exp
(

Z+
j +Z−

j

2
t
)

, Bj(t) = exp

(
Z+

j − Z−
j

2
t

)
,

Cj(t) = exp (H2t) , Di j(t) = exp (Mijt) .

The Lorentzian metric on Mn−1 induces the following non-degenerate bilinear form
on n−n :

〈x1Q
−
1 + x2Q

−
2 +

n−1∑
i=3

xiY
−
i−2, y1Q

−
1 + y2Q

−
2 +

n−1∑
i=3

yiY
−
i−2〉

= −x1y1 + x2y2 +
n−1∑
i=3

xiyi. (28)

We prove that for any Y ∈ n−n such that 〈Y, Y 〉 = 1 there exists some m ∈ Mn
0

satisfying
Ad(m)Q−

2 = Y. (29)

Let Y = x1Q
−
1 + x2Q

−
2 + x3Y

−
1 + · · ·+ xn−1Y

−
n−3 . For some t ∈ R we have

Ad (exp(tH2)) Q−
2 = Q−

2 cosh t + Q−
1 sinh t = Q−

2 cosh t + x1Q
−
1 . (30)

Using

Ad (Bj(t))
(
Q−

2 sin α + Y −
j cos α

)
= Q−

2 sin(α + t) + Y −
j cos(α + t),

Ad (exp(Mijt))
(
Y −

j cos α + Y −
i sin α

)
= Y −

j cos(α + t) + Y −
i sin(α + t),

(31)

we see that Ad (Bj(t)) and Ad (Dij(t)) acts as rotations in the subspace spanned
by Q−

2 , Y −
1 , . . . , Y −

n−3 leaving the subspace spanned by Q−
1 invariant, and (29)

follows. We conclude that

1. Ad(m)(n−n ) ⊂ n−n for all m ∈ Mn
0 ,

2. 〈X, Y 〉 = 〈Ad(m)X, Ad(m)Y 〉 for all X, Y ∈ n−n , m ∈ Mn
0 ,

3. Ad(Mn
0 ) acts transitively on the set {X ∈ n−n |X 6= 0, 〈X, X〉 = c} for each

real number c > 0.

In the following we choose

X1 = Q−
1 , X2 = Q−

2 , X3 = Y −
1 , . . . , Xn−1 = Y −

n−3

as a basis for n−n . Now assume that [X, P ] = 0 for all X ∈ mn . This implies that
Ad(m)P = P for all m ∈ Mn

0 . Let P =
∑

ar1...rn−1X
r1
1 Xr2

2 . . . X
rn−1

n−1 . We define
P ∗ : n−n → C by

P ∗(
n−1∑
i=1

xiXi) =
∑

ar1...rn−1x
r1
1 xr2

2 . . . x
rn−1

n−1 . (32)
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The Lie algebra n−n is abelian, and hence

(PQ)∗(
∑

xiXi) = P ∗(
∑

xiXi)Q
∗(
∑

xiXi), (33)

which implies

P ∗(Ad(m)−1X) = (Ad(m)P )∗(X). (34)

Using Ad(m)P = P for all m ∈ Mn
0 and (34), we conclude that P ∗(Ad(m)X) =

P ∗(X) for all m ∈ Mn
0 and X ∈ n−n . Using (2) and (3) above, we see that for each

real number c > 0 the function P ∗ is constant on Bc := {X ∈ n−n | 〈X,X〉 = c} .

We get P ∗(x2X2) = P ∗(−x2X2) and hence for some numbers ak we have

P ∗(x2X2) =
N∑

k=0

ak(x2)
2k =

N∑
k=0

ak〈x2X2, x2X2〉k.

Using that for c > 0 the function P ∗ is constant on Bc , we conclude that for
X ∈ n−n , 〈X, X〉 > 0 we have

P ∗(X) =
N∑

k=0

ak〈X, X〉k. (35)

If we let X =
∑n−1

i=1 xiXi and use (32), together with 〈X, X〉 = −x2
1 + x2

2 + · · ·+
x2

n−1 , we get

∑
ar1...rn−1x

r1
1 xr2

2 . . . x
rn−1

n−1 =
N∑

k=0

ak(−x2
1 + x2

2 + · · ·+ x2
n−1)

k

on the open set {(x1, x2, . . . , xn−1) ∈ Rn−1 | −x2
1 +x2

2 + · · ·+x2
n−1 > 0} . But since

two polynomials coincide if they coincide on a non-empty open set, (35) is valid
for all X ∈ n−n . We conclude that P =

∑N
k=0 ak(−X2

1 + · · ·+ X2
n−1)

k.

The following result will be used to construct the induced operator families.
It will be convenient to use the notation Tn = Y −

n−2 ∈ n−n+1 .

Theorem 3.2. Let λ ∈ C.

D2N(λ) =
N∑

j=0

aj(λ)(∆n−1)
j(Tn)2N−2j ∈ U(n−n+1) (36)

satisfies

[X,D2N(λ)] ∈ U(n−n+1)(mn+1 ⊕ C(H − λ)) (37)

for all X ∈ n+
n if and only if

(N − j + 1)(2N − 2j + 1)aj−1(λ) + j(n− 1 + 2λ− 4N + 2j)aj(λ) = 0 (38)

for j = 1, . . . , N .
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Theorem 3.3. Let λ ∈ C.

D2N+1(λ) =
N∑

j=0

bj(λ)(∆n−1)
j(Tn)2N−2j+1 ∈ U(n−n+1)

satisfies
[X,D2N+1(λ)] ∈ U(n−n+1)(mn+1 ⊕ C(H − λ))

for all X ∈ n+
n if and only if

(N − j + 1)(2N − 2j + 3)bj−1(λ) + j(n− 3 + 2λ− 4N + 2j)bj(λ) = 0 (39)

for all j = 1, . . . , N .

Let D0
2N(λ) ∈ U(n−n+1) be the unique element satisfying (38) and aN(λ) = 1.

Let D0
2N+1(λ) ∈ U(n−n+1) be the unique element satisfying (39) and bN(λ) = 1.

We have the following algebraic characterization of the family D0
N(λ).

Theorem 3.4. Let N ≥ 0, E ∈ U(n−n+1) and let λ ∈ C. The three conditions

[X, E ] = 0 for all X ∈ mn, (40)

[X, E ] ∈ U(n−n+1)(mn+1 ⊕ C(H − λ)) for all X ∈ n+
n , (41)

[H, E ] = −NE , (42)

are satisfied if and only if E = cD0
N(λ) for some c ∈ C.

The analogs of Theorem 3.2 and Theorem 3.3 for o(1, n) have been proved
in [8]. Our proof for o(2, n − 1) is similar but incorporates some simplifications
(as a proof of Lemma 3.9 using an induction argument). We now prove Theorem
3.2 and Theorem 3.4. We omit the proof of Theorem 3.3; it is similar to the proof
of the corresponding result for o(1, n) in [8].

We formulate some lemmas which are used in the proof of Theorem 3.2.

Lemma 3.5. We have

[mn, ∆n−1] = 0, (43)

[n−n , ∆n−1] = 0, (44)

[mn, Tn] = 0, (45)

[H, (∆n−1)
k] = −2k(∆n−1)

k, (46)

[H, (Tn)2k] = −2k(Tn)2k. (47)

Proof. (43) follows from Proposition 3.1, (44) follows because n−n is abelian.
The other statements follow from a simple computation.

Lemma 3.6. For any X ∈ n+
n and for any F ∈ U(n−n+1) we have that

[X, F ] ∈ (U(n−n+1)mn+1)⊕ (U(n−n+1)a)⊕ U(n−n+1). (48)
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Proof. Any F ∈ U(n−n+1) can be written as a linear combination of terms of
the form

(I1)
a1 . . . (In)an ,

where a1, . . . , an are natural numbers and I1, . . . , In is a basis for n−n+1 ; see (14).
Using

[A, B1 . . . Bn] = [A, B1]B2 . . . Bn + · · ·+ B1 . . . Bn−1[A, Bn]

and [n+
n+1, n

−
n+1] ⊂ mn+1 ⊕ a , we conclude that [X,F ] can be written as a linear

combination of terms which are monomials with factors from n−n+1 and at most
one factor from mn+1⊕ an+1 . Using [mn+1, n

−
n+1] ⊂ n−n+1 and [a, n−n+1] ⊂ n−n+1 , the

statement (48) follows.

Lemma 3.7.

[Y +
1 , (Y −

1 )2N ] = −2N(2N − 1)(Y −
1 )2N−1 + 4N(Y −

1 )2N−1H.

For 2 ≤ r ≤ n we have

[Y +
1 , (Y −

r )2N ] = 2N(2N − 1)Y −
1 (Y −

r )2N−2 + 4N(Y −
r )2N−1M1r.

Proof. See Lemma 5.1.3 in [8].

Lemma 3.8.

[Y +
1 , ∆n−1] = (2n− 6)Y −

1 + 4Y −
1 H + v,

where v ∈ n−n ⊗mn .

Proof. We have

[Y +
1 ,−(Q−

1 )2] = 2Q−
1 (Z+

1 + Z−
1 ) + 2Y −

1 ,

[Y +
1 , (Q−

2 )2] = 2Q−
2 (Z−

1 − Z+
1 ) + 2Y −

1 ,

and hence

[Y +
1 ,−(Q−

1 )2 + (Q−
2 )2] = 4Y −

1 + 2Q−
1 (Z+

1 + Z−
1 ) + 2Q−

2 (Z−
1 − Z+

1 ).

Furthermore

[Y +
1 ,

n−3∑
j=1

(Y −
j )2] = (2n− 10)Y −

1 + 4Y −
1 H +

n−3∑
j=2

4Y −
j M1j.

Lemma 3.9. For j ≥ 1 we have

[Y +
1 , (∆n−1)

j] = 2j(n− 1− 2j)Y −
1 (∆n−1)

j−1 + 4jY −
1 (∆n−1)

j−1H + v, (49)

where v ∈ U(n−n )⊗mn .
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Proof. Lemma 3.8 shows that (49) is true for j = 1. Assume that (49) is valid
for j ≤ k . We want to prove that (49) is valid for j = k + 1. We get for some
v1, v2 ∈ U(n−n )⊗mn that

[Y +
1 , (∆n−1)

k+1] = [Y +
1 , ∆n−1](∆n−1)

k + (∆n−1)[Y
+
1 , (∆n−1)

k]

= {(2n− 6)Y −
1 + 4Y −

1 H + v1}(∆n−1)
k

+ (∆n−1){2k(n− 1− 2k)Y −
1 (∆n−1)

k−1 + 4kY −
1 (∆n−1)

k−1H + v2}.

¿From (46) we see that

4Y −
1 H(∆n−1)

k = 4Y −
1 (∆n−1)

k(H − 2k).

¿From (43) we know that [mn, ∆n−1] = 0 and hence for all R ∈ U(n−n ), S ∈ mn

we have

RS(∆n−1)
k = R(∆n−1)

kS = R
′
S,

where R′ ∈ U(n−n ).

We conclude that for some v3, v4 ∈ U(n−n )⊗mn we have

[Y +
1 , (∆n−1)

k+1] = (2n− 6)Y −
1 (∆n−1)

k + 4Y −
1 (∆n−1)

k(H − 2k) + v3

+ 2k(n− 1− 2k)Y −
1 (∆n−1)

k + 4kY −
1 (∆n−1)

kH + v4

= 2(k + 1)(n− 1− 2(k + 1))Y −
1 (∆n−1)

k

+ 4(k + 1)Y −
1 (∆n−1)

kH + (v3 + v4).

Proof of Theorem 3.2. For some v ∈ U(n−n ) ⊗ mn we get using [mn, Tn] = 0
that

Y +
1 (∆n−1)

j(Tn)2k = [Y +
1 , (∆n−1)

j](Tn)2k + (∆n−1)
jY +

1 (Tn)2k

= 2j(n− 1− 2j)Y −
1 (∆n−1)

j−1(Tn)2k

+ 4jY −
1 (∆n−1)

j−1H(Tn)2k + v(Tn)2k + (∆n−1)
jY +

1 (Tn)2k

= 2j(n− 1− 2j)Y −
1 (∆n−1)

j−1(Tn)2k

+ 4jY −
1 (∆n−1)

j−1H(Tn)2k + w + (∆n−1)
jY +

1 (Tn)2k,

where w ∈ U(n−n+1)⊗mn . Using H(Tn)2k = (Tn)2k(H − 2k), we get

[Y +
1 , (∆n−1)

j(Tn)2k]

= 2j(n− 1− 2j)Y −
1 (∆n−1)

j−1(Tn)2k

+ 4jY −
1 (∆n−1)

j−1H(Tn)2k + w + (∆n−1)
j[Y +

1 , (Tn)2k]

= 2j(n− 1− 2j)Y −
1 (∆n−1)

j−1(Tn)2k

+ 4jY −
1 (∆n−1)

j−1(Tn)2kH − 8jkY −
1 (∆n−1)

j−1(Tn)2k + w

+ (∆n−1)
j2k(2k − 1)Y −

1 (Tn)2k−2 + (∆n−1)
j4k(Tn)2k−1S, (where S ∈ mn+1)

= {2j(n− 1− 2j) + 4jλ− 8jk}Y −
1 (∆n−1)

j−1(Tn)2k

+ 2k(2k − 1)Y −
1 (∆n−1)

j(Tn)2k−2 modU(n−n+1)(mn+1 ⊕ C(H − λ)),
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where we used that [Y −
1 , ∆n−1] = 0, that is (13).

We obtain (mod U(n−n+1)(mn+1 ⊕ C(H − λ)))

[Y +
1 ,D2N(λ)]

=
N∑

j=0

aj(λ)((2j(n− 1− 2j) + 4jλ− 8j(N − j))Y −
1 (∆n−1)

j−1(Tn)2N−2j

+
N∑

j=0

2(N − j)(2N − 2j − 1)Y −
1 (∆n−1)

j(Tn)2N−2j−2.

We conclude that [Y +
1 ,D2N(λ)] = 0 (mod U(n−n+1)(mn+1⊕C(H −λ))) if and only

if

ar(λ){2r(n− 1− 2r) + 4rλ− 8r(N − r)}+ ar−1(λ)2(N − r + 1)(2N − 2r + 1) = 0

for r = 1, . . . , N .

The only if statement follows because no non-trivial linear combination of

Y −
1 (∆n−1)

k−1(T−
n )2N−2k = Y −

1 (∆n−1)
k−1(T−

n )2N−2k ∈ U(gn+1)

for k = 1, . . . , N lies in U(n−n+1)(mn+1 ⊕ C(H − λ)). This follows expanding
(∆n−1)

k−1 into monomials and using the Poincaré-Birkhoff-Witt theorem.

Now suppose that the coefficients aj(λ) satisfy (38). Under this assumption,
we know that (37) is true for X = Y +

1 , that is, we know that

[Y +
1 ,D2N(λ)] ∈ U(n−n+1)(mn+1 ⊕ C(H − λ)).

We prove that this implies (37) for all X ∈ n+
n .

First, observe that using (13), we see that for all M̃ ∈ Mn
0 we have

Ad(M̃)U(n−n+1)(mn+1 ⊕ C(H − λ)) ⊂ U(n−n+1)(mn+1 ⊕ C(H − λ)). (50)

Using [mn, ∆n−1] = 0 and [mn, Tn] = 0, we get

U(n−n+1)(mn+1 ⊕ C(H − λ)) 3 Ad(M̃)[Y +
1 ,D2N(λ)]

= [Ad(M̃)Y +
1 , Ad(M̃)D2N(λ)]

= [Ad(M̃)Y +
1 ,D2N(λ)]

=


[Y +

j ,D2N(λ)] for M̃ = exp(
−πM1j

2
),

[Y +
1 + Q+

2 −Q+
1 ,D2N(λ)] for M̃ = Z+

1 ,

[Y +
1 −Q+

1 −Q+
2 ,D2N(λ)] for M̃ = Z−

1 .

Proof of Theorem 3.4. We only give the proof for the case of even N . Assume
E ∈ U(n−n+1) satisfies (40), (41) and (42). Using the notation (14), the Poincaré-
Birkhoff-Witt theorem shows that E can be written as a linear combination of

{(I1)
a1 . . . (In)an | a1, . . . , an ∈ N}. (51)
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Now (42) and the fact that [H, X] = −X for all X ∈ n−n show that E is a linear
combination of basis elements from (51), where

a1 + · · ·+ an = 2N. (52)

We see that

E =
2N∑
j=0

pjT
2N−j
n ,

where pj ∈ U(n−n ) is a homogeneous polynomial of degree j in the variables
I1, . . . , In−1 given by (14).

For all R ∈ mn we have [R, Tn] = 0 and hence

[R, E ] = [R, p1]T
2N−1
n + · · ·+ [R, p2N−1]Tn + [R, p2N ] = 0.

We have [mn, n
−
n ] ⊂ n−n and hence [R, pj] ∈ U(n−n ). Using the Poincaré-Birkhoff-

Witt theorem, we conclude that for j = 1, . . . , 2N we have that [R, pj] = 0.

Proposition 3.1 shows that pj is a polynomial in ∆n−1 for every j =
1, . . . , 2N . Using that pj is a homogeneous polynomial of degree j , we deduce
that pj = 0 for odd j , and p2i = ci (∆n−1)

i for some complex constant ci .

We conclude that

E =
N∑

j=0

aj(λ)(∆n−1)
j(Tn)2N−2j,

and we see that E is of the form (36). Now the only if statement in Theorem 3.2
completes the proof.

4. D0
N(λ) as families of homomorphisms of Verma modules

Let W be a U(pm)-module. The algebra U(gm) acts on the vector space U(gm)⊗W
by

u1(u2 ⊗ w) = (u1u2)⊗ w. (53)

Let IW (gm) ⊂ U(gm) ⊗ W be the left U(gm)-ideal generated by the elements
X⊗w−1⊗ (X ·w), X ∈ pm . IW (gm) equals the subspace of U(gm)⊗W spanned
by the elements

(np)⊗ w − n⊗ (p · w), (54)

where n ∈ N , p ∈ P, w ∈ W . Here N is a basis for U(n−m) and P is a basis for
U(pm). In fact, for any u ∈ U(gm), p ∈ U(pm) and w ∈ W

up⊗ w − u⊗ (p · w)

can be written as a linear combination of terms of the form (54). Using the
Poincaré-Birkhoff-Witt theorem, we know that u can be written as a linear com-
bination of terms of the form n0p0 where n0 ∈ U(n−m), p0 ∈ U(pm). We see
that

n0p0p⊗ w − n0p0 ⊗ (p · w)

=
(
n0p0p⊗ w − n0 ⊗ (p0p) · w

)
−
(
n0p0 ⊗ (p · w) + n0 ⊗ (p0 · (p · w))

)
.
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The generalized Verma module induced from W is defined by the vector
space quotient

MW (gm) = (U(gm)⊗W )/IW (gm) (55)

with the left U(gm)-action. We also use the notation U(gm)⊗U(pm)W for MW (gm).

For λ ∈ C let ξλ : a → C be the character ξλ(tH) = tλ . The vector space
W = Cλ is made into a left U(pm)-module by

Xz = ξλ(X)z for X ∈ a,

Xz = 0 for X ∈ mm ⊕ n+
m.

Let
Iλ(gm) = ICλ

(gm) and Mλ(gm) = MCλ
(gm).

We view U(gn+1)⊗ Cλ as a U(gn)-module with the action

u1(u⊗ v) = (i(u1)u)⊗ v

for u1 ∈ U(gn), where i : U(gn) → U(gn+1) is the inclusion induced by (9).

Lemma 4.1. λ ∈ C, W = Cλ , u⊗1 ∈ IW (gm), u ∈ U(n−m) implies that u = 0.

Proof. Observe that any element in ICλ
(gm) is spanned by elements of the

form (54), and hence u⊗ 1 can be written as a linear combination of

(nipi)⊗ 1− ξλ(pi)ni ⊗ 1 = (nipi − ξλ(pi)ni)⊗ 1, i = 1, . . . , r (56)

for some elements p1, p2, . . . , pr ∈ P and elements n1, . . . , nr ∈ N such that nipi ,
i = 1, . . . , r are linearly independent. We conclude that u is a linear combination
of

nipi − ξλ(pi)ni, i = 1, . . . , r. (57)

Now assume that pi 6∈ C for all 1 ≤ i ≤ r . We see that vector space spanned by
(57) has empty intersection with U(n−m). This implies that u = 0.

Now assume that pi ∈ C for some 1 ≤ i ≤ r . Reordering the terms in
(57), we can assume that p1, . . . , ps ∈ C , and ps+1, . . . , pr 6∈ C . Now pi ∈ C for
1 ≤ i ≤ s implies that nipi − ξλ(pi)ni = 0 for 1 ≤ i ≤ s . We conclude that u is a
linear combination of (57) for s + 1 ≤ i ≤ r . But the vector space spanned by the
terms in (57) with s + 1 ≤ i ≤ r has empty intersection with U(n−m), and hence
u = 0.

Theorem 4.2. For any λ ∈ C, the map

U(gn)⊗ Cλ−N 3 T ⊗ 1 7→ i(T )D0
N(λ)⊗ 1 ∈ U(gn+1)⊗ Cλ (58)

induces a homomorphism

ϕ0 : Mλ−N(gn) →Mλ(gn+1) (59)

of U(gn)-modules. Furthermore,

HomU(gn)(Mλ−N(gn),Mλ(gn+1)) = spanC(ϕ0).



172 Bäcklund

Proof. First, we prove that HomU(gn)(Mλ−N(gn),Mλ(gn+1)) ⊂ spanC(ϕ0).
Assume that

ϕ ∈ HomU(gn)(Mλ−N(gn),Mλ(gn+1)).

We have
ϕ({1⊗ 1}) = {F ⊗ 1},

for some F ∈ U(gn+1). Here we use {} to denote equivalence classes. Since

ϕ({u⊗ 1}) = ϕ(u{1⊗ 1}) = i(u)ϕ({1⊗ 1}) = i(u){F ⊗ 1} = {(i(u)F )⊗ 1}

for all u ∈ U(gn), we conclude that ϕ is induced from a map

ζ : U(gn)⊗ Cλ−N 3 T ⊗ 1 7→ i(T )F ⊗ 1 ∈ U(gn+1)⊗ Cλ, (60)

where F ∈ U(gn+1). Furthermore, we can assume without loss of generality
that F ∈ U(n−n+1): By the Poincaré-Birkhoff-Witt theorem F ∈ U(gn+1) can
be written as a linear combination of terms of the form np , where n ∈ U(n−n+1)
and p ∈ U(pn+1). For n ∈ U(n−n+1) and p ∈ U(pn+1) we have for some complex
number C that

{i(T )np⊗ 1} = {i(T )n⊗ p · 1} = {i(T )n⊗ C} = {i(T )(Cn)⊗ 1},

and hence we conclude that

{i(T )F ⊗ 1} = {i(T )F̃ ⊗ 1}

for some F̃ ∈ U(n−n+1).

It is also easy to see that a map f : U(gn)⊗Cλ−N → U(gn+1)⊗Cλ induces
a homomorphism Mλ−N(gn) →Mλ(gn+1) if and only if

f(Iλ−N(gn)) ⊂ Iλ(gn+1). (61)

This implies that
ζ(Iλ−N(gn)) ⊂ Iλ(gn+1).

We now find conditions for F which are equivalent to that ϕ induces a
U(gn)-homomorphism (59). Observe that

H ⊗ 1− 1⊗ ξλ−N(H)1 = H ⊗ 1− 1⊗ (λ−N) ∈ Iλ−N(gn). (62)

We compute

ζ(H ⊗ 1− 1⊗ (λ−N)) = HF ⊗ 1− F ⊗ (λ−N)

= ([H, F ] + FH)⊗ 1− F ⊗ (λ−N)

= [H, F ]⊗ 1 + F (H ⊗ 1− 1⊗ ξλ(H)1) + NF ⊗ 1.

(63)

We see that
([H, F ] + NF )⊗ 1 ∈ Iλ(gn+1). (64)

Now F ∈ U(n−n+1) and hence [H, F ] ∈ U(n−n+1). Using (64) and Lemma 4.1, we
see that

[H, F ] + NF = 0. (65)
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For M ∈ mn we have

M ⊗ 1− 1⊗ ξλ−N(M)1 = M ⊗ 1 ∈ Iλ−N(gn). (66)

We compute

ζ(M ⊗ 1) = MF ⊗ 1 = FM ⊗ 1 + ([M, F ]⊗ 1). (67)

We see that
[M, F ]⊗ 1 ∈ Iλ(gn+1). (68)

Now F ∈ U(n−n+1) and hence [M, F ] ∈ U(n−n+1). Using (68) and Lemma 4.1, we
see that

[M, F ] = 0. (69)

For X ∈ n+
n we have

X ⊗ 1− 1⊗ ξλ−N(X) = X ⊗ 1 ∈ Iλ−N(gn). (70)

We compute
ζ(X ⊗ 1) = XF ⊗ 1 = [X, F ]⊗ 1 + FX ⊗ 1. (71)

We see that
[X, F ]⊗ 1 ∈ Iλ(gn+1).

Using the notation (14), F ∈ U(n−n+1) and Lemma 3.6 shows that

[X, F ]⊗ 1 =
∑

a1,...,an∈N

ca1...an(I1)
a1 . . . (In)an ⊗ 1

+
∑

a1,...,an∈N

da1...an(I1)
a1 . . . (In)anH ⊗ 1

+
∑

a1,...,an∈N,1≤f,g≤n

ea1...an,f,g(I1)
a1 . . . (In)anMf,g ⊗ 1.

Using
(I1)

a1 . . . (In)anMf,g ⊗ 1 ∈ Iλ(gn+1),

we get ∑
a1,...,an∈N

ca1...an(I1)
a1 . . . (In)an ⊗ 1

+
∑

a1,...,an∈N

da1...an(I1)
a1 . . . (In)anH ⊗ 1 ∈ Iλ(gn+1),

and hence ∑
a1,...,an∈N

(ca1...an − λda1...an)(I1)
a1 . . . (In)an ⊗ 1 ∈ Iλ(gn+1).

Using Lemma 4.1, we conclude that ca1...an = λda1...an and hence

[X, F ] ∈ U(n−n+1)(mn+1 ⊕ C(H − λ)). (72)
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Theorem 3.4 and (65), (69) and (72) show that X ∈ spanC(ϕ0).

Second, we prove that (58) satisfy (61), which implies that

spanC(ϕ0) ⊂ HomU(gn)(Mλ−N(gn),Mλ(gn+1)).

¿From Theorem 3.4 we see that (40), (41) and (42) are satisfied for E = D0
N(λ).

Using (62), (63) and (42), we conclude that

ϕ0(H ⊗ 1− 1⊗ ξλ−N(H)1) ∈ Iλ(gn+1).

Using (66), (67) and (40), we conclude that

ϕ0(X ⊗ 1− 1⊗ ξλ−N(X)1) ∈ Iλ(gn+1)

for all X ∈ mn . Using (70), (71) and (41), we conclude that

ϕ0(X ⊗ 1− 1⊗ ξλ−N(X)1) ∈ Iλ(gn+1)

for all X ∈ n+
n .

5. Induced families of differential intertwining operators

In this section we use the algebraic results of Section 3 to prove equivariance of the
polynomial families induced by D0

N(λ) ∈ U(n−n+1) with respect to certain principal
series representations. We view D0

N(λ) ∈ U(gn+1) as a left-invariant differential
operator C∞(Gn+1) → C∞(Gn+1) using R .

Theorem 5.1. Let λ ∈ C. Then E ∈ U(n−n+1) induces a left Gn+1 -equivariant
map

IndGn+1

P n+1
0

(ξλ) → IndGn+1

P n
0

(ξλ−N)

if and only if E = cD0
N(λ) for some c ∈ C.

Theorem 5.2. For λ ∈ C the element E ∈ U(n−n+1) induces a left Gn+1 -
equivariant map

IndGn+1

P n+1(ξλ) → IndGn+1

P n (ξλ−N)

if and only if E = cD0
N(λ) for some c ∈ C and N is even.

Theorem 5.3. For λ ∈ C the element E ∈ U(n−n+1) induces a left Gn+1 -
equivariant map

IndGn+1

P n+1(ξλ) → IndGn+1

P n (ξλ−N ⊗ σ−)

if and only if E = cD0
N(λ) for some c ∈ C and N is odd.

For even N , we define

DN(λ) : IndGn+1

P n+1(ξλ) → IndGn

P n(ξλ−N)

by DN(λ) = i∗ ◦ D̃0
N(λ), where D̃0

N(λ) : C∞(Gn+1) → C∞(Gn+1) is the operator
induced by D0

N(λ).
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For odd N , we define

DN(λ) : IndGn+1

P n+1(ξλ) → IndGn

P n(ξλ−N ⊗ σ−)

by DN(λ) = i∗ ◦ D̃0
N(λ), where D̃0

N(λ) : C∞(Gn+1) → C∞(Gn+1) is the operator
induced by D0

N(λ).

Theorem 5.4. For λ ∈ C the element E ∈ U(n−n+1) induces a left Gn+1 -
equivariant map

IndGn+1

P̂ n+1(ξλ) → IndGn+1

P̂ n (ξλ−N)

if and only if E = cD0
N(λ) for some c ∈ C.

We define
D̂N(λ) : IndGn+1

P̂ n+1(ξλ) → IndGn

P̂ n(ξλ−N)

by D̂N(λ) = i∗ ◦ D̃0
N(λ), where D̃0

N(λ) : C∞(Gn+1) → C∞(Gn+1) is the operator
induced by D0

N(λ).

Proof of Theorem 5.1. Using Theorem 3.4, it follows that we need to prove
that E ∈ U(n−n+1) induces a map

IndGn+1

P n+1
0

(ξλ) → IndGn+1

P n
0

(ξλ−N)

if and only if E satisfies the following three conditions:

[X, E ] = 0 for all X ∈ mn,

[X, E ] ∈ U(n−n+1)(mn+1 ⊕ C(H − λ)) for all X ∈ n+
n ,

[H, E ] = −NE .

Observe that E induces a map if and only if

(Eu)(xm̃ãñ) = ξλ−N(ã)(Eu)(x)

for all m̃ãñ ∈ P n
0 and u ∈ IndGn+1

P n+1
0

(ξλ). First, we prove that for all u ∈
IndGn+1

P n+1
0

(ξλ), x ∈ Gn+1 and m̃ ∈ Mn
0 we have

(Eu)(xm̃) = (Eu)(x) (73)

if and only if [X, E ] = 0 for all X ∈ mn .

Assume that [X, E ] = 0 for all X ∈ mn . Using exp(mn) = M0
n , it follows

that Ad(m̃)E = E for m̃ ∈ Mn
0 . Now for all m̃ ∈ Mn

0 and all u ∈ IndGn+1

P n+1
0

(ξλ) we

get using (23) that

(Eu)(xm̃) = (R(m̃)Eu)(x) =
(
Ad(m̃)E

)
u(x). (74)

Conversely, assume that (73) is true. Then (74) shows that Ad(m̃)Eu = Eu for

all u ∈ IndGn+1

P n+1
0

(ξλ) and all m̃ ∈ Mn
0 , and Lemma 2.6 shows that Ad(m̃)E = E for

m̃ ∈ Mn
0 . Hence [X, E ] = 0 for all X ∈ mn .
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Second, we prove that for all u ∈ IndGn+1

P n+1
0

(ξλ), x ∈ Gn+1 and ñ ∈ Nn we

have
(Eu)(xñ) = (Eu)(x)

if and only if [X, E ] ∈ U(n−n+1)(mn+1 ⊕ C(H − λ)) for all X ∈ n+
n .

Assume that [X, E ] ∈ U(n−n+1)(mn+1 ⊕ C(H − λ)) for all X ∈ n+
n . For all

X ∈ n+
n , u ∈ IndGn+1

P n+1
0

(ξλ) we get for x ∈ Gn+1 that

([X, E ]u)(x) = 0,

and hence using that u(xñ) = u(x) for all ñ ∈ Nn we get

(XEu)(x) = ([X, E ]u)(x) + (EX)u(x) = 0.

Conversely, assume that for all u ∈ IndGn+1

P n+1
0

(ξλ) we have

([X, E ]u)(x) = 0, x ∈ Gn+1, X ∈ nn. (75)

¿From Lemma 3.6 we know that [X, E ] ∈ (U(n−n+1) ⊗ mn+1) ⊕ (U(n−n+1) ⊗ a) ⊕
U(n−n+1). Using u ∈ IndGn+1

P n+1
0

(ξλ), we see that if

[X, E ]u = α(I1)
a1 . . . (In)anHu + β(I1)

a1 . . . (In)anu + . . .

we get
[X, E ]u = α(I1)

a1 . . . (In)anλu + β(I1)
a1 . . . (In)anu + . . . ,

and using Lemma 2.6 and (75) we get β = −λα . We conclude that [X, E ] ∈
U(n−n+1)(mn+1 ⊕ C(H − λ)).

Third we show that for all u ∈ IndGn+1

P n+1
0

(ξλ), x ∈ Gn+1 , ã ∈ A

(Eu)(xã) = ξλ−N(ã)(Eu)(x)

if and only if [H, E ] = −NE . Assume that [H, E ] = −NE . We get using (42)

(HE)u(g) = ([H, E ]u)(g) + (EHu)(g) = (−NEu)(g) + λ(Eu)(g)

= (λ−N)(Eu)(g).

Conversely, assume that (HEu)(x) = (λ − N)(Eu)(x) for all u ∈ IndGn+1

P n+1
0

(ξλ).

Using
HEu = [H, E ]u + EHu = [H, E ]u + λEu,

we get
([H, E ] + NE)u = 0.

Now [H, n−n+1] ⊂ n−n+1 and hence Lemma 2.6 shows that [H, E ] + NE = 0.

Proof of Theorem 5.2. From (16) we know that Mn = {1(n), J(n)}〈w1, w2〉Mn
0 ,

and hence E ∈ U(n−n+1) induces a map

IndGn+1

Mn+1A(N+)n+1(ξλ) → IndGn+1

MnA(N+)n(ξλ−N)
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if and only if E induces a map

IndGn+1

Mn+1
0 A(N+)n+1(ξλ) → IndGn+1

Mn
0 A(N+)n(ξλ−N)

and

(Eu)(xi(w)) = (Eu)(x), x ∈ Gn+1,

for u ∈ IndGn+1

P n+1(ξλ) and w ∈ {w1, w2, J(n)} . Here i : Gn → Gn+1 is given by (10).

Using Theorem 5.1, we conclude that E ∈ U(n−n+1) induces a map

IndGn+1

Mn+1A(N+)n+1(ξλ) → IndGn+1

MnA(N+)n(ξλ−N)

if and only if for some c ∈ C we have E = cD0
N(λ) and

(Eu)(xi(w)) = (Eu)(x), x ∈ Gn+1,

for u ∈ IndGn+1

P n+1(ξλ) and w ∈ {w1, w2, J(n)} .

It follows that we need to prove that E = cD0
N(λ) for some c ∈ C and N

is even if and only if E = cD0
N(λ) for c ∈ C and

(Eu)(xi(w)) = (Eu)(x), x ∈ Gn+1 (76)

for all u ∈ IndGn+1

P n+1(ξλ) and w ∈ {w1, w2, J(n)} .

For u ∈ IndGn+1

P n+1(ξλ) and x ∈ Gn+1 we have

(Ad(i(w))E)u(x) = (R(i(w)) ◦ E ◦R(i(w)−1))u(x)

= (R(i(w)) ◦ E)u(x) = (Eu)(xi(w)). (77)

Using (77) and Lemma 2.6, we conclude that (76) is satisfied if and only if

Ad(i(w))E = E

for w ∈ {w1, w2, J(n)} . Using Ad(w)X = wXw−1 , we see that

Ad(i(w1))Q
−
1 = −Q−

1 ,

Ad(i(w1))Q
−
2 = Q−

2 ,

Ad(i(w1))Y
−
j = Y −

j , for j = 1, . . . , n− 2,

Ad(i(w2))Q
−
1 = Q−

1 ,

Ad(i(w2))Q
−
2 = −Q−

2 ,

Ad(i(w2))Y
−
j = Y −

j , for j = 1, . . . , n− 2,

Ad(i(J(n)))Q
−
1 = Q−

1 ,

Ad(i(J(n)))Q
−
2 = Q−

2 ,

Ad(i(J(n)))Y
−
n−2 = −Y −

n−2,

Ad(i(J(n)))Y
−
j = Y −

j for j = 1, . . . , n− 3.
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Here we used that

Q−
1 =


0 −1 0 0 0
1 0 0 1 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0

 , Q−
2 =


0 0 1 0 0
0 0 0 0 0
1 0 0 1 0
0 0 −1 0 0
0 0 0 0 0

 .

We get

Ad(i(J(n)))D0
N(λ) = (−1)ND0

N(λ),

Ad(i(w1))D0
N(λ) = D0

N(λ),

Ad(i(w2))D0
N(λ) = D0

N(λ).

(78)

This completes the proof.

Proof of Theorem 5.3. ¿From (16) we know that

Mn = {1(n), J(n)}〈w1, w2〉Mn
0 ,

and hence E ∈ U(n−n+1) induces a map

IndGn+1

Mn+1A(N+)n+1(ξλ) → IndGn+1

MnA(N+)n(ξλ−N ⊗ σ−)

if and only if E induces a map

IndGn+1

Mn+1
0 A(N+)n+1(ξλ) → IndGn+1

Mn
0 A(N+)n(ξλ−N ⊗ σ−|Mn

0
) = IndGn+1

Mn
0 A(N+)n(ξλ−N)

and
(Eu)(xi(w)) = σ−(w)(Eu)(x), x ∈ Gn+1,

for u ∈ IndGn+1

P n+1(ξλ) and w ∈ {w1, w2, J(n)} . Here i : Gn → Gn+1 is given by (10).

Using Theorem 5.1, we conclude that E ∈ U(n−n+1) induces a map

IndGn+1

Mn+1A(N+)n+1(ξλ) → IndGn+1

MnA(N+)n(ξλ−N ⊗ σ−)

if and only if for some c ∈ C we have E = cD0
N(λ) and

(Eu)(xi(w)) = σ−(w)(Eu)(x), x ∈ Gn+1,

for u ∈ IndGn+1

P n+1(ξλ) and w ∈ {w1, w2, J(n)} .

It follows that we need to prove that E = cD0
N(λ) for some c ∈ C and N

is odd if and only if E = cD0
N(λ) for c ∈ C and

(Eu)(xi(w)) = σ−(w)(Eu)(x), x ∈ Gn+1, (79)

for all u ∈ IndGn+1

P n+1(ξλ) and w ∈ {w1, w2, J(n)} .

For u ∈ IndGn+1

P n+1(ξλ) and x ∈ Gn+1 we have

(Ad(i(w))E)u(x) = (R(i(w)) ◦ E ◦R(i(w)−1))u(x)

= (R(i(w)) ◦ E)u(x) = (Eu)(xi(w)). (80)
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Using (80) and Lemma 2.6, we conclude that (79) is satisfied if and only if

Ad(i(w1))E = σ−(w1)E = E ,

Ad(i(w2))E = σ−(w2)E = E ,

Ad(i(J(n)))E = σ−(J(n))E = −E .

Using (78), the result follows.

Proof of Theorem 5.4. The proof is analogous to the proof of Theorem 5.2
using that M̂n = 〈w1, w2〉Mn

0 .

The differential operator families in the non-compact model are defined by

Dnc
N (λ) : C∞((N−)n+1)ξλ

→ C∞((N−)n)ξλ−N⊗σ,

Dnc
N (λ) = βn

ξλ−N⊗σ ◦DN(λ) ◦ (βn+1
ξλ

)−1,

where

σ =

{
σ+ if N is even,

σ− if N is odd.
(81)

βm
ξλ⊗σ is the restriction map IndGm

P m(ξλ ⊗ σ) → C∞((N−)m)ξλ⊗σ ⊂ C∞(Rm−1) and
σ is given by (81).

Using the identification (20), we have

Dnc
2N(λ) =

N∑
j=0

aj(λ)(∆Mn−1)ji∗
(

∂

∂xn

)2N−2j

,

Dnc
2N+1(λ) =

N∑
j=0

bj(λ)(∆Mn−1)ji∗
(

∂

∂xn

)2N−2j+1

,

(82)

where

∆Mn−1 = − ∂2

∂x2
1

+
n−1∑
i=2

∂2

∂x2
i

and (i∗ϕ)(x′) = ϕ(x′, 0).

6. Intertwining families and asymptotics of eigenfunctions

In the present section we describe an alternative construction of the families Dnc
N (λ)

in terms of the asymptotics of eigenfunctions of the Laplacian on anti-de Sitter
space (called the residue family in [8]).

Let
Un = {(x1, . . . , xn) ∈ Rn |xn > 0}

be the Lorentzian upper half-space with the Lorentzian metric

x−2
n

(
−dx2

1 +
n∑

i=2

dx2
i

)
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and the Laplacian

∆Un = x2
n∆Mn−1 + x2

n

∂2

∂x2
n

− (n− 2)xn
∂

∂xn

.

We seek formal solutions u ∈ C∞(Un) to the equation

−∆Unu = λ(n− 1− λ)u

in the form
u(x) ∼

∑
j≥0

xλ+j
n cj(x

′), x = (x′, xn), codd = 0.

The coefficients cj satisfy recursive relations such that the coefficients c2j , j ≥ 1,
are determined by c0 . More precisely, we have maps

T2j(λ) : c0(x
′) 7→ c2j(λ, x′)

which are differential operators (depending on λ) of order 2j on Rn−1 , where
T0(λ) = id.

We define S2N(λ) : C∞(Rn) → C∞(Rn−1) by

S2N(λ) =
N∑

j=0

1

(2N−2j)!
T2j(λ)i∗

(
∂

∂xn

)2N−2j

.

Theorem 6.1. The families S2N(λ + n− 1− 2N) and Dnc
2N(λ) coincide, up to

a rational function in λ.

Proof. A computation shows that T2j(λ) = A2j(λ)(∆Mn−1)j , where

A2j−2(λ) + 2j(2j + 2λ + 1− n)A2j(λ) = 0 (83)

and A0(λ) = 1. We see that S2N(λ) can be written in the form

N∑
j=0

1

(2N−2j)!
A2j(λ)(∆Mn−1)ji∗ (∂/∂xn)2N−2j

=
N∑

j=0

B2j(λ)(∆Mn−1)ji∗ (∂/∂xn)2N−2j ,

where the coefficients B2j(λ) satisfy

B0(λ) =
1

(2N)!
,

and

B2j−2(λ) +
2j(2j+2λ+1−n)

(2N−2j+2)(2N−2j+1)
B2j(λ) = 0. (84)

We recall that Dnc
2N(λ) is given by (82), where

aj−1(λ) +
2j(2j+2λ+n−1−4N)

(2N−2j+2)(2N−2j+1)
aj(λ) = 0.
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Now we observe that
B2j(λ+n−1−2N)

aj(λ)

does not depend on j . Using aN(λ) = 1, (84) shows

B2N(λ) =
1

(2 · 4 · . . . · 2N)(n−1−2λ−2)(n−1−2λ−4) . . . (n−1−2λ−2N)

=
1

2NN !(n−1−2λ−2)(n−1−2λ−4) . . . (n−1−2λ−2N)
.

We conclude that S2N(λ+n−1−2N) = B2N(λ+n−1−2N)Dnc
2N(λ).

If we define

S2N+1(λ) =
N∑

j=0

1

(2N+ 1−2j)!
T2j(λ)i∗

(
∂

∂xn

)2N+1−2j

,

we get the following analogous result:

Theorem 6.2. The families S2N+1(λ+n−1−(2N+1)) and Dnc
2N+1(λ) coincide,

up to a rational function in λ.

Proof. The proof is similar to the proof of Theorem 6.1; we refer to Theorem
5.2.6 in [8].
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Appendix

Summary of commutator relations for gn = o(2, n− 1).

[Q+
1 , Y +

j ] = 0, [Q−
1 , Y +

j ] = Z+
j + Z−

j ,

[Q+
1 , Y −

j ] = −Z+
j − Z−

j , [Q−
1 , Y −

j ] = 0,

[Q+
1 , Z+

j ] = Y +
j , [Q−

1 , Z+
j ] = −Y −

j ,

[Q+
1 , Z−

j ] = Y +
j , [Q−

1 , Z−
j ] = −Y −

j ,

[Q+
2 , Y +

j ] = 0, [Q−
2 , Y +

j ] = Z+
j − Z−

j ,

[Q+
2 , Y −

j ] = Z+
j − Z−

j , [Q−
2 , Y −

j ] = 0,

[Q+
2 , Z+

j ] = Y +
j , [Q−

2 , Z+
j ] = Y −

j ,

[Q+
2 , Z−

j ] = −Y +
j , [Q−

2 , Z−
j ] = −Y −

j ,

[Q+
1 , Q+

2 ] = 0, [H, Q+
1 ] = Q+

1 ,

[Q−
1 , Q−

2 ] = 0, [H, Q−
1 ] = −Q−

1 ,

[Q+
1 , Q−

2 ] = −2H2, [H, Q+
2 ] = Q+

2 ,

[Q−
1 , Q+

2 ] = 2H2, [H, Q−
2 ] = −Q−

2 ,

[Q+
1 , Q−

1 ] = 2H, [H2, Q
+
1 ] = −Q+

2 ,

[Q+
2 , Q−

2 ] = 2H, [H2, Q
−
1 ] = Q−

2 ,

[Q±
i , Mjk] = 0, [H2, Q

+
2 ] = −Q+

1 ,

[H2, Q
−
2 ] = Q−

1 ,

[Y +
i , Y −

j ] = 2δijH + 2Mij, [Z+
i , Z−

j ] = 2δijH2 + 2Mij,

[Mij, Y
±
r ] = δjrY

±
i − δirY

±
j , [Mij, Z

±
r ] = δjrZ

±
i − δirZ

±
j ,

[H, Y ±
j ] = ±Y ±

j , [H2, Z
±
j ] = ±Z±

j ,

[H, Mij] = 0, [H2, Mij] = 0,

[Y +
j , Z+

k ] = δjk(Q
+
1 −Q+

2 ), [Y +
j , Z−

k ] = δjk(Q
+
1 + Q+

2 ),

[Y −
j , Z+

k ] = δjk(−Q−
1 −Q−

2 ), [Y −
j , Z−

k ] = δjk(−Q−
1 + Q−

2 ).
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[9] Knapp, A. W., “Lie groups beyond an introduction,” Second edition, Progr.
Math., Vol. 140, Birkhäuser, 2002.
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