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Abstract. We study the triple (G, π, 〈 , 〉) where G is a connected and
simply connected Lie group, π and 〈 , 〉 are, respectively, a multiplicative Pois-
son tensor and a left invariant Riemannian metric on G such that the necessary
conditions, introduced by Hawkins, to the existence of a non commutative de-
formation (in the direction of π ) of the spectral triple associated to 〈 , 〉 are
satisfied. We show that the geometric problem of the classification of such triple
(G, π, 〈 , 〉) is equivalent to an algebraic one. We solve this algebraic problem
in low dimensions and we give the list of all (G, π, 〈 , 〉) satisfying Hawkins’s
conditions, up to dimension four.
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1. Introduction

In [8] and [9], Hawkins showed that if a deformation of the graded algebra of
differential forms on a Riemannian manifold (M, 〈 , 〉) comes from a deformation
of the spectral triple describing the Riemannian manifold M , then the Poisson
tensor π (which characterizes the deformation) and the Riemannian metric satisfy
the following conditions:

1. The associated metric contravariant connection D is flat.

2. The metacurvature of D vanishes, (D is metaflat).

3. The Poisson tensor π is compatible with the Riemannian volume µ :

d(iπµ) = 0.

The metric contravariant connection associated naturally to any couple of pseudo-
Riemannian metric and Poisson tensor is an analogue of the Levi-Civita connec-
tion. It has appeared first in [3]. Sometimes we call this connection Levi-Civita
contravariant connection. The metacurvature, introduced by Hawkins in [9], is
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a (2, 3)-tensor field (symmetric in the contravariant indices and antisymmetric in
the covariant indices) associated naturally to any torsion-free and flat contravariant
connection.

In [9], Hawkins studied completely the geometry of the triples (M, 〈 , 〉, π)
satisfying 1-3 when M is compact and 〈 , 〉 is Riemannian. In [4], the second
author gave a method which permit the construction of a large class of triples
(M, 〈 , 〉, π) satisfying 1-3. We call the conditions 1-3 Hawkins’s conditions and a
couple (π, 〈 , 〉) satisfying 1-2 will be called flat and metaflat.

In this paper, we study the triples (G, π, 〈 , 〉) satisfying Hawkins’s con-
ditions, where G is a connected and simply connected Lie group endowed with a
multiplicative Poisson tensor π and a left invariant Riemannian metric 〈 , 〉 . We
reduce the geometric problem of classifying such triples to an algebraic one and
we solve it when the dimension of the Lie group is ≤ 4. In [1], the authors gave
the complete description of the triples (G, π, 〈 , 〉) satisfying Hawkins’s conditions
when G is the 2n + 1-dimensional Heisenberg group.

To state our main results, let us introduce the notion of Milnor Lie algebra
which will be central in this paper and recall briefly some classical facts about
Poisson-Lie groups. The notion of Poisson-Lie group was first introduced by
Drinfel’d [5] and studied by Semenov-Tian-Shansky [14] (see also [12]).

1. A Milnor Lie algebra is a finite dimensional real Lie algebra G endowed
with a scalar product 〈 , 〉 (positive-definite) such that:

(a) the Lie subalgebra S = {u ∈ G, adu + adt
u = 0} is abelian (adt

u denotes
the adjoint of adu w.r.t. 〈 , 〉),

(b) the derived ideal [G,G] is abelian and S⊥ = [G,G] (S⊥ is the orthogonal
of S ).
This terminology is justified by a classical result of Milnor. Indeed, in
[13], Milnor showed that a left invariant Riemannian metric on a Lie
group is flat if and only if its Lie algebra is a semi-direct product of an
abelian algebra b with an abelian ideal u and, for any u ∈ b , adu is
skew-symmetric. This result can be formulated in a more precise way
and, in Proposition 2.2, we will show that a left invariant Riemannian
metric on a Lie group is flat if and only if its Lie algebra is a Milnor Lie
algebra.

2. Let G be a Lie group and G its Lie algebra. A Poisson tensor π on G is
called multiplicative if, for any a, b ∈ G ,

π(ab) = (La)∗π(b) + (Rb)∗π(a),

where (La)∗ (resp. (Rb)∗ ) denotes the tangent map of the left translation
of G by a (resp. the right translation of G by b). Pulling π back to the
identity element e of G by left translations, we get a map πl : G −→ G ∧ G
defined by πl(g) = (Lg−1)∗π(g). Let ξ := deπl : G −→ G ∧ G be the intrinsic
derivative of πl at e . It is well-known that (G, [ , ], ξ) is a Lie bialgebra, i.e.,
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ξ is a 1-cocycle relative to the adjoint representation of G on G ∧G , and the
dual map of ξ , [ , ]∗ : G∗×G∗ −→ G∗ , is a Lie bracket on G∗ . It is well-known
also that (G∗, [ , ]∗, ρ) is also a Lie bialgebra, where ρ : G∗ −→ G∗∧G∗ is the
dual of the Lie bracket on G . Note that ρ = −d where d is the restriction
of the differential to left invariant 1-forms.
A Poisson-Lie group endowed with a left invariant Riemannian metric will
be called Riemannian Poisson-Lie group.

For any scalar product 〈 , 〉 on a Lie algebra G , we denote by 〈 , 〉∗ the
associated scalar product on G∗ .

Let us state our main results:

Theorem 1.1. Let (G, π, 〈 , 〉) be a Riemannian Poisson-Lie group and (G∗, [ , ]∗, ρ)
its dual Lie bialgebra. Then (π, 〈 , 〉) is flat and metaflat if and only if:

1. (G∗, [ , ]∗, 〈 , 〉∗e) is a Milnor Lie algebra,

2. for any α, β, γ ∈ S = {α ∈ G∗, adα + adt
α = 0},

adα adβ ρ(γ) = 0. (1)

Theorem 1.2. Let (G, π) be a connected and unimodular Poisson-Lie group
and let µ be a left invariant volume form on G. Then diπµ = 0 if and only if:

1. (G∗, [ , ]∗) is an unimodular Lie algebra,

2. for any u ∈ G ,
ρ(iξ(u)µe) = 0, (2)

where ξ is the 1-cocycle associated to π and ρ = −d is the dual 1-cocycle
extended as a differential to ∧dimG−2G∗ .

We will see (cf. Proposition 3.2) that for a general connected Poisson-Lie
group the condition diπµ = 0 implies (2).

If G is abelian then ρ = 0 and one can deduce easily from Theorems 1.1-1.2
the following result.

Corollary 1.3. Let (G, 〈 , 〉) be a Lie algebra endowed with a scalar product
and denote by πl the canonical linear Poisson structure on G∗ . Then (πl, 〈 , 〉∗)
satisfies Hawkins’s conditions if and only if (G, 〈 , 〉) is a Milnor Lie algebra.

The following theorem is an interesting consequence of Theorem 1.1-1.2.

Theorem 1.4. Let (G, π, 〈 , 〉) be a Riemannian Poisson-Lie group. Suppose
that G is compact semi-simple, 〈 , 〉 is bi-invariant and π = r− − r+ where r+

(resp. r− ) is the left invariant (resp. the right invariant) bivector field associated to
r ∈ ∧2G . Then (G, π, 〈 , 〉) satisfies Hawkins’s conditions if and only if [r, r] = 0.

There are some interesting consequences of Theorems 1.1-1.2:
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1. The classification of connected and simply connected Riemannian Poisson-
Lie groups which are flat and metaflat is equivalent to the classification of
the Lie bialgebra structures on Milnor Lie algebras for which (1) holds.

2. The classification of unimodular connected and simply connected Rieman-
nian Poisson-Lie groups satisfying Hawkins’s conditions is equivalent to the
classification of the Lie bialgebra structures on Milnor Lie algebras for which
(1) and (2) hold.

3. The Lie bialgebras structures on Milnor Lie algebras of dimension ≤ 4 can
be computed (see Section 4) and hence the Riemannian Poisson-Lie groups of
dimension ≤ 4 satisfying Hawkins’s conditions can be deduced (see Theorems
4.2 and the paragraph devoted to the 4-dimensional case in Section 4).

The paper is organized as follows. In Section 2, we present a reformulation
of a classical result of Milnor and we recall some standard facts about Levi-Civita
contravariant connections and about the metacurvature of flat and torsion-free
contravariant connections. In section 3, we prove Theorems 1.1, 1.2 and 1.4 and
finally, Section 4 is devoted to the determination of Riemannian Poisson-Lie groups
satisfying Hawkins’s conditions in dimension 2, 3 and 4.

2. Preliminaries

2.1. Milnor Lie algebras. The following lemma is interesting in itself:

Lemma 2.1. Let (G, 〈 , 〉) be a Lie group with a left invariant Riemannian
metric. If the sectional curvature of 〈 , 〉 is nonpositive then the Lie subalgebra
S = {u ∈ G, adu + adt

u = 0} is abelian.

Proof. For any u ∈ G , we denote by u+ the left invariant vector field associated
to u . Remark that S+ = {u+, u ∈ S} is the Lie algebra of left invariant Killing
vector fields. Now, since for any u ∈ S , 〈u+, u+〉 is constant then, for any left
invariant vector field X we have:

〈∇X∇Xu+, u+〉+ 〈∇Xu+,∇Xu+〉 = 0, (3)

where ∇ is the Levi-Civita connection associated to 〈 , 〉 .
The vector field u+ is Killing, thus we have the well-known formula (see [2],
Theorem 1.81)

∇X∇Xu+ −∇∇XXu+ = R(u+, X)X

where R(X, Y ) = ∇[X,Y ]−[∇X ,∇Y ] is the tensor curvature. Moreover 〈∇∇XXu+, u+〉 =
0, hence the formula (3) becomes:

〈R(u+, X)X, u+〉+ 〈∇Xu+,∇Xu+〉 = 0.

This implies, since the curvature is nonpositive, that 〈∇Xu+,∇Xu+〉 = 0. So u+

is a parallel vector field and the lemma follows.
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The following proposition is a reformulation of a classical result of Milnor
(see [13] Theorem 1.5).

Proposition 2.2. Let (G, 〈 , 〉) be a Lie group endowed with a left invariant
Riemannian metric. Then the curvature of 〈 , 〉 vanishes if and only if the Lie
algebra G of G endowed with the scalar product 〈 , 〉e is a Milnor Lie algebra.

Proof. Note first that the Levi-Civita connection of 〈 , 〉 is entirely determined
by the product A : G × G −→ G given by

2〈Auv, w〉e = 〈[u, v], w〉e + 〈[w, u], v〉e + 〈[w, v], u〉e, (4)

and the curvature vanishes if and only if, for any u, v ∈ G , A[u,v] = [Au, Av] .

If G = S ⊕ [G,G] is a Milnor Lie algebra, then one can deduce easily from
(4) that

Au =

{
0 if u ∈ [G,G]
adu if u ∈ S,

and hence the curvature vanishes identically.

Suppose now that the curvature vanishes. In the proof of his result, Milnor
considered u = {u ∈ G, Au = 0} and showed that u is an abelian ideal, its
orthogonal b is an abelian subalgebra and for all u ∈ b , adu is skew-symmetric.
Hence b ⊂ S and [G,G] = [b, u] .

Now, for any u ∈ u , v ∈ b and w ∈ G , we have Au = 0 and then

〈w, [u, v]〉+ 〈adwu, v〉+ 〈u, adwv〉 = 0.

This relation implies that S = [G,G]⊥ and Lemma 2.1 implies that S is abelian.
We deduce that [G,G] ⊂ u and [G,G] is abelian and the proposition follows.

Proposition 2.3. Let G be a Milnor Lie algebra. If dim S ≥ 1 then the derived
ideal [G,G] is of even dimension.

Proof. Let (s1, ..., sp) be a basis of S . The restriction of ads1 to [G,G] is
a skew-symmetric endomorphism, thus its kernel K1 is of even codimension in
[G,G] . Now, ads2 commutes with ads1 and K1 is invariant by ads2 . By using the
same argument as above, we deduce then K1 ∩ ker ads2 is of even codimension in
K1 . Finally K1 is of even codimension in [G,G] . Thus, by induction, we show
that

Kp = [G,G] ∩ (∩p
i=1 ker adsi

)

is an even codimensional subspace of [G,G] . Now from its definition Kp is con-
tained in the center of G which is contained in S and then Kp = {0} and the
result follows.

2.2. Contravariant connections and metacurvature. Contravariant con-
nections associated to a Poisson structure have recently turned out to be useful
in several areas of Poisson geometry. Contravariant connections were defined by
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Vaisman [15] and were analyzed in detail by Fernandes [7]. This notion appears
extensively in the context of noncommutative deformations (see [8, 9]).

Let (P, π) be a Poisson manifold. We consider π# : T ∗P −→ TP the
anchor map given by β(π#(α)) = π(α, β), and we denote by [ , ]π the Koszul
bracket on differential 1-forms given by

[α, β]π = Lπ#(α)β −Lπ#(β)α− d(π(α, β)). (5)

This bracket can be extended naturally to Ω∗(P ) and gives rise to a bracket which
we denote also by [ , ]π.

A contravariant connection on P , with respect to π , is a R-bilinear map

D : Ω1(P )× Ω1(P ) −→ Ω1(P )
(α, β) 7−→ Dαβ

satisfying the following properties:

1. α 7→ Dαβ is C∞(P )-linear, that is:

Dfαβ = fDαβ, for all f ∈ C∞(P ).

2. β 7→ Dαβ is a derivation, in the sense:

Dα (fβ) = fDαβ + π#(α)(f)β, for all f ∈ C∞(P ).

The torsion and the curvature of a contravariant connection D is formally identical
to the usual definitions

T (α, β) = Dαβ −Dβα− [α, β]π and K(α, β) = DαDβ −DβDα −D[α,β]π .

The connection D is called flat if K vanishes identically.
Let us define now an interesting class of contravariant connections, namely Levi-
Civita contravariant connections.
Let (P, π) be a Poisson manifold and 〈 , 〉 a pseudo-Riemannian scalar product on
T ∗P . The metric contravariant connection associated to (π, 〈 , 〉) is the unique
contravariant connection D such that D is torsion-free and the metric 〈 , 〉 is
parallel with respect to D , i.e.,

π#(α).〈β, γ〉 = 〈Dαβ, γ〉+ 〈β,Dαγ〉.

The connection D is the contravariant analogue of the Levi-Civita connection and
can be defined by the Koszul formula:

2〈Dαβ, γ〉 = π#(α).〈β, γ〉+ π#(β).〈α, γ〉 − π#(γ).〈α, β〉
+ 〈[γ, α]π, β〉+ 〈[γ, β]π, α〉+ 〈[α, β]π, γ〉. (6)

We call D the Levi-Civita contravariant connection associated to (π, 〈 , 〉).
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The metacurvature. We recall now the definition of the metacurvature intro-
duced by Hawkins in [9].

Let (P, π) be a Poisson manifold and D a torsion-free and flat contravariant
connection with respect to π . In [9], Hawkins showed that such a connection
defines a bracket { , } on the space of differential forms Ω∗(P ) such that:

1. { , } is R-bilinear, degree 0 and antisymmetric, i.e.,

{σ, ρ} = −(−1)degσdegρ{ρ, σ}.

2. The differential d is a derivation with respect to { , } , i.e.,

d{σ, ρ} = {dσ, ρ}+ (−1)degσ{σ, dρ}.

3. { , } satisfies the product rule

{σ, ρ ∧ λ} = {σ, ρ} ∧ λ + (−1)degσdegρρ ∧ {σ, λ}.

4. For any f, g ∈ C∞(P ) and for any σ ∈ Ω∗(P ) the bracket {f, g} coincides
with the initial Poisson bracket and

{f, σ} = Ddfσ.

Hawkins called this bracket a generalized Poisson bracket and showed that there
exists a (2, 3)-tensor M (symmetric in the contravariant indices and antisymmet-
ric in the covariant indices) such that the following assertions are equivalent:

1. The generalized Poisson bracket satisfies the graded Jacobi identity

{{σ, ρ}, λ} = {σ, {ρ, λ}} − (−1)degσdegρ{ρ, {σ, λ}}.

2. The tensor M vanishes identically.

M is called the metacurvature and is given by

M(df, α, β) = {f, {α, β}} − {{f, α}, β} − {{f, β}, α}. (7)

The connection D is called metaflat if M vanishes identically.

The following formulas, due to Hawkins, will be useful later. Indeed,
Hawkins pointed out in [9] pp. 394, that for any parallel 1-form α with respect to
D and any 1-form β , the generalized Poisson bracket of α and β is given by

{α, β} = −Dβdα. (8)

Thus, one can deduce from (7) that for any parallel 1-forms α, γ and for any 1-form
β ,

M(α, β, γ) = −DβDγdα. (9)
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To finish this section, we give an useful full global formula for Hawkin’s
generalized Poisson bracket of two 1-forms. Let α and β be two 1-forms on a
Poisson manifold P endowed with a torsion-free and flat contravariant connection
D . One can suppose that β = gdf where f, g ∈ C∞(P ). Then, we have

{α, fdg} ={α, f} ∧ dg + f{α, dg}
=−Ddfα ∧ dg + f (dDdgα−Ddgdα)

=−Dfdgdα + dDfdgα−Ddfα ∧ dg − df ∧Ddgα

=−Dfdgdα + dDfdgα−Dα (df ∧ dg)− [df, α]π ∧ dg − df ∧ [dg, α]π

=−Dfdgdα−Dα (d(fdg)) + dDfdgα− [df, α]π ∧ dg − df ∧ [dg, α]π

=−Dfdgdα−Dα (d(fdg)) + dDfdgα + [α, d(fdg)]π

=−Dαdβ −Dβdα + dDβα + [α, dβ]π.

Thus, for any α, β ∈ Ω1(P ), we have

{α, β} = −Dαdβ −Dβdα + dDβα + [α, dβ]π. (10)

3. Proofs of Theorems 1.1, 1.2 and 1.4

3.1. Proof of Theorem 1.1. Theorem 1.1 is an immediate consequence of the
following result.

Theorem 3.1. Let (G, π, 〈 , 〉) be a Riemannian Poisson-Lie group. Then:

1. (π, 〈 , 〉) is flat if and only if the dual Lie algebra (G∗, 〈 , 〉∗) is a Milnor
Lie algebra.

2. If (π, 〈 , 〉) is flat then, if one identifies G∗ with the space of left invariant
1-forms, the metacurvature M is given by

M (α, β, γ) =

{
adα adβ ρ(γ) for all α, β, γ ∈ S,

0 if α, β or γ ∈ [G∗,G∗], (11)

where S = {α ∈ G∗, adα + adt
α = 0} and ρ : G∗ −→ G∗ ∧ G∗ is the dual

1-cocycle.

Proof. Note first that in a Poisson-Lie group the Koszul bracket of two left
invariant 1-form is a left invariant 1-form (see [16]) and, if one identifies G∗ with the
space of left invariant 1-forms, the Koszul bracket coincides with the Lie bracket
of G∗ . Through this proof, we identify G∗ with the space of left invariant 1-forms
on G .

1. Denote by 〈 , 〉∗ the left invariant metric on T ∗G associated to 〈 , 〉
and denote by D the Levi-Civita contravariant connection associated to
(π, 〈 , 〉∗). Since the Riemannian metric is left invariant, for any α, β, γ ∈ G∗ ,
(6) becomes

2〈Dαβ, γ〉∗ = 〈[γ, α]π, β〉∗ + 〈[γ, β]π, α〉∗ + 〈[α, β]π, γ〉∗. (12)



Bahayou and Boucetta 447

Hence the restriction of D to G∗×G∗ defines a product on G∗ . The vanishing
of the curvature of D is equivalent to the vanishing of the restriction of the
curvature of D to G∗ . Now, one can deduce from (12) that the vanishing of
the restriction of the curvature of D to G∗ is equivalent to the flatness of
the left invariant Riemannian metric associated to 〈 , 〉∗e on any Lie group
with G∗ as a Lie algebra and one can conclude by using Proposition 2.2.

2. Suppose now that (π, 〈 , 〉) is flat and, according to the first part, let

G∗ = S
⊥
⊕ [G∗,G∗] where S = {α ∈ G∗, adα + ad∗α = 0} and both S and

[G∗,G∗] are abelian. Note that for any α ∈ G∗ , dα (X,Y ) = −α ([X, Y ]) and
hence ρ = −d . Let us establish (11).

First, one can deduce from (12) that, for any γ ∈ G∗ ,

Dαγ =

{
0 if α ∈ [G∗,G∗]
[α, γ]π = adα γ if α ∈ S,

(13)

and moreover, for any α ∈ S , Dα = 0.

(a) If α, β, γ ∈ S , since Dα = Dβ = Dγ = 0, we deduce from (9) that

M(α, β, γ) = −DαDβdγ
(13)
= adαadβρ(γ).

(b) If α, γ ∈ S and β ∈ [G∗,G∗] , since Dα = Dγ = 0, we deduce from (9)
that

M(α, β, γ) = −DβDαdγ
(13)
= 0.

(c) If α, β ∈ [G∗,G∗] and γ ∈ S . At least locally, we have α =
∑

fidgi and
we deduce from (7) that

M(α, β, γ) =
∑

fi{gi, {β, γ}} − fi{{gi, β}, γ} − fi{{gi, γ}, β}.

>From (8) and (13), we have {β, γ} = −Dβdγ = 0. On the other hand,
also by using (13), {gi, γ} = Ddgi

γ = 0, thus

M(α, β, γ) =
∑

−fi{{gi, β}, γ} =
∑

fiDDdgi
βdγ = DDαβdγ = 0.

(d) For α, β ∈ [G∗,G∗] , the computation of M(α, β, β) is more difficult.
First, by comparing M(α, β, β) and [β, [β, dα]π]π , we will show that
they agree up to sign and, next, we will show that [β, [β, dα]π]π = 0
and we get the result.
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Put α =
∑

fidgi . By using (7), we get

M(α, β, β) =
∑

fi{gi, {β, β}} − 2fi{{gi, β}, β}

=
∑

fiDdgi
{β, β} − 2

∑
fi{Ddgi

β, β}

=Dα{β, β} − 2
∑

fi{Ddgi
β, β}

(∗)
= − 2

∑
fi{Ddgi

β, β}

=− 2
∑

({fiDdgi
β, β}+Ddfi

β ∧ Ddgi
β)

=− 2{Dαβ, β} − 2
∑

Ddfi
β ∧ Ddgi

β

=− 2
∑

Ddfi
β ∧ Ddgi

β.

In (∗) we have used (13) and the fact that {α, β} ∈ ∧2G∗ which can be
deduced from (10). On the other hand,

[β, [β, dα]π]π =
∑

[β, [β, dfi ∧ dgi]π]π

=
∑

[β, [β, dfi]π ∧ dgi]π + [β, dfi ∧ [β, dgi]π]π

=
∑

[β, [β, dfi]π]π ∧ dgi + [β, dfi]π ∧ [β, dgi]π

+ [β, dfi]π ∧ [β, dgi]π + dfi ∧ [β, [β, dgi]π]π.

Now, choose an orthonormal basis {α1, ..., αn} of G∗ . For any 1-form
γ ∈ Ω1(G), we have γ =

∑
〈γ, αi〉∗αi , and

[β, γ]π =
∑

π](β) · 〈γ, αi〉∗ αi + 〈γ, αi〉∗[β, αi]π

=Dβγ +
∑

〈γ, αi〉∗[β, αi]π.

Hence

[β, [β, γ]π]π =[β,Dβγ]π +
∑

π](β) · 〈γ, αi〉∗[β, αi]π +
∑

〈γ, αi〉∗[β, [β, αi]π]π

(∗)
=[β,Dβγ]π −

∑
〈Dβγ, αi〉∗Dαi

β

=[β,Dβγ]π −DDβγβ

=DβDβγ − 2D(Dβγ)β

=DβDβγ − 2D[β,γ]πβ + 2
∑

〈γ, αi〉∗D[β,αi]πβ

(∗∗)
= DβDβγ − 2D[β,γ]πβ

=DβDβγ − 2(K(β, γ)β +DβDγβ −DγDββ)

=DβDβγ − 2DβDγβ.

We have used in the equalities (∗) and (∗∗) the fact that [G∗,G∗] is
abelian and hence [β, [β, αi]π]π = −D[β,αi]πβ = 0.
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By using this formula, we get

[β, [β, dfi]π]π ∧ dgi =DβDβdfi ∧ dgi − 2DβDdfi
β ∧ dgi

=Dβ (Dβdfi ∧ dgi)−Dβdfi ∧ Dβdgi

− 2Dβ (Ddfi
β ∧ dgi) + 2Ddfi

β ∧ Dβdgi,

dfi ∧ [β, [β, dgi]π]π =−Dβ (Dβdgi ∧ dfi) +Dβdgi ∧ Dβdfi

+ 2Dβ (Ddgi
β ∧ dfi)− 2Ddgi

β ∧ Dβdfi.

On the other hand

2[β, dfi] ∧ [β, dgi] =2Dβdfi ∧ Dβdgi − 2Dβdfi ∧ Ddgi
β

− 2Ddfi
β ∧ Dβdgi + 2Ddfi

β ∧ Ddgi
β.

Thus

[β, [β, dα]π]π =DβDβdα + 2
∑

Ddfi
β ∧ Ddgi

β − 2Dβ (Ddfi
β ∧ dgi)

− 2Dβ (dfi ∧ Ddgi
β)

=DβDβdα + 2
∑

Ddfi
β ∧ Ddgi

β + 2Dβ ([β, dfi]π ∧ dgi)

− 2Dβ (Dβdfi ∧ dgi) + 2Dβ (dfi ∧ [β, dgi]π)− 2Dβ (dfi ∧ Dβdgi)

=−DβDβdα−M(α, β, β) + 2Dβ[β, dα]π

=−M(α, β, β).

Let us show now that [β, [β, dα]π]π = 0. We have α =
∑

[γi, γj]π and
furthermore d is a 1-cocycle with respect to the adjoint action of G∗ ,
then

dα =
∑

([dγi, γj]π + [γi, dγj]π) .

This relation implies that dα = α1 + α2 where α1 ∈ S ∧ [G∗,G∗] and
α2 ∈ ∧2[G∗,G∗] . From this decomposition and from the fact that
[G∗,G∗] is abelian, one can deduce easily that [β, [β, dα]π]π = 0 and
hence M(α, β, β) = 0. Since M is symmetric, we deduce that, for any
α, β, γ ∈ [G∗,G∗] , M(α, β, γ) = 0 which completes the proof.

Before giving a proof of Theorem 1.2, let us show first that, in the general
case, the condition (2) is a necessary condition.

Proposition 3.2. Let (G, π) be a Poisson-Lie group and let µ be a left invariant
form on G. If d(iπµ) = 0 then (2) holds.

Proof. The proof is based on the Koszul formula [10], satisfied by any vector
field X and any multivector Q , and given by

i[X,Q]µ = iXdiQµ + (−1)deg QdiXiQµ− iQdiXµ. (14)
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Indeed, if d(iπµ) = 0 then, for any left invariant vector field X , we get

i[X,π]µ = diXiπµ− iπdiXµ.

Or diXµ = LXµ = αµ , where α is a constant and hence di[X,π]µ = 0. One can
conclude by using the fact that [X, π] is left invariant and [X, π](e) = ξ(Xe).

3.2. Proof of Theorem 1.2.

Proof. Let (G, π) be a connected unimodular Poisson-Lie group and let µ be
a left invariant volume form on G . Let ξ be the 1-cocycle associated to π and let
(G∗, [ , ]∗, ρ) be the dual Lie bialgebra. For any tensor T on G , we denote by T+

the corresponding left invariant tensor field on G . Recall that the divergence of a
vector field X with respect to µ is the function divµ X given by

LXµ = (divµ X)µ.

Before giving the proof of the theorem, we need to state some properties of the
modular vector field on a Poisson Lie-group.

As shown in [17], the operator Xµ : f 7→ divµ Xf (Xf being the Hamilto-
nian vector field associated to f ) is a derivation and hence a vector field called the
modular vector field of (G, π) with respect to the volume form µ . It is well-known
(see [17]) that Xµ is given by

diπµ = iXµµ. (15)

We define the modular form κ : G∗ → R by

κ(α) = tr adα, (16)

where adα β = [α, β]∗ . The modular form κ , which is in G∗∗ , defines a vector in
G denoted also by κ . We have

Xµ(e) = κ. (17)

Indeed, choose a scalar product 〈 , 〉 on G , an orthonormal basis (u1, ..., un) of
(G, 〈 , 〉) and denote by (α1, ..., αn) its dual basis. We have

π =
∑
i<j

πij u+
i ∧ u+

j

and the Hamiltonian vector field associated to f ∈ C∞(M) is given by

Xf =
n∑

j=1

(
n∑

i=1

πij〈df, α+
i 〉∗
)

u+
j .

We have

Xµ(f) = divµ

n∑
j=1

(
n∑

i=1

πij〈df, αi〉∗
)

u+
j

=
n∑

j=1

(
n∑

i=1

πiju
+
i (f)

)
divµ u+

j +
n∑

j=1

n∑
i=1

u+
j

(
πiju

+
i (f)

)
.
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Now, since for any i, j = 1, . . . , n πij(e) = 0 and, because G is unimodular,
divµ u+

j = 0 for j = 1, . . . , n , we get

Xµ(e) =
n∑

i=1

(
n∑

j=1

LX+
j
π(α+

i , α+
j )e

)
ui,

and

〈αi, Xµ(e)〉 =
n∑

j=1

LX+
j
π(α+

i , α+
j )e =

n∑
j=1

〈αi ∧ αj, ξ(Xj)〉

=
n∑

j=1

[αi, αj]
∗(Xj) =

n∑
j=1

〈
n∑

k=1

[αi, αj]
∗(Xk)αk, αj

〉∗

=
n∑

j=1

〈[αi, αj]
∗, αj〉∗ = tr adαi

= κ(αi),

and (17) is established.

Now, we will show that Xµ − κ+ is a multiplicative vector field by using
the characterization of multiplicative multivector fields given in [12]. Indeed, by
applying (14) and LXµ = 0, we get

i[X,Xµ]µ =iXdiXµµ− diXiXµµ− iXµdiXµ

=− diXiXµµ,

i[X,π]µ =iXdiπµ + diXiπµ− iπdiXµ

=iXiXµµ + diXiπµ.

Thus
d
(
i[X,π]µ

)
= −i[X,Xµ]µ. (18)

Since [X, π] and µ are left invariant, we deduce from (18) that [X, Xµ] is also left
invariant. Moreover, [X, Xµ − κ+] = [X, Xµ]− [X, κ+] is left invariant and, since
Xµ(e) = κ+(e), we deduce that Xµ − κ+ is a multiplicative vector field. Thus
Xµ = Xm + κ+ where Xm is a multiplicative vector field.

To complete the proof, note that Xµ = 0 if and only if κ = 0 and Xm = 0.
Now κ = 0 if and only if (G∗, [ , ]∗) is unimodular, and Xm = 0 if and only
if [X,Xm](e) = 0, for all left invariant vector field X (see [12]). Or the last
condition is equivalent, according to (18), to ρ

(
iξ(u)µ

)
= 0, for any u ∈ G .

3.3. Proof of Theorem 1.4.

Proof. Let (G, π, 〈 , 〉) be a Riemannian Poisson-Lie group such that G is
compact semi-simple, 〈 , 〉 is bi-invariant and π is exact, i.e., there exists r ∈ ∧2G
such that π = r− − r+ , where r+ (resp. r− ) is the left invariant (resp. the right
invariant) bivector field associated to r . It is well-known that [r, r] is ad-invariant
and the dual Lie algebra structure on G∗ is given by

[α, β]∗ = ad∗r#(α)β − ad∗r#(β)α,
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where r# : G∗ −→ G is the contraction associated to r . Now, since 〈 , 〉 is bi-
invariant, the Levi-Civita contravariant connection D associated to (π, 〈 , 〉) is
given by

Dαβ = ad∗r#(α)β, α, β ∈ G∗, (19)

and hence its curvature is given by (see [8])

K(α, β)γ = ad∗[r,r](α,β,.)γ. (20)

Since G is semi-simple, we deduce that K vanishes if and only if [r, r] = 0.
Suppose now that [r, r] = 0 and we will show that (π, 〈 , 〉) is metaflat and
satisfies the third Hawkins’s condition.
Since (π, 〈 , 〉) is flat, according to Theorem 1.1, G∗ = S ⊕ [G∗,G∗] where
S = {α ∈ G∗, adα + adt

α = 0} is abelian and [G∗,G∗] is abelian. By using
the proof of lemma 2.1 and (19) it is easy to show that

S = {α ∈ G∗, ad∗r#(β)α = 0 for all β ∈ G∗}. (21)

On the other hand, one can see easily that ker r# ⊂ S . On the other hand
G = Imr# ⊕ Imr⊥# and Imr# is unimodular and symplectic and then solvable
(see [11]). Also Imr# carries a bi-invariant scalar product so it must be abelian
(see [13]). Let us show now that (1) holds. Choose an othonormal basis B1 =
{e1, . . . , e2p} of Imr# and an orthonormal basis B2 = {f1, . . . , fn−2p} of Imr⊥# and
let {α1, . . . , α2p, β1, . . . , βn−2p} the dual basis of B1 ∪ B2 . Let α, γ ∈ S . For any
r#(µ1), r#(µ2) ∈ Imr# and for any u ∈ Imr⊥# , we have

dγ(r#(µ1), r#(µ2)) = −γ([r#(µ1), r#(µ2)])

= 0,

dγ(r#(µ1), u) = −ad∗r#(µ1)γ(u)

(21)
= 0,

and hence
dγ =

∑
i,j

ai,jβi ∧ βj,

where ai,j ∈ R . Now,

adαdγ =
∑
i,j

ai,j (adαβi ∧ βj + βi ∧ adαβj) .

Or

adαβi = [α, βi]
∗

= ad∗r#(α)βi − ad∗r#(βi)
α

(21)
= ad∗r#(α)βi.

Now βi is in the annihilator of Imr# which is equal to ker r# . Or we have shown
that ker r# ⊂ S and, according to (21), ad∗r#(α)βi = 0 so adαdγ = 0 and (1)
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holds. To conclude, we will show that (2) holds and we get the result, according
to Theorem 1.2 (G is unimodular). Note first that in our case G is ξ(u) = [u, r]
and, by using (14), we get

i[u,r]µ = iudirµ + diuirµ− irdiuµ. (22)

Or since G is unimodular diuµ = 0. On the other hand r =
∑

i,j bijei ∧ ej and
then

d(irµ) = d

(∑
i,j

bijiei∧ej
µ

)
=

∑
i,j

bij

(
i[ei,ej ]µ− iei

Lej
µ− iej)Lei

µ
)

= 0,

which completes the proof.

4. Examples

This Section is devoted to the determination of Riemannian Poisson-Lie groups
satisfying Hawkins’s conditions in the linear case, in dimension 2, 3 and 4. Note
first that when the dual Lie algebra is abelian the Poisson tensor is zero and, in
what follows, we will omit this trivial case.

The linear case. Let G = S⊕ [G,G] be a Milnor Lie algebra. Since S is abelian
and acts on [G,G] by skew-symmetric endomorphisms, there exists a family of non
vanishing vectors u1, . . . , ur ∈ S and an orthonormal basis (f1, . . . , f2r) of [G,G]
such that, for any j = 1, . . . , r and for all s ∈ S ,

[s, f2j−1] = 〈s, uj〉f2j and [s, f2j] = −〈s, uj〉f2j−1. (23)

According to Corollary 1.3, the triple (G∗, πl, 〈 , 〉∗) satisfies Hawkins’s conditions.
It is easy to show that there exists a family of constants (aij)1≤i,j≤q such that
(G∗, πl, 〈 , 〉∗) is isomorphic to (Rq+2r, π0, 〈 , 〉0) where 〈 , 〉0 is the canonical
Euclidian metric and

π0 =
r∑

i=1

(
a1i∂x1 + . . . + aqi∂xq

)
∧
(
y2i∂y2i−1

− y2i−1∂y2i

)
.

The 2-dimensional case. According to Theorems 1.1-1.2 and since any 2-
dimensional Milnor Lie algebra is abelian, a 2-dimensional connected and simply
connected Riemannian Poisson-Lie group (G, π, 〈 , 〉) satisfies Hawkins’s condi-
tions if and only if the Poisson tensor is trivial.
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The 3-dimensional case. In this paragraph we will determine, up to isomor-
phism, all the 3-dimensional connected and simply connected Riemannian Poisson-
Lie groups satisfying Hawkins’s conditions. According to Theorems 1.1-1.2 and
Proposition 3.2, the first step is to determine all the Lie bialgebra structures on
3-dimensional Milnor Lie algebras satisfying (1) and (2).

Let H be a 3-dimensional Milnor Lie algebra. By virtue of (23), there exists
a real number λ 6= 0 and an orthonormal basis (e1, e2, e3) of H such that

[e2, e3] = 0, [e1, e2] = λe3 and [e1, e3] = −λe2.

We are looking for the 1-cocycles ρ : H −→ H ∧ H defining a Lie bialgebra
structure on H and satisfying (1) and (2). Put

ρ(e1) = ae1 ∧ e2 + be1 ∧ e3 + ce2 ∧ e3.

The condition (1) is equivalent to

ade1 ◦ ade1ρ(e1) = 0.

We have ade1ρ(e1) = aλe1 ∧ e3 − bλe1 ∧ e2 and hence

ade1 ◦ ade1ρ(e1) = −aλ2e1 ∧ e2 − bλ2e1 ∧ e3.

Thus ρ satisfies (1) if and only if

ρ(e1) = ce2 ∧ e3.

Now put

ρ(e2) = a1e1 ∧ e2 + b1e1 ∧ e3 + c1e2 ∧ e3, ρ(e3) = a2e1 ∧ e2 + b2e1 ∧ e3 + c2e2 ∧ e3,

and write down the cocycle condition ρ([u, v]) = aduρ(v)− advρ(u). We get

ρ([e2, e3]) = −λa2e3 ∧ e2 − λb1e2 ∧ e3 = λ(a2 − b1)e2 ∧ e3 = 0,

ρ([e1, e2]) = λ(a1e1 ∧ e3 − b1e1 ∧ e2) = λρ(e3),

ρ([e1, e3]) = λ(a2e1 ∧ e3 − b2e1 ∧ e2) = −λρ(e2).

These relations are equivalent to

b1 = a2 = c1 = c2 = 0 and a1 = b2.

Thus ρ is a 1-cocycle satisfying (1) if and only if

ρ(e1) = ce2 ∧ e3, ρ(e2) = ae1 ∧ e2 and ρ(e3) = ae1 ∧ e3. (24)

We consider now H∗ endowed with the bracket associated to ρ , the dual
scalar product and the dual of the bracket on H , ξ : H∗ −→ H∗ ∧H∗ , given by

ξ(e∗1) = 0, ξ(e∗2) = −λe∗1 ∧ e∗3 and ξ(e∗3) = λe∗1 ∧ e∗2, (25)



Bahayou and Boucetta 455

where (e∗1, e
∗
2, e

∗
3) is the dual basis of (e1, e2, e3). The bracket on H∗ associated to

ρ is given by

[e∗1, e
∗
2] = ae∗2, [e∗1, e

∗
3] = ae∗3 and [e∗2, e

∗
3] = ce∗1. (26)

Note that

tr ade∗1
= 2a, tr ade∗2

= tr ade∗3
= 0.

The Jacobi identity is given by

[[e∗1, e
∗
2], e

∗
3] + [[e∗2, e

∗
3], e

∗
1] + [[e∗3, e

∗
1], e

∗
2] = 2ace∗1.

Let us write down (2). Since µ = e1 ∧ e2 ∧ e3 and by virtue of (25), a
straightforward calculation using (24) gives

ρ
(
iξ(e∗2)µ

)
=λρ(e2) = λae1 ∧ e2,

ρ
(
iξ(e∗3)µ

)
=λρ(e3) = λae1 ∧ e3.

In conclusion, ρ defines a Lie bialgebra structure on H and satisfies (1) and (2) if
and only if

ρ(e1) = ce2 ∧ e3 and ρ(e2) = ρ(e3) = 0. (27)

Note that in this case, the Lie algebra H∗ is unimodular. The following Proposition
summarize all the discussion above.

Proposition 4.1. Let (G, π, 〈 , 〉) be a 3-dimensional connected and simply
connected Riemannian Poisson-Lie group and let (G, ξ, 〈 , 〉e) be its Lie algebra
endowed with the cocycle ξ associated to π and the value of the Riemannian metric
at the identity. Then (G, π, 〈 , 〉) satisfies Hawkins’s conditions if and only if the
triple (G, ξ, 〈 , 〉e) is isomorphic to one of the following triples:

1. (R3, ξ0, 〈 , 〉0) where R3 is endowed with its abelian Lie algebra structure, ξ0

is given by

ξ0(e1) = 0, ξ(e2) = −λe1 ∧ e3 and ξ(e3) = λe1 ∧ e2, λ 6= 0,

and 〈 , 〉0 is the canonical Euclidian scalar product on R3 .

2. (H3, ξ0, 〈 , 〉0) where H3 the Heisenberg Lie algebra


 0 x z

0 0 y
0 0 0

 , x, y, z,∈ R3

,

ξ0 is given by

ξ0(e3) = 0, ξ(e1) = −λe3 ∧ e2 and ξ(e2) = λe3 ∧ e1, λ 6= 0,

and 〈 , 〉0 is the scalar product on H3 whose matrix in (e1, e2, e3) is given

by

 1 0 0
0 1 0
0 0 a

, a > 0.
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The infinitesimal situations in this Proposition can be integrated easily
which leads to the following theorem.

Theorem 4.2. Let (G, π, 〈 , 〉) be a connected and simply connected 3-dimensional
Riemannian Poisson-Lie group. If (π, 〈 , 〉) satisfies Hawkins’s conditions then
(G, π, 〈 , 〉) is isomorphic to:

1. (R3, π, 〈 , 〉) where R3 is endowed with its abelian Lie group structure, 〈 , 〉
is the canonical Euclidian metric and

π = λ∂x ∧ (z∂y − y∂z),

where λ ∈ R or,

2. (H3, π, 〈 , 〉) where H3 =


 1 x z

0 1 y
0 0 1

 , x, y, z,∈ R3

 and

π = λ(x∂y − y∂x) ∧ ∂z, 〈 , 〉 = dx2 + dy2 + a(dz − xdy)2,

where λ ∈ R and a > 0.

The 4-dimensional case. In this paragraph we will determine, up to isomor-
phism, all the 4-dimensional Riemannian Poisson-Lie groups satisfying Hawkins’s
conditions. According to Theorems 1.1-1.2 Proposition 3.2, the first step is to
determine all the Lie bialgebra structures on 4-dimensional Milnor Lie algebras
satisfying (1) and (2).

Let H be a 4-dimensional Milnor Lie algebra. By virtue of (23), there exists
non zero real numbers λ1, λ2 and an orthonormal basis (s1, s2, f1, f2) of H such
that

[s1, s2] = [f1, f2] = 0, [si, f1] = λif2 and [si, f2] = −λif1.

Put e1 = λ2s1−λ1s2

‖λ2s1−λ2s2‖ . Then there exists e2 ∈ S such that (e1, e2, f1, f2) is an
orthogonal basis,

[e2, f1] = f2, [e2, f2] = −f1,

and all the other brackets vanish. Note that ‖e1‖ = ‖f1‖ = ‖f2‖ = 1.

We are looking for the 1-cocycles ρ : H −→ H∧H defining a Lie bialgebra
structure on H and satisfying (1) and (2). Put

ρ(ei) = aie1 ∧ e2 + bie1 ∧ f1 + cie1 ∧ f2 + die2 ∧ f1 + fie2 ∧ f2 + gif1 ∧ f2.

We have

ade2ρ(ei) = bie1 ∧ f2 − cie1 ∧ f1 + die2 ∧ f2 − fie2 ∧ f1,

ade2 ◦ ade2ρ(ei) = −bie1 ∧ f1 − cie1 ∧ f2 − die2 ∧ f1 − fie2 ∧ f2.

Thus ρ satisfies (1) if and only if, for i = 1, 2,

ρ(ei) = αie1 ∧ e2 + βif1 ∧ f2.
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Now, put

ρ(fi) = aie1 ∧ e2 + bie1 ∧ f1 + cie1 ∧ f2 + die2 ∧ f1 + gie2 ∧ f2 + hif1 ∧ f2,

and write down the cocycle condition ρ([u, v]) = aduρ(v)− advρ(u). First, we get

ρ([f1, f2]) = −a2e1 ∧ f2 − d2f2 ∧ f1 − a1e1 ∧ f1 − g1f1 ∧ f2 = 0,

thus
a1 = a2 = 0 and d2 − g1 = 0.

On the other hand,

ρ([e1, f1]) = α1e1 ∧ f2 = 0,

ρ([e2, f1]) = b1e1 ∧ f2 − c1e1 ∧ f1 + d1e2 ∧ f2 − g1e2 ∧ f1 + α2e1 ∧ f2

= ρ(f2),

ρ([e1, f2]) = −α1e1 ∧ f1 = 0,

ρ([e2, f2]) = b2e1 ∧ f2 − c2e1 ∧ f1 + d2e2 ∧ f2 − g2e2 ∧ f1 − α2e1 ∧ f1

= −ρ(f1).

These relations are equivalent to

b2 = −c1, c2 = b1, d2 = −g1, g2 = d1 = αi = hi = 0.

Hence, ρ is a 1-cocycle satisfying (1) if and only if

ρ(ei) = βif1 ∧ f2,
ρ(f1) = be1 ∧ f1 + ce1 ∧ f2 + de2 ∧ f1,
ρ(f2) = −ce1 ∧ f1 + be1 ∧ f2 + de2 ∧ f2.

(28)

We consider now H∗ endowed with the bracket associated to ρ , the dual scalar
product and the dual of the bracket on H , ξ : H∗ −→ H∗ ∧H∗ , given by

ξ(e∗1) = ξ(e∗2) = 0,
ξ(f ∗1 ) = −e∗2 ∧ f ∗2 ,
ξ(f ∗2 ) = e∗2 ∧ f ∗1 ,

(29)

where (e∗1, e
∗
2, f

∗
1 , f∗2 ) is the dual basis of (e1, e2, f1, f3). The bracket on H∗ asso-

ciated to ρ is given by

[e∗1, e
∗
2] = 0, [e∗1, f

∗
1 ] = bf ∗1 − cf ∗2 , [e∗1, f

∗
2 ] = cf ∗1 + bf ∗2 ,

[e∗2, f
∗
1 ] = df∗1 , [e∗2, f

∗
2 ] = df∗2 , [f ∗1 , f∗2 ] = β1e

∗
1 + β2e

∗
2.

(30)

Note that
tr ade∗1

= 2b, tr ade∗2
= 2d, tr adf∗1

= tr adf∗3
= 0. (31)

The Jacobi identities are given by:

[[e∗1, e
∗
2], f

∗
1 ] + [[e∗2, f

∗
1 ], e∗1] + [[f ∗1 , e∗1], e

∗
2] = 0,

[[e∗1, e
∗
2], f

∗
2 ] + [[e∗2, f

∗
2 ], e∗1] + [[f ∗2 , e∗1], e

∗
2] = 0,

[[e∗1, f
∗
1 ], f∗2 ] + [[f ∗1 , f∗2 ], e∗1] + [[f ∗2 , e∗1], f

∗
1 ] = 2b[f ∗1 , f∗2 ],

[[e∗2, f
∗
1 ], f∗2 ] + [[f ∗1 , f∗2 ], e∗2] + [[f ∗2 , e∗2], f

∗
1 ] = 2d[f ∗1 , f∗2 ].
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Let us write down (2). Since µ = e1 ∧ e2 ∧ f1 ∧ f2 and by virtue of (29), a
straightforward computation using (28) gives

ρ
(
iξ(f∗1 )µ

)
= de1 ∧ e2 ∧ f1,

ρ
(
iξ(f∗2 )µ

)
= de1 ∧ e2 ∧ f2.

The following proposition summarize all the computation above.

Proposition 4.3. Let (G, π, 〈 , 〉) be a 4-dimensional connected and simply
connected Riemannian Poisson-Lie group and let (G, ξ, 〈 , 〉e) be its Lie algebra
endowed with the cocycle ξ associated to π and the value of the Riemannian
metric at the identity. If (G, π, 〈 , 〉) satisfies Hawkins’s conditions then the
triple (G, ξ, 〈 , 〉e) is isomorphic to (R4, ξ0, 〈 , 〉0) where:

1. in the canonical basis (e0, e1, e2, e3) of R4 , the Lie bracket is given by

[e1, e2] = be2 − ce3, [e1, e3] = ce2 + be3, [e2, e3] = β1e0 + β2e1,
[e0, ei] = 0, i = 1, 2, 3,

and either b = 0, β1 = 0 or β2 = 0.

2. the cocycle ξ0 is given, up to a multiplicative constant, by

ξ0(e0) = ξ0(e1) = 0, ξ0(e2) = e0 ∧ e3, ξ0(e3) = −e0 ∧ e2,

3. the product 〈 , 〉0 is the canonical Euclidian scalar product of R4 .

Remark 4.4. When b = 0, the Lie algebra structure of R4 given in Proposition
4.3 is unimodular and, according to Theorem 1.2, the converse of Proposition 4.3
is true, i.e., the triple (G, π, 〈 , 〉) integrating (R4, ξ0, 〈 , 〉0) satisfies Hawkins’s
conditions.

However, when b 6= 0, the triple (G, π, 〈 , 〉) integrating (R4, ξ0, 〈 , 〉0) is
flat and metaflat and one must check if the last Hawkins’s condition is satisfied.
We will see that it does.

The task now is the construction of the triples (G, π, 〈 , 〉) associated to
the different models isomorphic to the triple (R4, ξ0, 〈 , 〉0) given in Proposition
4.3. The computation is very long so we omit it. Note that the determination of
the Lie groups is easy since all the models of Lie algebras are product or semi-
direct product. The determination of the multiplicative Poisson tensor from the
1-cocycle is a direct calculation using the method exposed in [6] Theorem 5.1.3.

1. Unimodular case b = 0.

(a) If c = β1 = β2 = 0 then (G, π, 〈 , 〉) is isomorphic to (R4, π0, 〈 , 〉0)
where R4 is endowed with its abelian Lie group structure and

π0 = ∂x ∧ (z∂t − t∂z) and 〈 , 〉0 = dx2 + dy2 + dz2 + dt2.
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(b) If c = 0 and β1 6= 0 then (G, π, 〈 , 〉) is isomorphic to (H0, π0, 〈 , 〉0)
where

H0 =




x 0 0 0
0 1 y t
0 0 1 z
0 0 0 1

 , x > 0, y, z, t ∈ R

 ,

β1π0 = (∂t − β2x∂x) ∧ (y∂z − z∂y) +
1

2
β2(z

2 − y2)x∂x ∧ ∂t,

and

〈 , 〉0 = (x−1dx + β2dt− β2ydz)2 + dy2 + dz2 + β2
1(dt− ydz)2.

(c) If c = 0 β1 = 0 and β2 6= 0 then (G, π, 〈 , 〉) is isomorphic to
(H0, π0, 〈 , 〉0) where

H0 =




x 0 0 0
0 1 y t
0 0 1 z
0 0 0 1

 , x > 0, y, z, t ∈ R

 ,

π0 = x∂x ∧ (y∂z − z∂y) +
1

2
(y2 − z2)x∂x ∧ ∂t,

and

〈 , 〉0 =
1

x2
dx2 + dy2 + dz2 + β2

2(dt− ydz)2.

(d) If c 6= 0 and (β1, β2) = (0, 0) then (G, π, 〈 , 〉) is isomorphic to
(R4, π0, 〈 , 〉0) where R4 is endowed with the Lie group structure given
by

u.v = (x + x′, y + y′, z + z′ cos y + t′ sin y, t− z′ sin y + t′ cos y)

when u = (x, y, z, t) and v = (x′, y′, z′, t′), and

π0 = ∂x ∧ (z∂t − t∂z) and 〈 , 〉0 = dx2 + ady2 + dz2 + dt2,

where a > 0.

(e) If c 6= 0, β2 = 0 and β1 6= 0 then (G, π, 〈 , 〉) is isomorphic to
(R2 × C, π0, 〈 , 〉0) where R2 × C is endowed with the structure of
oscillator group given by

(t, s, z).(t′, s′, z′) =

(
t + t′, s + s′ +

1

2
Im (z̄exp(it)z′) , z + exp(it)z′

)
,

and

π0 = ∂s∧(x∂y−y∂x), 〈 , 〉0 = adt2+bds2+ds(ydx−xdy)+
1

4
(ydx−xdy)2,

where a > 0 and b > 0.



460 Bahayou and Boucetta

(f) If c 6= 0, β2 6= 0 then (G, π, 〈 , 〉) is isomorphic to (R × G0, π0, 〈 , 〉0)
where R × G0 is the direct product of the abelian group R with G0

where G0 is either SU(2) or ˜SL(2, R) and if {E1, E2, E3} is a the basis
of the Lie algebra of G0 satisfying

[E1, E2] = E3, [E3, E1] = E2 and [E2, E3] = ±E1

then
π = ∂t ∧ (E+

1 − E−
1 )

where E+
1 (resp. E+

1 ) is the left invariant (resp. right invariant) vector
field associated to E1 . On the other hand, 〈 , 〉0 is the left invariant
Riemannian metric on R × G0 whose value at the identity has the
following matrix in the basis {E0, E1, E2, E3}

a b 0 0
b c 0 0
0 0 d 0
0 0 0 d

 .

2. the non unimodular case: b 6= 0. In this case (G, π, 〈 , 〉) is isomorphic
to (R4, π0, 〈 , 〉0) where R4 is endowed with the Lie group structure given by

uv =
(
x + x′, y + y′, z + exb(z′ cos(xc) + t′ sin(xc)), t + exb(−z′ sin(xc) + t′ cos(xc))

)
.

when u = (x, y, z, t) and v = (x′, y′, z′, t′),

π0 = ∂y ∧ (z∂t − t∂z) and 〈 , 〉0 = dx2 + dy2 + e−2bx(dz2 + dt2).

The Riemannian volume is given by

µ = e−2bxdx ∧ dy ∧ dz ∧ dt,

and
iπµ = −e−2bx(zdx ∧ dz + tdx ∧ dt).

Thus diπµ = 0, and the third Hawkins’s condition is satisfied.
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118, Birkhäuser, Berlin, 1994.

[16] Weinstein, A., Some remarks on dressing transformations, J. Fac. Sci. Univ.
Tokyo. Sect. 1A, Math. 36 (1988) 163–167.



462 Bahayou and Boucetta

[17] —, The Modular Automorphism Group of a Poisson Manifold, J. Geom. Phys.
23, (1997) 379–394.

Amine Bahayou
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