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Abstract. In this paper we obtain the LU-decomposition of a non commuta-
tive linear system of equations that, in the rank one case, characterizes the image
of the Lepowsky homomorphism U(g)K → U(k)M ⊗U(a). Although this system
can not be expressed as a single matrix equation with coefficients in U(k), it
turns out that obtaining a triangular system equivalent to it, can be reduced to
obtaining the LU-decomposition of a matrix M̃0 with entries in a polynomial
algebra. We prove that both the L-part and U-part of M̃0 are expressed in
terms of Jacobi polynomials. Moreover, each entry of the L-part of M̃0 and of
its inverse is given by a single ultraspherical Jacobi polynomial. This fact yields
a biorthogonality relation between the ultraspherical Jacobi polynomials.
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33C05, 16S30.
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1. Introduction

The noncommutative linear system. Let k be a field of characteristic zero,
let A be an associative, not necessarily commutative, k-algebra with unit and let
M be a unital A-bimodule.

In this paper we perform a gaussian elimination process on a noncommuta-
tive homogeneous system of infinitely many linear equations and infinite unknowns
of the following form,

Eb0 + Eb1 + Eb2 . . . = b0E − b1E + b2E . . .

E2b0 + 2E2b1 + 22E2b2 . . . = b0E
2− 2b1E

2 + 22b2E
2 . . .

E3b0 + 3E3b1 + 32E3b2 . . . = b0E
3− 3b1E

3 + 32b2E
3 . . .

...
...

...
...

...
...

, (1.1)

where E is a given element of A and b0, b1, b2, . . . belong to M and are the
unknowns.
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It is clear that (b0, b1, . . . , bd, 0, . . . ) is a solution of the system (1.1) if
and only if the polynomial b = b0 + b1t + b2t

2 + · · · + bdt
d , which belongs to

M[t] := M⊗ k[t] , satisfies the equations

Enb(n) = b(−n)En for all n ∈ N. (1.2)

This system can not be expressed as a single matrix equation AX =
0 with A a matrix with coefficients in A . In fact, noncommutative systems
of (homogeneous) linear equations can seldom be expressed as a single matrix
equation with coefficients in A . Even when this is possible, only in exceptional
cases a gaussian elimination process can be performed in a satisfactory way. Some
papers dealing with this subject are [Co73], [CS98], [Or31] or [GGRW05].

On the other hand, by using the left and right regular actions L, R : A →
Endk(M) of A on M , it is indeed possible to express every noncommutative
system of linear equations as a single matrix equation but with coefficients in
Endk(M). In our case, the system (1.1) can be expressed as a single matrix

equation M0X = 0, where X =

 b0
b1
b2
...

 and

M0 =


LE−RE LE+RE LE−RE LE+RE . . .

L2
E−R2

E 2L2
E+2R2

E 4L2
E−4R2

E 8L2
E+8R2

E . . .

L3
E−R3

E 3L3
E+3R2

E 9L3
E−9R2

E 27L3
E+27R2

E . . .

...
...

...
...

...

 .

This matrix has the special feature that its entries are homogeneous polynomials
in the commuting variables LE and RE . This allows us to replace the matrix M0

by the following matrix with entries in k[x],

M̃0 =


x−1 x+1 x−1 x+1 . . .

x2−1 2x2+2 4x2−4 8x2+8 . . .

x3−1 3x3+3 9x3−9 27x3+27 . . .

...
...

...
...

...

 .

The main result of this paper is the LU-decomposition of the above matrix. It
turns out that each entry of the L-factor is, up to a constant, a single ultraspher-
ical Jacobi polynomial and each entry of the U-factor is also expressed in terms
of a single Jacobi polynomial. Moreover, each entry of the inverse of the L-factor
is also, up to a constant, a single ultraspherical Jacobi polynomial. This fact
yields a biorthogonality relation between the ultraspherical polynomials that, up
to our knoledge, is not known. It has recently appeared in the literature some
other matrix identities (in particular LU-decompositions) involving Jacobi poly-
nomials that translate sophisticated polynomials identities into very simple matrix
identities (see for instance [KO07]).

Relevance of the system (1.1). The interest on the system (1.1) comes from
the fact that their solution set is closely related to invariant spaces under group
actions. This is clear in the particular case in which E is the identity of A , since
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the solutions of (1.1) are the even polynomials. It is not difficult to see that in
other more general situations there exists a group GE associated to E , acting on
M⊗k k[t] , such that

{b ∈M⊗k k[t] : Enb(n) = b(−n)En for all n ∈ N} =
(
M⊗k k[t]

)GE .

A second and more relevant example of the relationship between the system
(1.1) and invariants of groups appears in a problem from representation theory of
Lie groups. Let Go be a connected, noncompact, real semisimple Lie group with
finite center, let g be the complexification of the Lie algebra of Go and let Ko

denote a maximal compact subgroup of Go . By the fundamental work of Harish-
Chandra it is known that many deep questions concerning the infinite dimensional
representation theory of Go reduce to questions about the structure of the algebra
U(g)Ko , the Ko -invariants in the universal enveloping algebra of g . In [Ti94], Tirao
proved that the elements of the image of U(g)Ko by the Lepowsky homomorphism
(see [Le73]) satisfy a system of linear equations completely analogous to system
(1.1). Moreover, for rank one classical Lie groups it is proved in [BCT08] that this
image coincides with the solution set of the system introduced by Tirao. In order
to prove this result we have strongly used the LU-decomposition obtained in this
paper. These connections with groups invariants are not treated in this paper.

Main results. Let Pα,β
n denote the Jacobi polynomial of degree n associated to

the numbers α and β . Usually α and β are complex numbers but, since we are
working in the context of an arbitrary field of characteristic zero, they are assumed
to be rational numbers. The polynomials corresponding to parameters α = β ,
suitable normalized, are known as the ultraspherical or Gegenbauer’s polynomials.
Let

pα,β
n (x) = (x− 1)nPα,β

n

(
x+1
x−1

)
.

It is clear that pα,β
n (x) is again a polynomial and it can be expressed in terms of

the hypergeometric function of Gauss (see (4.21.2) in [Sz59] or definition 2.5.1 in
[AAR99]).

Our results in terms of M̃0 are the following:

(1) The LU-decomposition of M̃0 is

M̃0 = L̃0Ũ0


1

1
2

6
24

...




1 −1 1 −1 1 . . .
1 −3 7 −15 . . .

1 −6 25 . . .
1 −10 . . .

1 . . .
...

...
...

...
...

...

 , (1.3)

where L̃0 and Ũ0 are, respectively, the lower and upper triangular matrices
given by

(L̃0)ij = (−1)i−j p−i,−i
i−j (x), i ≥ j ≥ 1;

(Ũ0)ij = (−1)i−j j

i
(x− 1)2i−j p−j,−1

j−i (x), 1 ≤ i ≤ j,

and the explicit numerical matrices occuring in (1.3) are respectively formed
by the factorial numbers and (up to the minus signs) the Stirling numbers of
the second kind.
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(2) The inverse of the matrix L̃0 is the lower triangular matrix given by

(L̃−1
0 )ij = (−1)i−j j

i
pj,j

i−j(x), i ≥ j ≥ 1.

This yields the following “discrete orthogonality” relationship that involves
once many of the ultraspherical Jacobi polynomials with integer parameters,

1
1
P 1,1

0 . . .

1
2
P 1,1

1
2
2
P 2,2

0 . . .

1
3
P 1,1

2
2
3
P 2,2

1
3
3
P 3,3

0 . . .

1
4
P 1,1

3
2
4
P 2,2

2
3
4
P 3,3

1
1
1
P 4,4

0 . . .

...
...

...
...

...




P−1,−1
0 . . .

P−2,−2
1 P−2,−2

0 . . .

P−3,−3
2 P−3,−3

1 P−3,−3
0 . . .

P−4,−4
3 P−4,−4

2 P−4,−4
1 P−4,−4

0 . . .

...
...

...
...

...

 =


1 . . .

1 . . .

1 . . .

1 . . .

...
...

...
...

...

 .

Observe that this identity holds either for the polynomials Pα,α
n or pα,α

n .

(3) We also obtain the following infinite factorization of the matrices L̃0 and L̃−1
0

which, in particular, involve the cyclotomic polynomials.

L̃0 =


p−1,−1
0 . . .

p−2,−2
1 p−2,−2

0 . . .

p−3,−3
2 p−3,−3

1 p−3,−3
0 . . .

p−4,−4
3 p−4,−4

2 p−4,−4
1 p−4,−4

0 . . .

...
...

...
...

...



=


1 . . .

1+x 1 . . .

1+x+x2 1+x 1 . . .

1+x+x2+x3 1+x+x2 1+x 1 . . .

...
...

...
...
...




1 . . .

1 . . .
1+x 1 . . .

1+x+x2 1+x 1 . . .

...
...

...
...
...




1 . . .

1 . . .

1 . . .
1+x 1 . . .

...
...

...
...
...

 . . .

and

L̃−1
0 =


1
1
p1,1
0 . . .

1
2
p1,1
1

2
2
p2,2
0 . . .

1
3
p1,1
2

2
3
p2,2
1

3
3
p3,3
0 . . .

1
4
p1,1
3

2
4
p2,2
2

3
4
p3,3
1

1
1
p4,4
0 . . .

...
...

...
...

...



= . . .


1 . . .

1 . . .

1 . . .

−x−1 1 . . .
...

...
...

...
...




1 . . .

1 . . .

−x−1 1 . . .

x −x−1 1 . . .
...

...
...

...
...




1 . . .

−x−1 1 . . .

x −x−1 1 . . .

x −x−1 1 . . .
...

...
...

...
...


In these two identities the polynomials involved are the pα,α

n instead of the
Pα,α

n .

(4) We also consider the following more general system,

Enb(H + n) = b(H − n)En for all n ∈ N, (1.4)

where H is a given element in A and b ∈M[t] . In the last part of the paper
we give the LU-decomposition of this system as it is used in [BCT08].
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2. The matrix representation of the system

Let k be a field of characteristic zero, let A be an associative, not necessarily
commutative, k-algebra with unit and let M be a unital A-bimodule. Given an
element r ∈ A , let Lr, Rr ∈ Endk(M) denote, respectively, the left and right
actions by r , and let adr = Lr −Rr be the adjoint action of r in M .

Recall that M[t] = M⊗k k[t] , and that given an element r ∈ A one has
the evaluation map M[t] → M defined using the right action of A on M by
a⊗ b(t) 7→ ab(r). If r ∈ A and b ∈M[t] then the evaluation of b in r is given by
b(r) = b0 + b1r + · · ·+ bnr

n .

Given two arbitrary elements E and H in A we are interested in the set
of polynomials b ∈M[t] that satisfy

Enb(H + n) = b(H − n)En for all n ∈ N.

It is clear that b = b0 + b1 t + b2 t2 + b3 t3 + . . . satisfies the above system if and
only if the vector (b0, b1, b2, . . . ) is a solution of the following linear system,

Eb0 +Eb1(H+1) +Eb2(H+1)2 . . . = b0E +b1(H−1)E +b2(H−1)2E . . .

E2b0+E2b1(H+2)+E2b2(H+2)2. . . = b0E
2+b1(H−2)E2+b2(H−2)2E2. . .

E3b0+E3b1(H+3)+E3b2(H+3)2. . . = b0E
3+b1(H−3)E3+b2(H−3)2E3. . .

...
...

... =
...

...
...

or equivalently, if and only if M

(
b0
b1
b2
.

)
= 0, where

M =


LE LERH+1 LER2

H+1 LER3
H+1 . . .

L2
E L2

ERH+2 L2
ER2

H+2 L2
ER3

H+2 . . .

L3
E L3

ERH+3 L3
ER2

H+3 L3
ER3

H+3 . . .

...
...

...
...

...

−


RE RERH−1 RER2
H−1 RER3

H−1 . . .

R2
E R2

ERH−2 R2
ER2

H−2 R2
ER3

H−2 . . .

R3
E R3

ERH−3 R3
ER2

H−3 R3
ER3

H−3 . . .

...
...

...
...

...

.

It is also clear that M = M0P
t
RH

where

Px =
((

i−1
j−1

)
xi−j

)
=

 1 . . .
x 1 . . .
x2 2x 1 . . .
x3 3x2 3x 1 . . .
...

...
...

...
...


and

M0 =


LE−RE LE+RE LE−RE LE+RE . . .

L2
E−R2

E 2L2
E+2R2

E 4L2
E−4R2

E 8L2
E+8R2

E . . .

L3
E−R3

E 3L3
E+3R3

E 9L3
E−9R3

E 27L3
E+27R3

E . . .

...
...

...
...

...

 .
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3. The LU-decomposition

In this section we obtain the LU-decompositionof M0 .

Infinite matrices. We begin this section by recalling some general considerations
on infinite matrices. Given an associative k-algebra A , let M∞(A) denote the
set of all infinite matrices

A =


a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .
...

...
...

...


with aij ∈ A . The n-minor of a matrix A ∈M∞(A) is the matrix corresponding
to the upper-left corner of A of size n × n . We say that a sequence of matrices
Bk converges to B if for every i , j there exists k0 such that (Bk)ij = Bij for all
k ≥ k0 . A matrix A ∈ M∞(A) is said to be row-finite (resp. column-finite) if
every row (resp. column) of A contains only a finite number of nonzero elements.
Lower triangular and upper triangular matrices are, respectively, examples of row-
finite and column-finite matrices.

It is clear that M∞(A) is not a ring since the multiplication of two matrices
does not always exist. Nevertheless, if A, B ∈ M∞(A) and either A is row-finite
or B is column-finite then AB do exist. In this context it is not difficult to prove
the following proposition.

Proposition 3.1. A lower or upper triangular matrix A ∈M∞(A) is invertible
if and only if all n-minors of A are invertible. Also, an LU -factorization of a
matrix A ∈M∞(A) exists if and only if it exists for all n-minors of A. Moreover,
in this case the LU -factorization of A is unique.

We now introduce some infinite matrices that will be used frequently in
what follows.

• The Vandermonde matrix: Vij = ij−1 for i, j ≥ 1.

• The diagonal matrix formed by the powers of q ∈ A : (Dq)ij = δij qi .

• The diagonal matrix formed by the factorial numbers: Fij = δij (i− 1)!.

• The lower triangular matrix formed by the Pascal numbers: Pij =
(

i−1
j−1

)
.

• The lower triangular matrix formed by the Stirling numbers of the second
kind: Sij = S(i, j) for i ≥ j ≥ 1, where S(i, j) = 1

j!

∑j
k=0(−1)k

(
j
k

)
(j − k)i .

These matrices are the following,
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V =


1 1 1 1 . . .
1 2 4 8 . . .
1 3 9 27 . . .
1 4 16 64 . . .

...
...

...
...

...

, Dq =


q

q2

q3

q4

...

 , F =

 1
1

2
6

...

 ,

P =


1 . . .
1 1 . . .
1 2 1 . . .
1 3 3 1 . . .

...
...

...
...

...

, S =


1 . . .
1 1 . . .
1 3 1 . . .
1 7 6 1 . . .
1 15 25 10 1 . . .

...
...

...
...

...
...

 .

Observe that P−1 = D−1PD−1 and that the LDU -factorization of the
matrix V is V = PFSt .

Another property that will be used about the matrix S is the following.
Recall the Pochhammer symbol defined by

(t)0 = 1 and (t)j = t(t + 1) . . . (t + j − 1), j ≥ 1.

Then the matrix D−1s(S)tD−1 transforms the coordinates of a given b ∈ M[t]
with respect to the canonical basis {tj} into the coordinates of b with respect to
the Pochhammer basis {(t)j} . More precisely, if

b(t) = b0 + b1t + b2t
2 + b3t

3 + . . .

= a0(t)0 + a1(t)1 + a2(t)2 + a3(t)3 + . . . ,

then the coefficients aj and bj are related by
( a0

a1
a2
.

)
= D−1s(S)tD−1

(
b0
b1
b2
.

)
. In

particular, from this relation it follows that

j∑
k=1

(−t)k(S−1)jk = (−1)j(t)j. (3.1)

A brief review about Jacobi and ultraspherical polynomials. The Jacobi
polynomials Pα,β

n are defined for nonnegative integers n and arbitrary (rational)
numbers α and β as follows (see Chapter IV in [Sz59]),

Pα,β
n (x) =

1

n!

n∑
k=0

(
n

k

)
(n + α + β + 1)k(α + k + 1)n−k

(
x− 1

2

)k

.

The Jacobi polynomials can also be represented as

Pα,β
n (x) =

(α + 1)n

n!
2F1

(
−n, n + α + β + 1

α + 1
;
1− x

2

)
,

where 2F1 is the hypergeometric function of Gauss. If α = β the normalized
Jacobi polynomials

Γ(α + 1)

Γ(2α + 1)

Γ(n + 2α + 1)

Γ(n + α + 1)
Pα,α

n (x)

are called ultraspherical polynomials or Gegenbauer ’s polynomials.
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It is well known that

Pα,β
n (x) = (−1)nP β,α

n (−x). (3.2)

In particular, the ultraspherical Jacobi polynomials are even or odd according as
n is even or odd. The ultraspherical Jacobi polynomials also satisfy the following
identities

(n + 2α)Pα,α
n (x) = 2(n + α)Pα−1,α−1

n (x) + x(n + α)Pα,α
n−1(x) (3.3)

x(n + 2α)Pα,α
n (x) = 2(n + 1)Pα−1,α−1

n+1 (x) + (n + α)Pα,α
n−1(x), (3.4)

which can be deduced from (4.7.14) and (4.7.28) in [Sz59]. The difference between
these two identities gives,

(1− x)(n + 2α)Pα,α
n (x)

= −2(n + 1)Pα−1,α−1
n+1 (x) + 2(n + α)Pα−1,α−1

n (x)− (1− x)(n + α)Pα,α
n−1(x). (3.5)

On the other hand, multiplying by x equation (3.3) and subtracting from it
equation (3.4) yields the following identity,

2(n + 1)Pα−1,α−1
n+1 (x) = 2x(n + α)Pα−1,α−1

n (x) + (x2 − 1)(n + α)Pα,α
n−1(x). (3.6)

Let us consider

pα,β
n (x) = (x− 1)nPα,β

n

(
x+1
x−1

)
,

it is clear that pα,β
n (x) is again a polynomial. These polynomials can be expressed

in terms of the hypergeometric function of Gauss as follows (see (4.22.1) in [Sz59]
and (2.3.14) in [AAR99]),

pα,β
n (x) =

(n + α + β + 1)n

n!
2F1

(
−n,−n− α
−2n− α− β

; 1− x

)
=

(β + 1)n

n!
2F1

(
−n,−n− α

β + 1
; x

)
. (3.7)

The LU-decomposition. The entries of M0 are homogeneous polynomials in
the variables LE and RE . Since an homogeneous polynomial q(x1, x2) in two
variables x1 and x2 is completely determined by the polynomial q̃(x) = q(x, 1),
we shall simplify the notation by substituting the variables

LE by x and RE by 1. (3.8)

Under this transformations, the matrix M0 becomes,

M̃0 =


x−1 x+1 x−1 x+1 . . .

x2−1 2x2+2 4x2−4 8x2+8 . . .

x3−1 3x3+3 9x3−9 27x3+27 . . .

...
...

...
...

...

 .
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In particular, observe that the entries of this matrix are given as follows,

(M̃0)ij = ij−1(xi + (−1)j), i, j ≥ 1. (3.9)

Let us define now the lower triangular matrix L̃0 and the upper triangular matrix
Ũ0 as follows,

(L̃0)ij = (−1)i−j p−i,−i
i−j (x), i ≥ j ≥ 1;

(Ũ0)ij = (−1)i−j j

i
(x− 1)2i−j p−j,−1

j−i (x), 1 ≤ i ≤ j.

In the following theorem we obtain the LU-decomposition of M̃0 as well as the
inverse of L̃0 .

Theorem 3.2. The LU-decomposition of M̃0 is given by

M̃0 = L̃0Ũ0FD−1S
tD−1, (3.10)

and the inverse of L̃0 is the following lower triangular matrix

(L̃−1
0 )ij = (−1)i−j j

i
pj,j

i−j(x), i ≥ j ≥ 1. (3.11)

Before proving this theorem we point out that it yields the following “dis-
crete orthogonality” relationship that involves once many of the ultraspherical
Jacobi polynomials with integer parameters,


1
1
P 1,1

0 . . .

1
2
P 1,1

1
2
2
P 2,2

0 . . .

1
3
P 1,1

2
2
3
P 2,2

1
3
3
P 3,3

0 . . .

1
4
P 1,1

3
2
4
P 2,2

2
3
4
P 3,3

1
1
1
P 4,4

0 . . .

...
...

...
...

...




P−1,−1
0 . . .

P−2,−2
1 P−2,−2

0 . . .

P−3,−3
2 P−3,−3

1 P−3,−3
0 . . .

P−4,−4
3 P−4,−4

2 P−4,−4
1 P−4,−4

0 . . .

...
...

...
...

...

 =


1 . . .

1 . . .

1 . . .

1 . . .

...
...

...
...

...

 .

Observe that this identity holds either for the polynomials Pα,α
n or pα,α

n .

Proof. [Proof of Theorem 3.2] We begin by proving (3.11). To do this we must
prove that

i∑
k=j

(−1)i−j k

i
pk,k

i−k(x) p−k,−k
k−j (x) = δi,j,

for i ≥ j ≥ 1. This amounts to proving that the following identity holds,

n∑
k=0

k + j

n + j
P k+j,k+j

n−k (x) P−k−j,−k−j
k (x) = δn,0, for n ≥ 0 and j ≥ 1 .
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This is evident for n = 0. Hence, consider n ≥ 1. If we use Rodrigues’ formula
(see (4.3.1) in [Sz59]) twice on the left hand side we obtain,

(−1)n

2nn!(n + j)

n∑
k=0

(
n

k

)
(k + j)

(
d

dx

)n−k

(1− x2)n+j

(
d

dx

)k

(1− x2)−j

=
(−1)n

2nn!(n + j)

n∑
k=0

(
n

k

)
k

(
d

dx

)n−k

(1− x2)n+j

(
d

dx

)k

(1− x2)−j

+
(−1)nj

2nn!(n + j)

n∑
k=0

(
n

k

) (
d

dx

)n−k

(1− x2)n+j

(
d

dx

)k

(1− x2)−j

=
(−1)n 2jn

2nn!(n + j)

n−1∑
k=0

(
n− 1

k

) (
d

dx

)n−1−k

(1− x2)n+j

(
d

dx

)k

(x(1− x2)−j−1)

+
(−1)nj

2nn!(n + j)

(
d

dx

)n

(1− x2)n

=
(−1)n 2jn

2nn!(n + j)

(
d

dx

)n−1

(x(1− x2)n−1) +
(−1)nj

2nn!(n + j)

(
d

dx

)n

(1− x2)n

= 0,

which completes the proof of (3.11).

In order to prove (3.10) we consider the matrix M̃1 = M̃0D−1(S
−1)tD−1F

−1 .
We claim that

(M̃1)ij =
(i + 1)j−1

(j − 1)!
xi − (−i + 1)j−1

(j − 1)!
.

Indeed,

(M̃1)ij =
(
M̃0D−1(S

−1)tD−1F
−1
)

ij

=

j∑
k=1

(−1)k+j

(j − 1)!
(M̃0)ik(S

−1)jk

=

j∑
k=1

(−1)k+j

(j − 1)!
ik−1(xi + (−1)k)(S−1)jk

=
(−1)j+1xi

(j − 1)!

j∑
k=1

(−i)k−1(S−1)jk +
(−1)j

(j − 1)!

j∑
k=1

ik−1(S−1)jk

=
(i + 1)j−1

(j − 1)!
xi − (−i + 1)j−1

(j − 1)!
,

where the last equality follows from identity (3.1).

Now we must prove that M̃1 = L̃0Ũ0, or equivalently that

L̃−1
0 M̃1 = Ũ0.

Recall that (Ũ0)ij = (−1)i−j j
i

(x − 1)2i−j p−j,−1
j−i (x), for i ≤ j . From (4.22.2) in

[Sz59] we have

(Ũ0)ij =

{
(−1)i−j−1 j

j−i
(x− 1)2i−j xp−j,1

j−i−1(x), if i < j;

(x− 1)i, if i = j;
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and moreover, from (3.7) we obtain

(Ũ0)ij =

{
(−1)i+1jx 2F1

( −i+j+1,−i+1
2 ; x

)
, if i < j;

(x− 1)i, if i = j.

It is easy to see that

(−1)i+1ix 2F1

(
1,−i+1

2 ; x
)
− (−1)i+1 = (x− 1)i.

Hence it is clear that the proof of (3.10) will be completed once we prove that, for
all i, j ≥ 1, the following two identities hold:

i∑
k=1

(L̃−1
0 )ik

(k + 1)j−1

(j − 1)!
xk = (−1)i+1jx 2F1

( −i+j+1,−i+1
2 ; x

)
i∑

k=1

(L̃−1
0 )ik

(−k + 1)j−1

(j − 1)!
=


(−1)i+1jx 2F1

( −i+j+1,−i+1
2 ; x

)
, if i > j;

(−1)i+1, if i = j;

0, if i < j.

We shall prove these identities by showing that the coefficients of xr+1 on
both sides coincide for r ≥ −1.

First of all we observe that the coefficient of xr+1 in the polynomial
(−1)i+1jx 2F1

( −i+j+1,−i+1
2 ; x

)
is zero for r = −1 and it is equal to

(−1)i+1j
(−i + j + 1)r(−i + 1)r

(2)rr!
= (−1)i+1j

(−i + j + 1)r(−i + 1)r

(r + 1)!r!
, (3.12)

for r ≥ 0. In particular, it is zero for r ≥ i .

We now consider the first identity. Its left hand side is equal to

i∑
k=1

(L̃−1
0 )ik

(k + 1)j−1

(j − 1)!
xk

=
i∑

k=1

(−1)i−k k

i
pk,k

i−k(x)
(k + 1)j−1

(j − 1)!
xk

=
i∑

k=1

(−1)i−k k

i

(k + 1)i−k

(i− k)!
2F1

( −i+k,−i
k+1 ; x

) (k + 1)j−1

(j − 1)!
xk

=
i∑

k=1

∞∑
s=0

(−1)i−k k

i

(k + 1)i−k

(i− k)!

(−i + k)s(−i)s

(k + 1)ss!

(k + 1)j−1

(j − 1)!
xk+s,

hence the coefficient of xr+1 is

min(i,r+1)∑
k=1

(−1)i−k k

i

(k + 1)i−k

(i− k)!

(−i + k)r+1−k(−i)r+1−k

(k + 1)r+1−k(r + 1− k)!

(k + 1)j−1

(j − 1)!
,
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which is zero if r ≥ i . On the other hand, if r < i , this coefficient is

1

i(j − 1)!

r+1∑
k=1

(−1)i−k (k + 1)i−k

(i− k)!

(−i + k)r+1−k(−i)r+1−k

(k + 1)r+1−k(r + 1− k)!
(k)j

=
(i− 1)!

(j − 1)!(r + 1)!

r+1∑
k=1

(−1)i−k (−i + k)r+1−k(−i)r+1−k

(i− k)!(r + 1− k)!

(r + 1)j(k)r+1−k

(k + j)r+1−k

=
(−1)r+1+i(r + 1)j(i− 1)!

(j − 1)!(r + 1)!(i− r − 1)!

r+1∑
k=1

(−i)r+1−k

(r + 1− k)!

(−r)r+1−k

(−r − j)r+1−k

=
(−1)r+1+i(r + 1)j(i− 1)!

(j − 1)!(r + 1)!(i− r − 1)!

r∑
s=0

(−i)s

s!

(−r)s

(−r − j)s

=
(−1)r+1+i(r + 1)j(i− 1)!

(j − 1)!(r + 1)!(i− r − 1)!
2F1

( −r,−i
−r−j ; 1

)
=

(−1)r+1+i(r + 1)j(i− 1)!

(j − 1)!(r + 1)!(i− r − 1)!

(i− r − j)r

(−r − j)r

,

where the last equality follows from the Chu-Vandermonde identity (see Corollary
2.2.3 in [AAR99]). It is now straightforward to see that this number is equal to the
coefficient of xr+1 on the right hand side, which is given in (3.12). This completes
the proof of the first identity.

We now prove the second identity. Its left hand side is equal to

i∑
k=1

(L̃−1
0 )ik

(−k + 1)j−1

(j − 1)!

=
i∑

k=1

∞∑
s=0

(−1)i−k k

i

(k + 1)i−k

(i− k)!

(−i + k)s(−i)s

(k + 1)ss!

(−k + 1)j−1

(j − 1)!
xs.

Then the coefficient of x0 in this sum is

i∑
k=j

(−1)i−k k

i

(k + 1)i−k

(i− k)!

(−k + 1)j−1

(j − 1)!
.

It is easy to see that this coefficient is zero except for i = j . In this last case it is
equal to (−1)i−1 . For r ≥ 0 the coefficient of xr+1 is

(−i + 1)r

(r + 1)!(j − 1)!

i−r−1∑
k=j

(−1)i−k (k + 1)i−k

(i− k)!

(−i + k)r+1(−k)j

(k + 1)r+1

and it is clear that this sum is equal to zero for j ≥ i − r , and in particular for
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j ≥ i . If j ≤ i− r − 1 this sum is equal to

(−i + 1)r

(r + 1)!(j − 1)!

i−r−1∑
k=j

(−1)i−r−k+1 (r + k + 2)i−r−1−k(−k)j

(i− r − 1− k)!

=
(−1)j(i− r − j)j(−i + 1)r

(r + 1)!(j − 1)!

i−r−1∑
k=j

(−i)i−r−1−k

(i− r − 1− k)!

(−i + j + r + 1)i−r−1−k

(−i + r + 1)i−r−1−k

=
(−1)j(i− r − j)j(−i + 1)r

(r + 1)!(j − 1)!

i−r−1−j∑
s=0

(−i)s

s!

(−i + j + r + 1)s

(−i + r + 1)s

=
(−1)j(i− r − j)j(−i + 1)r

(r + 1)!(j − 1)!
2F1

( −i+j+r+1,−i
−i+r+1 ; 1

)
=

(−1)j(i− r − j)j(−i + 1)r

(r + 1)!(j − 1)!

(r + 1)i−r−1−j

(−i + r + 1)i−r−1−j

,

where the last equality follows, again, from the Chu-Vandermonde identity. It is
easy to see that this number is equal to the coefficient of xr+1 on the right hand
side, which is given in (3.12). This completes the proof of the theorem.

4. Further identities

In this section we obtain an infinite factorization of the matrices L̃0 and L̃−1
0 that

relates the Jacobi and cyclotomic polynomials.

Definition 4.1. Given a lower triangular matrix T0 ∈M∞(A) the left iterated
matrix T L

0 corresponding to T0 is the infinite (from right to left) product

T L
0 = . . .s3(T0) s2(T0) s(T0) T0.

It is clear that this product converges to a lower triangular matrix. Similarly, the
right iterated matrix TR

0 corresponding to T0 is the lower triangular matrix given
by the infinite (from left to right) product

TR
0 = T0 s(T0) s2(T0) s3(T0). . ..

It is clear that if T0 is invertible then T L
0 is also invertible and(

T L
0

)−1
=
(
T−1

0

)R
.

Moreover, T L
0 and TR

0 are respectively characterized by the identities

T L
0 = s(T L

0 ) T0 and TR
0 = T0 s(TR

0 ). (4.1)

As an example, notice that the classical recurrence relations(
i
j

)
=
(

i−1
j−1

)
+
(

i−1
j

)
and S(i, j) = S(i− 1, j − 1) + jS(i− 1, j)
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that define, respectively, the Pascal and Stirling numbers correspond to the matrix
identities P = s(P ) T0,P and S = s(S) T0,S where

T0,P =

 1 . . .
1 1 . . .

1 1 . . .
1 1 . . .

...
...
...
...
...

 and T0,S =

 1 . . .
1 1 . . .

2 1 . . .
3 1 . . .

...
...
...
...
...

 .

Thus P and S are the left iterated matrices P = T L
0,P and S = T L

0,S . Moreover, P

and S are also right iterated matrices. Since P =

(
1 . . .
1 1 . . .
1 1 1 . . .
...
...
...
...

)
s(P ) and S = P s(S)

it follows that, P =

(
1 . . .
1 1 . . .
1 1 1 . . .
...
...
...
...

)R

and S = PR .

We shall now express the matrices L̃0 and L̃−1
0 respectively as a right and

left iterated matrices. Let T0 be the lower triangular matrix given by

T0 =


1 . . .

−x−1 1 . . .

x −x−1 1 . . .

0 x −x−1 1 . . .

0 0 x −x−1 1 . . .

...
...

...
...

...
...

 .

It is clear that its inverse is the following lower triangular matrix whose entries are
the cyclotomic polynomials

T−1
0 =


1 . . .

1+x 1 . . .

1+x+x2 1+x 1 . . .

1+x+x2+x3 1+x+x2 1+x 1 . . .

...
...

...
...
...

 .

Theorem 4.2. The matrices L̃0 and L̃−1
0 satisfy the following identities

L̃−1
0 = (T0)

L and L̃0 =
(
T−1

0

)R
.

In other words,


1
1
p1,1
0 . . .

1
2
p1,1
1

2
2
p2,2
0 . . .

1
3
p1,1
2

2
3
p2,2
1

3
3
p3,3
0 . . .

1
4
p1,1
3

2
4
p2,2
2

3
4
p3,3
1

1
1
p4,4
0 . . .

...
...

...
...

...



= . . .


1 . . .

1 . . .

1 . . .

−x−1 1 . . .
...

...
...

...
...




1 . . .

1 . . .

−x−1 1 . . .

x −x−1 1 . . .
...

...
...

...
...




1 . . .

−x−1 1 . . .

x −x−1 1 . . .

x −x−1 1 . . .
...

...
...


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and
p−1,−1
0 . . .

p−2,−2
1 p−2,−2

0 . . .

p−3,−3
2 p−3,−3

1 p−3,−3
0 . . .

p−4,−4
3 p−4,−4

2 p−4,−4
1 p−4,−4

0 . . .

...
...

...
...

...



=


1 . . .

1+x 1 . . .

1+x+x2 1+x 1 . . .

1+x+x2+x3 1+x+x2 1+x 1 . . .

...
...

...
...
...




1 . . .

1 . . .
1+x 1 . . .

1+x+x2 1+x 1 . . .

...
...

...
...
...




1 . . .

1 . . .

1 . . .
1+x 1 . . .

...
...

...
...
...

 . . .

We notice that in these two identities the polynomials involved are pα,α
n

instead of Pα,α
n .

Proof. From equation 4.1 we only have to prove that

(−1)i−j j

i
pj,j

i−j(x) =
i∑

k=j

(−1)i−k k − 1

i− 1
pk−1,k−1

i−k (x) (T0)kj

for i ≥ 2, or equivalently

j

i
pj,j

i−j(x) =
j − 1

i− 1
pj−1,j−1

i−j (x) +
j(x + 1)

i− 1
pj,j

i−j−1(x) +
(j + 1)x

i− 1
pj+1,j+1

i−j−2 (x).

This holds if and only if

j

i
P j,j

i−j

(
x+1
x−1

)
= j−1

i−1
P j−1,j−1

i−j

(
x+1
x−1

)
+ j

i−1
x+1
x−1

P j,j
i−j−1

(
x+1
x−1

)
+ j+1

i−1
x

(x−1)2
P j+1,j+1

i−j−2

(
x+1
x−1

)
,

which, in turn, holds if and only if

4(i− 1)j P j,j
i−j(x)

= 4i(j − 1) P j−1,j−1
i−j (x) + 4ijx P j,j

i−j−1(x) + i(j + 1)(x2 − 1) P j+1,j+1
i−j−2 (x).

This last identity is true since it is (1 + j) times equation (3.6) with
n = i − j − 1 and α = j + 1, plus 2(j − 1) times equation (3.3) with n = i − j
and α = j .

5. A triangular system equivalent to the original system

Our original motivation to study the LU-decomposition of the matrix M0 was that
we needed to have a triangular system equivalent to the system (1.4) in order to
derive some properties about the Ko -invariants in the universal enveloping algebra
of a semisimple Lie algebra g (see Section 1). This can now be achieved as follows.
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Recall that a polynomial b = b0 +b1 t+b2 t2 +b3 t3 + · · · ∈ M[t] satisfies the

system (1.4) if and only if the vector (b0, b1, b2, . . . ) satisfies M

(
b0
b1
b2
.

)
= 0, where

M = M0P
t
RH

and

M0 =


LE−RE LE+RE LE−RE LE+RE . . .

L2
E−R2

E 2L2
E+2R2

E 4L2
E−4R2

E 8L2
E+8R2

E . . .

L3
E−R3

E 3L3
E+3R3

E 9L3
E−9R3

E 27L3
E+27R3

E . . .

...
...

...
...

 .

Since the LU-decomposition of

M̃0 =


x−1 x+1 x−1 x+1 . . .

x2−1 2x2+2 4x2−4 8x2+8 . . .

x3−1 3x3+3 9x3−9 27x3+27 . . .

...
...

...
...

...


is M̃0 = L̃0Ũ0FD−1S

tD−1 (see Theorem 3.2), we conclude that the coefficient
matrix of a triangular system equivalent to the system (1.4) is

U0FD−1S
tD−1P

t
RH

(5.1)

where U0 is the upper triangular matrix given by

(U0)ij = (−1)i−j j

i
ad2i−j

E Rj−i
E p−j,−1

j−i

(
LE

RE

)
, for 1 ≤ i ≤ j .

As an example, we show how the last two equations of this triangular system
look like for a polynomial b of degree m . In this case we must consider the
(m + 1)-minor of the matrix U0FD−1S

tD−1P
t
RH

, that is the matrix whose entries
are (U0FD−1S

tD−1P
t
RH

)ij for 1 ≤ i ≤ j ≤ m + 1. The last two equations
correspond to the 2× 2 matrix system(

(m−1)! adm
E m! adm

E RH −
(m+1)!

2
adm

E + (m+1)! adm−1
E LE

0 m! adm+1
E

)(
bm−1

bm

)
=
(

0

0

)
.

If we simplify the constants the corresponding equations are:

adm
E (bm−1) + m adm

E (bmH)−
(

m+1
2

)
adm

E (bm) + m(m + 1) adm−1
E (Ebm) = 0,

adm+1
E (bm) = 0.

This triangular system presents the following inconvenient for our needs: the
operator adE acts, in general, on elements of the form bjH

l (see the first equation
above) and we would prefer to have adE acting directly on the coefficients of the
polynomial b . In the enveloping algebra U(k), where this system comes from, the
elements H and E satisfy [H, E] = cE where c ∈ C , and this fact allows us to
express this triangular system in such a way that adE acts only on the coefficients
of the polynomial b .
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In order to do this we make use of Theorem 4.2. Assume from now on that
[H, E] = cE with c ∈ k, and let us denote by Eq0 the original system (1.4), that
is, Eq0

n is the equation

Enb(H + n) = b(H − n)En

with n ∈ N ∪ {0} (we added the trivial equation corresponding to n = 0 for
technical reasons). From Theorem 4.2 we know that if we define recursively the
system Eqk by

Eqk
n =

{
Eqk−1

n , if 1 ≤ n ≤ k;

Eqk−1
n − (LE + RE)(Eqk−1

n−1) + LE(Eqk−1
n−2), if k < n;

then the system

Eq∞ = {Eqn
n+1 : n ≥ 0}

is exactly the triangular system given by (5.1). In the next theorem we give an
expression for the equations Eqk

n where adE acts directly on the coefficients of the
polynomial b . To do this we introduce the following notation. For h ∈ k, h 6= 0,
let ∂h : M[t] →M[t] denote the h-discrete derivative

∂hb(t) =
b(t)− b(t− h)

h
, for b ∈M[t].

Also, let Ė : M[t] → M[t] denote the map Ė(
∑

bjt
j) =

∑
adE(bj)t

j . Observe
that Ė commutes with ∂h for all h ∈ k, and it is straightforward to prove that

adE

(
b(t + H)

)
= Ė(b)(t + H)− c ∂cb(t + H)E. (5.2)

Theorem 5.1. For k ≥ 0 and n ≥ k the equation Eqk
n is given by

k∑
i=0

n−k∑
j=0

(−1)i
(

k
i

)(
n−k

j

)
∂k

1∂i
c−1Ė

n−(j+i)(b)(H + n− cj − i)Ej+i

=
k∑

i=0

(−1)i
(

k
i

)
∂k

1∂i
c−1Ė

k−i(b)(H − n + 2k − i)En−(k−i).

In particular, the n-th equation of the system Eq∞ is

n∑
i=0

(−1)i
(

n
i

)
∂n

1 ∂i
c−1Ė

n+1−i(b)(H + n + 1− i)Ei

+
n∑

i=0

(−1)i
(

n
i

)
∂n

1 ∂i
c−1Ė

n−i(b)(H + n + 1− c− i)Ei+1

=
n∑

i=0

(−1)i
(

n
i

)
∂n

1 ∂i
c−1Ė

n−i(b)(H + n− 1− i)Ei+1.
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This theorem can be proved directly by induction. Another possibility is to
make use of identity (5.2) to interchange, by induction, the orders of the actions
of adE and RH in the expression of the triangular system given by (5.1). In any
case the proof is rather technical and long, and thus we prefer to omit it. As a
corollary we have the following particular cases.

Corollary 5.2. If [H, E] = 0 then the n-th equation of the system Eq∞ is

n∑
i=0

[(
n
i

)
Ėn+1−i∂n+i

1 (b)(H+n+1)Ei +
(

n
i

)
Ėn−i∂n+i

1 (b)(H+n+1)Ei+1
]

=
n∑

i=0

(
n
i

)
Ėn−i∂n+i

1 (b)(H+n−1)Ei+1.

If [H, E] = E then the n-th equation of the system Eq∞ is

Ėn+1∂n
1 (b)(H + n + 1) + Ėn∂n+1

1 (b)(H + n)E = 0.

Proof. If E and H commute then c = 0 and hence ∂c−1b(t) = −∂1b(t + 1).
Therefore ∂i

c−1b(t) = (−1)i∂i
1b(t + i) and the result follows.

On the other hand, if [H, E] = E then c = 1 and hence ∂c−1 = ∂0 = 0.
Therefore all the terms of Eqn

n+1 , for i > 0, are zero and thus Eqn
n+1 is

Ėn+1∂n
1 (b)(H + n + 1) + Ėn∂n

1 (b)(H + n)E = Ėn∂n
1 (b)(H + n− 1)E,

which is equal to the equation stated in the corollary.
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5000 Córdoba, Argentina
brega@famaf.unc.edu.ar

Leandro R. Cagliero
CIEM-FaMAF
Universidad Nacional de Córdoba
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