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Abstract. Let Fo be a non-archimedean locally compact field of residual
characteristic not 2. Let G be a classical group over Fo (with no quaternionic
algebra involved) which is not a general linear group. Let β be an element
of the Lie algebra g of G that we assume semisimple for simplicity. Let H
be the centralizer of β in G and h its Lie algebra. Let I and I1

β denote the
(enlarged) Bruhat–Tits buildings of G and H respectively. We prove that there
is a natural set of maps jβ : I1

β → I which enjoy the following properties: they
are affine, H -equivariant, map any apartment of I1

β into an apartment of I and
are compatible with the Lie algebra filtrations of g and h . In a particular case,
where this set is reduced to one element, we prove that jβ is characterized by
the last property in the list. We also prove a similar characterization result for
the general linear group.

In this article, we work with Lie algebra filtrations defined by using
lattice models of buildings. It is not clear that they coincide with the filtrations
constructed by A. Moy and G. Prasad for a general reductive group. This fact
is proved by B. Lemaire (see his article in this volume).
Mathematics Subject Classification 2000: 22F50.
Key Words and Phrases: Bruhat-Tits building, classical groups over p-adic fields,
Moy and Prasad filtrations, functoriality of affine buildings.

Introduction

Let Fo be a locally compact non-archimedean local field, let G, H be connected
reductive algebraic groups over Fo , and suppose we have a morphism f : H −→ G
(of algebraic groups over Fo ). Let I1(G, Fo) and I1(H, Fo) denote the enlarged
affine Bruhat–Tits buildings of G and H respectively. Bruhat and Tits showed
that f induces a natural map f∗ : I1(H, Fo) −→ I1(G, Fo) in the following cases:

• f is the natural injection of a Levi subgroup H of G [BT];

• G is the restriction of scalars ResK/FoH , for K/Fo a finite galois extension
and f the canonical inclusion (see [Ti, §2.6]).
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Landvogt showed the existence of an induced map f∗ in all generality [La]. His
maps are continuous, H(Fo)-equivariant and are isometries when f is injective.
(Landvogt also asks for compatibility with the action of a Galois group, which we
will not go into here.) However, these conditions of Landvogt are not sufficient
to characterize the map f∗ . The simplest example is the following: Suppose Fo

has odd residual characteristic, G = SL2(Fo) and H = E1 is the groups of norm-
1 elements in a totally ramified separable extension E/Fo . Then the (enlarged)
affine building I1 of G is a tree, while that of H is a single point. There are then
an infinity of maps f∗ , and choosing one comes down to fixing an H -stable point
of I1 – that is any point in a certain edge determined by H .

Recent constructions in the theory of types for the smooth complex repre-
sentations of p-adic reductive groups indicate an additional condition to impose
on the maps f∗ . (See [BK3] for an introduction to the general theory of types.) In
the same way that the theory of modular forms requires one to define congruence
subgroups, the theory of smooth representations of p-adic groups requires one to
construct filtrations on parahoric subgroups. The history of the construction of
such filtrations is very long and we will not recall it here. Suffice to say that it
culminates in the very general constructions of A. Moy and G. Prasad [MP]. To
each point x of the enlarged affine building I1(G, Fo) of a reductive Fo -group G ,
they associate a filtration (Gx,r) of the parahoric subgroup Gx associated to x ,
and a filtration by lattice (gx,r) of the Lie algebra of G . (These filtrations are
respectively indexed by the set of non-negative real numbers, and the set of real
numbers.)

These filtrations have had spectacular applications in the theory of types.
For example, they allow one to define and prove the existence of unrefined minimal
K -types for a general connected reductive group ([MP, Theorem 5.2]). They also
provide Bushnell and Kutzko with a language to construct all types for GL(N)
(see [BK1, BK2] and the work of Broussous, Grabitz, Stevens and Sécherre for
other classical groups). Note that Bushnell and Kutzko do not use the language
of Bruhat and Tits but the equivalent language of lattice functions (see [BL] for
the connection between the two points of view).

From the definition of the filtration (gx,r), it is straightforward to see that
the map r 7→ gx,r , which associates to each real number a lattice in the Lie algebra,
completely characterizes the image of x in the non-enlarged building of G . It is
thus natural to ask that the maps f∗ be not only H(Fo)-equivariant but also
compatible with the Lie algebra filtrations:

(Fil) gf∗(x),r ∩ h = hx,r, x ∈ I1(H, Fo), r ∈ R .

In the counterexample of SL2 given above, there is only one map f∗ satisfying the
conditions (Fil); its image is the midpoint of the edge of the tree I determined
by H .

Now we turn to the results of this paper and specialize our notations.
Suppose Fo has odd residual characteristic and let G be the group of rational
points of a classical group defined over Fo (a symplectic, orthogonal or unitary
group). Let β be an element of the Lie algebra of G which, for the sake of simplicity
in this introduction, we assume semisimple. Let H denote the centralizer of β in
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G , for the adjoint action. We denote by I1 (respectively I1
β ) the enlarged affine

Bruhat–Tits building of G (respectively H ).

The purpose of this article is to show that the inclusion H ⊂ G induces
certain natural H -equivariant maps jβ : I1

β −→ I1 . Moreover, they are affine, com-
patible with the Moy–Prasad filtrations and send an apartment into an apartment.
These maps form a single orbit under the action of H -invariant automorphisms of
I1
β .

The Lie algebra of G has a natural representation in a matrix algebra A . In
the special case where β generates a field in A , we show that there exists one and
only one map jβ : I1

β −→ I1 which is compatible with the Moy–Prasad filtrations.
In the general case, we make the following unicity conjecture:

Conjecture. Let ZH be the centre of H . Modulo the action of H -equivariant
automorphisms of the building I , there exists one and only one ZH -equivariant
map jβ : I1

β −→ I1 satisfying (Fil).

In the case where G is a general linear group and β is a semisimple
element of the Lie algebra of G , the first author and B. Lemaire constructed
a map jβ : Iβ −→ I (here we must use the non-enlarged building of H ) which
is H -equivariant, affine, compatible with the Moy–Prasad filtrations and sends
an apartment into an apartment. We show here that this map too is completely
determined by the property of compatibility with the Moy–Prasad filtrations.

This work already has applications to the construction of smooth represen-
tations of the group G (see [S1, S2] for more details). Here, the basic datum is
a pair (β, x), where β ∈ g is semisimple and x ∈ I1

β . From this (and following
the methods of Bushnell–Kutzko [BK1]) the second author constructs a subgroup
J = J(β, x) of G and a set of irreducible representations λ of J . Moreover, if
Z(H) is compact and x is a vertex then the induced representation IndG

J λ is irre-
ducible and supercuspidal, and all irreducible supercuspidal representations arise
in this way ([S2]). In these constructions, and especially in the delicate refinement
process required in the proof of exhaustion, our embedding jβ and the property
(Fil) play a pivotal role.

In this article, we use lattice models of affine buildings constructed by F.
Bruhat and J. Tits ([BT1], [BT2]). We actually work with Lie algebra filtrations
that naturally arise from these models. It is proved by B. Lemaire in [Le] that
they coincide with the filtrations defined by A. Moy and G. Prasad. Lemaire’s
proof works in any residual characteristic. He also points out that the results of
the article should hold without the restriction on the residual caracteristic.

The paper is organized as follows. In §2 we recall the structure of the
maximal split tori of G . In §3,4, using ideas of Bruhat and Tits, we give a model
of the affine building of G in terms of self-dual lattice functions. In §5 we study
the centralizers in g and G of the Lie algebra element β . The construction of the
maps jβ is done in §6 and their properties are established in §7,8 and 9. In §10 we
prove the uniqueness result for the general linear group and finally §11 is devoted
to the uniqueness result in the classical group case.
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1. Notation

Here Fo is the ground field; it is assumed to be non-archimedean, locally compact
and equipped with a discrete valuation v normalized in such a way that v(F×

o )
is the additive group of integers. We assume that the residual characteristic of
Fo is not 2. We fix a Galois extension F/Fo such that [F : Fo] 6 2 and set
σF = idF if F = Fo and take σF to be the generator of Gal(F/Fo) in the other
case. We still denote by v the unique extension of v to F . We fix ε ∈ {±1} and
a finite dimensional left F -vector space V . Recall that a σF -skew form h on V
is a Z-bilinear map V × V → F such that

h(λx, µy) = λσF µh(x, y) , λ, µ ∈ F, x, y ∈ V .

Such a form is called ε-hermitian if h(y, x) = εh(x, y)σF for all x , y ∈ V . From
now on we fix such an ε-hermitian form on V and we assume it is non-degenerate
(the orthogonal of V is {0}).

For a ∈ EndF (V ), we denote by aσh = aσ the adjoint of a with respect to
h , i.e. the unique F -endomorphism of V satisfying h(ax, y) = h(x, aσy) for all x ,
y ∈ V .

We denote by G the simple algebraic Fo -group whose set of Fo -rational
points G is formed of the g ∈ GLF (V ) satisfying g.h = h (it is not necessarily
connected). Here g.h is the form given by g.h(x, y) = h(gx, gy), x , y ∈ V .

We know ([Sch, (6.6), page 260]) that in the case σF 6= idF , we may reduce
to the case ε = 1. So we have three possibilities:

σF = idF and ε = 1, the orthogonal case;

σF = idF and ε = −1, the symplectic case;

σF 6= idF and ε = 1, the unitary case.

We abbreviate G̃ = GLF (V ) and g̃ = EndF (V ).

2. The maximal split tori of G

Recall that a subspace W ⊂ V is totally isotropic if h(W, W ) = 0 and that
maximal such subspaces have the same dimension r , the Witt index of h . Set
I = {±1,±2, . . . ,±r} and Io = {(0, k) ; k = 1, . . . , n − 2r} . We fix a Witt
decomposition of V , that is

• two maximal totally isotropic subspaces V+ and V− ,

• bases (ei)i=1,...,r , (e−i)i=1,...,r , (ei)i∈Io of V+ , V− and Vo := (V+ + V−)⊥ ,

such that
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h(ei, ei) = 0, i ∈ I ,

h(ei, ej) = 0, for i , j ∈ I with j 6= −i or i ∈ I , j ∈ Io ,

h(ei, e−i) = 1, for i ∈ I with i > 0,

h(x, x) 6= 0, for x ∈ Vo and x 6= 0.

The Witt decomposition gives rise to a maximal Fo -split torus S whose
group of Fo -rational points is

S = {s ∈ G ; sei ∈ Foei , i ∈ I and (s− Id)Vo = 0} .

It has dimension r , the Fo -rank of G . Conversely any maximal Fo -split torus of
G is obtained from a Witt decomposition as above. The centralizer Z of S in G
has for Fo -rational points

Z = {z ∈ G ; zei ∈ Fei , i ∈ I and zVo = Vo} .

For each i from the index set I we have a morphism of algebraic groups
ai : Z → ResF/Fo(Gm) given by zei = ai(z)ei . Note that a−i(z) = ai(z)−σ . We
also denote by ai : S → Gm /Fo the character obtained by restriction. We have
ai = −a−i in X∗(S), the Z-module of rational characters of S . The ai , i ∈ I ,
i > 0, form a basis of X∗(S).

The normalizer N of Z in G is the sub-algebraic group whose Fo -rational
points are the elements of G which stabilize Xo and permute the lines Vi = Fei ,
i ∈ I . The group N = N (Fo) is the semidirect product of Z by the subgroup N ′

formed of the elements which permute the ±ei , i ∈ I .

3. MM-norms and self-dual lattice-functions

We keep the notation as in the previous sections. Recall that a norm on V is a
map α : V → R ∪ {∞} satisfying:

(i) α(x + y) > inf(α(x), α(y)), for x , y ∈ V ;

(ii) α(λx) = v(λ) + α(x), for λ ∈ F , x ∈ V ;

(iii) α(x) = ∞ if and only if x = 0.

We denote by Norm1(V ) the set of norms on V .

Definition 3.1 (cf. [BT2, (2.1)]). Let α ∈ Norm1(V ). We say that α is
dominated by h if

α(x) + α(y) 6 v(h(x, y)) for all x, y ∈ V .

We say that α is an MM-norm for h (maximinorante in French), if α is a maximal
element of the set of norms dominated by h .
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In [BT2, (2.5)] an involution¯ is defined on Norm1(V ) in the following way.
If α ∈ Norm1(V ), then

ᾱ(x) = inf
y∈V

[v(h(x, y))− α(y)] , x ∈ V .

We then have

Proposition 3.2 (cf. [BT2, Prop. 2.5]). An element α of Norm1(V ) is an
MM-norm if and only if ᾱ = α.

We are going to describe the set Norm1
h(V ) of MM -norms in terms of self-

dual lattice-functions. Recall [BL] that a lattice-function in V is a function Λ
which maps a real number to an oF -lattice in V and satisfies:

(i) Λ(r) ⊂ Λ(s) for r > s , r , s ∈ R ;

(ii) Λ(r + v(πF )) = pF Λ(r), r ∈ R ;

(iii) Λ is left-continuous.

Here oF denotes the ring of integers of F , pF the maximal ideal of oF and πF a
uniformizer of F . As in [BL], we denote by Latt1

oF
(V ) (or by Latt1(V ) when no

confusion may occur) the set of oF -lattice-functions in V .

Recall [BL] that Norm1(V ) and Latt1(V ) may be canonically identified in
the following way. To α ∈ Norm1(V ), we attach the function Λ = Λα given by

Λ(r) = {x ∈ V ; α(x) > r} , r ∈ R .

Conversely a lattice-function Λ corresponds to the norm α given by

α(x) = sup{r ; x ∈ Λ(r)} , x ∈ V .

For Λ ∈ Latt1(V ) and r ∈ R , set

Λ(r+) =
⋃
s>r

Λ(s) .

For an oF -lattice L in V , we define its dual L] = L]h by

L] = {x ∈ V ; h(x, L) ⊂ pF} .

Finally, we define the dual Λ] = Λ]h of a lattice-function Λ by

Λ](r) = [Λ((−r)+)]] , r ∈ R .

We say that a lattice function Λ is self dual if Λ] = Λ and we denote by Latt1h(V )
the corresponding set.

Proposition 3.3. Given a norm α ∈ Norm1(V ), we have Λᾱ = Λ]
α .



Broussous and Stevens 61

Corollary 3.4. Let α be a norm on V . Then α is an MM-norm if and only
if the attached lattice-function Λ is self-dual.

Proof of Proposition 3.3. Let x ∈ V and r ∈ R . Then the fact that
x ∈ Λᾱ(r)\Λᾱ(r+) is equivalent to the following points:

(i) ᾱ(x) = r ;

(ii) there exists y ∈ V such that v(h(x, y)) − α(y) = r , and for all y ∈ V , we
have v(h(x, y))− α(y) > r ;

(iii) there exists y ∈ V such that v(h(x, y)) = 0 and α(y) = −r , and for all
y ∈ V such that α(y) > −r , we have v(h(x, y)) > 0 (scale by a suitable
power of a uniformizer πF );

(iv) there exists y ∈ Λα(−r)\Λα(−r+) such that h(x, y) ∈ oF\pF , and for all
y ∈ Λα(−r+) we have h(x, y) ∈ pF ;

(v) x ∈ Λ]
α(r)\Λ]

α(r+).

This proves that the two lattice-functions Λᾱ and Λ]
α share the same discontinuity

points and that at those points they take the same values; so there are equal.

Let Norm2g̃ (resp. Latt2g̃) denote the G̃-set of square norms in g̃ (resp.
of square lattice-functions in g̃ ; see [BT1] and [BL]). Recall that a lattice-function
Λ2 in the F -vector space g̃ is square if there exists Λ ∈ Latt1(V ) such that
Λ2 = End(Λ), where

End(Λ)(r) = {a ∈ g̃ ; aΛ(s) ⊂ Λ(s + r), s ∈ R}, r ∈ R .

An additive norm on g̃ is square if the corresponding lattice function is square.
Recall [BT1, ??] that Norm1(V ) and Norm2g̃ (and therefore Latt1(V ) and Latt2g̃

by transfer of structure) are endowed with affine structures : the barycenter of two
points with positive weights is defined.

The involution σ acts on Norm2g̃ via

ασ(a) = α(aσ), a ∈ g̃, α ∈ Norm2g̃ .

By transfer of structure, σ acts on Latt2g̃ via

Λσ(r) = [Λ(r)]σ, Λ ∈ Latt2g̃, r ∈ R .

A square norm α (resp. a square lattice function Λ) is said to be self-dual if
α = ασ (resp. Λ = Λσ ). We denote by Norm2

σg̃ and Latt2
σg̃ the corresponding

sets.

Now, in terms of lattice functions, [BT2, Corollary 2, page 163] can be
written :

Lemma 3.5. The map Λ 7→ End(Λ) induces a bijection from the set of self-dual
lattice functions in V to the set of self-dual square lattice functions in g̃.



62 Broussous and Stevens

In other words, for any Λ ∈ Latt2
σg̃ , there exists a unique Λ2 = Λ2

h ∈
Latt1

h(V ) such that End(Λ) = Λ2 .

Note that the sets Latt1
h(V ), Norm1

h(V ), Latt2
σg̃ and Norm2

σg̃ are G-sets
and that the various identifications among them are G-equivariant.

Let u ∈ F× and assume that uh is still an ε-hermitian form with respect
to σF . Then the involution σ of g̃ corresponding to uh remains the same and
defines the same unitary group G ⊂ G̃ . For Λ ∈ Latt1(V ) and s ∈ R , we denote
by Λ + s the lattice function given by (Λ + s)(r) = Λ(s + r), r ∈ R .

Lemma 3.6. Let Λ2 ∈ Latt2
σg̃ and Λ2

h (resp. Λ2
uh ) be the unique element of

Latt1
h(V ) (resp. of Latt1

uh(V )) satisfying End(Λ2
h) = Λ2 (resp. End(Λ2

uh) = Λ2 ).
Then Λ2

uh = Λ2
h − v(u)/2, that is Λ2

uh(r) = Λ2
h(r − v(u)/2), r ∈ R.

Proof. We easily check that for Λ ∈ Latt1(V ) and s ∈ R , we have

Λ]uh = u−σΛ]h and (Λ + s)]h = Λ− s .

We certainly have End(Λ2
h−v(u)/2) = End(Λ2

h) = Λ2 . So by a unicity argument,
we must prove that Λ2

h − v(u)/2 ∈ Latt1
uh(V ). But

(Λ2
h − v(u)/2)]uh = u−σ(Λ2

h − v(u)/2)]h = u−σ(Λ2
h + v(u)/2)

= Λ2
h + v(u)/2− v(uσ) = Λ2

h − v(u)/2 ,

as required.

4. The building as a set of self-dual lattice-functions

Let I denote the building of the standard valuated root datum of G introduced
in [BT2] and A denote the apartment of I attached to S . Write V ∗ = X∗(S)⊗R ;
this is an R-vector space with basis (ai)i=1,...,r . Let V denote the linear dual of
V ∗ . We identify A with V .

To a point p ∈ A ' V , we attach the norm αp on V defined by

αp(
∑
i∈I

λiei + xo) = inf[ω(xo), inf
i∈I

(v(λi)− ai(p))], xo ∈ Vo, λi ∈ F for i ∈ I .

Here ω(xo) = 1
2
v(h(xo, xo)), xo ∈ Vo .

Here are two important facts from [BT2].

Proposition 4.1 ([BT2, Prop. 2.9, 2.11(i)]). The map p 7→ αp is a bijection
from A to the set of MM -norms on V which split in the decomposition V =
⊕i∈IFei ⊕ Vo . It is N -equivariant.

For the notion of splitting for norms, see [BT1, (1.4)].

Proposition 4.2 ([BT2, (2.12)]). (i) The map p 7→ αp extends in a unique
way to a G-equivariant and affine bijection jh : I → Norm1

h(V ) (in partic-
ular Norm1

h(V ) is a convex subset of Norm1(V )).
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(ii) The map jh is the unique affine and G-equivariant map I → Norm1
h(V ).

From §3, we get a unique affine and G-equivariant map I → Latt1
h(V ) that

we still denote by jh .

For r ∈ R , let Vr
o be the lattice of Vo given by {xo ∈ Vo ; ω(xo) > r} . For

x ∈ R , let dxe denote the least integer greater than or equal to x . Then the map
jh : I → Latt1

h(V ) is given on A by jh(p) = Λp , where

Λp(r) = Vr
o ⊕

⊕
i∈I

p
dr+ai(p)e
F ei , r ∈ R .

Let u be an element of F× such that uh remains ε-hermitian with respect
to σF . It follows from the proof of Lemma 3.6 that if Λ ∈ Latt1(V ), we have
Λ ∈ Latt1

h(V ) if, and only if, Λ−v(u)/2 ∈ Latt1
uh(V ). Since End(Λ+s) = End(Λ),

for Λ ∈ Latt1(V ) and s ∈ R , the bijective map jσ : I → Latt2
σ(V ), given by

jσ = End◦jh , does not depend on the choice of the form h , the involution σ being
fixed. By construction it is affine and G-equivariant. It is uniquely determined by
these two properties. Indeed if j′σ : I → Latt2

σ(V ) is affine and G-equivariant, so
is (j′σ)−1 ◦ jσ : I → I . But such a map must be the identity map.

We also recall here the description of the enlarged building I1 of G̃ =
GLF (V ) in terms of lattice functions.

Proposition 4.3 ([BT1, (2.11)]). (i) There is a G̃-equivariant and affine bi-
jection j : I1 → Norm1(V ).

(ii) If we have another affine and G̃-equivariant map j′ : I1 → Norm1(V ) then
there exists r ∈ R such that, for all α ∈ Norm1(V ), j′(α) = j(α) + r .

From [BL, Proposition 2.4], for each j as in Proposition 4.3, we get an affine
and G̃-equivariant map I1 → Latt1(V ) that we also denote by j .

5. Centralizers of Lie algebra elements

We denote by g the Lie algebra of G :

g = {a ∈ g̃ ; a + aσ = 0} .

We consider an element β of g satisfying

The F -algebra E := F [β] ⊂ g̃ is a direct sum of fields.

We write h̃ (resp. h) for the centralizer of β in g̃ (resp. in g) and H̃ (resp. H )
for the stabilizer of β in G̃ (resp. in G) for the adjoint action.

Since σ(β) = −β , we have easily that E ⊂ g̃ is σ -stable. We write

E =
⊕

i=1,...,t

(Ei ⊕ E−i) ⊕
⊕

k=1,...,s

E(0,k),
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where, for each i in J = {±1, . . . ,±t} or Jo = {(0, k) : k = 1, . . . , s} , Ei is a field
extension of F , and we have labeled the components such that, for each i ∈ Jo∪J ,

σ(Ei) = E−i, (5.1)

with the understanding that i = −i , for i ∈ Jo . We remark that the torus E∩G in
G is anisotropic (modulo the centre) if and only if J = ∅ and that every maximal
anisotropic torus in G takes this form (see [Mor, Proposition 1.3]).

For each i ∈ Jo , we set Eo
i = {a ∈ Ei ; a = aσ} , so that Ei/E

o
i is a

Galois extension of degree 6 2 and a generator of Gal(Ei/E
o
i ) is σEi

:= σ|Ei
. For

i ∈ Jo ∪ J , let 1i be the idempotent of E attached to Ei ; from (5.1), we have
σ(1i) = 1−i . We have the decomposition

V =
⊕

i∈Jo∪J

Vi , Vi = 1iV .

Note that, if i 6= −k , v ∈ Vi and w ∈ Vk , we have h(v, w) = h(1iv, w) =
h(v,1iw) = 0 so, for i ∈ Jo ∪ J ,

V ⊥
i =

⊕
k 6=−i

Vk.

For i ∈ Jo ∪ J , Vi is naturally an Ei -vector space and we have obvious
isomorphisms of algebras and groups respectively:

h̃ '
∏

i∈Jo∪J

EndEi
Vi ,

H̃ '
∏

i∈Jo∪J

AutEi
Vi .

The involution σ stabilizes h̃ ⊂ g̃ and, for each i , σ(EndEi
Vi) = EndE−i

V−i .
For i ∈ Jo , we write σi = σ|EndEi

Vi
. Let us fix i ∈ Jo . The map σi is an

involution of the central simple Ei -algebra EndEi
Vi . By a classical theorem ([Inv,

Theorem 4.2]), there exists εi ∈ {±1} and a non-degenerate εi -hermitian form hi

on Vi relative to σEi
such that σi is the involution attached to hi . Of course hi

is only defined up to a scalar in E×
i . Let

Hi = {g ∈ AutEi
Vi ; ggσi = 1}

be the unitary group attached to hi . On the other hand, for i ∈ J , we put

Hi = AutEi
Vi,

so that σ(Hi) = H−i and Hi is isomorphic to {g ∈ Hi × H−i : ggσ = 1}
by h 7→ (h, h−σ). Then, putting J+ = {1, . . . , t} , we have a natural group
isomorphism

H '
∏

i∈Jo∪J+

Hi .
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We may actually require a compatibility relation between the forms hi ,
i ∈ Jo and the form h . Let us fix i ∈ Jo . Let λi : Ei → F be any σ -equivariant
non-zero F -linear form. Such forms exist. Indeed choose a non-zero linear form
λo

i : Eo
i → Fo . If F = Fo then we put λ = λo

i ◦TrE/Eo
i
. Otherwise Ei = FEo

i and
we can extend λo

i by linearity to get the required map λi . In all cases we have:

λo
i ◦ TrEi/Eo

i
= TrF/Fo ◦ λ . (5.2)

We still write h for the restriction of h to Vi .

Lemma 5.3. Let i ∈ Jo . There exists a unique ε-hermitian form hi : Vi×Vi →
Ei relative to σEi

such that

h(v, w) = λi(hi(v, w)), for all v, w ∈ Vi . (5.4)

It is non-degenerate.

Proof. Since we have the orthogonal decomposition

V = Vi ⊥
⊕
k 6=i

Vk ,

the restriction h|Vi
is non-degenerate.

The F -linear map HomEi
(Vi, Ei) → HomF (Vi, F ), ϕ 7→ λi ◦ ϕ is an

isomorphism of F -vector space. Indeed if ϕ lies in the kernel, we have Im(ϕ) ⊂
Ker(λi), a strict subspace of Ei , and ϕ must be trivial. Moreover the two
dual spaces have the same F -dimension. For v ∈ Vi let hv be the element of
HomF (Vi, F ) given by hv(w) = h(v, w). There exists a unique ϕw ∈ HomEi

(Vi, Ei)
such that hv = λi ◦ ϕw . It is now routine to check that hi(v, w) := ϕv(w), for
v, w ∈ Vi , has the required properties.

We easily check that if hi is as in the lemma, then the corresponding
involution on EndEi

Vi is σi . In the following we assume that the forms hi , i ∈ Jo ,
satisfy (5.4).

For technical reasons, we need one more assumption on the λi , i ∈ Jo . We
fix i again. Let

I = {e ∈ Eo
i ; λo

i (eoEo
i
) ⊂ pFo} .

This is an oEo
i
-lattice in Eo

i and must have the form tpEo
i
, for some t ∈ (Eo

i )
× .

So replacing λi by e 7→ λi(tx), we may assume that I = pEo
i
. In the following we

assume that the linear forms λi , i ∈ Jo , have this property.

Lemma 5.5. Fix i ∈ Jo . Let λ1
i , λ2

i : Ei → F be two linear forms as above
and let h1

i , h2
i be the corresponding ε-hermitian forms on Vi (i.e. h1

i and h2
i

satisfy (5.4)). Then there exists u ∈ o×Eo
i

such that h2
i = uh1

i .

Proof. Since h1
i and h2

i induce the same involution on EndEi
Vi , there exists

u ∈ E×
i such that h2

i = uh1
i . The fact that h1

i and h2
i are both ε-hermitian with

respect to σEi
implies that u lies in Eo

i . Condition (5.4) writes

h(v, w) = λ1
i (h

1
i (v, w)) = λ2

i (uh1
i (v, w)) , v, w ∈ Vi .
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So λ1
i (e) = λ2

i (ue), e ∈ Ei . By applying TrF/Fo to this equality, we get λo,1
i (e) =

λo,2
i (ue), e ∈ Eo

i . Hence

pEo
i

= {e ∈ Eo
i ; λo,1

i (eoEo
i
) ⊂ pFo}

= {e ∈ Eo
i ; λo,2

i (ueoEo
i
⊂)pFo} = u−1pEo

i
.

So u ∈ o×Eo
i

as required.

Let us fix i . Let L be an oEo
i
-lattice in Vi . Then L has a dual L] relative

to the form h|Vi
and a dual L]i relative to the form hi .

Lemma 5.6. The lattices L] and L]i coincide.

Proof. We have

L] = {v ∈ Vi ; h(v, L) ⊂ pF}
= {v ∈ Vi ; TrF/Foh(v, L) ⊂ pFo}
= {v ∈ Vi ; λo ◦ TrEi/Eo

i
hi(v, L) ⊂ pFo}

= {v ∈ Vi ; TrEi/Eo
i
hi(v, L) ⊂ pEo

i
}

= {v ∈ Vi ; f(v, L) ⊂ pEi
}

= L]i ,

where the second and fifth equalities hold because F/Fo and Ei/E
o
i are at worst

tamely ramified.

6. Embedding the building of the centralizer

We keep the notation as in the previous section. Assume for a moment that the
extensions Ei/F , i ∈ Jo ∪ J , are separable. Then the group H is naturally the
group of rational points of a reductive F -group H . Indeed each Hi , i ∈ Jo∪J , is
naturally the group of rational points of a classical Ei -group H i (we do not need
Ei/F -separable here) and

H '
∏

i∈Jo∪J+

ResEi/F H i .

The (enlarged) affine building of H , I1
β := I1(H , F ), is the cartesian product

of the (enlarged) affine buildings I1(ResEi/F H i, F ), i ∈ Jo ∪ J+ . For all i , the
(enlarged) buildings I1(ResEi/F H i, F ) and I1(H i, Ei) identify canonically. Note
also that, for i ∈ Jo , the centre of H i is compact so the enlarged building is also
the non-enlarged building; in particular, if J = ∅ then all the buildings involved
are non-enlarged.

Since we do not want any restriction on the extensions Ei/F , we shall take
as a definition of the (enlarged) building I1

β attached to the group H :

I1
β :=

∏
i∈Jo∪J+

I1(H i, Ei) (6.1)
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We abbreviate I1
i = I1(H i, Ei), i ∈ Jo ∪ J+ .

We are going to construct a map jβ : I1
β → I . We normalize the lattice-

functions in Latt1
oEi

(Vi) by Λi(r + vi(πi)) = pEi
Λi(r), r ∈ R , where, for each i ,

πi denotes a uniformizer of Ei and vi the unique extension of v to a valuation of
Ei . It is straightforward that we have a well defined map

j̃β :
∏

i∈Jo∪J

Latt1
oEi

(Vi) −→ Latt1(V )

(Λi)i∈Jo∪J 7→
⊕

i∈Jo∪J

Λi

where
(⊕

i∈Jo∪J Λi

)
(r) =

⊕
i∈Jo∪J Λi(r), for r ∈ R . This map is clearly injective

and equivariant for the action of the group
∏

i∈Jo∪J

AutEi
Vi ⊂ AutF V .

For i ∈ Jo , we denote by ]i the involution on Latt1
oEi

(Vi) attached to hi ,

and by Latt1
oEi

,hi
(Vi) ⊂ Latt1

oEi
(Vi) the set of fixed points. For i ∈ J , we denote

be ]i the map Latt1
oEi

(Vi) → Latt1
oE−i

(V−i) given by

Λ]i

i (r) = {v ∈ V−i ; h(v, Λi(−r+)) ⊂ pF} .

for Λi ∈ Latt1
oEi

(Vi).

We define an involution b on
∏

i∈Jo∪J

Latt1
oEi

(Vi) by

(Λi)
b
i∈Jo∪J =

(
Λ

]−i

−i

)
i∈Jo∪J

,

Then we have a bijection

ιh :
∏
i∈Jo

Latt1
oEi

,hi
(Vi)×

∏
i∈J+

Latt1
oEi

(Vi) →

( ∏
i∈Jo∪J

Latt1
oEi

(Vi)

)b

,

given by (Λi)i∈Jo∪J+
7→ (Λi)i∈Jo∪J , with Λ−i = Λ]i

i , for i ∈ J+ .

Lemma 6.2. For x ∈
∏

i∈Jo∪J

Latt1
oEi

(Vi), we have j̃β(xb) = j̃β(x)]h . In particu-

lar j̃β ◦ ιh maps
∏
i∈Jo

Latt1
oEi

,hi
(Vi)×

∏
i∈J+

Latt1
oEi

(Vi) into Latt1
h(V ).

Proof. Fix (Λi)i∈Jo∪J ∈
∏

i∈Jo∪J

Latt1
oEi

Vi and set Λ = j̃β

(
(Λi)i∈Jo∪J+

)
. We

have
Λ]h(r) = Λ(−r+)]h = {v ∈ V ; h(v, Λ(−r+)) ⊂ pF} , r ∈ R .

Fix r ∈ R . We have
Λ(−r+) =

⊕
i∈Jo∪J

Λi(−r+) .
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Let v =
∑

i∈Jo∪J vi , with vi ∈ Vi , be an element of V . Since V ⊥
i =

⊕
k 6=−i Vk ,

we have v ∈ Λ]h(r) if and only if h(v−i, Λi(−r+)) ⊂ pF , for all i , that is if
v−i ∈ Λ]i

i (r), for all i (by Lemma 5.6 for i ∈ Jo or by definition for i ∈ J ); the
lemma follows.

With the notation of §4, for each set {ji}i∈J+ of maps ji : I1
i → Latt1

oEi
(Vi)

given by Proposition 4.3, we define a map jβ :
∏

i∈Jo∪J+

I1
i → I by

jβ = j−1
h ◦ j̃β ◦ ιh ◦

∏
i∈Jo

jhi
×
∏
i∈J+

ji

 .

These maps depend a priori on the forms h , and hi , i ∈ Jo .

Theorem 6.3. Each map jβ is injective and H -equivariant. The set of such
maps (as {ji}i∈J+ varies) depends only on the involution σ .

In particular, if J = ∅ then there is a unique map jβ , depending only on the
involution σ .

Proof. The first two properties are straightforward. Assume that h′ = uh ,
u ∈ F× , is another ε-hermitian form on V , with respect to σF , defining the same
involution σ on g̃ . Then u ∈ Fo . For i ∈ Jo , let h′i be an ε-hermitian form on Vi

satisfying
uh(v, w) = λ′i(h

′
i(v, w)) v, w ∈ Vi ,

where the λ′i : Ei → F are linear forms as above. Then by Lemma 5.5, for all
i ∈ Jo , there exists u′i ∈ o×Eo

i
such that u−1h′i = u′ihi , that is h′i = uu′ihi .

Let {ji}i∈J+ be as above; we will show that, for a suitable choice of {j′i}i∈J+ ,
we have

j−1
h ◦ j̃β ◦ ιh ◦ j = j−1

h′ ◦ j̃β ◦ ιh′ ◦ j′,

and the result follows.

By Lemma 3.6, for i ∈ J+ , for all xi ∈ I1
i , we have

jh′i
(xi) = jhi

(xi)− v(uu′i)/2 = jhi
(xi)− v(u)/2.

For i ∈ J+ , we choose j′i such that j′i(x) = ji(x) − v(u)/2 for x ∈ I1
i , that is

j′i ◦ j−1
i (Λi) = Λi − v(u)/2 for Λi ∈ Latt1

oEi
(Vi). We abbreviate

j =
∏
i∈Jo

jhi
×
∏
i∈J+

ji, j′ =
∏
i∈Jo

jh′i
×
∏
i∈J+

j′i;

then, for (Λi)i∈Jo∪J+
∈
∏
i∈Jo

Latt1
oEi

,hi
(Vi)×

∏
i∈J+

Latt1
oEi

(Vi), we have

j′ ◦ j−1
(
(Λi)i∈Jo∪J+

)
= (Λi − v(u)/2)i∈Jo∪J+

.
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It is also straightforward to check that

ιh′
(
(Λi − v(u)/2)i∈Jo∪J+

)
= ιh

(
(Λi)i∈Jo∪J+

)
− v(u)/2,

for (Λi)i∈Jo∪J+
∈
∏
i∈Jo

Latt1
oEi

,hi
(Vi)×

∏
i∈J+

Latt1
oEi

(Vi). Then we have

j̃β ◦ ιh′ ◦ j′ ◦ j−1
(
(Λi)i∈Jo∪J+

)
= j̃β ◦ ιh′

(
(Λi − v(u)/2)i∈Jo∪J+

)
= j̃β

(
ιh

(
(Λi)i∈Jo∪J+

)
− v(u)/2

)
= j̃β ◦ ιh

(
(Λi)i∈Jo∪J+

)
− v(u)/2.

By Lemma 3.6 again, we have jh′(x) = jh(x)−v(u)/2, x ∈ I , that is Λ−v(u)/2 =
jh′ ◦ j−1

h (Λ), Λ ∈ Latt1
h(V ). So

jh′ ◦ j−1
h ◦ j̃β ◦ ιh = j̃β ◦ ιh′ ◦ j′ ◦ j−1 ,

as required.

7. Affine structures

We keep the notation as in the previous sections. For x = (xi)i∈Jo∪J+ , y =

(yi)i∈Jo∪J+ in I1
β =

∏
i∈Jo∪J+

I1
i and t ∈ [0, 1], we define the barycenter tx + (1− t)y

to be
(txi + (1− t)yi)i∈Jo∪J+ .

We define the barycenter of two points in
∏

i∈Jo∪J+

Latt1
oEi

(Vi) in a similar way.

Since, for i ∈ Jo , Latt1
oEi

,hi
(Vi) is convex in Latt1

oEi
(Vi), the subset∏

i∈Jo

Latt1
oEi

,hi
(Vi)×

∏
i∈J+

Latt1
oEi

(Vi)

of
∏

i∈Jo∪J+

Latt1
oEi

(Vi) is convex also.

Proposition 7.1. Let β be as in §5. Then each map jβ is affine: for all x,
y ∈ I1

β , t ∈ [0, 1], we have

jβ(tx + (1− t)y) = tjβ(x) + (1− t)jβ(y) .

Proof. By construction it suffices to prove that the maps j̃β and ιh are affine.

We begin with j̃β . Let (Λi)i∈Jo∪J , (Mi)i∈Jo∪J be elements of
∏

i∈Jo∪J

Latt1
oEi

(Vi).

We must prove that⊕
i∈Jo∪J

(tΛi + (1− t)Mi) = t

( ⊕
i∈Jo∪J

Λi

)
+ (1− t)

( ⊕
i∈Jo∪J

Mi

)
.
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Let us recall the construction of the barycenter of two lattice functions (we do it
for Latt1(V )). Let Λ, M ∈ Latt1(V ). There exists an F -basis (e1, . . . , en) of V
which splits both Λ and M : there exist constants λ1, . . . , λn , µ1, . . . , µn in R
such that

Λ(r) =
⊕

k=1,...,n

p
dr+λke
F ek , M(r) =

⊕
k=1,...,n

p
dr+µke
F ek , r ∈ R .

Then for t ∈ [0, 1], tΛ + (1− t)M is given by

(tΛ + (1− t)M)(r) =
⊕

k=1,...,n

p
dr+tλk+(1−t)µke
F ek , r ∈ R .

The proof that j̃β is affine is then to construct a common splitting basis for⊕
i∈Jo∪J Λi and

⊕
i∈Jo∪J Mi from bases Bi of Vi , i ∈ Jo ∪ J , where Bi splits

Λi and Mi . We leave this easy exercise to the reader.

Now we turn to ιh . Suppose i ∈ J+ and Λi ∈ Latt1
oEi

(Vi), and let

(e1, . . . , en) be an Ei -basis of Vi which splits Λi . Let (e−1, . . . , e−n) be the dual
E−i -basis of V−i , such that h(e−k, el) = δkl , for 1 ≤ k, l ≤ n . It is straightforward
to check that this basis splits Λ]i

i and that,

if Λi(r) =
⊕

k=1,...,n

p
dr+λke
Ei

ek then Λ]i

i (r) =
⊕

k=1,...,n

p
dr−λke
E−i

e−k. (7.2)

To show that ιh is affine, we just need to check that, for i ∈ J+ , Λi, Mi ∈
Latt1

oEi
(Vi) and t ∈ [0, 1], we have

(tΛi + (1− t)Mi)
]i = tΛ]i

i + (1− t)M ]i

i .

The details of the proof – which is to choose an Ei -basis of Vi which splits both
Λi and Mi , take its dual basis and then use (7.2) – are again left to the reader.

8. The image of an apartment

We keep the notation of the previous sections. We will show that the image of an
apartment of I1

β under each map jβ is contained in an apartment of I .

Given a Witt decomposition V = V+⊕Vo⊕V− , with basis (el)l=1,...,r of V+

and the dual basis (e−l)l=1,...,r of V− (as in §2), we get a (self-dual) decomposition

V =
r⊕

l=1

V l ⊕ Vo ⊕
r⊕

l=1

V −l,

where V l = Fel =
(⊕

k 6=−l V
l ⊕ Vo

)⊥
. Such a decomposition (which we will also

call a Witt decomposition) corresponds to the choice of an apartment A in I : in
terms of lattice functions, jh(A) is the set of self-dual lattice functions Λ such
that

Λ(s) =
r⊕

l=1

(V l ∩ Λ(s))⊕ (Vo ∩ Λ(s))⊕
r⊕

l=1

(V −l ∩ Λ(s)), for all s ∈ R,
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that is, Λ is split by the decomposition (cf. Proposition 4.1).

Similarly, the choice of an (enlarged) apartment A1 in I1
β =

∏
i∈Jo∪J+

I1
i is

given by similar Ei -decompositions of Vi for i ∈ Jo and (without the self-duality
restriction) i ∈ J+ .

Proposition 8.1. Let A1 be an (enlarged) apartment of I1
β . Then there is an

apartment A of I such that jβ(A1) ⊂ A.

Proof. We write A1 =
∏

i∈Jo∪J+
A1

i , with A1
i an (enlarged) apartment in I1

i .

As above, for each i ∈ Jo , the apartment A1
i corresponds to a Witt Ei -

decomposition of V i

Vi =

ri⊕
l=1

V l
i ⊕ Vi,o ⊕

ri⊕
l=1

V −l
i ,

with V l
i =

(⊕
k 6=−l V

l
i ⊕ Vi,o

)⊥
, dimEi

V l
i = 1 and ri the (Ei -)Witt index of Vi .

We write LattA1

oEi
(Vi) for the set of lattice functions split by this decomposition,

and LattA1

oEi
,hi

(Vi) for the subset of self-dual lattice functions, so that jhi
(A1

i ) =

LattA1

oEi
,hi

(Vi).

Also, for each i ∈ J+ , the apartment A1
i corresponds to a decomposition

of Vi as a sum of 1-dimensional Ei -subspaces,

Vi =

ri⊕
l=1

V l
i ,

with ri = dimEi
Vi . As above, ji(A

1
i ) = LattA1

oEi
(Vi), the set of lattice functions

split by this decomposition.

We also take the dual splitting of V−i as a sum of 1-dimensional E−i -
subspaces,

V l
−i =

(⊕
k 6=l

V k
i

)⊥

.

We remark that, if Λ ∈ LattA1

oEi
(Vi) then Λ#i

i is split by this decomposition.

Now, for i ∈ Jo ∪ J+ and 1 ≤ l ≤ ri , we decompose V l
i as a sum of 1-

dimensional F -subspaces as follows: fix v ∈ V l
i , v 6= 0, and let Bi be an F -basis

for Ei which splits the oF -lattice sequence s 7→ p
ds/e(Ei/F )e
Ei

; then we take the
decomposition

V l
i =

⊕
b∈Bi

Fbv.

Note that any oEi
-lattice sequence in V l

i is split by this decomposition. For i ∈ Jo ,
we also take the dual decomposition of V −l

i and, for i ∈ J+ , the dual decomposition
of V l

−i .

Now we need to decompose the anisotropic parts W := ⊕i∈JoVi,o suitably.
Let Go denote the classical group associated to the restriction of the form h
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to W and, for i ∈ Jo , let H i,o denote the group associated to the restriction
of the form hi to Vi,o . Note that the groups Hi,o are compact so the building
I1
β,o := I1(H i,o, Ei) is reduced to a point.

Now, our constructions in §6 give an embedding of I1
β,o in the building

I1
o := I1(Go, F ) and the image is certainly contained in some apartment. Hence

there is a Witt F -decomposition of W which splits the (unique) self-dual lattice
sequence in W corresponding to I1

β,o , and this is the decomposition we take.

Altogether, we have described a Witt F -decomposition of V , which corre-
sponds to an apartment A of I . We denote by LattA

oF ,h(V ) the set of self-dual

lattice functions in V which are split by this splitting, so that jh(A) = LattA
oF ,h(V ).

Finally, by construction it is clear that j̃β ◦ ιh maps
∏
i∈Jo

LattA1

oEi
,hi

(Vi) ×∏
i∈J+

LattA1

oEi
(Vi) into LattA

oF ,h(V ) so jβ(A1) ⊂ A , as required.

9. Compatibility with Lie algebra filtrations

In this section, we fix Hk -equivariant identifications jk : I1(Hk, Ek) → Latt1
oEk

(Vk),

k ∈ J+ . They give rise to the map jβ : I1
β → I(G, H) defined in §6.

Let x ∈ I(G, F ) = I1(G, F ), that we see as a self-dual lattice function Λ
in Latt1

h(V ). To x we can associate a filtration (gx,r)r∈R of the Lie algebra g as
follows. First x defines a filtration (g̃x,r)r∈R of g̃ by

g̃x,r = {a ∈ g̃ ; aΛ(s) ⊂ Λ(s + r), s ∈ R}, r ∈ R .

We then define

gx,r := g̃x,r ∩ g = {a ∈ g ; aΛ(s) ⊂ Λ(s + r), s ∈ R}, r ∈ R .

Similarly a point x of I1
β defines a filtration (hx,r)r∈R of h . Write x = (xk)k∈J∪Jo ,

xk ∈ I1(Hk, Ek); each xk corresponding to a lattice function Λk of LattoEk
(Vk)

(with Λ]k

k = Λ−k , k ∈ J ∪ Jo ). We then define

hx,r :=
⊕

k∈J+∪Jo

hk
xk,r, r ∈ R,

where

hk
xk,r = {a ∈ Lie(Hk) ; aΛk(s) ⊂ Λk(s + r), s ∈ R}, r ∈ R, k ∈ J+ ∪ Jo .

The filtration (hx,r)r∈R only depends on the image x̄ of x in the non-
enlarged building Iβ . For x ∈ I(G, F ), (gx,r)r∈R is in fact the filtration of g

attached to x defined by Moy and Prasad [MP]. Similarly, when β is semisimple
and x ∈ I1(H, F ), (hx,r)r∈R is the filtration of h attached to x̄ defined in loc. cit.
This is proved by B. Lemaire in [Le].
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Lemma 9.1. Let us see h as being canonically embedded in h̃ = EndEV =⊕
k∈J∪Jo

EndEk
Vk via

(ak)k∈J+∪Jo 7→ (bk)k∈J∩Jo ,

where bk = ak , k ∈ Jo , and b−k = −aσ
k , k ∈ J+ . Fix x ∈ I1

β as before and
consider the oF -lattice function in V given by

Λ =
⊕

k∈J∪Jo

Λk (notation of §6).

For r ∈ R, let

h̃x,r = {a ∈ h̃ ; aΛ(s) ⊂ Λ(s + r), s ∈ R}, r ∈ R .

Then we have hx,r = h̃x,r ∩ h, r ∈ R.

Proof. Indeed, for all a = (ak)k∈J∪Jo ∈ EndEV , we have a ∈ h̃x,r ∩ h if and
only if a + aσ = 0 and aΛ(s) ⊂ Λ(s + r), s ∈ R , i.e.

akΛk(s) ⊂ Λk(s + r), s ∈ R, k ∈ J ∪ Jo .

For k ∈ Jo , these conditions can be rewritten ak ∈ Lie(Hk) and akΛk(s) ⊂
Λk(s + r), s ∈ R , that is ak ∈ hk

x,r , as required. For k ∈ J , these conditions can
be rewritten a−k = −aσ

k and

akΛk(s) ⊂ Λk(s + r), s ∈ R (a)

−aσ
kΛ]k

k (s) ⊂ Λ]k

k (s + r), s ∈ R . (b)

So we must prove that conditions (a) and (b) are equivalent. By symmetry we
only prove one implication. Applying the duality ]k on lattices of Vk to inclusion
(b), we obtain

Λk((−s− r)+) ⊂ [aσ
kΛ]k

k (s)]]k , s ∈ R,

with
[aσ

kΛ]k

k (s)]]k = {v ∈ Vk ; akv ∈ Λk((−s)+)}, s ∈ R .

So we have
akΛk((−s− r)+) ⊂ Λk((−s)+) ⊂ Λk(−s), s ∈ R ,

that is
akΛ(s+) ⊂ Λk(s + r), s ∈ R .

On each open interval (u, v) where Λk is constant, we have

akΛk(s+) = akΛk(s) ⊂ Λk(s + r) ,

and (a) is true for s ∈ (u, v). Finally if so is a jump of Λk with Λk constant on
(t, so] , we have

akΛk(so) = akΛk(s+) ⊂ Λk(s + r), s ∈ (t, so) .

So
akΛk(so) ⊂

⋂
s∈(t,so)

Λk(s + r) = Λk(so + r) ,

Λk being left continuous, and (a) is then true for all s ∈ R .
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Proposition 9.2. Let x ∈ I1
β . Then we have

gjβ(x),r ∩ h = hx,r, r ∈ R .

Proof. Indeed, with the notation of Lemma 9.1 and by definition of jβ , we
easily see that

g̃jβ(x),r ∩ h̃ = h̃x,r .

So our result is now a corollary of Lemma 9.1 since h = g ∩ h̃ .

10. A unicity result for the general linear group

As in [BL, §I.2], we define an equivalence relation ∼ on Latt1(V ) by Λ1 ∼ Λ2 if
there exists s ∈ R such that Λ1(s) = Λ2(r+s), s ∈ R . Then ∼ is compatible with
the G̃-action and the quotient LattoF

(V ) := Latt1(V )/ ∼ is naturally a G̃-set.
We shall denote by Λ̄ an element of LattoF

(V ), where Λ is a representative in
Latt1(V ). As a consequence of [BL, §I.2] and [BT1, ??], there is a unique affine
and G̃-equivariant map j : Ĩ → LattoF

(V ), where Ĩ denotes the non-enlarged
building of G̃ .

We fix an element β of g̃ satisfying

E := F [β] is a field.

As in §5 we denote by h̃ = EndEV the centralizer of β in g̃ and by H̃ = AutEV
its centralizer in G̃ . There is a canonical identification of the non-enlarged affine
building Ĩβ of H̃ with the H̃ -set LattoE

(V ). Here we normalize the lattice
functions of Latt1

oE
(V ) by the condition Λ(s+v(πE)) = πEΛ(s), s ∈ R , where πE

is a uniformizer of E .

Any Λ̄ ∈ LattoF
(V ) defines a filtration (g̃Λ̄,r)r∈R by

g̃Λ̄,r = {a ∈ EndF V ; aΛ(s) ⊂ Λ(r + s), s ∈ R} .

Then the map End(Λ̄) : r 7→ g̃Λ̄,r is an element of Latt1g̃ . The map Λ̄ 7→ End(Λ̄),

LattoF
V → Latt1g̃ is a G̃-equivariant injection (cf. [BL, §4]) for the action of G

on Latt1g̃ by conjugation. Its image is Latt2g̃ . From now on we shall canonically
identify Ĩ with Latt2g̃) (resp. Ĩβ with Latt2h̃).

Let us recall the main result of [BL].

Theorem 10.1. There exists a unique affine and H̃ -equivariant map
j̃β Ĩβ → Ĩ . It is injective, maps any apartment into an apartment and is compatible
with the Lie algebra filtrations in the following sense:

g̃j̃β(x),r ∩ h̃ = h̃x,r, x ∈ Ĩβ, r ∈ R . (10.2)

Let us recall how j̃β is constructed. If x ∈ Ĩβ corresponds to End(Λ̄) ∈
Latt2h̃ , then j̃(x) simply corresponds to End(Λ̄), where Λ, an oE -lattice function
in V , is now considered as an oF -lattice function.
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Theorem 10.3. Let x ∈ Ĩβ and y ∈ Ĩ satisfying

g̃y,r ∩ h̃ ⊃ h̃x,r, r ∈ R .

Then y = j̃β(x). As a consequence the map j̃β is characterized by property (10.2).

Proof. Assume that x and y correspond to elements Λ̄x and Λ̄y of LattoE
(V )

and LattoF
(V ) respectively. We need the following lemma :

Lemma 10.4. Under the assumption of (10.2), Λy is an oE -lattice function.

Proof. To prove that Λy is an oE -lattice function we must prove that it is
normalized by E× = 〈πE〉o×E , or equivalently:

xg̃y,rx
−1 = g̃y,r, x ∈ E×, r ∈ R . (10.5)

We first notice than oE ⊂ h̃x,0 ⊂ g̃y,0 , so that o×E ⊂ g̃×y,0 and (10.5) is true for
x ∈ o×E . We are reduced to proving (10.5) when x = πE .

We have πE ∈ h̃x,1/e ⊂ g̃y,1/e and π−1
E ⊂ h̃x,−1/e ⊂ g̃y,−1/e , where e =

e(E/F ). It follows that

πE g̃y,rπ
−1
E ⊂ g̃y,1/eg̃y,rg̃y,−1/e ⊂ g̃y,r, r ∈ R . (10.6)

Consider the duality “∗” on subsets of g̃ given by

S∗ = {a ∈ g̃ ; Tr(aS) ⊂ pF}, S ⊂ g̃,

where Tr is the trace map. Recall from [BL, 6.3] that (g̃y,r)
∗ = g̃y,(−r)+ , for r ∈ R .

Using a well known property of the trace map, we observe that

(πE g̃y,rπ
−1
E )∗ = πE(g̃y,r)

∗π−1
E , r ∈ R .

So applying the duality to (10.6), we obtain

g̃y,(−r)+ ⊂ πE g̃y,(−r)+π−1
E , r ∈ R .

We have proved that on each open interval (r1, r2) where the lattice function
(g̃y,r)r∈R is constant, we have both containments

πE g̃y,rπ
−1
E ⊂ g̃y,r and πE g̃y,rπ

−1
E ⊂ g̃y,r, r ∈ R .

So by continuity we have πE g̃y,rπ
−1
E = g̃y,r , for all r , as required.

We now return to the proof of Theorem 10.3. Since Λy is an oE -lattice
function, we have

g̃y,r ∩ h̃ = h̃x′,r, r ∈ R,

where x′ ∈ Ĩβ is attached to Λ̄y , Λy being seen as an oE -lattice function. So by
injectivity of the map Latt1

oE
(V ) → Latt2h̃ , we have Λ̄x = Λ̄y and y = j̃β(x) by

definition.
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11. A unicity result in the 1-block case and a conjecture

With the notation of §5, we consider an element β ∈ g satisfying:

E := F [β] ⊂ g̃ is a field and β 6= 0 . (11.1)

We fix an ε-hermitian form hE on the E -vector space V relative to σE

and we assume that it satisfies (5.4) as well as the condition J = pEo of §5. This
allows us to identify I1

β with Latt1
hE

(V ). Identifying I with Latth(V ), the map
jβ of §6 is simply given by

jβ(Λ) = Λ, Λ ∈ Latt1
hE

(V ),

where on the right hand side Λ is considered as an oF -lattice function.

Theorem 11.2. Under the assumption (11.1), let x ∈ I1
β and y ∈ I satisfying

gy,r ∩ h = hx,r, r ∈ R . (11.3)

Then y = jβ(x). In particular the map jβ is characterized by compatibility with
the Lie algebra filtrations.

Proof. The point x (resp. y ) corresponds to a self-dual lattice function
Λx ∈ Latt1

hE
(V ) (resp. Λy ∈ Latt1

h(V )). We may see x and y as points of

Latt1
oE

(V ) and Latt1
oF

(V ) respectively and they give rise to filtrations of h̃ and g̃

as in §9: (h̃x,r)r∈R and (g̃y,r)r∈R . Write

g+
y,r = {a ∈ g̃y,r ; a = aσ}, r ∈ R

and
h+

x,r = {a ∈ h̃x,r ; a = aσ}, r ∈ R

Since 2 is invertible in oF , we have:

g̃y,r = gy,r ⊕ g+
y,r and h̃y,r = hx,r ⊕ h+

x,r, r ∈ R .

Write
ro = vΛx(β) := Sup{r ∈ R ; β ∈ h̃x,r} .

Since β ∈ E× , it normalizes Λx so that βh̃x,r = h̃x,r+ro , r ∈ R . Moreover since β
is central in h̃ , we easily have that h+

x,r = βhx,r−ro , r ∈ R . Hence, for r ∈ R , we
have

h+
x,r = β(gy,r−ro ∩ h) = β(gy,r−ro ∩ h̃) ⊂ gy,r ∩ h̃ .

It follows that, for x ∈ R , we have:

h̃x,r = hx,r ⊕ h+
x,r ⊂ gy,r ∩ h̃⊕ g+

y,r ∩ h̃ ⊂ g̃y,r ∩ h̃ .

By applying (10.3), we obtain Λ̄y = j̃β(Λ̄x), that is Λ̄y = Λ̄x . In particular we
have End(Λx) = End(Λy) ∈ Latt2

σh̃ . But by Lemma 3.5 we have Λx = Λy , as
required.
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Let us give an example. Assume that G = Sp2(F ) = SL(2, F ) (here
F = Fo ) and take β ∈ g such that E/F is quadratic and ramified. Then H
is the group E1 of norm 1 elements in E . The building of H is reduced to a
point {x} . The group E× fixes a unique chamber C of I and H ⊂ E× fixes
C pointwise. There are infinitely many maps j : I1

β → I which are affine and
G-equivariant; indeed j(x) can be any point of C . On the other hand there is a
unique map j : I1

β → I which is compatible with the Lie algebra filtrations: it
maps x to the isobarycenter of C .

We conjecture that when J = ∅ (notation of §5) then the map jβ of §6
is characterized by condition (11.3). We may address the more general (but
more informal) question: Given two F -reductive groups H and G , as well as
a morphism of algebraic groups ϕ : H → G , is there an affine and H(F )-
equivariant map I(H , F ) → I(G, F ) which is compatible with the Lie algebra
filtrations defined by Moy and Prasad? When is it characterized by this last
property?
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(1984), 259–301.
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Téléport 2 – BP 30179
86962 Futuroscope Chasseneuil Cedex
France
broussou@math.univ-poitiers.fr

Shaun Stevens
School of Mathematics
University of East Anglia
Norwich NR4 7TJ
United Kingdom
Shaun.Stevens@uea.ac.uk

Received May 21, 2007
and in final form March 4, 2009


	Notation
	The maximal split tori of bold0mu mumu GGSchGGGG
	MM-norms and self-dual lattice-functions
	The building as a set of self-dual lattice-functions
	Centralizers of Lie algebra elements
	Embedding the building of the centralizer
	Affine structures
	The image of an apartment
	Compatibility with Lie algebra filtrations
	A unicity result for the general linear group
	A unicity result in the 1-block case and a conjecture

