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Abstract. Let F, be a non-archimedean locally compact field of residual
characteristic not 2. Let G be a classical group over F, (with no quaternionic
algebra involved) which is not a general linear group. Let [ be an element
of the Lie algebra g of G that we assume semisimple for simplicity. Let H
be the centralizer of # in G and b its Lie algebra. Let I and Ié denote the
(enlarged) Bruhat—Tits buildings of G and H respectively. We prove that there
is a natural set of maps jg : I é — I which enjoy the following properties: they
are affine, H-equivariant, map any apartment of é into an apartment of I and
are compatible with the Lie algebra filtrations of g and bh. In a particular case,
where this set is reduced to one element, we prove that jg is characterized by
the last property in the list. We also prove a similar characterization result for
the general linear group.

In this article, we work with Lie algebra filtrations defined by using
lattice models of buildings. It is not clear that they coincide with the filtrations
constructed by A. Moy and G. Prasad for a general reductive group. This fact
is proved by B. Lemaire (see his article in this volume).

Mathematics Subject Classification 2000: 22F50.
Key Words and Phrases: Bruhat-Tits building, classical groups over p-adic fields,
Moy and Prasad filtrations, functoriality of affine buildings.

Introduction

Let F, be a locally compact non-archimedean local field, let G, H be connected
reductive algebraic groups over F,, and suppose we have a morphism f: H — G
(of algebraic groups over F,). Let I'(G,F,) and I'(H, F,) denote the enlarged
affine Bruhat-Tits buildings of G and H respectively. Bruhat and Tits showed
that f induces a natural map f, : I'(H, F,) — I'(G, F,) in the following cases:

e f is the natural injection of a Levi subgroup H of G [BT];

e G is the restriction of scalars Resk/p, H, for K/F, a finite galois extension
and f the canonical inclusion (see [Ti, §2.6]).
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Landvogt showed the existence of an induced map f, in all generality [La]. His
maps are continuous, H (F,)-equivariant and are isometries when f is injective.
(Landvogt also asks for compatibility with the action of a Galois group, which we
will not go into here.) However, these conditions of Landvogt are not sufficient
to characterize the map f,. The simplest example is the following: Suppose F,
has odd residual characteristic, G = SLy(F,) and H = E' is the groups of norm-
1 elements in a totally ramified separable extension E/F,. Then the (enlarged)
affine building I' of G is a tree, while that of H is a single point. There are then
an infinity of maps f,, and choosing one comes down to fixing an H -stable point
of I' — that is any point in a certain edge determined by H.

Recent constructions in the theory of types for the smooth complex repre-
sentations of p-adic reductive groups indicate an additional condition to impose
on the maps f,. (See [BK3| for an introduction to the general theory of types.) In
the same way that the theory of modular forms requires one to define congruence
subgroups, the theory of smooth representations of p-adic groups requires one to
construct filtrations on parahoric subgroups. The history of the construction of
such filtrations is very long and we will not recall it here. Suffice to say that it
culminates in the very general constructions of A. Moy and G. Prasad [MP]. To
each point z of the enlarged affine building (G, F,) of a reductive F,-group G,
they associate a filtration (G, ,) of the parahoric subgroup G, associated to x,
and a filtration by lattice (g,,) of the Lie algebra of G. (These filtrations are
respectively indexed by the set of non-negative real numbers, and the set of real
numbers.)

These filtrations have had spectacular applications in the theory of types.
For example, they allow one to define and prove the existence of unrefined minimal
K -types for a general connected reductive group ([MPl, Theorem 5.2]). They also
provide Bushnell and Kutzko with a language to construct all types for GL(N)
(see [BKI BK2] and the work of Broussous, Grabitz, Stevens and Sécherre for
other classical groups). Note that Bushnell and Kutzko do not use the language
of Bruhat and Tits but the equivalent language of lattice functions (see [BL] for
the connection between the two points of view).

From the definition of the filtration (g,), it is straightforward to see that
the map r — g,,, which associates to each real number a lattice in the Lie algebra,
completely characterizes the image of x in the non-enlarged building of G. It is
thus natural to ask that the maps f. be not only H(F,)-equivariant but also
compatible with the Lie algebra filtrations:

(Fil) 95 (x)r N =bhap, T € Il(H, F,), reR.

In the counterexample of SLy given above, there is only one map f, satisfying the
conditions (Fil); its image is the midpoint of the edge of the tree I determined
by H.

Now we turn to the results of this paper and specialize our notations.
Suppose F, has odd residual characteristic and let G be the group of rational
points of a classical group defined over F, (a symplectic, orthogonal or unitary
group). Let  be an element of the Lie algebra of G which, for the sake of simplicity
in this introduction, we assume semisimple. Let H denote the centralizer of 5 in
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G, for the adjoint action. We denote by I' (respectively [ [15) the enlarged affine
Bruhat-Tits building of G (respectively H ).

The purpose of this article is to show that the inclusion H C G induces
certain natural H-equivariant maps jg : I3 — I'. Moreover, they are affine, com-
patible with the Moy—Prasad filtrations and send an apartment into an apartment.
These maps form a single orbit under the action of H-invariant automorphisms of
1 é )

The Lie algebra of G has a natural representation in a matrix algebra A. In
the special case where (3 generates a field in A, we show that there exists one and
only one map jg: [ é — I' which is compatible with the Moy—Prasad filtrations.
In the general case, we make the following unicity conjecture:

Conjecture. Let Zy be the centre of H. Modulo the action of H-equivariant
automorphisms of the building I, there exists one and only one Zp-equivariant
map jg: ]é — I satisfying (Fil).

In the case where G is a general linear group and [ is a semisimple
element of the Lie algebra of G, the first author and B. Lemaire constructed
a map jg : Ig — I (here we must use the non-enlarged building of H) which
is H-equivariant, affine, compatible with the Moy-Prasad filtrations and sends
an apartment into an apartment. We show here that this map too is completely
determined by the property of compatibility with the Moy—Prasad filtrations.

This work already has applications to the construction of smooth represen-
tations of the group G (see [S1l, [S2] for more details). Here, the basic datum is
a pair (§,z), where § € g is semisimple and = € [ [13 From this (and following
the methods of Bushnell-Kutzko [BK1]) the second author constructs a subgroup
J = J(B,z) of G and a set of irreducible representations A of J. Moreover, if
Z(H) is compact and x is a vertex then the induced representation Ind§\ is irre-
ducible and supercuspidal, and all irreducible supercuspidal representations arise
in this way ([S2]). In these constructions, and especially in the delicate refinement
process required in the proof of exhaustion, our embedding jg and the property
(Fil) play a pivotal role.

In this article, we use lattice models of affine buildings constructed by F.
Bruhat and J. Tits ([BT1], [BT2]). We actually work with Lie algebra filtrations
that naturally arise from these models. It is proved by B. Lemaire in [Le] that
they coincide with the filtrations defined by A. Moy and G. Prasad. Lemaire’s
proof works in any residual characteristic. He also points out that the results of
the article should hold without the restriction on the residual caracteristic.

The paper is organized as follows. In we recall the structure of the
maximal split tori of G. In §3|[] using ideas of Bruhat and Tits, we give a model
of the affine building of G in terms of self-dual lattice functions. In §5 we study
the centralizers in g and G of the Lie algebra element 3. The construction of the
maps jg is done in §6 and their properties are established in and 9} In we
prove the uniqueness result for the general linear group and finally is devoted
to the uniqueness result in the classical group case.
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1. Notation

Here F, is the ground field; it is assumed to be non-archimedean, locally compact
and equipped with a discrete valuation v normalized in such a way that v(F))
is the additive group of integers. We assume that the residual characteristic of
F, is not 2. We fix a Galois extension F/F, such that [F' : F,] < 2 and set
op = idp if F = F, and take o to be the generator of Gal(F'/F,) in the other
case. We still denote by v the unique extension of v to F'. We fix ¢ € {£1} and
a finite dimensional left F'-vector space V. Recall that a op-skew form A on V
is a Z-bilinear map V x V — F' such that

h(Az, py) = A" ph(x,y) , A u€F, z,y €V .

Such a form is called e-hermitian if h(y,z) = eh(x,y)?" for all x, y € V. From
now on we fix such an e-hermitian form on V' and we assume it is non-degenerate
(the orthogonal of V' is {0}).

For a € Endp(V), we denote by a’» = a” the adjoint of a with respect to
h,i.e. the unique F-endomorphism of V' satisfying h(ax,y) = h(z,ay) for all z,
yeV.

We denote by G the simple algebraic F,-group whose set of F,-rational
points G is formed of the g € GLg(V) satisfying g.h = h (it is not necessarily
connected). Here g.h is the form given by g.h(z,y) = h(gz,gy), v, y € V.

We know ([Schl (6.6), page 260]) that in the case op # idp, we may reduce
to the case ¢ = 1. So we have three possibilities:

or =1idp and € = 1, the orthogonal case;
op = idp and € = —1, the symplectic case;
or # idp and € = 1, the unitary case.

We abbreviate G = GLp(V) and § = Endp(V).

2. The maximal split tori of G

Recall that a subspace W C V is totally isotropic if A(W, W) = 0 and that
maximal such subspaces have the same dimension r, the Witt index of h. Set
I ={x1,£2,...,£r} and I, = {(0,k) ; k = 1,...,n —2r}. We fix a Witt
decomposition of V', that is

e two maximal totally isotropic subspaces V, and V_,

..........

such that
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The Witt decomposition gives rise to a maximal F,-split torus S whose
group of F,-rational points is

S={seG; se; € Fe; , i € I and (s —1d)V, =0} .

It has dimension r, the F,-rank of G. Conversely any maximal F,-split torus of
G is obtained from a Witt decomposition as above. The centralizer Z of S in G
has for F,-rational points

Z={2€G; ze;€ Fe;, i€l and zV,=V,}.

For each ¢ from the index set I we have a morphism of algebraic groups
a;: Z — Resp/p,(Gr) given by ze; = a;(2)e;. Note that a_;(z) = a;(2)77. We
also denote by a; : S — G, /r, the character obtained by restriction. We have
a; = —a_; in X*(S), the Z-module of rational characters of S. The a;, i € I,
i >0, form a basis of X*(S).

The normalizer IN of Z in G is the sub-algebraic group whose F,-rational
points are the elements of G which stabilize X, and permute the lines V; = Fle;,
i € I. The group N = N(F,) is the semidirect product of Z by the subgroup N’
formed of the elements which permute the +e;, i € I.

3. MM-norms and self-dual lattice-functions

We keep the notation as in the previous sections. Recall that a norm on V' is a
map « : V — RU{oo} satisfying:

() ol +y) > infla(z), a@y)), for 7, y € V;
(i) a(Az) =v(\)+a(z), for Ne F, z €V,
(iii) a(x) = oo if and only if z = 0.

We denote by Norm' (V) the set of norms on V.

Definition 3.1 (cf. [BT2, (2.1)]). Let a € Norm'(V). We say that «a is
dominated by h if

a(z) + a(y) < v(h(z,y)) for all x, y € V.

We say that « is an MM-norm for h (maziminorante in French), if « is a maximal
element of the set of norms dominated by h.
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In [BT2, (2.5)] an involution ~is defined on Norm'(V') in the following way.
If o € Norm'(V), then

a(x) = inf[v(h(z,y)) —aly)], x eV .

yev

We then have

Proposition 3.2 (cf. [BT2, Prop. 2.5]). An element o of Norm!(V) is an
MM -norm if and only if & = «v.

We are going to describe the set Norm;, (V') of M M -norms in terms of self-
dual lattice-functions. Recall [BL] that a lattice-function in V' is a function A
which maps a real number to an op-lattice in V' and satisfies:

(i) A(r) C A(s) for r > s, r, s € R;
(i) A(r+v(mp)) =prA(r), r € R;
(iii) A is left-continuous.

Here op denotes the ring of integers of F', pr the maximal ideal of or and 7z a
uniformizer of F'. As in [BL], we denote by Latt] (V') (or by Latt'(V) when no
confusion may occur) the set of op-lattice-functions in V.

Recall [BI] that Norm'(V) and Latt'(V') may be canonically identified in
the following way. To o € Norm'(V), we attach the function A = A, given by

Ary={zeV;alx)2r}, rekR.
Conversely a lattice-function A corresponds to the norm « given by
a(x)=sup{r; ze€A(r)}, zeV.

For A € Latt'(V) and r € R, set

A(r+) = [ JA(s) -

s>r

For an op-lattice L in V', we define its dual L* = L by
LF={zcV; h(z,L) Cpr}.

Finally, we define the dual A" = A* of a lattice-function A by
A(r) = [A((=r)H)]* ,reR.

We say that a lattice function A is self dual if A* = A and we denote by Latt}, (V)
the corresponding set.

Proposition 3.3.  Given a norm o € Norm'(V), we have Ay = A%
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Corollary 3.4. Let a be a norm on V. Then « is an MM-norm if and only
if the attached lattice-function A is self-dual.

Proof of Proposition 3.3 Let € V and r € R. Then the fact that
z € Na(r)\Aa(r+) is equivalent to the following points:

(i) a(r) =r;

(ii) there exists y € V such that v(h(z,y)) — a(y) = r, and for all y € V', we
have v(h(z,y)) — aly) = r;

(iii) there exists y € V such that v(h(z,y)) = 0 and a(y) = —r, and for all
y € V such that a(y) > —r, we have v(h(x,y)) > 0 (scale by a suitable
power of a uniformizer 7 );

(iv) there exists y € Ao(—7)\Au(—r+) such that h(x,y) € op\pr, and for all
y € Ao(—r+) we have h(z,y) € pr;

(v) =€ AL(r\AL(r+).

This proves that the two lattice-functions As and A¥, share the same discontinuity
points and that at those points they take the same values; so there are equal. =

Let Norm?§ (resp. Latt?g) denote the G-set of square norms in § (resp.
of square lattice-functions in g; see [BT1] and [BL]). Recall that a lattice-function
A? in the F-vector space g is square if there exists A € Latt'(V) such that
A? = End(A), where

End(A)(r)={acg; aA(s) CA(s+7r), seR}, reR.

An additive norm on g is square if the corresponding lattice function is square.
Recall [BTT, ??] that Norm'(V) and Norm?®g (and therefore Latt'(V) and Latt?g
by transfer of structure) are endowed with affine structures : the barycenter of two
points with positive weights is defined.

The involution ¢ acts on Norm?g via

a(a) = a(a?), a € g, a € Norm?g .
By transfer of structure, o acts on Latt?g via
A%(r) = [A(r)]7, A € Latt®g,r € R .

A square norm « (resp. a square lattice function A) is said to be self-dual if
a = a (resp. A = A%). We denote by Norm?g and Latt?g the corresponding
sets.

Now, in terms of lattice functions, [BT2, Corollary 2, page 163] can be
written :

Lemma 3.5.  The map A — End(A) induces a bijection from the set of self-dual
lattice functions in V' to the set of self-dual square lattice functions in g.
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In other words, for any A € Latt?g, there exists a unique A2 = A? €
Latt; (V) such that End(A) = A2,

Note that the sets Latt; (V), Norm; (V), Latt?g and Norm2g are G-sets
and that the various identifications among them are G-equivariant.

Let uw € F* and assume that uh is still an e-hermitian form with respect
to op. Then the involution o of g corresponding to uh remains the same and
defines the same unitary group G C G. For A € Latt!(V) and s € R, we denote
by A + s the lattice function given by (A +s)(r) = A(s+7r), r € R.

Lemma 3.6. Let A? € Latt’g and A2 (resp. A2,) be the unique element of
Latty (V) (resp. of Lattl, (V) ) satisfying End(A2) = A? (resp. End(A2,) = A?).
Then A2, = A2 —v(u)/2, that is A%, (r) = A2(r —v(u)/2), r € R.

Proof.  We easily check that for A € Latt' (V) and s € R, we have
Afuh = =A% and (A +s)" = A — 5 .

We certainly have End(A2 —v(u)/2) = End(A7) = A%. So by a unicity argument,
we must prove that A? —v(u)/2 € Latt,, (V). But

(Af —v(w) /2 = u™ (A} —v(u)/2)" = u (A} +v(u)/2)
= A +o)/2—v(?) = Ay —v(u)/2,

as required. [ |

4. The building as a set of self-dual lattice-functions

Let I denote the building of the standard valuated root datum of G introduced
in [BT2] and A denote the apartment of I attached to S. Write V* = X*(S)®R;
this is an R-vector space with basis (a;);=1,. . Let V' denote the linear dual of
V*. We identify A with V.

To a point p € A~ V', we attach the norm «, on V defined by

ap(z i€ + x,) = inf[w(mo),inﬁ(v()\i) —a;i(p))], vo€V,, e Fforiel.
1€
iel
Here w(z,) = sv(h(zo, ,)), To € V.
Here are two important facts from [BT2].

Proposition 4.1 ([BT2, Prop. 2.9, 2.11(i)]).  The map p — «, is a bijection
from A to the set of MM -norms on V which split in the decomposition V =
@BierFe; ®V,. It 1s N -equivariant.

For the notion of splitting for norms, see [BTT, (1.4)].
Proposition 4.2 ([BT2| (2.12)]). (i) The map p — «, extends in a unique

way to a G-equivariant and affine bijection j, : I — Norm, (V) (in partic-
ular Norm; (V) is a conver subset of Norm' (V) ).
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(ii) The map jy is the unique affine and G -equivariant map I — Normyj (V).

From §3| we get a unique affine and G-equivariant map I — Latt; (V) that
we still denote by jp,.

For r € R, let V! be the lattice of V, given by {z, € V, ; w(x,) > r}. For
r € R, let [z] denote the least integer greater than or equal to . Then the map
jn = I — Latt; (V) is given on A by ji(p) = A,, where

Ap(r) = Vi Py Ple;  reRr.

el

Let u be an element of F* such that uh remains e-hermitian with respect
to op. It follows from the proof of Lemma that if A € Latt'(V), we have
A € Latt;, (V) if, and only if, A—v(u)/2 € Latt,, (V). Since End(A+s) = End(A),
for A € Latt'(V) and s € R, the bijective map j, : I — Latt?(V), given by
jo = Endoj,, does not depend on the choice of the form A, the involution ¢ being
fixed. By construction it is affine and G-equivariant. It is uniquely determined by
these two properties. Indeed if j/ : I — Latt?(V) is affine and G-equivariant, so
is (/) toj, : I — I. But such a map must be the identity map.

We also recall here the description of the enlarged building I' of G =
GLp(V) in terms of lattice functions.

Proposition 4.3 ([BTIL, (2.11)]). (i) There is a G -equivariant and affine bi-
jection j : I' — Norm' (V).

(ii) If we have another affine and G -equivariant map j : I* — Norm' (V) then
there exists 1 € R such that, for all € Norm*(V), j/(a) = j(a) + 7.

_From [BL, Proposition 2.4], for each j as in Proposition , we get an affine
and G-equivariant map I' — Latt'(V) that we also denote by j.

5. Centralizers of Lie algebra elements

We denote by g the Lie algebra of G':
g={a€g;ata” =0}
We consider an element ( of g satisfying
The F-algebra E := F[§] C g is a direct sum of fields.

We write b (resp. ) for the centralizer of 3 in g (resp. in g) and H (resp. H)
for the stabilizer of § in G (resp. in G) for the adjoint action.

Since o(f) = —f3, we have easily that F C g is o-stable. We write

F = @ (EZEBE,J D @ E(O,k)7
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where, for each ¢ in J = {&1,... £t} or J,={(0,k): k=1,...,s}, E; is a field
extension of F', and we have labeled the components such that, for each ¢ € J,UJ,

o(E) = E_, (5.1)

with the understanding that ¢ = —i, for ¢« € J,. We remark that the torus ENG in
G is anisotropic (modulo the centre) if and only if J = () and that every maximal
anisotropic torus in G takes this form (see [Mor, Proposition 1.3]).

For each i € J,, we set E? = {a € E; ;a = a°}, so that E;/E? is a
Galois extension of degree < 2 and a generator of Gal(E;/EY) is op, := oyg,. For
i€ J,UJ, let 1; be the idempotent of E attached to E;; from (j5.1)), we have
0(1;) =1_;. We have the decomposition

V=P vi.vi=1v.

1€JoUJ

Note that, if i # —k, v € V; and w € Vi, we have h(v,w) = h(lv,w) =
h(v,1;w) = 0 so, for i € J, U J,

Vit =P
k#—i

For i € J, U J, V; is naturally an F;-vector space and we have obvious
isomorphisms of algebras and groups respectively:

h~ ] EndsVi,

1€JoUJ

The involution ¢ stabilizes 6 C g and, for each ¢, o(Endg,V;) = Endg_,V_;.
For i € J,, we write 0; = Ojgna,v,- Let us fix ¢ € J,. The map o; is an
involution of the central simple E;-algebra Endp,V;. By a classical theorem ([Inv),
Theorem 4.2]), there exists ¢; € {1} and a non-degenerate &;-hermitian form h;
on V; relative to op, such that o; is the involution attached to h;. Of course h;
is only defined up to a scalar in E*. Let

H;={g € AutgV; ; g¢” =1}
be the unitary group attached to h;. On the other hand, for ¢ € J, we put
Hi = AU.)EE,L.V;,

so that o(H;) = H_; and H; is isomorphic to {g € H; x H_; : g¢° = 1}
by h +— (h,h=7). Then, putting J, = {1,...,t}, we have a natural group

isomorphism
H~ [] H .

1€JoUJ
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We may actually require a compatibility relation between the forms h;,
1 € J, and the form h. Let us fix i € J,. Let \; : E; — F be any o-equivariant
non-zero F'-linear form. Such forms exist. Indeed choose a non-zero linear form
A Ef — F,. It F'=F, then we put A = A\Y o Trg/ge. Otherwise F; = F'E? and
we can extend ¢ by linearity to get the required map ;. In all cases we have:

/\io @) TrE@/E;’ = TI'F/FO oM. (52)

We still write A for the restriction of h to V;.

Lemma 5.3. Leti € J,. There exists a unique €-hermitian form h; : V;xV; —
E; relative to og, such that

h(v,w) = A\i(hi(v,w)), for allv,w €V . (5.4)

It is non-degenerate.

Proof. Since we have the orthogonal decomposition

V=V, LBV,
ki
the restriction Ay, is non-degenerate.

The F-linear map Homg, (V;, E;) — Hompg(V;,F), ¢ — X o is an
isomorphism of F-vector space. Indeed if ¢ lies in the kernel, we have Im(yp) C
Ker()\;), a strict subspace of E;, and ¢ must be trivial. Moreover the two
dual spaces have the same F-dimension. For v € V; let h, be the element of
Hompg(V;, F) given by h,(w) = h(v,w). There exists a unique ¢,, € Homg, (V;, E;)
such that h, = \; o ¢,,. It is now routine to check that h;(v,w) := ¢,(w), for
v,w € V;, has the required properties. [ |

We easily check that if h; is as in the lemma, then the corresponding
involution on Endg,V; is ;. In the following we assume that the forms h;, ¢ € J,,
satisfy (5.4)).

For technical reasons, we need one more assumption on the \;, 7 € J,. We
fix 7 again. Let

J= {6 € EZO ; )\?(6053) C pFD} .
This is an oge-lattice in EY and must have the form tpgo, for some ¢ € (E7)*.
So replacing \; by e +— \;(tx), we may assume that J = pgo. In the following we
assume that the linear forms \;, i € J,, have this property.

Lemma 5.5. Fizie€ J,. Let A}, \} : E; — F be two linear forms as above
and let h}, h? be the corresponding e-hermitian forms on V; (i.e. h} and h?

satisfy (5.4)). Then there exists u € 03, such that h? = uh; .

Proof. Since h} and h? induce the same involution on Endg,V;, there exists
u € B such that h? = uh}. The fact that h! and h? are both e-hermitian with
respect to op, implies that w lies in EY. Condition ([5.4]) writes

h(v,w) = /\}(h}(v,w)) = /\?(uh%(v,w)) , v,we V.
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So Aj(e) = A7(ue), e € E;. By applying Trp/p, to this equality, we get /\f’l(e) =
A2 (ue), e € E?. Hence

ppe = {e€ B} ; /\f’l(eﬂE;’) Cpr,}
= {e€ E?,; /\5’2(U€°Ef C)pr,} = “_lpEf :

So u € 05, as required. |

Let us fix 7. Let L be an opo-lattice in V;. Then L has a dual L relative
to the form Ay, and a dual L¥ relative to the form h;.

Lemma 5.6. The lattices L and L% coincide.

Proof. We have

L' = {veV;; h(v,L) Cpr}
= {veVi; Trgph(v, L) Cpr,}
= {veV;; \o TrEi/thi('UvL) Cpr,}
= {veV; TrEi/E;’hi(UﬂL) C pre}
= {veV;; f(v,L) Cpg}
= L%

where the second and fifth equalities hold because F/F, and E;/E? are at worst
tamely ramified. [ |

6. Embedding the building of the centralizer

We keep the notation as in the previous section. Assume for a moment that the
extensions F;/F, i € J, U J, are separable. Then the group H is naturally the
group of rational points of a reductive F'-group H . Indeed each H;, i € J,UJ, is
naturally the group of rational points of a classical E;-group H; (we do not need
E;/ F-separable here) and

H ~ H Resg,/rH; .

i€ JoUJy

The (enlarged) affine building of H, Ij := I'(H,F), is the cartesian product
of the (enlarged) affine buildings I'(Resg,/rH;, F), i € J,U J;. For all 7, the
(enlarged) buildings I'(Resg,/rH;, ') and I'(H;, E;) identify canonically. Note
also that, for ¢ € J,, the centre of H; is compact so the enlarged building is also
the non-enlarged building; in particular, if J = () then all the buildings involved
are non-enlarged.

Since we do not want any restriction on the extensions E;/F', we shall take
as a definition of the (enlarged) building é attached to the group H:

Iy= ] I'H:E) (6.1)

1€JoUJ+
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We abbreviate I! = I'(H;, E;), i € J,U J,.

We are going to construct a map jg : [ é — I. We normalize the lattice-
functions in LattiEi(Vi) by Ai(r +vi(m;)) = pg,Ni(r), r € R, where, for each 1,
m; denotes a uniformizer of F; and v; the unique extension of v to a valuation of
E;. 1t is straightforward that we have a well defined map

s o I Latty, (V) — Latt'(V)
i€JoUJ
(Ai)iEJOUJ = @ A
i€JoUJ
where (B, \i) (r) = Bieyuy Ai(r), for r € R. This map is clearly injective

and equivariant for the action of the group H Autg,V; C AutpV.
i€JoUJ

For i € J,, we denote by #; the involution on Latt},E,(V;) attached to h;,
and by Latt;, , (V;) C Latt, (Vi) the set of fixed points. For i € J, we denote

og; hi

be #; the map Lattllei(V;) — LattiE_i(V_Z-) given by

Af(r) ={veV.; h(v,Ni(—r+)) Cpr} .

for A; € Latt},Ei(V;).
We define an involution b on H Latt, (Vi) by

i€JoUJ

b fi
(Ai)ieJouJ - (A*i )ieJoUJ ’

Then we have a bijection

b
Lh H LattiEi,hi(V;) X H LattiEi(Vi) - ( H Latt%(%)) 7

i€Jo i€y 1€JoUJ
given by (Ai)ics 0y, > (Mi)icy,u, With Ay = A¥ forie J,.

Lemma 6.2. For z € H Lattll,Ei(Vi), we have }ﬂ(xb) = 3ﬂ($)ﬁh' In particu-
i€JoUJ
lar j o 1, maps H Latty, , (Vi) x H Latty (Vi) into Latty (V).

i€Jo i€J+

Proof. Fix (Ai);es0s € H LattiE_Vi and set A = j ((Ai)ieJoUJ+)' We
i€JoUJ '
have

An(r) = A(—r+)" ={v eV ; h(v,A(=r+)) Cpp}, r€R.

Fix r € R. We have
A(—r+) = @ Ai(—r+) .

1€JoUJ
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Let v = ZiEJOUJ v;, with v; € V;, be an element of V. Since V* = @,#_i Vi,
we have v € A%(r) if and only if h(v_;, A;(~=r+)) C pp, for all i, that is if
v_; € A¥i(r), for all i (by Lemma for i € J, or by definition for i € J); the
lemma follows. n

With the notation of , for each set {j;}ics, of maps j; : I} — Latt},Ei (V2)
given by Proposition we define a map jg : H I! =1 by

i€JoUJ

Jo=1Jn'odsotmo Hjhi X Hji

i€Jo ey

These maps depend a priori on the forms h, and h;, i € J,.

Theorem 6.3.  FEach map js is injective and H -equivariant. The set of such
maps (as {Ji}ics, varies) depends only on the involution o .

In particular, if J = () then there is a unique map jg, depending only on the
involution o.

Proof. The first two properties are straightforward. Assume that A’ = uh,
u € F*, is another e-hermitian form on V', with respect to op, defining the same
involution ¢ on g. Then u € F,. For i € J,, let h, be an e-hermitian form on V;
satisfying
uh(v,w) = X(hi(v,w)) v,w €V,

where the X\, : E; — F are linear forms as above. Then by Lemma for all
i € Jo, there exists uj € oy, such that u™hl = ulh;, that is hl = uulh;.

Let {ji}ics, be as above; we will show that, for a suitable choice of {j;}ic, ,
we have

jptojsooj=jutojgouy oy,
and the result follows.
By Lemma [3.6], for i € J, for all x; € I}, we have

Jny (i) = g (2:) = v(uw) /2 = i, (2:) = v(u) /2.

For i € J,, we choose j! such that ji(z) = ji(z) — v(u)/2 for z € I}, that is
jio g (Ai) = Ay — v(u)/2 for A; € Latt,,_ (V;). We abbreviate

g=11dn > T1d 7 =11 x4

1€J, 1€y i€Jo i€

then, for (A;);c; s, € H LattiEi’hi(Vi) X H Latt},Ei(Vz-), we have

i€Jo i€J+

joj <(Ai)i€JOUJ+> = (A — U(“)/2>ieJouJ+ :
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It is also straightforward to check that

e (8 = 00/ Dieor, ) = tn (Aidieson, ) = (/2

for (Ai)ics,us, € H Latt},Ei’hi(Vi) X H LattiEi(Vi). Then we have

},8 ouyoj o j_l ((Ai)z‘eJouJ+> = jﬁ Olw ((Az - U(“)/2>ieJOUJ+>
= Js (1 ((AWiesus, ) — v(w)/2)
= jgou <(Ai>ieJDUJ+> —v(u)/2.

By Lemma [3.6]again, we have jj, () = jn(x) —v(u)/2, x € I, that is A—v(u)/2 =
w0 gn H(A), A € Latt,, (V). So
Jwogy odsom =jgousojojt,

as required. |

7. Affine structures

We keep the notation as in the previous sections. For x = (2;)icsus,, ¥ =

(Yi)ies,ur, in Iy = H I} and t € [0,1], we define the barycenter tx + (1 —t)y
1€JoUJ

to be

(tzi + (1 = t)yi)ies,ur, -

We define the barycenter of two points in H LattiEi(Vi) in a similar way.
1€JoUJ
Since, for i € J,, Latt,_, (Vi) is convex in Latt,_(V;), the subset

op;,hi

[ Latts, (Vi) x [ Lattg, (Vi)

i€Jo i€J+

of H Latt, (V;) is convex also.

1€JoUJ ¢

Proposition 7.1.  Let 3 be as in §5 Then each map js is affine: for all x,
y €Iy, t€l0,1], we have

jo(tr + (1 —t)y) = tjs(x) + (1 —t)js(y) -

Proof. By construction it suffices to prove that the maps 3’5 and ¢, are affine.
. . ~ 1
We begin with jz. Let (A;)ies,us, (Mi)ics,us be elements of H LattoEi(V;).

i€JoUJ
We must prove that

@ (t/\mL(l—t)Mi):t(@ Ai)“‘(l_t)(@ Mz)

1€JoUJ 1€JoUJ 1€JoUJ
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Let us recall the construction of the barycenter of two lattice functions (we do it
for Latt'(V)). Let A, M & Latt'(V). There exists an F-basis (e, ...,e,) of V
which splits both A and M : there exist constants Ay,..., \,, p1,..., 1, in R
such that

777777777

Then for t € [0,1], tA + (1 —t)M is given by

(tA+ (1 —t)M)(r) = @D ppt e reR .

The proof that 55 is affine is then to construct a common splitting basis for
DicsusNi and D, ; M; from bases B; of Vi, i € J, U J, where B; splits
A; and M;. We leave this easy exercise to the reader.

Now we turn to u,. Suppose i € J. and A; € LattiE_(Vi), and let
(e1,...,€,) be an E;-basis of V; which splits A;. Let (e_q,... ,e_,i) be the dual
E_;-basis of V_;, such that h(e_g, e;) = 0y, for 1 < k, 1 < n. It is straightforward
to check that this basis splits A¥ and that,

if Ay EB ]J“JFAH er then A%(r @ p“ Mle (7.2)

'''''''''

To show that ¢, is affine, we just need to check that, for i« € J., A;, M; €
Latt,, (V;) and t € [0,1], we have

(tA; + (1 — t)M;)" = tA¥ + (1 — t) MH.

The details of the proof — which is to choose an F;-basis of V; which splits both
A; and M;, take its dual basis and then use ([7.2]) — are again left to the reader. =

8. The image of an apartment

We keep the notation of the previous sections. We will show that the image of an
apartment of [ é under each map js is contained in an apartment of I.

77777

V:évl@m@@v—l,
=1 =1

L
where V! = Fe; = (@ki_l Vie Vo> . Such a decomposition (which we will also

call a Witt decomposition) corresponds to the choice of an apartment A in I: in
terms of lattice functions, ju(A) is the set of self-dual lattice functions A such
that

r

A(s) =PV N A(s) & (V, N A(s) é}(v—l NA(s)),  forall s€R,

=1
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that is, A is split by the decomposition (cf. Proposition .
Similarly, the choice of an (enlarged) apartment A' in I é = H I is
1€JoUJ 4
given by similar FE;-decompositions of V; for ¢ € J, and (without the self-duality
restriction) i € J, .

Proposition 8.1.  Let A' be an (enlarged) apartment of Ié. Then there is an
apartment A of I such that js(A') C A.

Proof. ~ We write A' = [[,c; ;.
As above, for each i € J,, the apartment A} corresponds to a Witt FE;-

decomposition of V*
Vi=@Viev.e v
=1 =1

1
with V! = (@ki_l Vi V;,O> , dimpg, V! = 1 and r; the (E;-)Witt index of V;.
We write Lattf;(l/;) for the set of lattice functions split by this decomposition,
and Latt? , (V;) for the subset of self-dual lattice functions, so that jj,(A!) =

op; hi

Latt2 (V).

og;,hi

Al with A}l an (enlarged) apartment in I}.

Also, for each i € J, the apartment A} corresponds to a decomposition
of V; as a sum of 1-dimensional F;-subspaces,

V=@V
=1

with r; = dimg, V;. As above, j;(A}) = Lattﬁg_(Vi), the set of lattice functions
split by this decomposition.
We also take the dual splitting of V_; as a sum of 1-dimensional F_;-

subspaces,
I

kAl
We remark that, if A € Latthl' (Vi) then A% is split by this decomposition.

Now, for i € J,U J, and 1 <[ < r;, we decompose V! as a sum of 1-
dimensional F-subspaces as follows: fix v € V!, v # 0, and let B; be an F-basis
for E; which splits the op-lattice sequence s — p[ESi/ e(E/ Fﬂ; then we take the
decomposition

Vi =P Fho.
beB;

Note that any op,-lattice sequence in V! is split by this decomposition. For i € J,,,
we also take the dual decomposition of Vi’l and, for ¢ € J, , the dual decomposition
of V1,.

Now we need to decompose the anisotropic parts W := @;c;, Vi, suitably.
Let G, denote the classical group associated to the restriction of the form h
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to W and, for 7 € J,, let H;, denote the group associated to the restriction
of the form h; to V;,. Note that the groups H;, are compact so the building
[é}o :=I1"(H,;,, E;) is reduced to a point.

Now, our constructions in give an embedding of [ [1370 in the building
I! .= I'(G,, F) and the image is certainly contained in some apartment. Hence
there is a Witt F-decomposition of W which splits the (unique) self-dual lattice
sequence in W corresponding to [ 170, and this is the decomposition we take.

Altogether, we have described a Witt F'-decomposition of V', which corre-
sponds to an apartment A of I. We denote by Latth’h(V) the set of self-dual

lattice functions in V which are split by this splitting, so that j,(A) = LattZ: , (V).

OF,/’L
Finally, by construction it is clear that js o ¢, maps H Lattf;hi(‘/i) X
i€Jo
H Lattf;i(‘/;) into Lattémh(V) so js(A') C A, as required. ]
i€y

9. Compatibility with Lie algebra filtrations

In this section, we fix Hj,-equivariant identifications j : I'(Hy, Ey) — LattiEk (Vi),
k € J*. They give rise to the map jz : Iy — I(G, H) defined in .
Let z € I(G,F) = I'(G, F), that we see as a self-dual lattice function A

in Latt; (V). To  we can associate a filtration (g, ).cr of the Lie algebra g as
follows. First x defines a filtration (g, ,).er of g by

Gor={a€g; al(s) CA(s+7), seR}, reR.
We then define
9or = 0erNg={acg; al(s) CA(s+71), seR}, reR.

Similarly a point = of I} defines a filtration (b, )rer of h. Write & = (24)resuy, ,
1y, € I'(Hy, Ey); each zp corresponding to a lattice function Ay of Latt,,, (Vi)

(with A% = A_,, k€ JUJ,). We then define

k
h:p,r = @ hxk,rv re Ra

keJtuld,

where

];W ={a € Lie(Hy) ; alp(s) CAr(s+71), seR}, reR, ke JTUJ,.

The filtration (h,,)rer only depends on the image Z of x in the non-
enlarged building Iz. For x € I(G,F), (gs,)rer is in fact the filtration of g
attached to z defined by Moy and Prasad [MP]. Similarly, when 3 is semisimple
and z € I'(H, F), (B, )rer is the filtration of h attached to T defined in loc. cit.
This is proved by B. Lemaire in [Le].
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Lemma 9.1. Let us see ) as being canonically embedded in h = EndgV =
@ Endg, Vi via
keJUJ,

(ar)kestug, = (br)kesnd, »

where b, = ay, k € J,, and b_, = —af, k € J*. Fiz x € [é as before and
consider the op-lattice function in V' given by

A= @ Ay (notation of §).
keJUJ,

Forr e R, let
ber ={a€bh; al(s) CA(s+7), s€eR}, reR.
Then we have b, = 617,« Nnh, reR.
Proof. Indeed, for all a = (ag)kesus, € EndgV, we have a € l‘~)m N b if and
only if a +a” =0 and aA(s) C A(s+71), s € R, ie.
arMp(s) CAg(s+7r), seR ke JUJ,.

For k € J,, these conditions can be rewritten ay € Lie(Hy) and apAx(s) C
Ap(s+1), s € R, that is a; € b’;)r, as required. For k € J, these conditions can
be rewritten a_, = —af and

agAp(s) C Ap(s+71), seR (a)
—afA¥(s) C A (s47), sER. (b)

So we must prove that conditions (a) and (b) are equivalent. By symmetry we
only prove one implication. Applying the duality f; on lattices of V} to inclusion
(b), we obtain

Ar((=s —1)+) C [afA% ()], s € R,

with

[aZ A% ()] = {v € Vi ; arv € Ap((—5)+)}, sER.
So we have

apAi((—s —r)+) C Ap((—s)+) C Ap(—s), se R,
that is

apA(s+) C Ap(s+7r), seR.
On each open interval (u,v) where Ay is constant, we have
apMp(s+) = apAp(s) C Ap(s+71) |
and (a) is true for s € (u,v). Finally if s, is a jump of A, with Ay constant on
(t, 8o, we have
ar\i(So) = arAp(s+) C Ap(s+7), s € (t,,) .

S0
apM\i(s,) C ﬂ Ap(s+7r) = Ag(so +7)
s€(t,80)

Ay being left continuous, and (a) is then true for all s € R. [
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Proposition 9.2.  Let z € ]é. Then we have
Gjs@)r N ="bo,, TER.

Proof. Indeed, with the notation of Lemma and by definition of jgz, we
easily see that

gj/;(x),r mf) - Ex,r .

So our result is now a corollary of Lemma since h=gnNh. |

10. A unicity result for the general linear group

As in [BI §1.2], we define an equivalence relation ~ on Latt!'(V) by A; ~ A, if
there exists s € R such that A;(s) = Aax(r+s), s € R. Then ~ is compatible with
the G-action and the quotient Latt,, (V) := Latt'(V)/ ~ is naturally a G'-set.
We shall denote by A an element of Latt,,(V), where A is a representative in
Latt' (V). As a consequence of [BL §1.2] and [BTT], ??], there is a unique affine
and G-equivariant map j : I — Latt,.(V), where I denotes the non-enlarged
building of G.

We fix an element [ of g satisfying
E :=F[f] is a field.

As in §5| we denote by b = EndgV the centralizer of 3 in § and by H = AutgV
its centralizer in G. There is a canonical identification of the non-enlarged affine
building I3 of H with the H-set Latt, (V). Here we normalize the lattice
functions of Latt, (V) by the condition A(s+v(7mg)) = mgA(s), s € R, where 7
is a uniformizer of F.

Any A € Latt,, (V) defines a filtration (g5, )rcr by

gi, ={a € EndpV ; aA(s) C A(r +5), s€ R} .

Then the map End(A) : 7 — ga, is an element of Latt'g. The map A — End(A),
Latt,,V — Latt'g is a G-equivariant injection (cf. [BI §4]) for the action of G
on Latt'g by conjugation. Its image is Latt?g. From now on we shall canonically
identify I with Latt?§) (resp. Iz with Latth).

Let us recall the main result of [BL].

Theorem 10.1.  There exists a unique affine and H -equivariant map
Jgls — I. It is injective, maps any apartment into an apartment and s compatible
with the Lie algebra filtrations in the following sense:

Buo)r N0 =bor, v €15, T ER. (10.2)

_Let us recall how js is constructed. If z € I corresponds to End(A) €
Latt?h, then j(z) simply corresponds to End(A), where A, an op-lattice function
in V', is now considered as an og-lattice function.
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Theorem 10.3. Let x € fg and y € I satisfying
G0 NH Dby, TER .
Then y = ja(x). As a consequence the map js is characterized by property (10.2).

Proof.  Assume that z and y correspond to elements A, and A, of Latt,, (V)
and Latt,,. (V') respectively. We need the following lemma :

Lemma 10.4.  Under the assumption of (10.2), A, is an og-lattice function.

Proof. To prove that A, is an og-lattice function we must prove that it is
normalized by E* = (mg)oj,, or equivalently:

1

TGy, r = Gyr, ¢ € E*, reR. (10.5)

We first notice than o C 6;,;70 C gy0, S0 that o5 C g, and is true for
x € oy,. We are reduced to proving @ when © = ng.

We have 7y € Gm/e C @y,1/e and e C Gx,_l/e C gy,—1/e, Where e =
e(E/F). Tt follows that

TEGyr T C Byi1/eByrBy—1/e C Byrn 7 € R. (10.6)
Consider the duality “x” on subsets of g given by
S*={a€g; Tr(aS) Cpr}, SCg,

where Tr is the trace map. Recall from [BLl 6.3] that (g,,)* = g,,(—r)+, for 7 € R.
Using a well known property of the trace map, we observe that

1

(ﬂ'E@y,rﬂ'El)* =7g(gy,) 15, 7 €R.

So applying the duality to (|10.6)), we obtain

éy,(—r)—f— C WEgy,(—r)-‘rﬂ-Ela reR.

We have proved that on each open interval (ry,79) where the lattice function
(8y.r)rer 1s constant, we have both containments

-1 = = -1 =
TEQy, T C 8y, and Tp@y, T C Gy, 7 € R.
So by continuity we have WEQWWEI = gy, for all r, as required. ]

We now return to the proof of Theorem [10.3] Since A, is an op-lattice
function, we have
gy,r N 6 = Gx’,ra re R7
where 2’ € 1:5 is attached to /_\y, A, being seen as an og-lattice function. So by
injectivity of the map Latt, (V) — Latt?h, we have A, = A, and y = jz(z) by
definition. [ |
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11. A unicity result in the 1-block case and a conjecture

With the notation of §5] we consider an element 3 € g satisfying:
E:=F[f] Cgisafield and 8 #0. (11.1)

We fix an e-hermitian form hg on the E-vector space V relative to og
and we assume that it satisfies ((5.4]) as well as the condition J = pgo of This
allows us to identify I} with Latt, (V). Identifying I with Latt,(V), the map

jp of §6]is simply given by

js(A) = A, A € Latt, (V),
where on the right hand side A is considered as an op-lattice function.

Theorem 11.2.  Under the assumption (11.1)), let = € Ié and y € I satisfying
Oyr N =1y, reR. (11.3)

Then y = js(x). In particular the map jz is characterized by compatibility with
the Lie algebra filtrations.

Proof. The point = (resp. y) corresponds to a self-dual lattice function
A, € Latt; (V) (resp. A, € Latt,(V)). We may see z and y as points of

Latty (V) and Latt, (V) respectively and they give rise to filtrations of b and g

as in §@: (6$,7‘)7’€R and (gy,)rer. Write
g,,={a€gy,;a=a"}, reR
and .
;T:{aebm ca=a’}, reR

Since 2 is invertible in op, we have:
Gy = Seand by, = ; R
Gy = Gyr D g, an byr = Bar @ bz,r’ relx.

Write .
ro =vp, () :=Sup{r e R; B &b, }.
Since § € E*, it normalizes A, so that ﬁf)m = 6:c,r+ro’ r € R. Moreover since [3

is central in 6, we easily have that h;r = Bbzr—r,, 7 € R. Hence, for r € R, we
have

;r,r = B(8yr—r, Nh) = B(8y,r—r, N 6) C gy N b.
It follows that, for x € R, we have:

690,7‘:[790,7“@{];7»ng,rmfa@g;rm[ang,rmﬁ'

By applying (10.3)), we obtain A, = js(A,), that is A, = A,. In particular we
have End(A,) = End(A,) € Latt2h. But by Lemma we have A, = A, as

required. [ |
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Let us give an example. Assume that G = Spy(F) = SL(2,F) (here
F = F,) and take § € g such that F/F is quadratic and ramified. Then H
is the group E! of norm 1 elements in £. The building of H is reduced to a
point {x}. The group E* fixes a unique chamber C' of [ and H C E* fixes
C' pointwise. There are infinitely many maps 7 : [ []; — [ which are affine and
G-equivariant; indeed j(x) can be any point of C'. On the other hand there is a
unique map j : [ é — I which is compatible with the Lie algebra filtrations: it
maps x to the isobarycenter of C'.

We conjecture that when J = () (notation of then the map js of
is characterized by condition (11.3). We may address the more general (but
more informal) question: Given two F-reductive groups H and G, as well as
a morphism of algebraic groups ¢ : H — G, is there an affine and H(F)-
equivariant map I(H,F) — I(G,F) which is compatible with the Lie algebra
filtrations defined by Moy and Prasad? When is it characterized by this last
property?
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