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1. Introduction

Contractions of representations of Lie algebras have been intensively studied
since the pioneering work of Inönü and Wigner [26], see for instance [14] and
its references. Contractions of unitary representations of Lie groups have been
not investigated as methodically. Some notable exceptions are the works of
Mickelsson and Niederle [30] and of Dooley and Rice [17], [20], [21].

In the paper [30], a proper definition of the contraction of unitary rep-
resentations of Lie groups was given for the first time. The non-zero mass rep-
resentations of the Euclidean group Rn+1 o SO(n + 1) and the positive mass-
squared representations of the Poincaré group Rn+1 o SO0(n, 1) were obtained
by contraction (i.e. as limits in the sense defined in [30]) of the principal series
representations of SO0(n+1, 1). More generally, in [21], Dooley and Rice estab-
lished a contraction of the principal series representations of a semi-simple Lie
group to some unitary irreducible representations of its Cartan motion group.

A contraction of Lie group representations provides a link between the
Harmonic Analysis on two different Lie groups. In particular, contractions
allow to recover some classical formulas of the theory of special functions [20],
[33]. Contractions also permit to transfer results on Lp -multipliers from unitary
groups to Heisenberg groups [19], [34].

In [17], Dooley suggested interpreting contractions of representations in
the context of the Kirillov-Kostant method of orbits (see also the introduction of
[21]) and, in [15], Cotton and Dooley showed how to obtain contraction results
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by using a notion of adapted functional calculus which was introduced in [5] and
[6] (see also [10]). The basic idea is then to study the behavior in the contraction
process of the symbols of the representation operators which are functions on the
coadjoint orbits corresponding to the representations.

The approach of [15] is particularly efficient in the case when the co-
adjoint orbits have Kählerian structures (see [7], [8] and [9]). In this case,
the representation spaces are reproducing kernel Hilbert spaces and the so-
called Berezin calculus generally provides an adapted functional calculus on the
corresponding coadjoint orbits (see [13]). For example, in [9], we established
contractions of the discrete series representations of SU(n, 1) and of the unitary
irreducible representations of SU(n+1) to the unitary irreducible representations
of the (2n+ 1)-dimensional Heisenberg group (see also [31], [33], [18], [7] and [8]
for earlier results on contractions of discrete series representations of unitary
groups). In order to extend the results of [9] to a more general situation,
we studied in [11] a contraction of the unitary irreducible representations of
a compact semi-simple Lie group to the unitary irreducible representations of a
Heisenberg group. However, the results of [11] were not entirely satisfying: we
have just obtained a contraction result for the coefficients of the representations,
not a contraction of representations in the stronger sense of [30]. In fact, in the
compact case, it is difficult to realize the unitary irreducible representations in
compatible ways in spaces of holomorphic functions because these spaces have
different finite dimensions. This leads us to consider the case of the holomorphic
discrete series representations which is very closed to the compact case.

So the aim of the present paper is to extent the results of [9] concerning
the contraction of the holomorphic discrete series of SU(n, 1) to a more general
situation. Let G be a connected semi-simple non-compact Lie group with finite
center and K be a maximal compact subgroup of G . Assume that the center of
K has positive dimension. Suppose that πχ is a discrete series representation of
G which is holomorphically induced from a unitary character χ of K . Let G0 be
the Heisenberg group of dimension dimG−dimK+1 and ρ be a non-degenerated
irreducible unitary representation of G0 . The Hermitian symmetric space of the
non-compact type G/K is then diffeomorphic to a bounded symmetric domain
D which can be quantized by the general method of quantization introduced
by Berezin [3]. The representation πχ is usually realized on a Hilbert space of
holomorphic functions on D . In [12], we gave an explicit formula for the Berezin
symbol of πχ(g) for g ∈ G . Here, we use this formula in order to establish a
contraction of the sequence (πχm)m∈N\(0) to ρ .

This paper is organized as follows. In Section 2, we describe the unitary
irreducible representations of G0 and we introduce the Berezin calculus on the
associated coadjoint orbits. In Section 3, we recall the results of [12]: we give
a realization of πχ on a reproducing kernel Hilbert space Hχ of holomorphic
functions on D ; we introduce the corresponding Berezin calculus and we give
explicit formulas for the coherent states (i.e. for the reproducing kernel of Hχ )
and for the Berezin symbols of πχ(g). In Section 4, we introduce a contraction
(in the generalized sense of [9]) of G to G0 . We relate the parametrizations of
the coadjoint orbits associated with πχm and ρ in this contraction. In Section 5,
we relate the contraction of a sequence of operators acting on the spaces Hχm to



Cahen 293

the simple convergence of their Berezin symbols. In Section 6, we establish our
main results. We show that the coefficients of ρ are limits of the coefficients of
the representations πχm and that ρ is a contraction of (πχm) in the sense of [30].
In particular, by using the fact that the decomposition of the action of K on the
space of polynomial functions on D is well-understood (see [35] for instance), we
obtain more simple proofs than in [9]. Finally, in Section 7, we obtain analogous
contraction results for the derived representations.

2. Berezin quantization for the Heisenberg group

In this section, we recall some well-known facts on the Bargmann-Fock realization
of the unitary irreducible representations of a (2n + 1)-dimensional Heisenberg
group and the corresponding Berezin calculus [1], [9], [23]. The material of this
section is essentially taken from [9].

Let G0 be the Heisenberg group of dimension 2n + 1 and g0 its Lie
algebra. Let {X1, · · · , Xn, Y1, . . . , Yn, Z̃} be a basis of g0 in which the only non
trivial brackets are [Xk , Yk] = Z̃, k = 1, 2, . . . , n and let

{X∗
1 , · · · , X∗

n, Y
∗
1 , · · · , Y ∗n , Z̃∗}

be the corresponding dual basis of g∗0 .
For a = (a1, a2, . . . , an) ∈ Rn , b = (b1, b2, . . . , bn) ∈ Rn and c ∈ R , we

denote by [a, b, c] the element expH(
∑n

k=1 akXk +
∑n

k=1 bkYk + cZ̃) of G0 .
Fix a real number γ > 0 and denote by Oγ the orbit of the element

ξγ = γZ̃∗ of g∗0 under the coadjoint action of G0 . By the Stone-von Neumann
theorem, there exists a unique (up to unitary equivalence) representation ργ of
G0 whose restriction to the center of G0 is the character [0, 0, c] → eiγc [23]. The
representation ργ is associated to the coadjoint orbit Oγ by the Kirillov-Kostant
method of orbits [27]. Here we introduce the Bargmann-Fock realization of ργ

as follows.
Let Hγ be the Hilbert space of holomorphic functions on Cn such that

‖f‖2γ :=
∫

Cn

|f(z)|2 dµγ(z) < +∞

where dµγ(z) = (2πγ)−n exp(−|z|2/2γ) dx1 dy1 . . . dxn dyn . Here we use the
notation z = (z1, z2, . . . , zn) and zk = xk + iyk, xk, yk ∈ R for k = 1, 2, . . . n .
Then ργ is the representation of G0 on Hγ defined by

ργ([a, b, c]) f(z) = exp(ic γ +
1
4
(b+ ai)(2z + γ(−b+ ai))t) f(z + γ(−b+ ai)) .

The derived representation dργ is given by

dργ(X)f(z) =
1
2

n∑
k=1

(iak + bk)zk f(z) + γ
n∑

k=1

(iak − bk)
∂f

∂zk
+ iγcf(z) (2.1)
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for X =
∑n

k=1 akXk +
∑n

k=1 bkYk + cZ̃ ∈ g0 .
For z ∈ Cn , introduce the coherent states eγ

z (w) = exp(wz∗/2γ). We
have the reproducing property

f(z) = 〈f, eγ
z 〉γ (f ∈ Hγ)

where 〈·, ·〉γ denotes the inner product on Hγ .
Consider now a bounded operator A on Hγ . The Berezin (covariant)

symbol of A is the function defined on Cn by

sγ(A)(z) =
〈Aeγ

z , e
γ
z 〉γ

〈eγ
z , e

γ
z 〉γ

(2.2)

and the double Berezin symbol of A is the function defined by

Sγ(A)(z, w) =
〈Aeγ

w , e
γ
z 〉γ

〈eγ
w , e

γ
z 〉γ

(2.3)

for z, w ∈ Cn such that 〈eγ
z , e

γ
w〉γ 6= 0 (see [2], [3] and [4]). The function Sγ(A) is

holomorphic in the variable z and anti-holomorphic in the variable w . Moreover,
by using the reproducing property, we see that we can reconstruct the operator
A from its double symbol Sγ(A) (see [13]):

Af (z) =
∫

Cn

f(w)Sγ(A)(z, w)〈eγ
w , e

γ
z 〉γ dµγ (w). (2.4)

From this, we deduce immediately an integral formula for 〈Af, g〉γ which we
require later

〈Af, g〉γ =
∫

Cn×Cn

f(w) g(z)Sγ(A)(z, w)〈eγ
w , e

γ
z 〉γ dµγ(z) dµγ(w) . (2.5)

For g ∈ G0 , the Berezin symbol of the operator ργ(g) is easily obtained
from the reproducing property:

Sγ(ργ(g))(z, w) = exp
(
iγc− 1

4
γ(|a|2 + |b|2) +

1
2
(b+ ia)zt − 1

2
w(b− ia)t

)
.

(2.6)
Moreover, for X =

∑n
k=1 akXk +

∑n
k=1 bkYk + cZ̃ ∈ g0 , we have

Sγ(dργ(X))(z, w) =
1
2
(b+ ia)zt +

1
2
(ia− b)wt + iγc. (2.7)

Let us introduce the parametrization ψγ of the orbit Oγ defined by

ψγ(z) = (Re z)X∗ + (Im z)Y ∗ + γ Z̃∗ (2.8)

with obvious notation. Then, for all z ∈ Cn , X ∈ g0 , we have

Sγ (dργ (X))(z, z) = i〈ψγ (z), X〉. (2.9)

Hence the Berezin calculus provides an adapted functional calculus on Oγ in the
sense of [6] and [10].
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3. Berezin quantization for discrete series representations

In this section, we introduce the notation and we review some well-known facts
on Hermitian symmetric spaces of the non-compact type and on holomorphic
discrete series representations (see [24], Chapter VIII, [28], Chapter 6, [32],
Chapter XII and [35], Chapter II).

Let G be a connected semi-simple non-compact real Lie group with finite
center and let K be a maximal compact subgroup of G . We assume that the
center of the Lie algebra of K is non-trivial. Then the homogeneous space G/K
is a Hermitian symmetric space of the non-compact type.

Let g and k be the Lie algebras of G and K , respectively. Let gc and kc

be the complexifications of g and k and Gc , Kc the corresponding complex Lie
groups containing G and K , respectively. We denote by β the Killing form of gc ,
that is, β(X,Y ) = Tr(adX adY ) for X, Y ∈ gc . Let p be the ortho-complement
of k in g with respect to β . Then g = k⊕ p is a Cartan decomposition of g .

We fix a Cartan subalgebra h of k . Then h is also a Cartan subalgebra
of g . We denote by hc the complexification of h . Let H be the connected
subgroup of K with Lie algebra h . Let ∆ be the root system of gc relative to
hc and let gc = hc ⊕

∑
α∈∆ gα be the root space decomposition of gc . Then

we have the direct decompositions kc = hc ⊕
∑

α∈∆c
gα and pc =

∑
α∈∆n

gα

where pc denotes the complexification of p and ∆c (resp. ∆n ) denotes the set
of compact (resp. non-compact) roots. We choose an ordering on ∆ as in [24],
p. 384 and we denote by ∆+ , ∆+

c and ∆+
n the corresponding sets of positive

roots, positive compact roots and positive non-compact roots, respectively. We
set p+ =

∑
α∈∆+

n
gα and p− =

∑
α∈∆+

n
g−α . Then we have [kc , p±] ⊂ p± and

p+ and p− are abelian subspaces [24], Proposition 7.2. We denote by P+ and
P− be the analytic subgroups of Gc with Lie algebras p+ and p− , respectively.

For each µ ∈ (hc)∗ , we denote by Hµ the element of hc satisfying
β(H,Hµ) = µ(H) for all H ∈ hc . Note that if µ is real-valued on ih then
iHµ ∈ g . For µ, ν ∈ (hc)∗ , we set (µ, ν) := β(Hµ,Hν).

Let θ denotes conjugation over the real form g of gc . For X ∈ gc ,
we set X∗ = −θ(X). We denote by g → g∗ the involutive anti-automorphism
of Gc which is obtained by exponentiating X → X∗ to Gc . Recall that the
multiplication map (z, k, y) → zky is a diffeomorphism from P+ × Kc × P−

onto an open submanifold of Gc containing G [24], Lemma 7.9. Following [29],
we introduce the projections κ : P+KcP− → Kc and ζ : P+KcP− → P+ .
Then the map gK → log ζ(g) from G/K to p+ induces a diffeomorphism from
G/K onto a bounded domain D ⊂ p+ [24], p. 392. The natural action of G on
G/K corresponds to the action of G on D given by g ·Z = log ζ(g expZ). The
G -invariant measure on D is dµ(Z) = χ0(κ(expZ∗ expZ)) dµL(Z) where χ0 is
the character on Kc defined by χ0(k) = Detp+(Ad k) and dµL(Z) is a Lebesgue
measure on D [29]. To simplify the notation, we set k(Z) := κ(expZ∗ expZ)
for Z ∈ D .

Now we introduce the holomorphic discrete series representations of
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scalar type of G as follows. Let χ be a unitary character of K . We also
denote by χ the extension of χ to Kc . Let us introduce the Hilbert space Hχ

of holomorphic functions on D such that

‖f‖2χ :=
∫
D
|f(Z)|2χ(k(Z)) cχdµ(Z) < +∞

where the constant cχ is defined by

c−1
χ =

∫
D

(χ.χ0)(k(Z)) dµL(Z).

Note that χ(k(Z)) > 0 for all Z ∈ D . Indeed, for each Z ∈ D there exists gZ ∈
G such that gZ ·0 = Z . Writing gZ = expZky with k ∈ Kc and y ∈ P− , we have
k(Z) = (k∗)−1k−1 which gives χ(k(Z)) = χ(k)

−1
χ(k) = |χ(g−1

Z expZ)|2 > 0.

Proposition 3.1. [16], [28] Let λ = dχ|hc and δ = 1
2

∑
α∈∆+ α . Then Hχ

is nonzero if and only if (λ + δ, α) < 0 for every non-compact positive root α .
In that case, Hχ contains all polynomials. Moreover, the action of G on Hχ

defined by
πχ(g)f(Z) = χ(κ(g−1 expZ))−1 f(g−1 · Z)

is a unitary representation of G which belongs to the holomorphic discrete series
of G .

In the rest of the paper, we assume that χ satisfies the condition of
Proposition 3.1. Note that Hχ is a reproducing kernel Hilbert space. More
precisely, for Z ∈ D , define the coherent state eZ ∈ Hχ by

eZ(W ) = χ(κ(expZ∗ expW ))−1.

Then we have the reproducing property f(Z) = 〈f, eZ〉χ for each f ∈ Hχ (see
[29] Chapter XII.2 for instance). Here 〈·, ·〉χ denotes the inner product on Hχ .

As in Section 2, we can define the Berezin symbol sχ(A)(Z) and the
double Berezin symbol Sχ(A)(Z,W ) of a bounded operator A on Hχ . We also
obtain an integral formula for 〈Af, g〉χ analogous to that of Section 2:

〈Af, g〉χ =
∫
D×D

f(W )g(Z)Sχ(A)(Z,W )〈eχ
W , eχ

Z〉χ

(χ.χ0)(k(Z))(χ.χ0)(k(W ))c2λ dµL(Z)dµL(W ).
(3.1)

In [12], we give explicit expressions for the derived representation dπχ ,
for the Berezin symbols of πχ(g) and dπχ(X). In the rest of this section, we
recall some results of [12].

If L is a Lie group and X is an element of the Lie algebra of L then
we denote by X+ the right invariant vector field on L generated by X , that is,
X+(h) = d

dt (exp tX)h|t=0 for h ∈ L .
Let pp+ , pkc and pp− be the projections of gc onto p+ , kc and p−

associated with the direct decomposition gc = p+ ⊕ kc ⊕ p− . The following
proposition can be easily proved by differentiating the multiplication map from
P+ ×Kc × P− onto P+KcP− .
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Lemma 3.2. [12] Let X ∈ gc and g = z k y where z ∈ P+, k ∈ Kc and
y ∈ P− . We have
1) dζg(X+(g)) = (Ad(z) pp+(Ad(z−1)X))+(z) .
2) dκg(X+(g)) = (pkc(Ad(z−1)X))+(k) .

From Lemma 3.2 we can deduce the following proposition (see [12]; for
Point 2) see also [29], Proposition XII.2.1).

Proposition 3.3. [12]
1) Let g ∈ G . We have

Sχ(π(g))(Z,W ) = χ
(
κ(expW ∗g−1 expZ)−1κ(expW ∗ expZ)

)
.

2) For X ∈ gc and f ∈ Hχ , we have

dπχ(X)f(Z) = dχ((pkc(Ad((expZ)−1)X)) f(Z)− (df)Z

(
pP+(e− ad Z X)

)
.

3) Let X ∈ gc . We have

Sχ(dπχ(X))(Z,W ) = λ
(
pkc(Ad(ζ(expW ∗ expZ)−1 expW ∗)X

)
.

We can write
S(dπχ(X))(Z,W ) = iβ(ψ̃χ(Z,W ), X)

where
ψ̃χ(Z,W ) := Ad

(
exp(−W ∗) ζ(expW ∗ expZ)

)
(−iHλ).

Moreover, the map ψχ : Z → ψ̃χ(Z,Z) is a diffeomorphism from D onto the
orbit Oχ of −iHλ ∈ g for the adjoint action of G .

4. Contraction of groups

We retain the notation from the previous sections. In particular, we fix a real
number γ > 0 as in Section 2 and a unitary character χ of K as in Section 3.

Let us consider a Chevalley basis (Ẽα)α∈∆ ∪ (Hα)α∈∆s for gc (see for
instance [27], Chapter 5). Here ∆s denotes the set of simple roots corresponding
to ∆+ . In particular, we have [Ẽα, Ẽ−α] = Hα for α ∈ ∆+ . Note that g is
spanned by the elements Ẽα − Ẽ−α , i(Ẽα + Ẽ−α) for α ∈ ∆+

c , Ẽα + Ẽ−α ,
i(Ẽα − Ẽ−α) for α ∈ ∆+

n and iHα for α ∈ ∆s . Then we have Ẽ∗α = Ẽ−α for
α ∈ ∆c and Ẽ∗α = −Ẽ−α for α ∈ ∆n . Now we introduce the basis (Eα)α∈∆+

n
for

p+ defined by Eα = 1√
−(λ,α)

Ẽα (α ∈ ∆+
n ) and the corresponding Euclidean

norm defined by |Z| = (
∑

α∈∆+
n
|zα|2)1/2 for Z =

∑
α∈∆+

n
zαEα .

Let α1, α2, . . . , αn be an enumeration of ∆+
n . For k = 1, 2, . . . , n , we

set Xk = 1
2i (Eαk

− E−αk
), Yk = 1

2 (Eαk
+ E−αk

) and Z̃ = 1
2(λ,λ) iHλ . Let g0

be the subspace of g generated by Xk , Yk , k = 1, 2, . . . , n and Z̃ . Let p0 be
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the orthogonal projection of g on the line generated by Z̃ with respect to the
Killing form. For r > 0, we denote by Cr the linear isomorphism of g defined
by Cr = r2p0 + r(Id− p0). We introduce the Lie bracket on g defined by

[X,Y ]0 = lim
r→0

C−1
r ([Cr(X), Cr(Y )]).

Lemma 4.1.
1) For X and Y in g , we have [X,Y ]0 = p0([(Id− p0)(X), (Id− p0)(Y )]) .
2) The Lie algebra (g0, [·, ·]0) is a Heisenberg algebra. In the basis Xk , Yk ,
k = 1, 2, . . . , n , Z̃ of g0 , the only non trivial brackets are [Xk, Yk]0 = Z̃ .
3) The Lie algebra (g, [·, ·]0) is isomorphic as a Lie algebra to the product of the
Heisenberg algebra (g0, [·, ·]0) by an abelian Lie algebra of dimension dim g −
dim g0 .

Proof. Direct computation.

We denote also by Cr the restriction of Cr to g0 . Then we have

Cr

(
n∑

k=1

akXk +
n∑

k=1

bkYk + cZ̃

)
= r

(
n∑

k=1

akXk +
n∑

k=1

bkYk

)
+ r2cZ̃

and it is immediate from Lemma 4.1 that that Cr : g0 → g is a contraction of g
to g0 in the sense of [9], Section 4. The corresponding contraction of G to the
Heisenberg group G0 with Lie algebra g0 is the map cr : G0 → G defined by
cr(expG0

(X)) = expG(Cr(X)).
In the following proposition, we describe how the parametrizations of the

orbits Oχm and Oγ (see Section 2 and Section 3) are related in the contraction
process. In the rest of the paper, we identify p+ to Cn by means of the linear
isomorphism (z1, z2, . . . , zn) → Z =

∑n
k=1 zkEαk

.

Proposition 4.2. Let r(m) be a sequence of ]0, 1] satisfying

lim
m→+∞

mr(m)2 = 2γ.

Then, for each X ∈ g0 and each Z ∈ p+ , we have

lim
m→+∞

β
(
ψχm(Z/

√
2γm), Cr(m)(X)

)
= 〈ψγ(Z), X〉,

or, equivalently, for each Z ∈ p+ we have

lim
m→+∞

C∗r(m)

(
ψχm(Z/

√
2γm)

)
= ψγ(Z).

Proof. Assume that X = Xk or X = Yk . Then Cr(m)(X) = r(m)X . By
Part 3) of Proposition 3.3, we have

β
(
ψχm(Z/

√
2γm), Cr(m)(X)

)
= −imr(m)

× β
(
ζ
(
exp(Z∗/

√
2γm) exp(Z/

√
2γm)

)
Hλ , Ad

(
exp(Z∗/

√
2γm)

)
X
)
.

(4.1)
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In order to study the behavior of this expression as m → +∞ , we need a first-
order Taylor formula for the function

F (t) = β (ζ(exp(tZ∗) exp(tZ)Hλ , Ad(exp(tZ∗))X)

at t = 0. We have F (0) = 0 and by using Lemma 3.2 we find that F ′(0) =
β(Hλ, [Z∗ − Z,X]) . We then obtain

F (t) = β(Hλ, [Z∗ − Z,X]) t+ o(t). (4.2)

If X = Xk , then β(Hλ, [Z∗ − Z,X]) = − 1
2i (zk + zk) and (4.2) implies

lim
m→+∞

β
(
ψχm(Z/

√
2γm), Cr(m)(X)

)
=

1
2
(zk + zk) = Rezk.

Similarly, if X = Yk then β(Hλ, [Z∗ − Z,X]) = 1
2 (zk − zk) and

lim
m→+∞

β
(
ψmλ(Z/

√
2γm), Cr(m)(X)

)
= − i

2
(zk − zk) = Imzk.

If X = Z̃ then we immediately obtain

lim
m→+∞

β
(
ψmλ(Z/

√
2γm), Cr(m)(X)

)
= γ.

Comparing with (2.8), we get the desired result.

Note that the condition limm→+∞ (mr(m)2) = 2γ is equivalent to the
condition limm→+∞ C∗r(m)(−imHλ) = ξγ in g∗0 in the notation of Section 2
and Section 3. Then Proposition 4.2 says that the deformed orbits C∗r(m)(Oχm)
’converge to’ the orbit Oγ , that is, each point ξ in Oγ is the limit of a sequence
ξm ∈ C∗r(m)(Oχm) (also see [17], Section 2). It is quite remarkable that, once
the condition limm→+∞ (mr(m)2) = 2γ is fixed, all the rest follows, that is, we
can establish convergence of Berezin symbols and contractions of representations
(see the next sections).

5. Contraction of operators

In this section, we keep the notation of Section 3 and Section 4. We first establish
an estimate for the function ϕχ(Z) = χ−1(k(Z)) on D . Recall that we have set
k(Z) := κ(expZ∗ expZ).

Let us denote by |·| an arbitrary norm on gc . Given a function ψ from a
subspace of gc to gc and p ∈ N , we write ψ(X) = O(|X|p) if there exist M > 0
and ε > 0 such that |ψ(X)| ≤M |X|p whenever |X| < ε .
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Lemma 5.1.
1) For X in a sufficiently small neighborhood of 0 in gc , write expX =
expY expU expV with Y ∈ p+ , U ∈ kc and V ∈ p− . Then we have

U = pkc(X)− 1
2
pkc([pp+(X), pp−(X)]) +O(|X|3).

2) For Z and W in a sufficiently small neighborhood of 0 in p+ , write

expZ∗ expW = expY expU expV

with Y ∈ p+ , U ∈ kc and V ∈ p− . Then we have

U = pkc([Z∗,W ]) +O(max(|Z|, |W |)3).

Proof. 1) We first show that Y,U, V = O(|X|). Set U = u(X) :=
log κ(expX). By Part 2) of Lemma 3.2, we have du(0)(X) = pkc(X) for each
X ∈ gc . Then, by writing the first-order Taylor formula for u at 0, we obtain
u(X) = O(|X|). Similarly, we find Y, V = O(|X|).

Now, by the Baker-Campbell-Hausdorff formula [36], we have

X = Y + U + V +
1
2
[Y,U ] +

1
2
[Y, V ] +

1
2
[U, V ] +O(max(|Y |, |U |, |V |)3)

for X in a sufficiently small neighborhood of 0 in gc . Since [Y,U ] ∈ p+ and
[U, V ] ∈ p− , this gives

pkc(X) = U +
1
2
pkc([Y, V ]) +O(|X|3) (5.1)

pp+(X) = Y +
1
2
[Y, U ] +

1
2
pp+([Y, V ]) +O(|X|3) (5.2)

pp−(X) = V +
1
2
[U, V ] +

1
2
pp−([Y, V ]) +O(|X|3). (5.3)

Equalities (5.2) and (5.3) implies

[pp+(X), pp−(X)] = [Y, V ] +O(|X|3). (5.4)

Replacing (5.4) in (5.1) we then obtain the desired equality.
2) Using the Baker-Campbell-Hausdorff formula again, this is an immediate
consequence of 1) .

Lemma 5.2.
1) For Z ∈ p+ close to 0 , we have ϕχ(Z) = 1 + |Z|2 +O(|Z|3).
2) There exist a constant C > 0 and a constant D > 0 such that for each Z ∈ D
we have

ϕχ(Z) ≥ 1 + C|Z|2 ≥ 1
1−D|Z|2

.
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Proof. 1) By applying Part 2) of Lemma 5.1, we have

U := log k(Z) = pkc([Z∗, Z]) +O(|Z|3) = −
∑

α∈∆+
n

1
(λ, α)

|zα|2Hα +O(|Z|3).

for Z =
∑

α∈∆+
n
zαEα . Then dχ(U) = λ(U) = −|Z|2 +O(|Z|3). Hence

ϕχ(Z) = e−λ(U) = 1 + |Z|2 +O(|Z|3).

2) Note that the restriction of πχ to H is given by

πχ(h)f(Z) = χ(h)f(Ad(h−1)Z)

for h ∈ H and Z ∈ D . For Z =
∑n

k=1 zkEαk
∈ D , we set f0(Z) = 1 and

fk(Z) = zk for 1 ≤ k ≤ n . Then we see immediately that f0 is a weight vector
for the weight λ of πχ and, for each k = 1, 2, . . . , n , fk is a weight vector for
the weight λ − αk . Since the weight spaces for distinct weights are orthogonal,
we have 〈fk, fl〉χ = 0 for 0 ≤ k 6= l ≤ n .

On the other hand, it is well-known that for any orthonormal basis
(gk) for Hχ we have eχ

Z(W ) =
∑

k≥0 gk(W )gk(Z). Taking (gp) so that gk =
‖fk‖−1

χ fk (0 ≤ k ≤ n), we see that there exists a constant C > 0 such that
ϕχ(Z) ≥ 1 + C|Z|2 for each Z ∈ D . Moreover, to obtain the second inequality,
we have just to take the constant D > 0 such that D−1 > 1/C + supZ∈D |Z|2 .

In order to simplify notation, in the rest of the paper, we write, πm ,
Hm , 〈·, ·〉m , em

Z , cm , Sm instead of πχm , Hχm , 〈·, ·〉χm , eχm

Z , cχm , Sχm ,
respectively. Moreover, we fix the Lebesgue measure dµL(Z) on D as follows.
Writing Z =

∑n
k=1 zkEαk

and, for k = 1, 2, . . . , n , zk = xk + iyk , xk, yk ∈ R ,
we take dµL(Z) = dx1dy1 . . . dxndyn .

Lemma 5.3.
1) For Z ∈ p+ , we have

lim
m→+∞

χm
(
k(Z/

√
2γm)

)
= e−|Z|

2/2γ .

2) For Z, W ∈ p+ , we have

lim
m→+∞

〈em
W/

√
2γm, e

m
Z/
√

2γm〉m = 〈eγ
W , eγ

Z〉γ .

3) We have

lim
m→+∞

c−1
m (2γm)n =

∫
p+

e−|Z|
2/2γ dµL(Z) = (2πγ)n.



302 Cahen

Proof. 1) Fix Z ∈ p+ . By Part 1) of Lemma 5.2, we have

logχm
(
k(Z/

√
2γm)

)
=−m log χ−1

(
k(Z/

√
2γm)

)
=−m logϕλ(Z/

√
2γm)

=−m
(
|Z|/

√
2γm

)2

+O(1/
√
m)

=− (1/2γ) |Z|2 +O(1/
√
m).

2) See the proof of Proposition 6.1.
3) Recall that

c−1
m =

∫
D

(χm.χ0)(k(Z)) dµL(Z).

Changing variables Z → Z/
√

2γm in this integral, we get

c−1
m (2γm)n =

∫
√

2γmD
(χm.χ0)(k(Z/

√
2γm)) dµL(Z).

By 1), the integrand Im(Z) := (χm.χ0)(k(Z/
√

2γm)) satisfies

lim
m→+∞

Im(Z) = e−|Z|
2/2γ .

In order to obtain 3), it suffices to verify that the Lebesgue dominated conver-
gence theorem can be applied. But by Part 2) of Lemma 5.2 we have

χm(k(Z)) ≤
(

1−D
|Z|2

2γm

)m

≤ e−D/2γ|Z|2

for Z ∈
√

2γmD . This ends the proof.

In the rest of the paper, we denote by P the space of all complex
polynomials on p+ .

Proposition 5.4. For each integer m ≥ 1 let Am be an operator of Hm . Let
A be a bounded operator of Hγ . Assume that
(i) The sequence ‖Am‖op is bounded;
(ii) we have limm→+∞ Sm(Am)(Z/

√
2γm , W/

√
2γm) = Sγ(A)(Z,W ).

Then, for any complex polynomials P and Q , we have

lim
m→+∞

〈Am P (
√

2γm·), Q(
√

2γm·)〉m = 〈AP,Q〉γ .

Proof. First, note that we can assume that P and Q are homogeneous. By
using Formula (3.1), we express 〈Am P (

√
2γm·), Q(

√
2γm·)〉m as an integral.

Changing variables (Z,W ) → (Z/
√

2γm , W/
√

2γm) in this integral, we get

〈Am P (
√

2γm·),Q(
√

2γm·)〉m

= c2m(2γm)−2n

∫
(
√

2γmD)2
Im(Z,W ) dµL(Z) dµL(W )
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where the integrand Im(Z,W ) is given by

Im(Z,W ) = P (W )Q(Z)Sm(Am)(Z/
√

2γm , W/
√

2γm)

〈em
W/

√
2γm, e

m
Z/
√

2γm〉m(χm.χ0)(k(Z/
√

2γm))(χm.χ0)(k(W/
√

2γm)).

By Lemma 5.3, we have limm→+∞ c2m(2γm)−2n = (2πγ)−2n and

lim
m→+∞

Im(Z,W ) = P (W )Q(Z)Sγ(A)(Z,W )〈eγ
W , eγ

Z〉γ e
−|Z|2/2γ e−|W |2/2γ .

Now, as in the proof of Part 3) of Lemma 5.3, we aim to apply the Lebesgue dom-
inated convergence theorem. We write by using the Cauchy-Schwartz inequality

|〈Am em
W/

√
2γm, e

m
Z/
√

2γm〉m| ≤ ‖Am‖op ‖em
Z/
√

2γm‖m ‖em
W/

√
2γm‖m.

This implies that

|Im(Z,W )| ≤ |P (W )| |Q(Z)| ‖Am‖op χ
m/2(k(Z/

√
2γm))χm/2(k(W/

√
2γm)).

Hence we conclude as in the proof of Part 3) of Lemma 5.3.

Corollary 5.5. Let P and Q two homogeneous complex polynomials different
to 0 . Then, with the notation as in Proposition 5.4, we have

lim
m→+∞

〈Am(‖P‖−1
m P ), ‖Q‖−1

m Q〉m = 〈A(‖P‖−1
γ P ), ‖Q‖−1

γ Q〉γ .

Proof. Since P and Q are homogeneous, one has
〈Am(‖P‖−1

m P ), ‖Q‖−1
m Q〉m

= ‖P (
√

2γm·)‖−1
m ‖Q(

√
2γm·)‖−1

m 〈Am P (
√

2γm·), Q
√

2γm·)〉m.
But applying Proposition 5.4 to the particular case Am = Id , A = Id , we get

lim
m→+∞

〈P (
√

2γm·), Q(
√

2γm·)〉m = 〈P,Q〉γ

and then limm→+∞ ‖P (
√

2γm·)‖m = ‖P‖γ . The desired result then follows from
Proposition 5.4.

Recall that P is a K -module for the action σ defined by σ(k)P (Z) =
P (Ad(k−1)Z). By [22], [35] we have the Peter-Weyl decomposition

P =
⊕

s∈Nr
+

Ps

where Nr
+ = {s = (s1, s2, . . . , sr) ∈ Nr : s1 ≥ s2 ≥ . . . ≥ sr ≥ 0} and, for

each s ∈ Nr
+ , Ps is an irreducible K -module with highest weight −

∑r
k=1 skγk .

Here γ1, γ2, . . . , γr denote the Harish-Chandra strongly orthogonal roots. The
elements of Ps are homogeneous polynomials of degree s1 + s2 + · · · + sr .
Moreover, for each s ∈ Nr

+ and each integer m ≥ 1, there exists a constant
cm,s > 0 such that

〈P , Q〉m = c−1
m,s〈P , Q〉γ

for each P,Q ∈ Ps . The constant cm,s can be expressed in terms of the
Pochhammer symbol [35].

Now, for each s ∈ Nr
+ , we fix a basis (fγ

s,j)1≤j≤dimPs
for Ps which is

orthonormal with respect to 〈·, ·〉γ . Then (fγ
s,j) is an orthonormal basis for Hγ

and fm
s,j := √

cm,sf
γ
s,j is an orthonormal basis for Hm . We denote by Bm the

unitary operator from Hγ onto Hm defined by Bmf
γ
s,j = fm

s,j .
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Proposition 5.6. Let (Am) and A as in Proposition 5.4.
1) For s, s′ ∈ Nr

+ , 1 ≤ j ≤ dimPs and 1 ≤ j′ ≤ dimPs we have

lim
m→+∞

〈Am fm
s,j , f

m
s′,j′〉m = 〈Afγ

s,j , f
γ
s′,j′〉γ .

2) If moreover the operators Am (m ≥ 1) and A are unitary then we have

lim
m→+∞

‖B−1
m AmBm P −AP‖γ = 0

for each P ∈ P .

Proof. 1) Since the polynomials fγ
s,j are homogeneous, the result follows from

Corollary 5.5.
2) By density and linearity we can assume that P = fγ

s,j . Since Bm is unitary,
for each (s′, j′), we have

〈B−1
m AmBm fγ

s,j , f
γ
s′,j′〉γ = 〈Am fm

s,j , f
m
s′,j′〉m → 〈Afγ

s,j , f
γ
s′,j′〉γ

as m → +∞ . This implies that (B−1
m AmBm fγ

s,j)m converges weakly to Afγ
s,j

in Hγ . Since ‖B−1
m AmBm fγ

s,j‖γ = 1 = ‖Afγ
s,j‖γ , we conclude that the sequence

(B−1
m AmBm fγ

s,j)m converges strongly to Afγ
s,j .

6. Contraction of representations

In this section, we use the results of Section 5 in order to establish our main results
about the contraction of the sequence πm to the representation ργ of G0 . As in
Section 5, we consider a sequence r(m) such that limm→+∞ mr(m)2 = 2γ .

Proposition 6.1. For g0 ∈ G0 and Z, W ∈ p+ , we have

lim
m→+∞

Sm(πm(cr(m)(g0)))(Z/
√

2γm , W/
√

2γm) = Sγ(ργ(g0))(Z,W ).

Proof. Let Z, W ∈ p+ and g0 = exp
(∑n

k=1 akXk +
∑n

k=1 bkYk + cZ̃
)
∈ G0 .

Denoting by Um the expression

log κ
(
exp
(
W ∗/

√
2γm

)
exp
(
−r(m)

( n∑
k=1

akXk +
n∑

k=1

bkYk

)
− r(m)2cZ̃

)
× exp

(
Z/
√

2γm
))
,

we have to study the behavior of the sequence um := χ−m(expUm) as m→ +∞ .
From Lemma 5.1, we deduce that

Um = −r(m)2cZ̃ − r(m)2

2γ
pkc([W ∗,Σ])− r(m)2

2γ
pkc([Σ, Z]) +

r(m)2

4γ2
pkc([W ∗, Z])

− 1
2
pkc([pp+(Σ), pp−(Σ)]) +O(r(m)3)
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where

Σ :=
n∑

k=1

(
akXk + bkYk

)
=

n∑
k=1

( 1
2i

(ak + ibk)Eαk
+

1
2i

(−ak + ibk)E−αk

)
.

Since we have

pkc([W ∗,Σ]) = −
n∑

k=1

1
2i
wk(ak + ibk)

1
(λ, αk)

Hαk

pkc([Σ, Z]) = −
n∑

k=1

1
2i
zk(ak − ibk)

1
(λ, αk)

Hαk

pkc([W ∗, Z]) = −
n∑

k=1

wkzk
1

(λ, αk)
Hαk

mod.
∑

α∈∆c
gα , we find

lim
m→+∞

log um = lim
m→+∞

(−mλ(Um)) = iγc+
n∑

k=1

1
2
wk(iak − bk)

+
n∑

k=1

1
2
zk(iak + bk) +

1
2γ

n∑
k=1

wkzk −
γ

4

n∑
k=1

(a2
k + b2k).

The result then follows from Equality (2.6).

Now we can apply the results of Section 5 to the operators Am = πm(cr(m))(g0)
and A = ργ(g0) for g0 ∈ G0 . Then we obtain immediately the following
proposition.

Proposition 6.2.
1) For P, Q ∈ P and g0 ∈ G0 , we have

lim
m→+∞

〈πm(cr(m))(g0)P (
√

2γm·), Q(
√

2γm·)〉m = 〈ργ(g0)P,Q〉γ .

2) For g0 ∈ G0 , s, s′ ∈ Nr
+ , 1 ≤ j ≤ dimPs and 1 ≤ j′ ≤ dimPs we have

lim
m→+∞

〈πm(cr(m))(g0) fm
s,j , f

m
s′,j′〉m = 〈ργ(g0) f

γ
s,j , f

γ
s′,j′〉γ .

3) For g0 ∈ G0 and P ∈ P , we have

lim
m→+∞

‖B−1
m πm(cr(m))(g0)Bm P − ργ(g0)P‖γ = 0.

In particular, we have limm→+∞(B−1
m πm(cr(m))(g0)Bm)P (Z) = ργ(g0)P (Z) for

each Z ∈ D .
Example. [29] Here we take G = SU(p, q) and K = S(U(p)×U(q)). Let h be
the abelian subalgebra of k consisting of the matrices(

iaIp 0
0 ibIq

)
a, b ∈ R pa+ bq = 0.
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Then we have

D ' {Z ∈Mpq(C) : Ip − ZZ? > 0} = {Z ∈Mpq(C) : ‖Z‖op < 1}

where ? denotes conjugate-transposition. The action of G on D is given by

g · Z = (AZ +B)(CZ +D)−1, g =
(
A B
C D

)
.

We fix an integer m and we consider the unitary character χm of K
defined by

χm

(
A 0
0 D

)
= (DetA)m.

The condition of Proposition 3.1 is then equivalent to m+ p+ q ≤ 0. The norm
of the Hilbert space Hχm

is given by

‖f‖2χm
=
∫
D
|f(Z)|2 (Det(Iq − Z?Z))−p−q−m cχmdµL(Z)

where the constant

c−1
χm

=
∫
D

(Det(Iq − Z?Z))−p−q−m dµL(Z)

can be expressed in terms of the Gamma function [25], Theorem 2.2.1. The
coherent states for Hχm are given by

eχm

Z (W ) = χm(κ(expZ∗ expW )−1) = (Det(Iq − Z?W ))m,

the representation πχm
is given by

(πχm(g)f)(Z) = (Det(CZ+D))m f((AZ+B)(CZ+D)−1), g−1 =
(
A B
C D

)
and the Berezin symbol of πχm

(g) is

Sχm
(πχm

(g))(W,Z) =
(
Det(CW +D − Z?(AW +B))

)m(Det(Ip − Z?W )
)−m

.

We can apply Proposition 6.2 in order to obtain a contraction of the
sequence πχm

to the unitary irreducible representation ργ of the Heisenberg
group of dimension 2pq + 1. In [9], the particular case p = 1 was considered.

Let us mention that, in [31], a similar contraction of SU(p, p) to Mp(C)×
S(U(p)×U(p)) was considered and extended to the infinite-dimensional versions
of these groups. The calculations of [31] were based on the expansion of
(Det(Iq − Z?W ))m as a power series in the variables Z? and W .
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7. Contraction of derived representations

In this section, we establish contraction results for the derived representations
dπm and dργ analogous to those of Section 6.

Proposition 7.1. For X ∈ g0 and Z, W ∈ p+ , we have

lim
m→+∞

Sm(dπm(Cr(m)(X)))(Z/
√

2γm , W/
√

2γm) = Sγ(dργ(X))(Z,W ).

Proof. Taking Equality (2.9) and Part 3) of Proposition 3.3 into account, the
result follows from Proposition 4.2.

Proposition 7.2.
1) For P, Q ∈ P and X ∈ g0 , we have

lim
m→+∞

〈dπm(Cr(m)(X))P (
√

2γm·), Q(
√

2γm·)〉m = 〈dργ(X)P,Q〉γ .

2) For s, s′ ∈ Nr
+ , 1 ≤ j ≤ dimPs , 1 ≤ j′ ≤ dimPs and X ∈ g0 , we have

lim
m→+∞

〈dπm(Cr(m)(X)) fm
s,j , f

m
s′,j′〉m = 〈dργ(X) fγ

s,j , f
γ
s′,j′〉γ .

3) For P ∈ P and X ∈ g0 , we have

lim
m→+∞

‖B−1
m dπm(Cr(m)(X))Bm P − ργ(X)P‖γ = 0.

Proof. 1) We can assume that P is a homogeneous polynomial of degree p .
Then we have

〈dπm(Cr(m)(X))P (
√

2γm·), Q(
√

2γm·)〉m

=
∫
D

(
√

2γm)p
(
dπm(Cr(m)(X))P

)
(Z)Q(

√
2γmZ) cm(χm.χ0)(k(Z)) dµL(Z)

= cm(2γm)−n

∫
√

2γmD
(
√

2γm)p
(
dπm(Cr(m)(X))P

)
(Z/

√
2γm)Q(Z)

× (χm.χ0)(k(Z/
√

2γm)) dµL(Z)

by the change of variables Z → Z/
√

2γm .
Now, by using the expression for dπm given in Proposition 3.3 (see also

[12], Proposition 3.3 or, equivalently, [29], Proposition XII 2.1), we can easily
verify that

lim
m→+∞

(
√

2γm)p
(
dπm(Cr(m)(X))P

)
(Z/

√
2γm) = dργ(X)P (Z)
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and that there exists a polynomial P̃ independent of m such that

|(
√

2γm)p
(
dπm(Cr(m)(X))P

)
(Z/

√
2γm)| ≤ P̃ (|Z|)

for each m ≥ 1 and each Z ∈
√

2γmD . Then the result follows from the
dominated convergence theorem in the same way as in the proof of 3) of Lemma
5.3.
2) From 1) we deduce that

lim
m→+∞

〈dπm(Cr(m)(X))(‖P‖−1
m P ), ‖Q‖−1

m Q〉m

= 〈dργ(X)(‖P‖−1
γ P ), ‖Q‖−1

γ Q〉γ

for each homogeneous polynomials P and Q . The result then follows as in the
proof of Part 1) of Proposition 5.6.
3) By density and linearity we can assume that P = fγ

s,j . We see easily that

‖B−1
m dπm(Cr(m)(X))Bm fγ

s,j − ργ(X) fγ
s,j‖

2
γ

=
∑

(s′,j′)

|dπm(Cr(m))(X)) fm
s,j , f

m
s′,j′〉m − 〈dργ(X) fγ

s,j , f
γ
s′,j′〉γ |

2.

Taking into account the expressions for dπm and dργ given above (see Equality
(2.1) and Part 2) of Proposition 3.3), we see that this sum is finite and the
number of its nonzero terms does not depend on m . The results then follows
from 1).

Acknowledgements. I would like to thank the referee for a careful reading of
the manuscript and for pointing out the paper [31].
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