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Geometric structures on Lie groups

with flat bi-invariant metric
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Abstract. Let L ⊂ V = Rk,l be a maximally isotropic subspace. It is shown that any
simply connected Lie group with a bi-invariant flat pseudo-Riemannian metric of signa-
ture (k, l) is 2-step nilpotent and is defined by an element η ∈ Λ3L ⊂ Λ3V . If η is of type
(3, 0)+(0, 3) with respect to a skew-symmetric endomorphism J with J2 = εId, then the
Lie group L(η) is endowed with a left-invariant nearly Kähler structure if ε = −1 and
with a left-invariant nearly para-Kähler structure if ε = +1. This construction exhausts
all complete simply connected flat nearly (para-)Kähler manifolds. If η 6= 0 has rational
coefficients with respect to some basis, then L(η) admits a lattice Γ, and the quotient
Γ\L(η) is a compact inhomogeneous nearly (para-)Kähler manifold. The first non-trivial
example occurs in six dimensions.
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Introduction

A pseudo-Riemannian manifold (M, g) endowed with a skew-symmetric almost complex
structure J is called nearly Kähler if the Levi-Civita covariant derivative DJ is skew-
symmetric, that is (DXJ)X = 0 for all X ∈ TM . Nearly Kähler manifolds with a positive
definite metric are by now well studied, see [10] and references therein. Replacing the
equation J2 = −Id by J2 = Id one arrives at the definition of nearly para-Kähler manifold,
see [6]. This generalises the notion of a para-Kähler (or bi-Lagrangian) manifold. Such
manifolds occur naturally in super-symmetric field theories over Riemannian rather than
Lorentzian space-times, see [3]. In [6] Ivanov and Zamkovoy ask for examples of Ricci-flat
nearly para-Kähler manifolds in six dimensions with DJ 6= 0. In this paper we will give a
classification of flat nearly para-Kähler manifolds. In particular, we will show that there
exists a compact six-dimensional such manifold with DJ 6= 0.
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It is noteworthy that flat nearly para-Kähler manifolds M provide also solutions
of the so-called tt*-equations, see [12] and references therein. As a consequence, they give
rise to a (para-)pluriharmonic map from M into the pseudo-Riemannian symmetric space
SO0(n, n)/GL(n).

Let V be a pseudo-Euclidian vector space and η ∈ Λ3V . Contraction with η
defines a linear map Λ2V ∗ → V . The image of that map is denoted by Ση and is called
the support of η . In the first section we will show that any 3-vector η ∈ Λ3V with
isotropic support defines a simply connected 2-step nilpotent Lie group L(η) with a flat
bi-invariant pseudo-Riemannian metric h of the same signature as V . We prove that this
exhausts all simply connected Lie groups with a flat bi-invariant metric, see Theorem 1.2.
After completion of our article, Oliver Baues, has kindly informed us about the paper
[13], which already contains a version of that result.

It is shown that the groups (L(η), h) admit a lattice Γ ⊂ L(η) if η has rational
coefficients with respect to some basis and that the quotient M(η, Γ) := Γ \ L(η) is
a flat compact homogeneous pseudo-Riemannian manifold, see Corollary 1.6. Compact
homogeneous flat pseudo-Riemannian manifolds were recently classified in independent
work by Baues, see [2]. It follows from this classification that the above examples exhaust
all compact homogeneous flat pseudo-Riemannian manifolds.

Assume now that dim V is even and that we fix J ∈ so(V ) such that J2 = −Id
or J2 = Id. We denote the corresponding left-invariant endomorphism field on the group
L(η) again by J . Assume that η ∈ Λ3V has isotropic support and satisfies, in addition,

{ηX , J} := ηXJ + JηX = 0 for all X ∈ V,

or, equivalently, that η has type (3, 0) + (0, 3). Then (L(η), h, J) is a flat nearly Kähler
manifold if J2 = −Id and a flat nearly para-Kähler manifold if J2 = Id . This follows
from the results of [5] for the former case and is proven in the second section of this paper
for the latter case, see Theorem 2.11. Moreover it is shown that any complete simply
connected flat nearly (para-)Kähler manifold is of this form, see Corollary 2.19 and [5].
To sum up, we have shown that any simply connected complete flat nearly (para-)Kähler
manifold is a Lie group L(η) with a left-invariant nearly (para-)Kähler structure and
bi-invariant metric. Conversely, it follows from unpublished work of Paul-Andi Nagy and
the first author that a Lie group with a left-invariant nearly (para-)Kähler structure and
bi-invariant metric is necessarily flat and is therefore covered by one of our groups L(η).
The proof of this statement uses the unicity of the connection with totally skew-symmetric
torsion preserving the nearly (para-)Kähler structure and the Jacobi identity.

Suppose now that Γ ⊂ L(η) is a lattice. Then the almost (para-)complex structure
J on the group L(η) induces an almost (para-)complex structure J on the compact
manifold M = M(η, Γ) = Γ\L(η). Therefore (M, h, J) is a compact nearly (para-)Kähler
manifold. However, the (para-)complex structure is not L(η)-invariant, unless η = 0.
Moreover, for η 6= 0, (M, h, J) is an inhomogeneous nearly (para-)Kähler manifold, that
is, it does not admit any transitive group of automorphisms of the nearly (para-)Kähler
structure. Since J is not right-invariant, this follows from the fact that Isom0(M) is
obtained from the action of L(η) by right-multiplication on M , see Corollary 1.6. The
first such non-trivial flat compact nearly para-Kähler nilmanifold M(η) = Γ \ L(η)
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is six-dimensional and is obtained from a non-zero element η ∈ Λ3V + ∼= R , where
V + ⊂ V = R3,3 is the +1-eigenspace of J .

1. A class of flat pseudo-Riemannian Lie groups

Let V = (Rn, 〈·, ·〉) be the standard pseudo-Euclidian vector space of signature (k, l),
n = k + l. Using the (pseudo-Euclidian) scalar product we shall identify V ∼= V ∗ and
Λ2V ∼= so(V ). These identifications provide the inclusion Λ3V ⊂ V ∗ ⊗ so(V ). Using it
we consider a three-vector η ∈ Λ3V as an so(V )-valued one-form. Further we denote by
ηX ∈ so(V ) the evaluation of this one-form on a vector X ∈ V . The support of η ∈ Λ3V
is defined by

Ση := span{ηXY |X, Y ∈ V } ⊂ V. (1.1)

Theorem 1.1. Each

η ∈ C(V ) := {η ∈ Λ3V |Ση (totally) isotropic} =
⋃

L⊂V

Λ3L

defines a 2-step nilpotent simply transitive subgroup L(η) ⊂ Isom(V ), where the union
runs over all maximal isotropic subspaces. The subgroups L(η), L(η′) ⊂ Isom(V ) as-
sociated to η, η′ ∈ C(V ) are conjugated if and only if η′ = g · η for some element of
g ∈ O(V ).

Proof. It is easy to see that any three-vector η ∈ Λ3V satisfies η ∈ Λ3Ση , cf. [5] Lemma
7. This implies the equation C(V ) =

⋃
L⊂V

Λ3L . Let an element η ∈ C(V ) be given. One

can easily show that Ση is isotropic if and only if the endomorphisms ηX ∈ so(V ) satisfy
ηX ◦ ηY = 0 for all X, Y ∈ V , cf. [5] Lemma 6. The 2-step nilpotent group

L(η) :=

{
gX := exp

(
ηX X
0 0

)
=

(
1+ ηX X

0 1

) ∣∣∣∣ X ∈ V

}
acts simply transitively on V ∼= V × {1} ⊂ V × R by isometries:(

1+ ηX X
0 1

)(
0
1

)
=

(
X
1

)
.

Let us check that L(η) is a group: Using ηX ◦ ηY = 0 we obtain

gX · gY =

(
1+ ηX X

0 1

)(
1+ ηY Y

0 1

)
=

(
1+ ηX + ηY + ηXηY X + Y + ηXY

0 1

)
=

(
1+ ηX+Y X + Y + ηXY

0 1

)
= gX+Y +ηXY .

In the last step we used ηηXY = 0, which follows from 〈ηηXY Z,W 〉 = 〈ηZW, ηXY 〉 for all
X, Y, Z, W ∈ V. Next we consider η, η′ ∈ C(V ), g ∈ O(V ). The computation

gL(η)g−1 =

{(
1+ gηXg−1 gX

0 1

) ∣∣∣∣ X ∈ V

}
=

{(
1+ gηg−1Y g−1 Y

0 1

) ∣∣∣∣ Y ∈ V

}
shows that gL(η)g−1 = L(η′) if and only if η′X = (g ·η)X = g ηg−1X g−1 for all X ∈ V .
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Let L ⊂ Isom(V ) be a simply transitive group. Pulling back the scalar product on V by
the orbit map

L 3 g 7→ g0 ∈ V (1.2)

yields a left-invariant flat pseudo-Riemannian metric h on L . A pair (L, h) consisting of
a Lie group L and a flat left-invariant pseudo-Riemannian metric h on L is called a flat
pseudo-Riemannian Lie group.

Theorem 1.2.

(i) The class of flat pseudo-Riemannian Lie groups (L(η), h) defined in Theorem 1.1
exhausts all simply connected flat pseudo-Riemannian Lie groups with bi-invariant
metric.

(ii) A Lie group with bi-invariant metric is flat if and only if it is 2-step nilpotent.

Proof. (i) The group L(η) associated to a three-vector η ∈ C(V ) is diffeomorphic to
Rn by the exponential map. We have to show that the flat pseudo-Riemannian metric
h on L(η) is bi-invariant. The Lie algebra of L(η) is identified with the vector space V
endowed with the Lie bracket

[X, Y ] := ηXY − ηY X = 2ηXY, X, Y ∈ V. (1.3)

The left-invariant metric h on L(η) corresponds to the scalar product 〈·, ·〉 on V . Since
η ∈ Λ3V , the endomorphisms ηX = 1

2
adX are skew-symmetric. This shows that h is

bi-invariant.

Conversely, let (V, [·, ·]) be the Lie algebra of a pseudo-Riemannian Lie group of
dimension n with bi-invariant metric h . We can assume that the bi-invariant metric
corresponds to the standard scalar product 〈·, ·〉 of signature (k, l) on V . Let us denote
by ηX ∈ so(V ), X ∈ V , the skew-symmetric endomorphism of V which corresponds to
the Levi-Civita covariant derivative DX acting on left-invariant vector fields. From the
bi-invariance and the Koszul formula we obtain that ηX = 1

2
adX and, hence, R(X, Y ) =

−1
4
ad[X,Y ] for the curvature. The last formula shows that h is flat if and only if the Lie

group is 2-step nilpotent. This proves (ii). To finish the proof of (i) we have to show that,
under this assumption, η is completely skew-symmetric and has isotropic support. The
complete skew-symmetry follows from ηX = 1

2
adX and the bi-invariance. Similarly, using

the bi-invariance, we have

4〈ηXY, ηZW 〉 = 〈[X, Y ], [Z,W ]〉 = −〈Y, [X, [Z,W ]]〉 = 0,

since the Lie algebra is 2-step nilpotent. This shows that Ση is isotropic.

Corollary 1.3. With the above notations, let L ⊂ V be a maximally isotropic
subspace. The correspondence η 7→ L(η) defines a bijection between the points of the
orbit space Λ3L/GL(L) and isomorphism classes of pairs (L, h) consisting of a simply
connected Lie group L endowed with a flat bi-invariant pseudo-Riemannian metric h of
signature (k, l).
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Corollary 1.4. Any simply connected Lie group L with a flat bi-invariant metric h
of signature (k, l) contains a normal subgroup of dimension ≥ max(k, l) ≥ 1

2
dim V which

acts by translations on the pseudo-Riemannian manifold (L, h) ∼= Rk,l .

Proof. Let a := ker(X 7→ ηX) ⊂ V be the kernel of η . Then a = Σ⊥
η is co-isotropic

and defines an Abelian ideal a ⊂ l := Lie L ∼= V ∼= Rk,l . The corresponding normal
subgroup A ⊂ L = L(η) is precisely the subgroup of translations. So we have shown that
dim A ≥ max(k, l) ≥ 1

2
dim V .

Remark 1.5. 1) The number dim Ση is an isomorphism invariant of the groups L =
L(η), which is independent of the metric. We will denote it by s(L). Let L3 ⊂ L4 ⊂
· · · ⊂ L be a filtration, where dim Lj = j runs from 3 to dim L . The invariant dim Ση

defines a decomposition of Λ3L/GL(L) as a union

{0} ∪
dim L⋃
j=3

Λ3
regLj/GL(Lj),

where Λ3
regRj ⊂ Λ3Rj is the open subset of 3-vectors with j -dimensional support. The

points of the stratum Λ3
regLj/GL(Lj) ∼= Λ3

regRj/GL(j) correspond to isomorphism classes
of pairs (L, h) with s(L) = j .
2) Since in the above classification Ση is isotropic, it is clear that a flat (or 2-step nilpotent)
bi-invariant metric on a Lie group is indefinite, unless η = 0 and the group is Abelian.
It follows from Milnor’s classification of Lie groups with a flat left-invariant Riemannian
metric [9] that a 2-step nilpotent Lie group with a flat left-invariant Riemannian metric
is necessarily Abelian.

Since a nilpotent Lie group with rational structure constants has a (co-compact) lattice
[8], we obtain:

Corollary 1.6. The groups (L(η), h) admit lattices Γ ⊂ L(η), provided that η has
rational coefficients with respect to some basis. M = M(η, Γ) := Γ\L(η) is a flat compact
homogeneous pseudo-Riemannian manifold. The connected component of the identity in
the isometry group of M is the image of the natural group homomorphism π from L(η)
into the isometry group of M .

Proof. First we remark that the bi-invariant metric h induces an L(η)-invariant metric
on the homogeneous space M = Γ\L(η). We shall identify the group Γ with a subgroup of

the isometry group of M̃ := (L(η), h) using the action of Γ on L(η) by left-multiplication.

Let G be the connected component of the identity in the isometry group of M̃ . It is clear
that any element of G which commutes with the action of Γ induces an isometry of
M . Therefore we have a natural homomorphism ZG(Γ) → Isom(M) from the centraliser
ZG(Γ) of Γ in G into Isom(M). In particular, the connected group ZG(Γ)0 is mapped
into Isom0(M). Conversely, the action of Isom0(M) on M can be lifted to the action of a

connected Lie subgroup H ⊂ G on M̃ , which maps cosets of Γ to cosets of Γ. The latter
property implies that H normalises the subgroup Γ ⊂ Isom(M̃). Since Γ is discrete and
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G is connected, we can conclude that H is a subgroup of the centraliser ZG(Γ) of Γ in
G . As H is connected, we obtain H ⊂ ZG(Γ)0 . By the previous argument, we have also
the opposite inclusion ZG(Γ)0 ⊂ H and, hence, H = ZG(Γ)0 . Now the statement about
the isometry group of M follows from the fact that the centraliser in G of the left-action
of Γ ⊂ L(η) on L(η) is precisely the right-action of L(η) on L(η), since Γ ⊂ L(η) is
Zariski-dense, see [11] Theorem 2.1. In fact, this shows that H coincides with the group

L(η) acting by right-multiplication on M̃ = L(η) and that Isom0(M) coincides with
L(η) acting by right-multiplication on M = Γ \ L(η).

Example 1.7. We consider V = (R3,3, 〈·, ·〉) and a basis (e1, e2, e3, f1, f2, f3) such that
〈ei, fj〉 = δij and 〈ei, ej〉 = 〈fi, fj〉 = 0. Then the three-vector η := f1 ∧ f2 ∧ f3 ∈ ∧3V
has isotropic support Ση = span{f1, f2, f3} . The non-vanishing components of the Lie
bracket defined by (1.3) are

[e1, e2] = 2f3, [e2, e3] = 2f1, [e3, e1] = 2f2.

We have seen above that the bi-invariant metric h was obtained by pulling back the
scalar product 〈·, ·〉 by the orbit map (1.2) which identifies L(η) with V via L(η) 3
gX 7→ gX0 = X ∈ V. The inverse map is V 3 X 7→ gX ∈ L(η). This identifies the pseudo-
Riemannian manifolds (L(η), h) and (V, 〈·, ·〉). In consequence the isometry group of L(η)
is isomorphic to the full affine pseudo-orthogonal group operating by gX 7→ gAX+v with
A ∈ O(V ) and v ∈ V. Next we consider the lattice

Γ := {gY |Y ∈ Z6},

where Z6 ⊂ V is the lattice of integral vectors with respect to the basis (e1, e2, e3, f1, f2, f3).
An element gY ∈ Γ operates from the left on L(η) ∼= V as

X 7→ (1+ ηY )X + Y.

Let us determine the centraliser of this Γ-action in the isometry group of L(η). A
short calculation shows that an affine isometry (A, v) with linear part A ∈ O(V ) and
translational part v ∈ V belongs to the centraliser of Γ if and only if

[ηY , A]X + ηY v − AY + Y = 0

for all X ∈ V , Y ∈ Z6 . For X = 0 we get AY = ηY v + Y = (1 − ηv)Y and, hence,
A = 1 − ηv . This shows that the affine transformation (A, v) corresponds to the right
action of the element gv , which obviouly belongs to the centraliser. Therefore, in this
example, we have proven by direct calculation that the centraliser in the isometry group
of L(η) of Γ acting by left-multiplication on L(η) is precisely the group L(η) acting by
right-multiplication. This fact was proven for arbitrary groups L(η) and lattices Γ in the
proof of Corollary 1.6.

2. Flat nearly para-Kähler manifolds

In this section we give a constructive classification of flat nearly para-Kähler manifolds and
show that such manifolds provide a class of examples for the flat Lie groups discussed in
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section 1. The structure of the section is as follows. In the first subsection we give a short
introduction to para-complex geometry. For more information the reader is referred to [3].
The second part discusses nearly para-Kähler manifolds and derives some consequences of
the flatness. In the third subsection we give a local classification which relates a flat nearly
para-Kähler manifold to an element of a certain subset Cτ (V ) of the cone C(V ) ⊂ ∧3V
defined in Theorem 1.1. The structure of Cτ (V ) is studied in the last subsection and
global classification results are derived.

2.1. Para-complex geometry. The idea of para-complex geometry is to replace the
complex structure J satisfying J2 = −Id on a (finite) dimensional vector space V by a
para-complex structure τ satisfying τ 2 = Id and to require that the two eigenspaces of τ,
i.e. V ± := ker(Id∓ τ), have the same dimension. A para-complex vector space (V, τ) is a
vector space endowed with a para-complex structure. Para-complex, para-Hermitian and
para-Kähler geometry was first studied in [7]. We invite the reader to consult [4] or the
more recent article [1] for a survey on this subject.

Definition 2.1. An almost para-complex structure τ on a smooth manifold M is an
endomorphism field τ ∈ Γ(End(TM), p 7→ τp, such that τp is a para-complex structure on
TpM for all points p ∈ M. A manifold endowed with an almost para-complex structure
is called an almost para-complex manifold.
An almost para-complex structure is called integrable if its eigendistributions T±M :=
ker(Id ∓ τ) are both integrable. A manifold endowed with an integrable almost para-
complex structure is called a para-complex manifold.

We remark that the obstruction to integrability (cf. Proposition 1 of [3]) of an
almost para-complex structure is the Nijenhuis tensor of τ , which is the tensor field defined
by

Nτ (X,Y ) := [X,Y ] + [τX, τY ]− τ [X, τY ]− τ [τX, Y ],

for all vector fields X, Y on M .

Definition 2.2. Let (V, τ) be a para-complex vector space. A para-Hermitian scalar
product g on (V, τ) is a pseudo-Euclidian scalar product, such that τ ∗g(·, ·) = g(τ ·, τ ·) =
−g(·, ·).
A para-Hermitian vector space is a para-complex vector space endowed with a para-
Hermitian scalar product. The pair (τ, g) is called para-Hermitian structure on the vector
space V.

The next two examples give two frequently used models of para-Hermitian structures:

Example 2.3. Let us consider the vector space R2n = Rn ⊕ Rn and denote by
e+

i = ei ⊕ 0 and e−i = 0 ⊕ ei its standard basis. Its standard para-complex structure
is given by τe±i = ±e±i . A para-Hermitian scalar product g is given by g(e±i , e±j ) = 0 and
g(e±i , e∓j ) = δij. We call the pair (τ, g) the standard para-Hermitian structure of R2n.

Example 2.4. We denote by C = R[e] ∼= R ⊕ R , e2 = 1, the ring of para-complex



430 Cortés and Schäfer

numbers. Consider the real vector space Cn = Rn ⊕ eRn with standard basis given by
(e1, . . . , en, f1, . . . , fn), where fi = eei and its standard para-complex structure which is
defined by τei = fi and τfi = ei. Then we can define a para-Hermitian scalar product
by g(ei, ej) = −g(fi, fj) = δij and g(ei, fj) = 0. We denote this pair (τ, g) the standard
para-Hermitian structure of Cn.

The decomposition of the cotangent bundle T ∗M = (T ∗M)+ ⊕ (T ∗M)− with re-
spect to the dual para-complex structure induces a bi-grading on the bundle of exte-
rior forms ΛkT ∗M = ⊕k=p+q Λp,qT ∗M. An element of Λp,qT ∗M will be called of type
(p, q). The corresponding decomposition on differential forms is denoted by Ωk(M) =
⊕k=p+q Ωp,q(M).

Definition 2.5. An almost para-Hermitian manifold (M, τ, g) is an almost para-
complex manifold (M, τ) which is endowed with a pseudo-Riemannian metric g which is
para-Hermitian, i.e. it satisfies τ ∗g(·, ·) = g(τ ·, τ ·) = −g(·, ·).

Note that the condition on the metric to be para-Hermitian forces it to have split
signature (n, n).

2.2. Basic facts and results about nearly para-Kähler manifolds. The notion
of a nearly para-Kähler manifold was recently introduced by Ivanov and Zamkovoy [6].

Definition 2.6. An almost para-Hermitian manifold (M, τ, g) is called nearly para-
Kähler manifold, if its Levi-Civita connection D satisfies the equation

(DXτ)Y = −(DY τ)X, ∀X, Y ∈ Γ(TM). (2.1)

A nearly para-Kähler manifold is called strict, if Dτ 6= 0.

Like for a nearly Kähler manifold there exists a canonical para-hermitian connec-
tion with totally skew-symmetric torsion.

Proposition 2.7. [Prop. 5.1 in [6]] Let (M, τ, g) be a nearly para-Kähler manifold.
Then there exists a unique connection ∇ with totally skew-symmetric torsion T∇ (i.e.
g(T∇(·, ·), ·) is a three-form) satisfying ∇g = 0 and ∇τ = 0.

More precisely, this connection is given by

∇XY = DXY − ηXY with ηXY = −1

2
τ(DXτ)Y and X, Y ∈ Γ(TM) (2.2)

and in consequence the torsion is
T∇ = −2η (2.3)

and one has {ηX , τ} = 0 for all vector fields X. In the same reference [6] Theorem 5.3 it
is shown that, as in the nearly Kähler case, the torsion of ∇ is parallel, i.e.

∇η = 0 and ∇(Dτ) = 0. (2.4)
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Proposition 2.8. Let (M, g, τ) be a flat nearly para-Kähler manifold, then

1) ηX ◦ ηY = 0 for all X, Y,

2) Dη = ∇η = 0.

Proof. On a nearly para-Kähler manifold one has the identity

RD(X,Y, Z, W ) + RD(X, Y, τZ, τW ) = g((DXτ))Y, (DZτ)W ),

cf. [6] Proposition 5.2. For a flat nearly para-Kähler manifold it follows

g((DXτ)Y, (DZτ)W ) = 0 ∀X, Y, Z, W. (2.5)

With this identity and Dτ ◦ τ = −τ ◦Dτ we obtain

0 = g((DXτ)Y, (DZτ)W ) = −g((DZτ)(DXτ)Y,W ) = 4g(ηZ ◦ ηXY, W ).

This shows ηX ◦ ηY = 0 for all X, Y and finishes the proof of part 1.).
2.) With two vector fields X, Y we calculate

(DXη)Y = DX(ηY )− ηDXY
D=∇+η

= ∇X(ηY ) + [ηX , ηY ]− ηDXY

= (∇Xη)Y + η[∇XY−DXY ] + [ηX , ηY ] = (∇Xη)Y − ηηXY + [ηX , ηY ]

(2.1)
= (∇Xη)Y + η·ηXY + [ηX , ηY ]

1.)
= (∇Xη)Y

(2.4)
= 0.

This is part 2).

2.3. Local classification of flat nearly para-Kähler manifolds. We consider
(Cn, τcan) endowed with the standard τcan -anti-invariant pseudo-Euclidian scalar product
gcan of signature (n, n).

Let (M, g, τ) be a flat nearly para-Kähler manifold. Then there exists for each
point p ∈ M an open set Up ⊂ M containing the point p, a connected open set U0 of Cn

containing the origin 0 ∈ Cn and an isometry Φ : (Up, g)→̃(U0, gcan), such that in p ∈ M
we have Φ∗τp = τcanΦ∗. In other words, we can suppose, that locally M is a connected
open subset of Cn containing the origin 0 and that g = gcan and τ0 = τcan. Summarizing
Proposition 2.7 and 2.8 we obtain the next Corollary.

Corollary 2.9. Let M ⊂ Cn be an open neighborhood of the origin endowed with a
nearly para-Kähler structure (g, τ) such that g = gcan and τ0 = τcan . The (1, 2)-tensor

η := −1

2
τDτ

defines a constant three-form on M ⊂ Cn = Rn,n given by η(X,Y, Z) = g(ηXY, Z) and
satisfying

(i) η ∈ C(V ), i.e. ηX ηY = 0, ∀X,Y,
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(ii) {ηX , τcan} = 0, ∀X.

The rest of this subsection is devoted to the local classification result. In subsection
2 we study the structure of the subset of C(V ) given by the condition (ii) in more detail
and give global classification results. The converse statement of Corollary 2.9 is given in
the next lemma.

Lemma 2.10. Let η be a constant three-form on an open connected set M ⊂ Cn of 0
satisfying (i) and (ii) of Corollary 2.9. Then there exists a unique para-complex structure
τ on M such that

a) τ0 = τcan,

b) {ηX , τ} = 0, ∀X,

c) Dτ = −2τη,

where D is the Levi-Civita connection of the pseudo-Euclidian vector space Cn.
Let ∇ := D − η and assume b) then c) is equivalent to

c)’ ∇τ = 0.

Furthermore, this para-complex structure τ is skew-symmetric with respect to gcan.

Proof. One proves the equivalence of c) and c)’ by an easy computation.
Let us show the uniqueness: Given two almost para-complex structures satisfying a)-c)
we deduce (τ − τ ′)0 = 0 and ∇τ = ∇τ ′ = 0. This shows τ ≡ τ ′. To show the existence
we define

τ = exp

(
2

2n∑
i=1

xi η∂i

)
τcan

(i)
=

(
Id + 2

2n∑
i=1

xi η∂i

)
τcan, (2.6)

where xi are linear coordinates of Cn = Rn,n = R2n and ∂i = ∂
∂xi .

Claim: τ defines a para-complex structure which satisfies a)-c).
a) From xi(0) = 0 we obtain τ0 = τcan.
b) Follows from the definition of τ (cf. equation (2.6)) and the properties (i) and (ii).
c) One computes

D∂j
τ = 2 exp

(
2

2n∑
i=1

xi η∂i

)
η∂j

τcan
(ii)
= −2 exp

(
2

2n∑
i=1

xi η∂i

)
τcan︸ ︷︷ ︸

τ

η∂j
= −2τ η∂j

.

It holds τ = τcan+
(
2
∑2n

i=1 xi η∂i

)
τcan, where {η∂i

, τcan} = 0 and η∂i
is g -skew-symmetric.

This implies that τ is g -skew-symmetric. It remains to prove τ 2 = Id.

τ 2 =

(
Id + 2

2n∑
i=1

xi η∂i

)
τcan

(
Id + 2

2n∑
i=1

xi η∂i

)
τcan

=

(
Id + 2

2n∑
i=1

xi η∂i

)(
Id− 2

2n∑
i=1

xi η∂i

)
=

Id− 4

(
2n∑
i=1

xi η∂i

)2
 (i)

= Id.
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This finishes the proof of the lemma.

Theorem 2.11. Let η be a constant three-form on a connected open set U ⊂ Cn

containing the origin 0 which satisfies (i) and (ii) of Corollary 2.9. Then there exists a
unique almost para-complex structure

τ = exp

(
2

2n∑
i=1

xi η∂i

)
τcan (2.7)

on U such that a) τ0 = τcan, and b) M(U, η) := (U, g = gcan, τ) is a flat nearly para-
Kähler manifold. Any flat nearly para-Kähler manifold is locally isomorphic to a flat
nearly para-Kähler manifold of the form M(U, η).

Proof. (M, g) is a flat pseudo-Riemannian manifold. Due to Lemma 2.10 τ, is a skew-
symmetric almost para-complex structure on M and τ0 = τcan. From Lemma 2.10 c) and
the skew-symmetry of η it follows the skew-symmetry of Dτ. Therefore (M, g, τ) is a
nearly para-Kähler manifold. The remaining statement follows from Corollary 2.9 and
Lemma 2.10.

2.4. The variety Cτ (V ). Now we discuss the solution of (i) and (ii) of Corollary 2.9.
In the following we shall freely identify the real vector space V := Cn = Rn,n = R2n with
its dual V ∗ by means of the pseudo-Euclidian scalar product g = gcan . The geometric
interpretation is given in terms of an affine variety Cτ (V ) ⊂ Λ3V.

Proposition 2.12. A three-form η ∈ Λ3V ∗ ∼= Λ3V satisfies (i) of Corollary 2.9,
i.e. ηX ◦ ηY = 0, X, Y,∈ V, if and only if there exists an isotropic subspace L ⊂ V such
that η ∈ Λ3L ⊂ Λ3V . If η satisfies (i) and (ii) of Corollary 2.9 then there exists a
τcan -invariant isotropic subspace L ⊂ V with η ∈ Λ3L.

Proof. The proposition follows from the next lemma by taking L = Ση .

Lemma 2.13.
1. Ση is isotropic if and only if η satisfies (i) of Corollary 2.9. If η satisfies (ii) of

Corollary 2.9, then Ση is τcan -invariant.

2. Let η ∈ Λ3V . Then η ∈ Λ3Ση.

Proof. The proof of the first part is analogous to Lemma 6 in [5]. The second part is
Lemma 7 of [5].

Any three-form η on (V, τcan) decomposes with respect to the grading induced by the
decomposition V = V 1,0 ⊕ V 0,1 into η = η+ + η− with η+ ∈ Λ+V := Λ2,1V + Λ1,2V and
η− ∈ Λ−V := Λ3,0V + Λ0,3V.

Theorem 2.14. A three-form η ∈ Λ3V ∗ ∼= Λ3V satisfies (i) and (ii) of Corollary 2.9
if and only if there exists an isotropic τcan -invariant subspace L such that η ∈ Λ−L =
Λ3,0L + Λ0,3L ⊂ Λ3L ⊂ Λ3V (The smallest such subspace L is Ση .).
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We need the following general Lemma.

Lemma 2.15. It is

Λ−V = {η ∈ Λ3V | η(·, τ ·, τ ·) = η(·, ·, ·)} = {η ∈ Λ3V | {ηX , τ} = 0, ∀X ∈ V }.

Proof. (of Theorem 2.14) By Proposition 2.12, the conditions (i) and (ii) of Corollary
2.9 imply the existence of an isotropic τcan -invariant subspace L ⊂ V such that η ∈ Λ3L .
The last lemma shows that the condition (ii) is equivalent to η ∈ Λ−V. Therefore
η ∈ Λ3L ∩ Λ−V = Λ−L . The converse statement follows from the same argument.

Corollary 2.16.

(i) The conical affine variety Cτ (V ) := {η | η satisfies (i) and (ii) in Corollary 2.9 } ⊂
Λ3V has the following description Cτ (V ) =

⋃
L⊂V

Λ−L =
⋃

L⊂V

(Λ3L+ + Λ3L−), where

the union is over all τ -invariant maximal isotropic subspaces.

(ii) If dim V < 12 then it holds Cτ (V ) = Λ3V + ∪ Λ3V −.

(iii) Any flat nearly para-Kähler manifold M is locally of the form M(U, η), for some
η ∈ Cτ (V ) and some open subset U ⊂ V.

(iv) There are no strict flat nearly para-Kähler manifolds of dimension less than 6.

Proof. (i) follows from Theorem 2.14.
(ii) Let L ⊂ V be a τ -invariant isotropic subspace. If dim V < 12, then dim L < 6 and,
hence, either dim L+ < 3 or dim L− < 3. In the first case we have

Λ−L = Λ3L+ + Λ3L− = Λ3L− ⊂ Λ3V −,

in the second case it is Λ−L = Λ3L+ + Λ3L− = Λ3L+ ⊂ Λ3V +.
(iii) is a consequence of (i), Theorem 2.11 and 2.14.
(iv) By (iii) the strict nearly para-Kähler manifold M is locally of the form M(U, η), which
is strict if and only if η 6= 0. This is only possible for dim L ≥ 3, i.e. for dim M ≥ 6.

Example 2.17. We have the following example which shows that part (ii) of Corollary
2.16 fail in dimension ≥ 12: Consider (V, τ) = (C6, e) = R6 ⊕ eR6 with a basis given by
(e+

1 , . . . , e+
6 , e−1 , . . . , e−6 ), such that e±i form a basis of V ± with g(e+

i , e−j ) = δij. Then the
form η := e+

1 ∧ e+
2 ∧ e+

3 + e−4 ∧ e−5 ∧ e−6 lies in the variety Cτ (V ).

Theorem 2.18. Any strict flat nearly para-Kähler manifold is locally a pseudo-
Riemannian product M = M0 × M(U, η) of a flat para-Kähler factor M0 of maximal
dimension and a flat nearly para-Kähler manifold M(U, η), η ∈ Cτ (V ), of signature
(m,m), 2m = dim M(U, η) ≥ 6 such that Ση has dimension m.

Proof. By Theorem 2.11 and 2.14, M is locally isomorphic to an open subset of
a manifold of the form M(V, η), where η ∈ Λ3V has a τcan -invariant and isotropic
support L = Ση . We choose a τcan -invariant isotropic subspace L′ ⊂ V such that
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V ′ := L + L′ is nondegenerate and L ∩ L′ = 0 and put V0 = (L + L′)⊥ . Then
η ∈ Λ3V ′ ⊂ Λ3V and M(V, η) = M(V0, 0) × M(V ′, η). Notice that M(V0, 0) is simply
the flat para-Kähler manifold V0 and that M(V ′, η) is strict of split signature (m,m),
where m = dim L ≥ 3.

Corollary 2.19. Any simply connected nearly para-Kähler manifold with a (geodesi-
cally) complete flat metric is a pseudo-Riemannian product M = M0 × M(η) of a flat
para-Kähler factor M0 = Rl,l of maximal dimension and a flat nearly para-Kähler man-
ifold M(η) := M(V, η), η ∈ Cτ (V ), of signature (m, m) such that Ση has dimension
m = 0, 3, 4, . . ..

Next we wish to describe the moduli space of (complete simply connected) flat nearly para-
Kähler manifolds M of dimension 2n up to isomorphism. Without restriction of generality
we will assume that M = M(η) has no para-Kähler de Rham factor, which means that
η ∈ Cτ (V ) has maximal support Ση , i.e. dim Ση = n . We denote by Creg

τ (V ) ⊂ Cτ (V )
the open subset consisting of elements with maximal support. The group

G := Aut(V, gcan, τcan) ∼= GL(n)

acts on Cτ (V ) and preserves Creg
τ (V ). Two nearly para-Kähler manifolds M(η) and

M(η′) are isomorphic if and only if η and η′ are related by an element of the group G .

For η ∈ Cτ (V ) we denote by p , q the dimensions of the eigenspaces of τ on Ση

for the eigenvalues 1,−1, respectively. We call the pair (p, q) ∈ N0 × N0 the type of η .
We will also say that the corresponding flat nearly para-Kähler manifold M(η) has type
(p, q). We denote by Cp,q

τ (V ) the subset of Cτ (V ) consisting of elements of type (p, q).
Notice that p + q ≤ n with equality if and only if η ∈ Creg

τ (V ). We have the following
decomposition

Creg
τ (V ) =

⋃
(p,q)∈Π

Cp,q
τ (V ),

where Π := {(p, q)|p, q ∈ N0 \ {1, 2}, p + q = n} . The group G = GL(n) acts on the
subsets Cp,q

τ (V ) and we are interested in the orbit space Cp,q
τ (V )/G .

Fix a τ -invariant maximally isotropic subspace L ⊂ V of type (p, q) and put
Λ−

regL := Λ−L ∩ Creg
τ (V ) ⊂ Cp,q

τ (V ). The stabilizer GL
∼= GL(L+) × GL(L−) ∼=

GL(p)×GL(q) of L = L+ + L− in G acts on Λ−
regL .

Theorem 2.20. There is a natural one-to-one correspondence between complete
simply connected flat nearly para-Kähler manifolds of type (p, q), p + q = n, and the
points of the following orbit space:

Cp,q
τ (V )/G ∼= Λ−

regL/GL ⊂ Λ−L/GL = Λ3L+/GL(L+)× Λ3L−/GL(L−).

Proof. Consider two complete simply connected flat nearly para-Kähler manifolds M ,
M ′ . By the previous results we can assume that M = M(η), M ′ = M(η′) are associated
with η, η′ ∈ Cp,q

τ (V ). It is clear that M and M ′ are isomorphic if η and η′ are related by
an element of G . To prove the converse we assume that ϕ : M → M ′ is an isomorphism
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of nearly para-Kähler manifolds. By the results of Section 1 η defines a simply transitive
group of isometries. This group preserves also the para-complex structure τ , which is
∇-parallel and hence left-invariant. This shows that M and M ′ admit a transitive group
of automorphisms. Therefore, we can assume that ϕ maps the origin in M = V to the
origin in M ′ = V . Now ϕ is an isometry of pseudo-Euclidian vector spaces preserving
the origin. Thus ϕ is an element of O(V ) preserving also the para-complex structure τ
and hence ϕ ∈ G .

The identification of orbit spaces can be easily checked using Lemma 2.13 2. and
the fact that any τ -invariant isotropic subspace Σ = Σ+ + Σ− can be mapped onto L by
an element of G .
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