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Abstract. Let G be a unimodular Lie group with finitely many connected
components and let H be a closed unimodular subgroup of G . Let π be an
irreducible unitary representation of G on H and τ one of H on V . Denote
by HomH (H∞, V ) the vector space of continuous linear mappings H∞ → V
that commute with the H -actions. Set m (π, τ) = dim HomH (H∞, V ). The
pair (G, H) is called a multiplicity free pair if m (π, τ) ≤ 1 for all π and τ . We
show: if every π has a distribution character, then (G, H) is a multiplicity free
pair if and only if (G×H, diag (H ×H)) is a generalized Gelfand pair.
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1. Introduction

In a recent paper [5], we have defined the notions of multiplicity free pair and strong
multiplicity free pair. The relation between the two notions remained unsolved.
In this paper we show that, under mild conditions on the groups, the notions are
equivalent. The setting is as follows.

Let G be a Lie group with finitely many connected components and let H
be a closed subgroup of G . We shall assume that both G and H are unimodular.
Let π be an irreducible unitary representation of G on a Hilbert space H and let
τ be one of H on V . Denote by H∞ the space of C∞ vectors for π . Then H∞
is a Fréchet space and G acts on H∞ by restriction of each π(g) (g ∈ G) from H
to H∞ . Denote by

HomH (H∞, V )

the space of continuous linear mappings A : H∞ → V commuting with the H -
actions:

Aπ(h) = τ(h)A (h ∈ H),

and set

m (π, τ) = dim HomH(H∞, V ).

ISSN 0949–5932 / $2.50 c© Heldermann Verlag



662 van Dijk

The pair (G,H) is called a multiplicity free pair if m(π, τ) ≤ 1 for all π and
all τ . Recall, see [5], that (G,H) is said to be a strong multiplicity free pair if
the pair (G × H, diag (H × H)) is a generalized Gelfand pair. If every π has a
distribution character, then both definitions are equivalent. This is the main result
of this paper. The proof follows closely the treatment of generalized Gelfand pairs
in [6], Chapter 8. See also [4].

The class of groups G that satisfy the assumption (distribution characters
exist) includes:

(a) compact and abelian groups,

(b) connected semi-simple Lie groups with finite center,

(c) connected, simply-connected, nilpotent Lie groups,

(d) semi-direct products of a compact subgroup and a closed abelian normal
subgroup.

I am grateful to Binyong Sun for helpful discussions about the topic of this
paper.

2. Invariant Hilbert subspaces of D∗(G, H; τ )

Let G be a real Lie group with finitely many connected components and let H
be a closed subgroup of G . Throughout this paper we shall assume that G and
H are unimodular: both G and H admit a bi-invariant Haar measure. Let us fix
Haar measures dg on G , dh on H and a G-invariant measure dx on X = G/H
in such a way that dg = dh dx .

Let π be a (continuous) unitary representation of G on a Hilbert space
H and let H∞ denote the Fréchet space of C∞ vectors for π . Clearly H∞ is
G-invariant. The corresponding representation of G on H∞ is called π∞ .

Denote by H−∞ the anti-dual of H∞ endowed with the strong topology.
The group G acts on H−∞ as well. The corresponding representation is called
π−∞ .

We shall take all scalar products anti-linear in the first and linear in the
second factor

The following remarkable lemma, due to Dixmier and Malliavin, see [2], is
of great help in this paper. Let us write D(G) for the space of C∞

c functions on
G .

Lemma 2.1. (Decomposition Lemma)

(a) Any function ϕ ∈ D(G) can be written as a finite sum of functions of
the form ϕ1 ∗ ϕ2 where ϕ1, ϕ2 ∈ D(G) and ’star’ means convolution product.

(b) let π be a continuous representation of G on a Fréchet space H . Then
H∞ is the linear span of the vectors π(ϕ) ξ where ϕ ∈ D(G), ξ ∈ H .

Fix an irreducible unitary representation τ of H on a Hilbert space V .

Denote by D(G, V ) the space of C∞
c mappings ϕ : G→ V , endowed with

its usual topology, and by D∗(G, V ) its anti-dual. One calls D∗(G, V ) the space
of V -valued distributions on G .

Denote by D(G,H; τ) the space of C∞ mappings ϕ : G→ V satisfying
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(i) Supp ϕ is compact mod H ,

(ii) ϕ(gh) = τ(h−1)ϕ(g) (h ∈ H, g ∈ G).

The space D(G,H; τ) is an LF-space, an inductive limit of a strictly increasing
sequence of Fréchet spaces. Let D∗(G,H; τ) be its anti-dual.

Set P for the ’projection’ D(G, V ) → D(G,H; τ) defined by

(Pϕ)(g) =

∫
H

τ(h)ϕ(gh) dh (ϕ ∈ D(G, V )).

Then P is a continuous, open and surjective mapping. Define Q = P∗ . So
Q : D∗(G,H; τ) → D∗(G,V). Then Q is injective and a topological linear
isomorphism onto Im (Q). Clearly

Im (Q) = {T ∈ D∗(G, V ) : 〈ϕ, r(h−1)T 〉 = 〈r(h)ϕ, T 〉 (1)

= 〈ϕ, τ(h)T 〉 for all ϕ ∈ D(G, V ) and h ∈ H},

where r(h) means right-translation by h ∈ H .

Denote by L2(G,H; τ) the closure of D(G,H; τ) with respect to the norm

‖ϕ‖ = (

∫
X

‖ϕ(x)‖2 dx)1/2 (ϕ ∈ D(G,H; τ)).

Notice that the function on G given by g 7→ ‖ϕ(g)‖ (norm taken in V ) is actually
a function on X = G/H . The space L2(G,H; τ) is a Hilbert space. The group
G acts on L2(G,H; τ) by means of left-translations, which gives rise to a unitary
representation of G . Since D(G,H; τ) is a dense subspace of L2(G,H; τ), we have
a natural G-equivariant continuous linear injection

L2(G,H; τ) → D∗(G,H; τ).

Denote by Hom(H∞, V ) the space of continuous linear mappings L : H∞ → V ,
and by HomG (H, D∗(G, V )) the space of all continuous linear mappings A : H →
D∗(G, V ) commuting with the G-actions. There is a canonical linear mapping

Φ0 : Hom (H∞, V ) → HomG (H, D∗(G, V )).

Indeed, if L ∈ Hom (H∞, V ), then A = Φ0(L) is given by

(Aξ)(ϕ⊗ v) = 〈ϕ⊗ v, Aξ〉
= 〈v, L(π(ϕ̃)ξ)〉

(ϕ ∈ D(G), v ∈ V, ξ ∈ H).

Theorem 2.2. The mapping Φ0 is a (topological) isomorphism.

Proof. We shall give the inverse of Φ0 , called Ψ0 .

Let A ∈ HomG (H, D∗(G, V )) and set

〈v, Ψ0(A)

(
n∑

i=1

π(ϕi)ξi

)
〉 =

n∑
i=1

〈ϕ̃i ⊗ v, Aξi〉,
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where ϕi ∈ D(G), ξi ∈ H (i = 1, . . . , n) and v ∈ V .

This is a well-defined definition. Indeed, let
∑n

i=1 π(ϕi)ξi = 0. Take
ψ ∈ D(G). Then

n∑
i=1

〈(ϕ̃i ∗ ψ)⊗ v, Aξi〉 =
n∑

i=1

〈`(ϕ̃i)ϕ⊗ v, Aξi〉 =
n∑

i=1

〈ψ ⊗ v, `(ϕi)Aξi〉

=
n∑

i=1

〈ψ ⊗ v, Aπ(ϕi)ξi〉 = 0.

Here ` stands for the representation of G by means of left-translations. Now let
ψ tend to the δ -function.

Let us write HomH (H∞, V ) for the subspace of Hom (H∞, V ) consisting
of mappings L satisfying

Lπ∞(h) = τ(h)L (h ∈ H).

Furthermore, let Φ denote the restriction of Φ0 to HomH(H∞, V ). The following
proposition is obvious.

Proposition 2.3. The mapping Φ is a topological linear isomorphism of the
space HomH(H∞, V ) onto the space HomG (H, D∗(G,H; τ)).

Clearly, HomH(H∞, V ) is anti-isomorphic to HomH(V,H−∞). Therefore,
we have the following reciprocity.

Proposition 2.4. The space HomG(H, D∗(G,H; τ)) is anti-isomorphic to the
space HomH(V,H−∞).

We shall say that π can be realized on a Hilbert subspace of D∗(G,H; τ)
if there is a continuous linear injection

j : H → D∗(G,H; τ)

such that jπ(g) = `(g)j for all g ∈ G . The space j(H) is called an invariant
Hilbert subspace of D∗(G,H; τ).

To the linear injection j we can attach, by Proposition 2.3, an element
Lπ ∈ HomH(H∞, V ) such that

〈P(ϕ⊗ v), j(ξ)〉 = 〈v, Lπ(π(ϕ̃)ξ)〉

(ϕ ∈ D(G), v ∈ V, ξ ∈ H). Hence,

〈j∗(P(ϕ⊗ v), ξ〉 = 〈π−∞(ϕ)L∗π v, ξ〉.

Or, briefly,
j∗ (P(ϕ⊗ v)) = π−∞(ϕ)L∗π v (ϕ ∈ D(G), v ∈ V ). (2)

Clearly, j∗ : D∗(G,H; τ) → H has a dense image. We call L∗π (or Lπ )
cyclic in this case. So L∗π is cyclic if and only if

span {π−∞(ϕ)L∗π v : ϕ ∈ D(G), v ∈ V } is dense in H.
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Theorem 2.5. Let π be a unitary representation of G on the Hilbert space
H . Then π can be realized on a Hilbert subspace of D∗(G,H; τ) if and only
if HomH(V,H−∞) contains cyclic elements. There is a one-to-one correspondence
between the cyclic elements L∗π in HomH(V,H−∞) and the continuous linear injec-
tions j : H → D∗(G,H; τ) satisfying jπ(g) = `(g)j (g ∈ G). The correspondence
is given by (2).

Let again π be a unitary representation of G on a Hilbert space H , realized
on D∗(G,H; τ) and let j be the corresponding injection. Denote by L∗π the cyclic
element in HomH(V,H−∞), defined by Theorem 2.5. Consider

〈j∗P(ϕ⊗ v), j∗P(ψ ⊗ w)〉 = 〈π−∞(ψ̃ ∗ ϕ)L∗πv, L
∗
πw〉,

where ϕ, ψ ∈ D(G) and v, w ∈ V .

The right-hand side is also equal to

〈Lππ−∞(ψ̃ ∗ ϕ)L∗πv, w〉.

Proposition 2.6. Set

〈T, ϕ〉 = Lπ π−∞(ϕ)L∗π (ϕ ∈ D(G)). (3)

Then T is an End (V )-valued linear distribution on G, where End (V ) is the
algebra of bounded linear operators on V provided with the weak topology. The
distribution T has the following properties:

(i) `(h) r(h′)T = τ(h−1)T τ(h′) (h, h′ ∈ H).

(ii) T is positive-definite, i.e.

n∑
i=1

〈〈T, ϕ̃i ∗ ϕj〉 vi, vj〉 ≥ 0

for all n-tuples ϕ1, . . . , ϕn ∈ D(G) and v1, . . . , vn ∈ V , and all n ∈ N.

(iii) The form

(P(ϕ⊗ v), P(ψ ⊗ w)) 7→ 〈〈T, ψ̃ ∗ ϕ〉 v, w〉 (ϕ, ψ ∈ D(G); v, w ∈ V )

can be extended to a continuous sesqui-linear form on D(G,H; τ).

We call T the reproducing distribution of π (or of (π,H, j )).

Given an End (V )-valued distribution T , satisfying the properties (i), (ii),
(iii) of Proposition 2.6, we can easily construct a G-invariant Hilbert subspace of
D∗(G,H; τ) with T as reproducing distribution. Indeed, let B denote the sesqui-
linear form on D(G,H; τ) as in property (iii). This form is positive-definite by
(ii). Denote by W0 the subspace of D(G,H; τ) consisting of elements of length
zero: W0 = {ϕ : B(ϕ, ϕ) = 0} and define H as the completion of D(G,H; τ)/W0
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with respect to the norm ϕ 7→ B(ϕ, ϕ)1/2 . Then H is a Hilbert space and G acts
unitarily on H . Let j∗ : D(G,H; τ) → H be the natural projection. Then clearly

‖j∗P(ϕ⊗ v)‖2 = 〈〈T, ϕ̃ ∗ ϕ〉 v, v〉

for ϕ ∈ D(G) and v ∈ V .

Let π1 and π2 be two unitary representations on H1 and H2 respectively,
realized on D∗(G,H; τ) by means of the G-equivariant injections j1 and j2 .
Denote the associated reproducing distributions by T1 and T2 . Assume that
T1 = T2 . Then we have ‖j∗1ϕ‖2 = ‖j∗2ϕ‖2 for all ϕ ∈ D(G,H; τ), thus U given by
U(j∗1ϕ) = j∗2ϕ is well-defined and can be extended to a unitary operator from H1

onto H2 commuting with the actions of G . Moreover, j1 = j2 ◦ U . We say that
the triples (π1,H1, j1 ) and (π2,H2, j2 ) are equivalent. We shall alternatively call
the G-invariant Hilbert subspaces j1(H1) and j2(H2) equivalent.

Summarizing we have:

Proposition 2.7. The correspondence that associates to a G-invariant Hilbert
subspace of D∗(G,H; τ) its reproducing distribution is a bijection between the set
of equivalence classes of G-invariant Hilbert subspaces of D∗(G,H; τ) and the set
of End (V )-valued distributions on G satisfying the properties of Proposition 2.6.

Denote by Γτ
G the cone of End (V )-valued distributions T on G satisfying

the properties (i), (ii) and (iii) of Proposition 2.6. An element T ∈ Γτ
G is said to

be extremal if for any T1 ∈ Γτ
G with T1 ≤ T one has T1 = αT for some scalar

α ≥ 0. Here T1 ≤ T means that T − T1 ∈ Γτ
G . One has the following proposition.

Proposition 2.8. Let π be a unitary representation realized on a Hilbert sub-
space j(H) of D∗(G,H; τ) and let T be its reproducing distribution. Then the
following two statements are equivalent:

(i) π is irreducible.

(ii) T is extremal.

The proof is similar to case τ = id , see [6], Proposition 8.2.3.

Denote by ext Γτ
G the set of extremal points of Γτ

G . Then one has, similar
to case τ = id (see [6], Proposition 8.2.4):

Proposition 2.9. There is a parametrization s 7→ Ts of ext Γτ
G where s ∈ S

(S being a Hausdorff space) with the following property. For every T ∈ Γτ
G there

is a (not necessarily unique) Radon measure m on S such that

〈T, ϕ〉 =

∫
S

〈Ts, ϕ〉 dm(s)

for all ϕ ∈ D(G). Here convergence is meant with respect to the weak topology of
End (V ).
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3. Multiplicity one theorems

We keep the notations of Section 2. One has, similar to the case τ = id , see [6],
Proposition 8.3.2:

Theorem 3.1. The following statements are equivalent.

(i) dim HomH(V,H−∞) ≤ 1 for all irreducible unitary representations π of
G on H .

(ii) For any unitary representation π of G on a Hilbert space H , that can be
realized on a Hilbert subspace of D∗(G,H; τ), the commutant of π(G) in End (H)
is abelian.

(iii) For every T ∈ Γτ
G there exists a unique Radon m measure on S such

that

〈T, ϕ〉 =

∫
S

〈Ts, ϕ〉 dm(s)

for all ϕ ∈ D(G).

It is convenient to write

m (π, τ) = dim HomH(V,H−∞). (4)

Recall that a pair (G,H) is said to be a generalized Gelfand pair if m (π, id) ≤ 1
for all irreducible unitary representations π of G .

Definition 3.2. The pair (G,H) is called a multiplicity free pair if m (π, τ)≤1
for any irreducible unitary representation π of G and any irreducible unitary
representation τ of H .

In a previous paper ([5]) we have defined the notion of strong multiplicity
free pair. We repeat it.

Definition 3.3. The pair (G,H) is said to be a strong multiplicity free pair if
the pair (G×H, diag (H ×H)) is a generalized Gelfand pair.

We shall investigate under which conditions on G and H both definitions
are equivalent. We need some preparation. Recall that G is said to be a type I
group if each factor representation of G (i.e., each unitary representation such that
the von Neumann algebra generated by π(G) is a factor) is a, possibly infinite,
multiple of a uniquely determined irreducible representation. The same definition
applies to H . Recall that every G (or H ) for which any irreducible unitary
representation has a distribution character, is a type I group (see [1], 13.9.4).

One has the following result (see [1], 13.1.8):

Lemma 3.4. Let G or H be a type I group. Then any irreducible unitary
representation of G × H is of the form π ⊗̂2 τ where π is an irreducible unitary
representation of G and τ an irreducible unitary representation of H .
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Denote by V the Hilbert space V with the new scalar multiplication α ·v =
α v (α ∈ C, v ∈ V ). Let v 7→ v be the natural anti-linear identity mapping
V → V and define the scalar product in V by 〈v, w〉 = 〈v, w〉 (v, w ∈ V ).
Set τ(h)v = τ(h)v (v ∈ V, h ∈ H). Then τ is again an irreducible unitary
representation of H . Actually τ is equivalent to the contragredient of τ .

We now arrive at our main result.

Theorem 3.5.

(i) Let (G,H) be a strong multiplicity free pair and assume that any irre-
ducible unitary representation of G has a distribution character. Then (G,H) is
a multiplicity free pair.

(ii) Let (G,H) be a multiplicity free pair and assume that G or H is a type
I group. Then (G,H) is a strong multiplicity free pair.

Proof. (i) Let π be an irreducible unitary representation of G on the Hilbert
space H and let j : H → D∗(G,H; τ) be a continuous linear G-equivariant
injection. Denote by T the End (V )-valued reproducing distribution. Assume
that trace 〈T, ϕ〉 exists for all ϕ ∈ D(G), which is certainly true if π has a
distribution character. Indeed, apply (2) and the Decomposition Lemma. Then
π ⊗̂2 τ can be realized on D∗(G×H/diag (H ×H)) by means of the injection j1 ,
(formally) defined on simple tensors by

j1(ξ ⊗ v)(g, h) = 〈τ(h−1)v, j(ξ)(g)〉 (ξ ∈ H, v ∈ V ).

Its reproducing distribution is precisely traceT . Indeed, let ϕ ∈ D(G). Take
χ ∈ D(G) such that

∫
H
χ(gh) dh = 1 for g in a neighbourhood of Suppϕ . Then

the function ψ defined by

ψ(g, h) = ϕ(gh−1)χ(g) (g ∈ G, h ∈ H),

is an element of D(G×H) with the property∫
H

ψ(gh0, hh0) dh0 = ϕ(gh−1) (g ∈ G, h ∈ H).

Consider now ∫
G×H

〈τ(h−1)v, j(ξ)(g)〉ϕ(gh−1)χ(g) dg dh.

This expression is equal to∫
G×H

〈j(ξ)(g), τ(h−1)v〉ϕ(gh−1)χ(g) dg dh

=

∫
G

〈j(ξ))(g), v〉ϕ(g) dg

= 〈ξ, j∗P(ϕ⊗ v)〉 = 〈ξ, π−∞(ϕ)L∗π v〉.
Let {ei} be an orthonormal basis of H and {fj} one of V . Notice that both H
and V are separable. Then we obtain

〈ξ, π−∞(ϕ)L∗π v〉
= 〈ξ ⊗ v,

∑
i,j

〈ei, π−∞(ϕ)L∗π fj〉 (ei ⊗ f j)〉.
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In order that j∗1 (and hence j1 ) is continuous, we have to check that∑
i,j

|〈ei, π−∞(ϕ)L∗π fj〉|2

is finite and depends continuously on ϕ . This is clearly the case since this
expression equals ∑

j

‖π−∞(ϕ)L∗π fj‖2, (5)

which, in its turn, is equal to

traceLπ π−∞(ϕ̃ ∗ ϕ)L∗π = trace 〈T, ϕ̃ ∗ ϕ〉.

Since, by assumption, j1 is determined up to multiplication by scalars, the same
then clearly holds for j . Hence (G,H) is a multiplicity free pair.

(ii) By Lemma 3.3 any irreducible unitary representation of G × H is of
the form π ⊗̂2 τ . Assume that π ⊗̂2 τ can be realized on D∗(G×H/diag (H×H))
and let λ denote a non-zero diag (H × H)-fixed linear form on (H⊗̂2 V )∞ . Set
for ξ ∈ H∞ ,

A(ξ)(v) = λ(ξ ⊗ v) (v ∈ V∞).

Then A(ξ) is a continuous anti-linear form on V∞ , so an element of V−∞ . We
have

A : H∞ → V−∞,

a continuous linear mapping commuting with the H -actions. Then, by the De-
composition Lemma, A(H∞) ⊂ V∞ and, by the closed graph theorem, A : H∞ →
V∞ → V is continuous. Since A is determined up to multiplication by scalars, the
same holds for λ . Therefore, (G,H) is a strong multiplicity free pair.

Remark 3.6. Notice that Theorem 3.5 holds if H is compact, and that in that
case no further conditions are needed. This follows easily from the proof of the
theorem, since V is finite-dimensional in this case and hence (5) is a finite sum.
We thus obtain a new proof of a known result, see [3].

The proof of Theorem 3.5 also easily implies the following proposition.

Proposition 3.7. If the pair (G,H) is a strong multiplicity free pair, then for
any irreducible unitary representation π of G for which its distribution character
exists, one has

m (π, τ) ≤ 1

for any irreducible unitary representation τ of H .

Recall that if G is a type I group, then, roughly speaking, any irreducible
unitary representation of G that occurs in the Plancherel formula of G , has a
distribution character.



670 van Dijk

References
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