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Abstract. First and second fundamental theorems are given for polynomial
invariants of a class of pseudo-reflection groups (including the Weyl groups of
type Bn ), under the assumption that the order of the group is invertible in the
base field. As a special case, a finite presentation of the algebra of multisym-
metric polynomials is obtained. Reducedness of the invariant commuting scheme
is proved as a by-product. The algebra of multisymmetric polynomials over an
arbitrary base ring is revisited.
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1. Introduction

Fix natural numbers n and q , and a field K . Apart from Theorem 2.7 and
Section 5, we shall assume that n!q is invertible in K , and assume that K contains
a primitive q th root of 1. Denote by G = G(n, q) the subgroup of GL(n,K)
consisting of the monomial matrices whose non-zero entries are q th roots of 1.
The order of G is n!qn , and as an abstract group, G is isomorphic to the wreath
product of the cyclic group Cq of order q and the symmetric group Sn ; that is, G
is isomorphic to a semi-direct product (Cq × · · · × Cq) o Sn .

Consider the natural action of G on V = Kn . Since G is generated by
pseudo-reflections, by the Shephard-Todd Theorem [37] (see [7] for a uniform proof
in characteristic zero, and [39] for the case when char(K) is positive and co-prime
to the order of G) the algebra K[V ]G of polynomial invariants is generated by
algebraically independent elements. Now consider the diagonal action of G on
V m = V ⊕ · · · ⊕ V , the direct sum of m copies of V . The algebra K[V m]G is no
longer a polynomial ring if m ≥ 2 (and G is not the trivial group). In the present
paper we show a very short and simple argument that yields simultaneously the
generators of K[V m]G (first fundamental theorem) and the relations among these

∗Partially supported by the Bolyai Fellowship, OTKA K61116 and NK72523, and the Lever-
hulme Trust.

ISSN 0949–5932 / $2.50 c© Heldermann Verlag



508 Domokos

generators (second fundamental theorem). Our main result is Theorem 3.2, which
provides an explicit finite presentation of K[V m]G(n,q) in terms of generators and
relations. In the proof we apply Derksen’s degree bound on syzygies [9] and ideas
of Wallach and Garsia [20].

In the special case q = 1 we have G = Sn , and K[V m]Sn is the algebra of
multisymmetric functions, which received much attention in the literature (see the
references in Remark 2.6 (ii)). Our approach gives new insight even in this special
case, especially by its simplicity and transparency. We mention also that no finite
presentation of the algebra of multisymmetric functions appeared in prior work
(apart from the case of char(K) = 2 studied in [15]).

Another interesting special case is when q = 2, and the group G is the
Weyl group of type Bn . The generators of K[V m]G(n,2) were determined in [23]
and [22]. To the best of our knowledge, the second fundamental theorem has never
been considered in the literature when q > 1.

The fundamental relation appearing here can be deduced from the theory
of trace identities of matrices. This observation leads to the corollary that the
GL(n, C)-invariant commuting scheme is reduced, see Theorem 4.1.

The present paper joins the content of our preprints [12] and [13] (some
digressions from the preprints have been omitted). In addition, in Section 5 we
adjust our method for arbitrary base rings and clarify and strengthen the known
results in this case. In particular, in Theorem 5.5 we give a new characteristic free
(infinite) presentation of the ring of multisymmetric polynomials.

2. An infinite presentation

Denote by x(i)j the function on V m mapping an m-tuple of vectors to the j th
coordinate of the ith vector component. The coordinate ring K[V m] is the mn-
variable polynomial ring over K with generators x(i)j , i = 1, . . . ,m , j = 1, . . . , n .

There is a natural multigrading on K[V m] preserved by the action of G .
Namely, f ∈ K[V m] has multidegree α = (α1, . . . , αm), if it has degree αi in
the set of variables x(i)1, . . . , x(i)n , for all i = 1, . . . ,m . Write K[V m]Gα for
the multihomogeneous component of K[V m]G with multidegree α . Consider the
symbols x(1), . . . , x(m) as commuting variables, and denote by M(q) the set of
non-empty monomials in the variables x(i) whose degree is divisible by q . In
particular, M(1) is the set of all non-empty monomials in the variables x(i). For
w = x(1)α1 · · ·x(m)αm ∈M(q) set w〈j〉 = x(1)α1

j · · ·x(m)αm
j , and define

[w] =
n∑

j=1

w〈j〉.

(These are polarizations of the usual power sum symmetric functions.) Note that
the multidegree of [w] is α . Since for all j = 1, . . . , n and w ∈ M(q), the term
w〈j〉 is invariant with respect to the normal subgroup N consisting of the diagonal
matrices in G , the Sn -invariant polynomial [w] is G-invariant. Sometimes we
shall think of the x(i) as the generic diagonal matrices diag(x(i)1, . . . , x(i)n),
i = 1, . . . ,m , and then [w] is nothing but the trace of the diagonal matrix w .



Domokos 509

Proposition 2.1. The products [w1] · · · [wr] with r ≤ n, wi ∈M(q) constitute
a K -vector space basis of K[V m]G(n,q) .

Proof. An arbitrary monomial u ∈ K[V m] in the variables x(i)j can be written
as u = u1

〈1〉 · · ·un
〈n〉 with a unique n-tuple (u1, . . . , un) of monomials in M(1)∪{1} .

The algebra K[V m]N is spanned by the u with u1, . . . , un ∈ M(q) ∪ {1} . The
action of Sn permutes these monomials, and since G(n, q) is generated by N and
Sn , the Sn -orbit sums of the N -invariant monomials of multidegree α form a
basis in K[V m]Gα . For a multiset {w1, . . . , wr} with r ≤ n , wi ∈M(q), denote by
O{w1,...,wr} the Sn -orbit sum of the monomial w1〈1〉 · · ·wr〈r〉 . Call r the height of
this monomial multisymmetric function. Set T{w1,...,wr} = [w1] · · · [wr] .

So the O{w1,...,wr} with multideg(w1 · · ·wr) = α form a basis in K[V m]Gα .
Assume that the multiset {w1, . . . , wr} contains d distinct elements with multi-
plicities r1, . . . , rd (so r1 + · · · + rd = r), then expanding T{w1,...,wr} as a linear
combination of monomial multisymmetric functions, the coefficient of O{w1,...,wr}
is r1! · · · rd! (which is non-zero by our assumption on the characteristic of K ), and
all other monomial multisymmetric functions contributing have height strictly less
than r . This clearly shows the claim.

Remark 2.2. After writing [12] we noticed that the special case q = 1 of
Proposition 2.1 appears as Corollary 2.3 of [3] (see also Section 3 of [4] for the
interpretation needed here).

Associate with w ∈ M(q) a variable t(w), and consider the polynomial
ring

F(q) = K[t(w) | w ∈M(q)]

in infinitely many variables. Denote by

ϕ(q) : F(q) → K[V m]G(n,q)

the K -algebra homomorphism induced by the map t(w) 7→ [w] . This is a surjec-
tion by Proposition 2.1. Next we introduce a uniform set of elements in its kernel.
For a multiset {w1, . . . , wn+1} of n + 1 monomials from M(q), we associate an
element Ψ(w1 . . . , wn+1) ∈ F(q) as follows. Write Pn+1 for the set of partitions
λ = λ1 ∪ · · · ∪ λh of the set {1, . . . , n + 1} into the disjoint union of non-empty
subsets λi , and denote h(λ) = h the number of parts of the partition λ . Set

Ψ(w1, . . . , wn+1) =
∑

λ∈Pn+1

(−1)h(λ)

h(λ)∏
i=1

(
(|λi| − 1)! · t(

∏
s∈λi

ws)

)
.

(See Section 6 for examples.)

Proposition 2.3. The kernel of ϕ(q) contains the element Ψ(w1, . . . , wn+1) for
arbitrary w1, . . . , wn+1 ∈M(q).

Proof. One way to see it is to specialize the fundamental trace identity of n×n
matrices to diagonal matrices. Indeed, let Y (1), . . . , Y (n + 1) be generic n × n
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matrices (so their entries generate an (n + 1)n2 -variable commutative polynomial
ring). For a permutation π ∈ Sn+1 with cycle decomposition

π = (i1 · · · id) · · · (j1 . . . je)

set

Trπ = Tr(Y (i1) · · ·Y (id)) · · ·Tr(Y (j1) · · ·Y (je)).

Then we have the equality ∑
π∈Sn+1

sign(π)Trπ = 0 (1)

called the fundamental trace identity of n × n matrices. (This can be obtained
by multilinearizing the Cayley-Hamilton identity to get an identity multilinear in
the n matrix variables Y (1), . . . , Y (n), and then multiplying by Y (n + 1) and
taking the trace; see for example [18] for details.) The substitution Y (i) 7→ wi

(i = 1, . . . , n + 1) in (1) yields the result.

Remark 2.4. We shall benefit in Section 4 from the fact that in the above proof
we descend from a statement about non-commuting matrices. A more elementary
proof is the following: express the (n + 1)th elementary symmetric function in
n + 1 variables in terms of the first n + 1 power sums using the Newton formulae;
then multilinearize this identity, and specialize the (n + 1)th coordinates to zero.

Theorem 2.5. (i) The kernel of the K -algebra homomorphism ϕ(q) is the
ideal generated by the Ψ(w1, . . . , wn+1), where w1, . . . , wn+1 ∈M(q).

(ii) The algebra K[V m]G(n,q) is minimally generated by the [w], where w ∈M(q)
with deg(w) ≤ nq .

Proof. (i) The coefficient in Ψ(w1, . . . , wn+1) of the term t(w1) · · · t(wn+1) is
(−1)n+1 , and all other terms are products of at most n variables t(u). So the
relation ϕ(q)(Ψ(w1, . . . , wn+1)) = 0 can be used to rewrite [w1] · · · [wn+1] as a
linear combination of products of at most n invariants of the form [u] (where
u ∈ M(q)). So these relations are sufficient to rewrite an arbitrary product of
the generators [w] in terms of the basis given by Proposition 2.1. This obviously
implies our statement about the kernel of ϕ(q).

(ii) If w ∈ M(q) and deg(w) > qn , then w can be factored as w =
w1 · · ·wn+1 where wi ∈ M(q). The term t(w) appears in Ψ(w1, . . . , wn+1) with
coefficient −(n!), which is invertible in K by our assumption on the characteristic.
Therefore the relation ϕ(q)(Ψ(w1, . . . , wn+1)) = 0 shows that [w] can be expressed
as a polynomial of invariants of strictly smaller degree. It follows that K[V m]G(n,q)

is generated by the [w] , where w ∈ M(q) with deg(w) ≤ nq . This is a minimal
generating system, because if deg(w) ≤ nq for some w ∈M(q), then [w] can not
be expressed by invariants of lower degree, since there is no relation among the
generators whose degree is smaller than (n + 1)q by (i).
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Remark 2.6. (i) In the special case n = 1 the above theorem gives the
(classically known) defining relations of the q -fold Veronese embedding of the

projective space Pm−1 in Pd , where d =

(
m + q − 1

q

)
− 1.

(ii) In the special case q = 1 our group is the symmetric group Sn and
K[V m]Sn is called the algebra of multisymmetric polynomials. It is an old result
proved by Schläfli [36], MacMahon [28], Weyl [43], that when K has characteristic
zero, this algebra is generated by the polarizations of the elementary symmetric
polynomials (we mention that Noether [29] used this to prove her general degree
bound on generating invariants of finite groups). The result on the generators
was extended to the case char(K) > n by Richman [34] (see also [40], [5], [17]
for other proofs). Counterexamples and further results on the generators in the
case 0 < char(K) ≤ n are due to Fleischmann [16], Briand [5], Vaccarino [41].
The relations among the generators had been studied classically by Junker [24]
[25], [26]. Working over C as a base field, an infinite presentation was given by
Dalbec [8] (partly reformulating results of Junker [25]), and the special case q = 1
(and K = C) of Theorem 2.5 appears in this explicit form in a recent paper by
Bukhshtaber and Rees [6] (using a different language and motivation). Working
over an arbitrary base ring K , [41] gives K -module generators of the ideal of
relations among a reasonable infinite generating system (see Section 5).

(iii) In the special case q = 2 our group G(n, 2) is the Weyl group of type
Bn , and the ring of invariants C[V m]G(n,2) is isomorphic to the ring of invariants of
the special orthogonal group SO(2n + 1, C) acting via the adjoint representation
on the commuting variety of its Lie algebra, and is also isomorphic to the ring of
invariants of the symplectic group Sp(2n, C) acting on the commuting variety of
its Lie algebra (see for example [22] for this connection).

(iv) In our point of view, Theorem 2.5 (i) is a close relative of the result of
Razmyslov [33] and Procesi [31] saying that all trace identities of n×n matrices are
consequences of the fundamental trace identity. Their original approach is based
on Schur-Weyl duality; Kemer in [27] gave an elementary combinatorial proof valid
on the multilinear level in all characteristic.

(v) Identify V with the K -algebra of n × n diagonal matrices. Denote
by MorSn(V m, V ) the space of Sn -equivariant polynomial maps from V m to V .
Since Sn acts on V by algebra automorphisms, MorSn(V m, V ) is a K -algebra with
pointwise multiplication of maps V m → V . Identify the space Mor(V m, V ) of all
polynomial maps from V m to V with the algebra of n×n diagonal matrices with
entries in K[V m] in the obvious way; then we have the usual trace function on
Mor(V m, V ), and it is an algebra with trace in the sense of [32]. The special
case q = 1 of Theorem 2.5 has the following corollary (by some methods of
[31]): if n! is invertible in K , then the algebra MorSn(V m, V ) of Sn -equivariant
polynomial maps from V m to V is the trace-stable subalgebra generated by the
generic diagonal matrices x(1), . . . , x(m) in the algebra of diagonal matrices with
entries from K[V m] . Furthermore, it is the free object of rank m in the category
of commutative algebras with a trace satisfying the nth Cayley-Hamilton identity
(in the sense of [32]). This latter result is due to Berele, see Theorem 2.1 in [3].
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An element of K[V m] is multilinear if it is multihomogeneous with multi-
degree (1, . . . , 1). Define a multigrading on F(q) by setting the multidegree of
t(w) equal to the multidegree of w . The multilinear version of the above theo-
rem is valid over an arbitrary base field. Abusing notation we keep on writing
K[V m]G(n,q) even if the group G(n, q) is not defined over K (i.e. when K does
not contain a primitive q th root of 1); in this case the notation refers to the alge-
bra of invariants of Sn acting on the subalgebra of K[V m] spanned by monomials
u = u1

〈1〉 · · ·un
〈n〉 , where ui ∈ M(q) ∪ {1} for all i (with the notation of the proof

of Proposition 2.1).

Theorem 2.7. Let K be an arbitrary field (or even an arbitrary commutative
ring). Then the multilinear component of K[V m]G(n,q) coincides with the mul-
tilinear component of the image of ϕ(q). Moreover, any multilinear element in
the kernel of ϕ(q) is contained in the ideal generated by Ψ(w1, . . . , wn+1), where
wi ∈M(q) and the multidegree of w1 · · ·wn+1 belongs to {0, 1}m .

Proof. The only point in the proof of Proposition 2.1 where we need an as-
sumption on K is to guarantee that r1! · · · rd! 6= 0. If we consider multilinear
elements of K[V m] only, then all the ri here are automatically equal to 1. So
the same argument yields that the multilinear elements in K[V m] of the form
[w1] · · · [wr] (with r ≤ n , wi ∈ M(q)) constitute a K -basis in the multilinear
component of K[V m]G(n,q) . The relations from our statement are obviously suffi-
cient to rewrite an arbitrary multilinear product of elements [w] (with w ∈M(q))
as a linear combination of such products with at most n factors. This implies the
claim.

Remark 2.8. As an immediate corollary one recovers the known fact that the
invariant [x(1) · · ·x(m)] ∈ K[V m]Sn is indecomposable (can not be expressed by
lower degree multisymmetric polynomials) when 0 < char(K) ≤ n . Indeed, in
this case each term of the fundamental relation is the product of at least two
traces, hence there is no relation involving [x(1) · · ·x(m)] as a term. This has
interesting consequences for matrix invariants in positive characteristic, and for
vector invariants of the orthogonal group; see [11].

3. Finite presentation

Building on Derksen’s general degree bound for syzygies in [9], we derive a finite
presentation from Theorem 2.5.

Denote by Jm(q) the ideal in K[V m] generated by the homogeneous G(n, q)-
invariants of positive degree (the so-called Hilbert ideal), and denote by τG(n,q)(V

m)
the minimal natural number d such that all homogeneous elements of degree ≥ d
belong to Jm(q).

Lemma 3.1. We have τG(n,q)(V
m) = 1 +

∑n
j=1(qj − 1).

Proof. In the special case q = 1 (and K = C , m = 2) this lemma appears
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in [20] and is due to Wallach and Garsia. Define the exponent of a monomial∏
i,j x(i)

αij

j as (β1, . . . , βn), where βj =
∑m

i=1 αij (in other words, βj is the
exponent of xj if we specialize all the x(i)j to xj ). Introduce a partial ordering
on the set of monomials in K[V m] : a monomial u is smaller than v if they
have the same multidegree, and the exponent of u is lexicographically smaller
than the exponent of v . This partial ordering is compatible with multiplication
of monomials. We shall show that if βk ≥ qk for some k ∈ {1, . . . , n} , where
(β1, . . . , βn) is the exponent of some monomial u in K[V m] , then modulo Jm(q),
the monomial u can be rewritten as a linear combination of smaller monomials.
We need some details from the proof of the special case q = 1 of our lemma. To
simplify notation when m = 1, write xj = x(1)j . Then it is shown in Lemma
3.2.1 in [20] that

hk(xk, . . . , xn) ∈ J1(1) for all k = 1, . . . , n, (2)

where hk denotes the k th complete symmetric polynomial of the arguments. Note
that (2) shows that modulo J1(1), the monomial xk

k can be rewritten as a linear
combination of smaller monomials. Applying to (2) the comorphism of the Sn -
equivariant morphism V m → V , (v1, . . . , vm) 7→ v1 + · · ·+ vm we get

hk(
m∑

i=1

x(i)k, . . . ,
m∑

i=1

x(i)n) ∈ Jm(1) for all k = 1, . . . , n. (3)

Since the ideal Jm(1) is multihomogeneous, all multihomogeneous components of
the left hand side of (3) belong to Jm(1). In particular, for all k = 1, . . . , n , there
exists a linear combination fk of k -linear monomials smaller than the monomial
x(1)kx(2)k · · ·x(k)k such that

x(1)kx(2)k · · ·x(k)k − fk ∈ Jk(1). (4)

(At this point it is essential that k! is assumed to be invertible in K .) Now take

an arbitrary k -tuple w(1), . . . , w(k) ∈ M(q). The map x(i)j 7→ w
(i)
〈j〉 induces a

K -algebra homomorphism γ : K[V k] → K[V m]N . Clearly γ is an Sn -equivariant
map, whence γ(Jk(1)) ⊆ Jm(q). Applying γ to (4) we get that

w
(1)
〈k〉 · · ·w

(k)
〈k〉 − γ(fk) ∈ Jm(q), (5)

where γ(fk) is a linear combination of monomials smaller than w
(1)
〈k〉 · · ·w

(k)
〈k〉 . Now

let w be a monomial in the variables x(1)k, x(2)k, . . . , x(m)k such that deg(w) =

qk . Then w can be factored as w = w
(1)
〈k〉 · · ·w

(k)
〈k〉 with w(i) ∈ M(q), whence

modulo Jm(q) the monomial w can be rewritten as a linear combination of smaller
monomials by (5). This clearly implies that the factor space K[V m]/Jm(q) is
spanned by the images of the monomials whose exponent (β1 . . . , βn) satisfies
βk ≤ qk − 1 for all k = 1, . . . , n . Since Jm(q) is a homogeneous ideal, the
factor space K[V m]/Jm(q) inherits the grading from K[V m] . This shows that the
homogeneous components of degree >

∑n
k=1(qk − 1) are all contained in Jm(q),

implying that τG(V m) ≤ 1 +
∑n

k=1(qk − 1).
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In the special case m = 1, the coordinate ring K[V ] is known to be a free
module over K[V ]G(n,q) , and the latter is a polynomial algebra in n generators
having degrees q, 2q, . . . , nq . This implies a formula for the dimensions of the ho-
mogeneous components of the graded vector space K[V ]/J , called the coinvariant
algebra (see for example [7]). In particular, the highest degree non-zero homo-
geneous component has degree

∑n
k=1(qk − 1). This shows the reverse inequality

τG(n,q)(V
m) ≥ 1 +

∑n
k=1(qk − 1).

For a natural number d , consider the finitely generated subalgebra of F(q)
given by

F(q, d) = K[t(w) | w ∈M(q), deg(w) ≤ d].

Theorem 3.2. The kernel of the K -algebra surjection

F(q, qn(n + 1)− 2n + 2) → K[V m]G induced by t(w) 7→ [w]

is generated as an ideal by the elements Ψ(w1, . . . , wn+1), where w1, . . . , wn+1 ∈
M(q), and the degree of the product w1 · · ·wn+1 is not greater than qn(n + 1) −
2n + 2.

Proof. A general result of Derksen [9] says that the ideal of relations in a
minimal presentation of K[V m]G is generated in degree ≤ 2τG(V m). Therefore
our statement follows from Theorem 2.5, Lemma 3.1, and the general Lemma 3.3
below.

For a finitely generated commutative graded K -algebra A denote by τ(A)
the minimal non-negative integer τ such that A and its first syzygy ideal are
generated in degree τ . That is, let ρ : K[x1, . . . , xr] → A be a surjective K -
algebra homomorphism such that ρ(xi), i = 1, . . . , r , is a minimal homogeneous
generating system of A , and the grading on the polynomial algebra K[x1, . . . , xr] is
defined so that ρ preserves the grading. Let f1, . . . , fs be a minimal homogeneous
generating system of the ideal ker(ρ). Define

τ(A) =

{
max{deg(xi) | i = 1, . . . , r}, if ker(ρ) = 0,

max{deg(fj) | j = 1, . . . , s} otherwise.

Lemma 3.3. Let ϕ : K[tµ | µ ∈ M ] → A be a surjective homomorphism of
graded algebras from a not necessarily finitely generated polynomial algebra, and let
{fβ | β ∈ B} be a homogeneous generating system of the ideal ker(ϕ). Then the
kernel of the restriction of ϕ to the subalgebra K[tµ | deg(tµ) ≤ τ(A)] is generated
as an ideal by {fβ | deg(fβ) ≤ τ(A)}.

Proof. Denote by I the ideal of R1 = K[tµ | deg(tµ) ≤ τ(A)] generated
by {fβ | deg(fβ) ≤ τ(A)} . Take a subset C ⊂ M such that the restriction
ϕ0 : R0 = K[tµ | µ ∈ C] → A of ϕ is a minimal presentation of A . Then
ker(ϕ0) is generated in degree τ(A) and is contained in ker(ϕ) = (fβ | β ∈ B),
hence ker(ϕ0) ⊂ I . Moreover, since im(ϕ0) = im(ϕ), for each µ ∈ M there is an
element gµ ∈ R0 with deg(tµ) = deg(gµ) such that tµ − gµ ∈ ker(ϕ). Obviously,
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if deg(tµ) ≤ τ(A), then tµ − gµ ∈ I . It follows that R1 = R0 + I , implying
ker(ϕ1) = ker(ϕ0) + I = I .

Remark 3.4. Since the Hilbert ideal of a subgroup H of G(n, q) contains the
Hilbert ideal of G(n, q), we have τH(V m) ≤ τG(n,q)(V

m). Thus Lemma 3.1 provides
upper bounds on the degrees of the relations in a minimal presentation of K[V m]H

by the result of Derksen [9] cited above. Among subgroups of G(n, q) are other
series of pseudo-reflection groups, including the Weyl groups of type Dn or the
dihedral groups.

4. Semisimple commutative representations

In this section we work over the field C of complex numbers (what is essential for
Theorem 4.1 is that the base field has characteristic zero). Write Fm for the free
associative algebra C〈x1, . . . , xm〉 , and Am for the commutative polynomial alge-
bra C[x(1), . . . , x(m)]. Denote by rep(Fm, n) the space of m-tuples of complex
n × n matrices, endowed with the simultaneous conjugation action of GL(n, C).
The points of this affine variety determine n-dimensional representations of Fm in
the obvious way, and the GL(n, C)-orbits are in a one-to-one correspondence with
the isomorphism classes of n-dimensional representations of Fm . The algebraic
quotient rep(Fm, n)//GL(n, C) parameterizes the isomorphism classes of semisim-
ple n-dimensional representations of the free algebra, see [2]. The coordinate ring
C[rep(Fm, n)] is the n2m-variable polynomial algebra generated by the entries of
the generic n×n matrices Y (1), . . . , Y (m). Denote by J the ideal in C[rep(Fm, n)]
generated by the entries of the commutators Y (i)Y (j)−Y (j)Y (i), 1 ≤ i < j ≤ m .
The quotient algebra C[rep(Fm, n)]/J = C[rep(Am, n)] is the coordinate ring of
the scheme rep(Am, n) of n-dimensional representations of Am (by definition of
this affine scheme). It is a long standing open problem in commutative algebra
whether this scheme is reduced or not, or equivalently, whether J is a radical
ideal or not; see for example [21]. The common zero locus of J (i.e. the set of
C-points of the scheme rep(Am, n)) is the so-called commuting variety consisting
of m-tuples of pairwise commuting n× n-matrices. So the question is whether J
is the whole vanishing ideal of the commuting variety or not. The embedding of
the space V m of m-tuples of diagonal matrices into the commuting variety induces
a surjective homomorphism β : C[rep(Am, n)] → C[V m] . Consider the homomor-
phism γ : F(1) → C[rep(Am, n)]GL(n,C) given by t(w) 7→ Tr(Y (1)α1 · · ·Y (m)αm)
for w = x(1)α1 · · ·x(m)αm ∈ M(1), where we keep the notation Y (j) for the
images of the generic matrices under the natural surjection

M(n, C[rep(Fm, n)]) → M(n, C[rep(Am, n)].

It is well known that γ is surjective, see [38]; we use here that any GL(n, C)-
invariant in C[rep(Am, n)] lifts to an invariant on rep(Fm, n), since our base field
has characteristic zero. The fundamental trace identity holds in M(n, C) for an
arbitrary commutative ring C (this is equivalent to the Cayley-Hamilton theorem),
therefore Ψ(w1, . . . , wn+1) ∈ ker(γ) for any wi ∈M(1). It follows by Theorem 2.5
that γ factors through a surjection

γ : C[V m]Sn → C[rep(Am, n)]GL(n,C), [w] 7→ Tr(Y (1)α1 · · ·Y (m)αm)
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for w = x(1)α1 · · ·x(m)αm ∈M(1). So we have the surjections

C[V m]Sn
γ−→ C[rep(Am, n)]GL(n,C) β−→ C[V m]Sn .

Since β ◦ γ is the identity map of C[V m]Sn by definition of the maps γ and β ,
we conclude that they are isomorphisms. Thus we obtained the following result,
supporting the conjecture that the commuting scheme is reduced:

Theorem 4.1. The surjection C[rep(Am, n)] → C[V m] induced by the embed-
ding of the space of m-tuples of diagonal matrices into the commuting variety
restricts to an isomorphism C[rep(Am, n)]GL(n,C) ∼= C[V m]Sn . In particular, the
radical of C[rep(Am, n)] contains no non-zero GL(n, C)-invariants.

Remark 4.2. One may paraphrase the above theorem by saying that ”the
scheme of n-dimensional semisimple representations of the commutative m-variable
polynomial algebra is reduced”. (The weaker statement that the algebraic quotient
of the commuting variety with respect to the action of GL(n, C) is isomorphic to
V m/Sn is well known, and is explained for example in Proposition 6.2.1 of [20].)
In the special case m = 2, reducedness of C[rep(Am, n)]GL(n,C) was proved by
different methods by Gan and Ginzburg, see Theorem 1.2.1 in [19]. For arbitrary
m it appeared in our preprint [12], and is proved also by Vaccarino in his parallel
preprint [arXiv:math.AG/0602660], that appeared in the meantime as [42].

5. Multisymmetric functions over an arbitrary base ring

Throughout this section K is an arbitrary base ring. We extend the method of
Section 2 to this case.

For a monomial w ∈M = M(1) and l ∈ {1, . . . , n} we set

σl(w) =
∑

1≤i1<···<il≤n

w〈i1〉 · · ·w〈il〉.

In other words, σl(w) is the lth coefficient of the characteristic polynomial of the
diagonal matrix w . By the multiset {w1, . . . , wd; r1, . . . , rd} of monomials from
M we mean the multiset which contains d distinct monomials w1, . . . , wd , and
the multiplicity of wi is ri .

Proposition 5.1. A free K -module basis in K[V m]Sn is formed by the prod-
ucts σr1(w1) · · ·σrd

(wd), where {w1, . . . , wd; r1, . . . , rd} range over all multisets of
monomials from M with r1 + · · ·+ rd ≤ n.

Proof. The proof is essentially the same as that of Proposition 2.1: when we
expand σr1(w1) · · ·σrd

(wd) as a linear combination of monomial multisymmetric
functions, the coefficient of O{w1,...,wd;r1,...,rd} is 1, and all other monomial multisym-
metric functions contributing have strictly smaller height. This implies the claim,
since the O{w1,...,wd;r1,...,rd} with r1 + · · ·+ rd ≤ n form a K -basis in K[V m]Sn .

In particular, the K -algebra K[V m]Sn is generated by the σr(w). Our aim
is to determine generators of the ideal of relations among these generators. With
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w ∈ M and r ∈ {1, . . . , n} associate a commuting indeterminate er(w), and
denote by

φ : K[er(w) | w ∈M, r = 1, . . . , n] → K[V m]Sn

the K -algebra surjection induced by er(w) 7→ σr(w).

Denote by σα
l the multidegree α = (α1, . . . , αs) multihomogeneous compo-

nent of the lth characteristic coefficient of the diagonal matrix x(1) + · · · + x(s)
(note that necessarily l = α1 + · · ·+αs ). Specializing Amitsur’s formula [1] for the
characteristic coefficients of a linear combination of matrices one obtains formula
(6) below. To state it we need to introduce some integers. Take non-commuting
variables Y1, . . . , Ys , and consider W , the semigroup of words in Y1, . . . , Ys . The
word U is reduced if it is not a power Uk

0 for some k ≥ 2 and shorter word U0 . The
words U1U2 and U2U1 are said to be cyclically equivalent. Write W0 for the set of
cyclic equivalence classes of reduced words. Denote by C{(r1,u1),...,(rd,ud)} the number
of multisets {U1, . . . , Ud; r1, . . . , rd} of cyclic equivalence classes of reduced words
(so U1, . . . , Ud are distinct elements of W0 , with multiplicities r1, . . . , rd ) such
that the specialization Yi 7→ x(i) (i = 1, . . . ,m) sends Uj to uj (j = 1, . . . , d);
note that non-commuting reduced words from different cyclic equivalence classes
may specialize to the same commuting monomial, so here {(r1, u1), . . . , (rd, ud)}
is a multiset of pairs (i.e. (ri, ui) and (rj, uj) may be equal for i 6= j ), where
ui ∈ Ms , the set of commuting monomials in x(1), . . . , x(s) (we need to allow
s > m). By [1] we have

σα
l =

∑
(−1)l+r1+···+rdC{(r1,u1),...,(rd,ud)}σr1(u1) · · ·σrd

(ud), (6)

where the summation ranges over multisets of pairs {(r1, u1), . . . , (rd, ud)} , where
ri ∈ N , ui ∈ Ms with multidegree multideg(ur1

1 · · ·u
rd
d ) = α . Extending the

definition of σ by setting σl = 0 for l > n , the equality (6) remains valid also if
l > n . For a multidegree α = (α1, . . . , αs) and w1, . . . , ws ∈M define

Sα(w1, . . . , ws) ∈ K[er(w) | w ∈M, r = 1, . . . , n]

as the element obtained by making first the substitution x(i) 7→ wi , i = 1, . . . , s
in the right hand side of (6), and replacing the symbols σ by e everywhere. Since
σl is identically zero for l > n , the equality (6) shows that

Sα(w1, . . . , ws) ∈ ker(φ) if
∑

αi > n. (7)

There is another type of relations we shall need. Simplify the notation by
writing x = x(1) in the special case m = 1. It is well known that K[V ]Sn is
generated by the algebraically independent elements σr(x), r = 1, . . . , n , hence
for each k ≥ 2 and j ∈ {1, . . . , n} there is a unique n-variable polynomial fj,k

with integer coefficients such that σj(x
k) = fj,k(σ1(x), . . . , σn(x)). Now given a

monomial w ∈M , consider the element

Qj,k(w) = ej(w
k)− fj,k(e1(w), . . . , en(w)) ∈ ker(φ).

For example, it is an easy exercise to verify that

Qr,2(x) = er(x
2)−

min{2r,n}∑
i=max{0,2r−n}

(−1)r+iei(x)e2r−i(x).
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As a first application of the relations (7) we derive a short proof of the degree
bound of Fleischmann [16] for the generators of K[V m]Sn . We call an element of
K[V m]Sn indecomposable if it is not contained in the K -subalgebra generated by
strictly lower degree elements, and call it decomposable otherwise. Obviously, a
homogeneous element of K[V m]Sn is indecomposable if and only if it is not con-
tained in the square A2 of the ideal A of K[V m]Sn spanned by the homogeneous
components of positive degree.

Lemma 5.2. Let w = x(1)α1 · · ·x(m)αm ∈ M be a monomial such that αj ≥
n/r for some j , and deg(w) ≥ 1 + n/r . Then σr(w) is decomposable.

Proof. Apply induction on r . Clearly it is sufficient to show that if kr ≥ n ,
then σr(x

ky) ∈ A2 (here we write x, y instead of x(1), x(2)). Indeed, the general
case follows on substituting x, y by appropriate monomials. ¿From the relation
φ(S(kr,r)(x, y)) = 0 we get

(−1)rσr(x
ky) +

∑
(−1)r/iC{xkiyi}σr/i(x

kiyi) ∈ A2,

where the sum ranges over divisors i > 1 of r (and C{xkiyi} is the number of
cyclic equivalence classes of reduced words that specialize to xkiyi ). In particular,
this sum is empty if r = 1 and so σ1(x

ky) ∈ A2 for k ≥ n . If r > 1, then the
assumptions in our lemma apply to all summands, hence they belong to A2 by
the induction hypothesis, forcing σr(x

ky) ∈ A2 .

Corollary 5.3. The K -algebra K[V m]Sn is generated by the elements σn(x(i)),
i ∈ {1, . . . ,m}, and σr(x(1)α1 · · ·x(m)αm), where r ∈ {1, . . . , n}, αj < n/r for
all j = 1, . . . ,m, and the greatest common divisor of α1, . . . , αm is 1.

Remark 5.4. In particular, K[V m]Sn is generated in
degree ≤ max{m(n− 1), n} ;

this is the main result of Fleischmann [16], where it is also shown that this bound
can not be improved in general. Using the method of [16] we showed in [11] that if
K is a field of characteristic p and n = pk with k ∈ N , then σn−1(x(1) · · ·x(m)) is
indecomposable. Vaccarino [41] shows that the σr(w) with w reduced (not a power
of a monomial with lower degree) generate the ring of multisymmetric functions,
and refering to the bound from [16] deduces a finite system of generators. Our
Corollary 5.3 reduces further this generating system. A minimal generating system
of K[V m]Sn appears in [35].

Theorem 5.5. The ideal ker(φ) is generated by

Sα(w1, . . . , ws) and Qr,k(w),

where s ≥ 2, w, w1, . . . , ws ∈ M;
∑s

i=1 αi > n,
∑

i6=j αi ≤ n for all j = 1, . . . , s;
r ∈ {1, . . . , n}; k < 1 + n/r .

Proof. Call the weight of a product σr1(w1) · · ·σrs(ws) the integer r1+ · · ·+rs .
First we show that if the weight is > n , then modulo the first type relations in our
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statement, this product can be rewritten as a linear combination of products with
strictly smaller weight. It is sufficient to deal with the case when

∑
i6=j ri ≤ n for

all j = 1, . . . , s . Set α = (r1, . . . , rs). Then Sα(x(1), . . . , x(s)) contains the term
er1(x(1)) · · · ers(x(s)) with coefficient ±1. In any other term ei1(u1) · · · eid(ud) of
Sα , at least one of the ut has degree > 1, hence i1 + · · · + id < r1 + · · · + rs . So
the relation φ(Sα(w1, . . . , ws)) = 0 does what we need.

Next we claim that using our relations, any product σr1(w1) · · ·σrd
(wd)

with weight ≤ n can be rewritten as a linear combination of σi1(u1) · · ·σit(ut)
with weight ≤

∑
ri and u1, . . . , ut distinct. By Proposition 5.1 our theorem will

follow. Obviously, it is sufficient to verify the latter claim in the special case
when all the wi are powers of the same monomial w . We may also assume that
w = x , so we are working in the special case m = 1. An inspection of the proof of
Proposition 5.1 shows that σr1(x

j1) · · ·σrd
(xjd) is a linear combination of monomial

multisymmetric functions of height ≤
∑

ri , and in the K -space spanned by such
monomial multisymmetric functions, the products σi1(x

k1) · · ·σit(x
kt) with weight

≤
∑

ri and k1, . . . , kt distinct form a basis. So we conclude that there are relations
among the σr(x

k) of the desired form. Therefore it suffices to prove the special
case m = 1 of our theorem.

Since in the special case m = 1, K[V ]Sn is a polynomial ring generated by
σ1(x), . . . , σn(x), all we need to show is that our relations are sufficient to express
all σr(x

k) in terms of the n algebraically independent generators. We apply a
double induction: the first induction goes on deg(σr(x

k)) = rk , and the second
induction goes on r . If (k− 1)r < n , then we may use our relation φ(Qr,k(x)) = 0
from our statement and we are done. Assume (k − 1)r ≥ n . Then we slightly
adjust the argument in the proof of Lemma 5.2. Write l for the lower integral part
of n/r . Then we have k > l and we have the relation φ(S(lr,r)(x, xk−l)) = 0 in our
statement. This relation can be used to express

(−1)rσr(x
k) +

∑
(−1)r/iC{xliyi}σr/i(x

ki)

(where the sum ranges over divisors i > 1 of r) by lower degree elements. The
statement then follows by the two induction hypotheses.

Remark 5.6. Although the above theorem is far from yielding a finite presen-
tation of K[V m]Sn , at least it gives a uniform presentation in the sense that all
relations are obtained from finitely many types by substituting different monomials
(note that the restrictions made on α force

∑s
i=1 αi ≤ 2n and s ≤ n+1). For com-

parison we mention that in [41] the author considers the generating system σr(w)
where w is reduced (i.e. is not a power of a monomial with smaller degree), and
describes the relations among these generators in the following sense: he works
in the ring of multisymmetric functions in infinitely many variables, where the
analogues of σr(w) (r ∈ N , w ∈ M reduced) form an algebraically independent
generating system, and observes that the unique expressions of the monomial mul-
tisymmetric functions with height > n in terms of these generators form a K -basis
in the space of relations among these generators. Implementing this procedure in
practice one needs to produce formulae like our Qr,k(w) but with no bound on r
and k , and one needs to produce expressions similar to Sα(w1, . . . , ws) with no
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bound on α .

6. Calculations

Throughout this section we assume that n! is invertible in K , so K[V m]Sn is
Cohen-Macaulay (see for example [10] as a general reference for the invariant theory
of finite groups). To illustrate how to proceed to find a minimal presentation we do
calculations in concrete examples. An obvious homogeneous system of parameters
(primary generators) in K[V m]Sn is

P = {[x(i)], [x(i)2], . . . , [x(i)n] | i = 1, . . . ,m}.

Write 〈P 〉 for the ideal of K[V m]Sn generated by P , and write K[P ] for the
polynomial subalgebra of K[V m]Sn generated by P . Note that to find secondary
generators we need to get a vector space basis modulo 〈P 〉 in K[V m]Sn .

Lemma 6.1. Assume that n! is invertible in K . Let w be a monomial having
degree ≥ n in one of the variables x(1), . . . , x(m), and having total degree ≥ n+1.
Then [w] belongs to 〈P 〉.

Proof. Assume for example that w has degree ≥ n in x(1). Then w can be
written as a product of n + 1 factors as x(1)x(1) · · ·x(1)u for some non-empty
monomial u . The relation Ψn+1(x(1), x(1), . . . , x(1), u) = 0 shows the claim,
since each nontrivial partition of the multiset {x(1), . . . , x(1), u} contains a part
consisting solely of x(1)s.

Remark 6.2. From Lemma 6.1 and Proposition 2.1 we immediately get the
upper bound n(n − 1)m for the degrees of the secondary generators. However,
the general method of Broer (see Theorem 3.9.8 in [10]) yields the better bound
1
2
n(n− 1)m .

6.1. The case n = 2

In this subsection we assume char(K) 6= 2. The fundamental multilinear trace
identity for diagonal 2× 2 matrices is

[xyz] =
1

2
([xy][z] + [xz][y] + [yz][x]− [x][y][z]) (8)

Substitute z 7→ zw in (8), and eliminate traces of degree 3 using (8) to get

[xyzw] =
1

4
([xz][y][w] + [xw][y][z] + [yz][x][w] + [yw][x][z])

+
1

2
[xy][zw]− 1

2
[x][y][z][w] (9)

Exchanging the variables y and z in (9) we obtain

[xzyw] =
1

4
([xy][z][w] + [xw][y][z] + [yz][x][w] + [zw][x][y])

+
1

2
[xz][yw]− 1

2
[x][y][z][w] (10)
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The difference of (9) and (10) yields

[xz][yw]− [xy][zw] =
1

2
([xy][z][w] + [zw][x][y]− [xz][y][w]− [yw][x][z]) (11)

(compare with (4.17) in [30]). The specialization z = w in (11) leads to

[xz][yz] = [xy][zz] +
1

2
([xy][z][z] + [zz][x][y]− [xz][y][z]− [yz][x][z]) (12)

The Nm
0 -graded Hilbert series of K[V m]S2 can be written as a rational function

by Molien’s formula:

H(K[V m]S2 ; t1, . . . , tm) =

∑[m
2

]

i=0 e2i(t1, . . . , tm)∏m
j=1(1− tj)(1− t2j)

,

where ei(t1, . . . , tm) is the ith elementary symmetric function in t1, . . . , tm . It is
easy to describe the Hironaka decomposition of K[V m]S2 . The secondary genera-
tors are

S = {[x(i1)x(i2)] · · · [x(i2k−1)x(i2k)] | 1 ≤ i1 < · · · < i2k ≤ m}.

The substitution x 7→ x(i), y 7→ x(j), z 7→ x(k) in (12) gives a relation show-
ing that [x(i)x(k)][x(j)x(k)] is contained in 〈P 〉 for all i, j, k . Substitutions
{x, y, z, w} → {x(j1), . . . , x(j2k)} in the relation (11) show that

[x(j1)x(j2)] · · · [x(j2k−1)x(j2k)]− [x(jπ(1))x(jπ(2))] · · · [x(jπ(2k−1))x(jπ(2k))]

belongs to 〈P 〉 for an arbitrary permutation π . These relations imply that the
algebra of multisymmetric functions is generated by S as a module over the
polynomial ring K[P ] . The Hilbert series shows that it is a free module. These
considerations show also that the specializations {x, y, z, w} → {x(1), . . . , x(m)}
in (11) generate the ideal of relations among the generators [x(i)], [x(k)x(l)], and
that a minimal system of relations consists of relations of degree 4.

6.2. The case n = 3, m = 2

In this subsection we assume char(K) 6= 2 and char(K) 6= 3. The fundamental
identity Ψ4(x, y, z, w) = 0 takes the form

[xyzw] =
1

3
([xyz][w] + [xyw][z] + [xzw][y] + [yzw][x])

+
1

6
([xy][zw] + [xz][yw] + [xw][yz] + [x][y][z][w])

−1

6
([xy][z][w] + [xz][y][w] + [xw][y][z] +

+[yz][x][w] + [yw][x][z] + [zw][x][y])

Consider the following consequences:

Ψ4(x, x, x, x) = 0 Ψ4(y, y, y, y) = 0 Ψ4(x, x, x, y) = 0 (13)

Ψ4(y, y, y, x) = 0 Ψ4(x, x, x, xy) = 0 Ψ4(y, y, y, xy) = 0

Ψ4(x, x, y, y) = 0 Ψ4(x, x, x, y2) = 0 Ψ4(y, y, y, x2) = 0

Ψ4(x, x, x, y3) = 0 Ψ4(x, x, x, xy2) = 0 Ψ4(y, y, y, yx2) = 0
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and

Ψ4(x
2, x, y, y) = 0 Ψ4(y

2, y, x, x) = 0 (14)

Ψ4(x
2, x2, y, y) = 0 Ψ4(y

2, y2, x, x) = 0

Ψ4(x
2, x, y2, y) = 0

Let us use the notation f ≡ g to indicate that f, g ∈ K[V 2]S3 are congruent
modulo 〈P 〉 . The above 17 relations in the order of listing imply the following:

[x4] ≡ 0 [y4] ≡ 0 [x3y] ≡ 0

[xy3] ≡ 0 [x4y] ≡ 0 [xy4] ≡ 0

[x2y2] ≡ 1
3
[xy][xy] [x3y2] ≡ 0 [y3x2] ≡ 0

[x3y3] ≡ 0 [x4y2] ≡ 0 [y4x2] ≡ 0

and

[x3y2] ≡ 1
3
[x2y][xy] [y3x2] ≡ 1

3
[y2x][yx]

[x4y2] ≡ 1
3
[x2y][x2y] [x2y4] ≡ 1

3
[xy2][xy2]

[x3y3] ≡ 1
6
[x2y][xy2] + 1

6
[x2y2][xy]

Recall that K[V 2]S3 is minimally generated as an algebra by P∪{[xy], [x2y], [xy2]} .
The above congruences obviously show that as a module over K[P ] , the algebra
K[V 2]S3 is spanned by

S = {1, [xy], [x2y], [xy2], [xy]2, [x2y][xy2]}.

Using Molien’s formula one can easily compute

H(K[V 2]S3 ; t1, t2) =
1 + t1t2 + t21t2 + t1t

2
2 + t21t

2
2 + t31t

3
2

(1− t1)(1− t21)(1− t31)(1− t2)(1− t22)(1− t32)
,

and this implies that K[V 2]S3 is a free K[P ]-module generated by S . The above
considerations imply that the ideal of relations among the 21 generators

{[xiyj] | 0 ≤ i, j ≤ 4, i + j ≤ 6, (i, j) 6= (0, 0)}

is generated by the 17 relations (13) and (14). The relations (13) can be used to
eliminate the 12 superfluous generators of degree ≥ 4 in the relations (14). This
way we get 5 defining relations for the minimal generating system

{[xiyj] | i + j ≤ 3}.

The bidegrees of these relations are (3, 2), (2, 3), (4, 2), (2, 4), (3, 3). It is easy to
see that these 5 relations minimally generate the ideal of relations. (In subsequent
work, the minimal presentation of C[V m]S3 is determined in [14] for arbitrary m .)



Domokos 523

References

[1] Amitsur, S. A., On the characteristic polynomial of a sum of matrices,
Lin. Multilin. Alg. 8 (1980), 177–182.

[2] Artin, M., On Azumaya algebras and finite dimensional representations of
rings, J. Algebra 11 (1969), 532–563.

[3] Berele, A., Trace identities for diagonal and upper triangular matrices,
International J. Algebra and Computation 6 (1996), 645–654.

[4] Berele, A., and A. Regev, Some results on trace cocharacters, J. Algebra
176 (1995), 1013–1024.

[5] Briand, E., When is the algebra of multisymmetric polynomials generated
by the elementary multisymmetric polynomials?, Beiträge Algebra Geom.
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