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Abstract. We study locally compact contractive local groups, that is, locally
compact local groups with a contractive pseudo-automorphism. We prove that
if such an object is locally connected, then it is locally isomorphic to a Lie
group. We also prove a related structure theorem for locally compact contractive
local groups which are not necessarily locally connected. These results are local
analogues of theorems for locally compact contractive groups.
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1. Introduction

Throughout G is a local group as defined in [1]. We let 1 be its identity, Λ ⊆ G
be the domain of its inversion map, and Ω ⊆ G×G be the domain of its product
map. All local groups in this paper are assumed to be hausdorff, and likewise,
“topological group” means “hausdorff topological group”.

An automorphism ϕ of a topological group H is said to be contractive if

lim
n→∞

ϕn(x) = 1 for all x ∈ H,

and we call a topological group contractive (= contractible in [6], but this term
has another meaning in topology) if it has a contractive automorphism. In [6]
it is shown that every locally compact connected contractive topological group
is a (finite-dimensional, real) Lie group, even a unipotent real matrix group. In
response to a abstr question by Svetlana Selivanova we prove here a local analogue
of this result, which has been used to study dilation structures in [5]. To formulate
this analogue precisely, we define a contractive pseudo-automorphism of G to be
a morphism ϕ : G → G of local groups such that for some open neighborhood U
of 1 in G the map φ|U : U → G is injective and open, and limn→∞ ϕn(x) = 1 for
all x ∈ U . Call G contractive if G has a contractive pseudo-automorphism.

Theorem 1.1. If G is locally compact, locally connected, and contractive, then
G is locally isomorphic to a contractive Lie group.
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The recent solution [1] of a local version of Hilbert’s 5th problem is of no help here,
and we use instead an old result due to Mal’cev [2] to the effect that local groups
satisfying a certain generalized associative law embed into topological groups. In
Section 2 we prove Mal’cev’s theorem. In Section 3 we show that if G is contractive
in a strong way, then G obeys the generalized associative law that makes Mal’cev’s
theorem applicable. In Section 4 we use this to derive Theorem 1.1 from the
corresponding global result in [6]. We also prove a related structure theorem for
locally compact contractive local groups that are not necessarily locally connected.

See [1] for the definition of G|U for an open neighborhood U of 1 in G , and of
“morphism of local groups” (also called “local group morphism” below). Recall
also from [1] that two local groups are said to be locally isomorphic if they have
isomorphic restrictions to open neighborhoods of their identity. Here are definitions
of some auxiliary notions. Let X ⊆ G . We call X symmetric if X ⊆ Λ and
X−1 = X ; in particular, G is symmetric iff Λ = G . The largest symmetric subset
of X is its symmetrization Xs :

Xs := {x ∈ X ∩ Λ : x−1 ∈ X ∩ Λ} (so Gs = Λ ∩ Λ−1).

If U is an open neighborhood of 1, then so is Us . If ϕ : G → G is a contractive
pseudo-automorphism of G , then ϕ(Gs) ⊆ Gs , and the restriction of ϕ to a map
Gs → Gs is a contractive pseudo-automorphism of G|Gs . We call G neat if Λ = G
and (xy, y−1) ∈ Ω for all (x, y) ∈ Ω. Note that G|U is neat for any symmetric
open neighborhood U of 1 with U × U ⊆ Ω.

2. Mal’cev’s theorem

Theorem 2.1 below provides a necessary and sufficient condition for a neat local
group to admit an injective local group morphism into a topological group. We
repeat Mal’cev’s construction [2] as some of its byproducts are useful in the next
section, and include details omitted in Mal’cev’s proof. Throughout we let m,n
range over N = {0, 1, 2, . . . } .

We call G globalizable if there is a topological group H and an open neighborhood
U of the identity in H such that G = H|U . Note that if G is globalizable and
symmetric, then G is neat.

Let a1, . . . , an, b ∈ G . We define the notion (a1, . . . , an) ; b , by induction on n
as follows:

• If n = 0, then (a1, . . . , an) ; b iff b = 1;

• (a1) ; b iff a1 = b ;

• If n > 1, then (a1, . . . , an) ; b iff for some i ∈ {1, . . . , n − 1} , there exist
b′, b′′ ∈ G such that (a1, . . . , ai) ; b′ , (ai+1, . . . , an) ; b′′ , (b′, b′′) ∈ Ω and
b′ · b′′ = b .

Informally, (a1, . . . , an) ; b if for some way of introducing parentheses into
the sequence (a1, . . . , an) all intermediate products are defined and the resulting
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product equals b . See [2] and [4] for examples of G with elements a1, . . . , an such
that (a1, . . . , an) ; b and (a1, . . . , an) ; c for distinct b, c ∈ G .

We call G globally associative if for all a1, . . . , an, b, c ∈ G ,

[(a1, . . . , an) ; b and (a1, . . . , an) ; c] =⇒ b = c.

If G is globally associative, so is its restriction G|U to any open neighborhood
U of 1. If there is an injective local group morphism from G into a topological
group, then G is globally associative. For neat G the converse holds:

Theorem 2.1. Suppose G is neat and globally associative. Then there is an
injective local group morphism ι : G → H into a topological group H such that if
φ : G → L is any local group morphism into a topological group L, then there is a
unique continuous group morphism φ̃ : H → L with φ̃ ◦ ι = φ.

Proof. Let G∗ :=
⋃

n G×n be the set of words on G . Consider a word
x = (x1, . . . , xm) ∈ G×m . If (xi, xi+1) ∈ Ω, 1 ≤ i < m , then we call the word

(x1, . . . , xi−1, xixi+1, xi+2, . . . , xm) ∈ G×(m−1)

a contraction of x of type I. If also xi+1 = x−1
i , then we call

(x1, . . . , xi−1, xi+2, . . . , xm) ∈ G×(m−2)

a contraction of x of type II. If (a, b) ∈ Ω and xi = ab , 1 ≤ i ≤ m then

(x1, . . . , xi−1, a, b, xi+1, . . . , xm) ∈ G×(m+1)

is an expansion of x of type I. Finally, for a ∈ G and 0 ≤ i ≤ m we call

(x1, . . . , xi, a, a−1, xi+1, . . . , xm) ∈ G×(m+2)

an expansion of x of type II. Define an admissible sequence to be a finite sequence
w1, . . . , wN of words wi ∈ G∗ with N ≥ 1 such that wi+1 is a contraction or
expansion of wi , for all i with 1 ≤ i < N . This gives an equivalence relation
∼ on G∗ by: x ∼ y iff there is an admissible sequence w1, . . . , wN such that
w1 = x and wN = y . Let H be the set of equivalence classes [x] of elements
x = (x1, . . . , xm) ∈ G∗ . It is easy to check that we have a binary operation and a
unary operation on H given by

[(x1, . . . , xm)] · [(y1, . . . , yn)] := [(x1, . . . , xm, y1, . . . , yn)]

and
[(x1, . . . , xm)]−1 := [(x−1

m , . . . , x−1
1 )].

Endowed with these operations, H is a group with identity element 1H = [∅] , the
equivalence class of the empty sequence. Note that also 1H = [(1)].

Define ι : G → H by ιg := [(g)]. Clearly, ιG generates the group H . We
now show that ι is injective. (This is the part asserted without proof by Mal’cev
[2].) The key to doing this is the following.
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Claim 1: Suppose that x, y, z ∈ G∗ and x contracts to y and y expands to
z . Then one can also go from x to z by first expanding once or twice and then
contracting once.

There are some obvious cases where the relevant contraction and expansion oper-
ations “commute” and can just be interchanged. (This includes the case where y
is a contraction of x of type II or z is an expansion of y of type II.) So we can
assume that y is a contraction of x := (x1, . . . , xm) of type I,

y = (x1, . . . , xi−1, xixi+1, xi+2, . . . , xm), 1 ≤ i < m, (xi, xi+1) ∈ Ω,

and z is an expansion of y of type I of the form

z = (x1, . . . , xi−1, a, b, xi+2, . . . , xm), (a, b) ∈ Ω, ab = xixi+1.

Now G is neat, so (ab, x−1
i+1) ∈ Ω and xi = (ab)x−1

i+1 . Define

u :=(x1, . . . , xi−1, ab, x−1
i+1, xi+1, . . . , xn),

v :=(x1, . . . , xi−1, a, b, x−1
i+1, xi+1, . . . , xn).

Then u is an expansion of x of type I, v is an expansion of u of type I, and z is
a contraction of v of type II. This proves the claim.

Define a special sequence to be an admissible sequence w1, . . . , wN such that for
some M ∈ {1, . . . , N} , wi+1 is an expansion of wi for 1 ≤ i < M , and wi+1 is a
contraction of wi for M ≤ i < N .

Claim 2: Let x, y ∈ G∗ and x ∼ y . Then there is a special sequence w1, . . . , wN

such that w1 = x and wN = y .

To prove this, let w1, . . . , wn be any admissible sequence (typically, part of an
admissible sequence connecting x to y ), and suppose it is not special. Then n ≥ 3
and we have a largest m ∈ {2, . . . , n − 1} such that wm−1 contracts to wm and
wm expands to wm+1 . Apply Claim 1 to wm−1, wm, wm+1 in the role of x, y, z ,
so wm gets replaced by one or two words. If the resulting admissible sequence
is not yet special, apply the same procedure to it. We have to show that after a
finite number of such steps we end up with a special sequence. The critical case
is when m ∈ {2, . . . , n− 1} is such that wi contracts to wi+1 for 1 ≤ i < m , and
wi expands to wi+1 for m ≤ i < n . Then the reader can easily check that after at
most

(n−m) + 2(n−m) + · · ·+ 2m−1(n−m) = (2m − 1)(n−m)

such steps (applications of Claim 1) we obtain a special sequence. This concludes
the proof of Claim 2.

Now suppose that a, b ∈ G and ι(a) = ι(b), that is, (a) ∼ (b). By Claim 2, we can
take x ∈ G∗ such that x is obtained from (a) by a finite succession of expansions
(hence x ; a), and (b) is obtained from x by a finite succession of contractions
(hence x ; b). Hence a = b by global associativity, so ι is injective. Note:

ι(1) = 1H , ι(a−1) = ι(a)−1 for a ∈ G, ι(ab) = ι(a)ι(b) for (a, b) ∈ Ω.
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Let B be the set of open neighborhoods of 1 in G , and ιB := {ιU | U ∈ B} . We
verify the conditions (i)-(v) below that make ιB a neighborhood base at 1H for a
(necessarily unique) group topology on H , which by convention includes here the
requirement of being hausdorff.

(i) Let U, V ∈ B ; we need W ∈ B such that ιW ⊆ ιU ∩ ιV . Since ι is injective,
we can take W = U ∩ V .

(ii) Let U ∈ B ; we need V ∈ B such that ιV · ιV ⊆ ιU . Choose V ∈ B such that
V × V ⊆ Ω and V 2 ⊆ U . Then for g, g′ ∈ V , we have

ι(g) · ι(g′) = ι(gg′) ∈ ιU.

(iii) Let U ∈ B ; we need V ∈ B such that (ιV )−1 ⊆ ιU . Choose V ∈ B such that
V −1 ⊆ U , for example V = U ∩ U−1 . Then clearly (ιV )−1 ⊆ ιU .

(iv) Let h ∈ H and U ∈ B ; we need V ∈ B such that h(ιV )h−1 ⊆ ιU . Since H
is generated by ιG we can reduce to the case h = ιg, g ∈ G . Choose V ∈ B such
that {g} × V ⊆ Ω, (gV )× {g−1} ⊆ Ω, and (gV )g−1 ⊆ U .

(v) (hausdorff requirement)
⋂
{ιU | U ∈ B} = {1H} . This holds because G is

hausdorff.

With H now being a topological group, ι is clearly continuous at 1. Then the
local homogeneity lemma 2.16 of [1] yields that ι is continuous at each a ∈ G ,
and thus ι is a local group morphism.

Let L be any topological group and φ : G → L a morphism of local groups.

Claim 3: Suppose x1, . . . , xm, y1, . . . , yn ∈ G and (x1, . . . , xm) ∼ (y1, . . . , yn).
Then φ(x1) · · ·φ(xm) = φ(y1) · · ·φ(yn).

It is routine to verify the claim when y = (y1, . . . , yn) is a contraction or
expansion of x = (x1, . . . , xm), and the general case then follows.

By Claim 3 we can define a group morphism φ̃ : H → L by

φ̃([g1, . . . , gn]) := φ(g1) · · ·φ(gn), (g1, . . . , gn ∈ G),

so φ̃ ◦ ι = φ . To check continuity of φ̃ , let V be an open neighborhood of
the identity in L . Then U := φ−1(V ) is an open neighborhood of 1 in G and
ιU ⊆ φ̃−1(V ), so φ̃−1(V ) is a neighborhood of 1H in H . Thus φ̃ is continuous.

Let G be neat and globally associative. The universal property of ι, H in The-
orem 2.1 determines ι, H up to unique isomorphism over G , and so, without
claiming that G is globalizable, we may call H the globalization of G . The con-
struction in the proof of the theorem and the local homogeneity lemma 2.16 of [1]
show that ι : G → H is not just continuous but also open. In particular ιG is
open in H and ι is a homeomorphism onto ιG . Accordingly, we identify G with
ιG ⊆ H via ι . Note that G generates H . The following properties of H are also
evident from its construction.
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Lemma 2.2.

(1) For any symmetric open neighborhood U of 1 in G with U × U ⊆ Ω, we
have G|U = H|U (and so G|U is globalizable).

(2) If G is connected, then H is connected.

(3) G is locally compact if and only if H is locally compact.

Remark. Olver [4] has another variant of Mal’cev’s theorem, where G is a local
Lie group, G , Ω, Λ are connected, and instead of neatness, it is assumed that
for any x ∈ G and neighborhood U of 1, there are x1, . . . , xn ∈ U such that
(x1, . . . , xn) ; x .

3. Contractive injective endomorphisms

In this section ϕ : G → G is an injective morphism of local groups such that
limn→∞ ϕn(x) = 1 for all x ∈ G . (If ϕ is also open, then G is contractive.)

Lemma 3.1. Suppose that a1, . . . , an, a ∈ G and (a1, . . . , an) ; a. Then also
(ϕ(a1), . . . , ϕ(an)) ; ϕ(a).

Proof. We proceed by induction on n . The conclusion of the lemma is obvious
when n = 0 or 1. Suppose that n > 1. Choose i ∈ {1, . . . , n− 1} and b′, b′′ ∈ G
with (b′, b′′) ∈ Ω such that

(a1, . . . , ai) ; b′, (ai+1, . . . , an) ; b′′, b′ · b′′ = a.

By the induction hypothesis we have

(ϕ(a1), . . . , ϕ(ai)) ; ϕ(b′), (ϕ(ai+1), . . . , ϕ(an)) ; ϕ(b′′).

Also (ϕ(b′), ϕ(b′′)) ∈ Ω and ϕ(b′)ϕ(b′′) = ϕ(b′b′′) = ϕ(a), and therefore

(ϕ(a1), . . . , ϕ(an)) ; ϕ(a).

The following is taken from [1]. By recursion on n we define the relation

(a1, . . . , an) → b

for a1, . . . , an, b ∈ G as follows:

• If n = 0, then (a1, . . . , an) → b iff b = 1;

• (a1) → b iff a1 = b ;

• If n > 1, then (a1, . . . , an) → b iff for all i ∈ {1, . . . , n − 1} there exist
b′, b′′ ∈ G such that (a1, . . . , ai) → b′ , (ai+1, . . . , an) → b′′ , (b′, b′′) ∈ Ω and
b′ · b′′ = b .
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An easy induction on n shows that for a1, . . . , an, b, c ∈ G , if

(a1, . . . , an) → b, (a1, . . . , an) ; c,

then b = c . By Lemma 2.5 of [1] there is for each n > 0 a neighborhood Un of 1
such that for all a1, . . . , an ∈ Un there is b ∈ G with (a1, · · · , an) → b .

Corollary 3.2. G is globally associative.

Proof. Let a1, . . . , an, b, c ∈ G be such that

(a1, . . . , an) ; b and (a1, . . . , an) ; c.

It is enough to derive b = c . By Lemma 3.1 we have

(ϕm(a1), . . . , ϕ
m(an)) ; ϕm(b) and (ϕm(a1), . . . , ϕ

m(an)) ; ϕm(c),

for all m > 0. Choose m so large that ϕm(a1), . . . , ϕ
m(an) ∈ Un . It follows that

ϕm(b) = ϕm(c), and thus b = c .

For the remainder of this section L denotes a topological group.

A near-automorphism of L is an injective, continuous, open group morphism
L → L . We call a near-automorphism τ : L → L contractive if limn→∞ τn(x) = 1
for all x ∈ L .

For example, x 7→ px : Zp → Zp is a contractive near-automorphism of the compact
additive group Zp of p-adic integers, and is not an automorphism. Thus non-
trivial compact groups may admit contractive near-automorphisms, but do not
admit contractive automorphisms; see [6], 1.8(b).

Remark 3.3. If τ : L → L is a contractive near-automorphism of L , then τ is
a contractive pseudo-automorphism of L viewed as a local group.

Lemma 3.4. Suppose τ : L → L is a near-automorphism. Let L1 be the con-
nected component of 1 in L. Then τ(L1) = L1 and so τ |L1 is an automorphism of
L1 . If L has only finitely many connected components, then τ is an automorphism
of L.

Proof. Since τ is continuous and open, τ(L1) is a connected open subgroup
of L , and hence also closed in L , and thus τ(L1) = L1 . The set L/L1 of cosets is
the set of connected components of L . Suppose L/L1 is finite. Since τ(L1) = L1 ,
the function

xL1 7→ τ(x)L1 : L/L1 → L/L1

is injective, hence bijective. It follows that τ is an automorphism of L .

Lemma 3.5. Suppose G is neat and ϕ is open. Let H be the globalization of
G and let ϕ̃ : H → H be the unique extension of ϕ to an endomorphism of H .
Then the map ϕ̃ is open, and for D :=

⋃
n ker(ϕ̃n) we have:
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(1) D is a discrete normal subgroup of H and ϕ̃−1(D) = D ;

(2) ϕ̃ descends to a contractive near-automorphism

ϕD : H/D → H/D, ϕD(xD) := ϕ̃(x)D;

(3) for any symmetric open neighborhood U ⊆ G of 1 with U × U ⊆ Ω, the
image π(U) of U in H/D is open, and the map

x 7→ xD : U → H/D

is an isomorphism G|U → (H/D)|π(U) of local groups.

Proof. The openness of ϕ gives the openness of ϕ̃ . It is easy to check that D is
a normal subgroup of H and ϕ̃−1(D) = D . Each ϕn is injective, so D∩G = {1} ,
which gives (1), and so ϕ̃ descends to a near-automorphism ϕD of H/D . To
show that ϕD is contractive, let x ∈ H be given. Then x = x1 · · ·xm , with
x1, . . . , xm ∈ U , so ϕ̃n(x) = ϕn(x1) · · ·ϕn(xm) → 1 as n → ∞ . Item (3) is
straightforward.

4. The structure of locally compact contractive local groups

In this section H is a topological group, and H1 is the connected component of its
identity. Our aim here is to prove local analogues of the following two structure
theorems for locally compact contractive groups.

Fact 4.1 ([3], (1.10) and [6], Lemma 1.4). Each locally compact connected
contractive group is a Lie group.

Fact 4.2 ([6], Proposition 4.2). If H is locally compact and contractive, then
H is isomorphic as topological group to a product H1 ×D , where D is a closed,
totally disconnected, normal subgroup of H , and H1 and D are both contractive.
(So H1 is a Lie group.)

Obviously, if a local group is locally isomorphic to a Lie group, then it is locally
compact and locally connected. A strong converse of this implication holds for
contractive local groups: Theorem 1.1 from the Introduction, which is our local
analogue of Fact 4.1. To prove this converse we need the next lemma whose proof
is close to [6], Lemma 1.4, and whose purpose is to reduce to a situation where the
results of the previous section are applicable.

Lemma 4.3. Suppose G is locally compact, V is a neighborhood of 1 in G, and
ϕ is a contractive pseudo-automorphism of G. Then there is an open symmetric
neighborhood U of 1 in G such that U ⊆ V , U×U ⊆ Ω, ϕ(U) ⊆ U , ϕ|U : U → G
is open and injective, and limn→∞ ϕn(x) = 1 for all x ∈ U .

Proof. By restricting G as indicated at the end of the Introduction we can
assume that G is symmetric. By shrinking V we may assume in addition: V is
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compact, symmetric, V ×V ⊆ Ω, and V is contained in an open neighborhood W
of 1 in G for which ϕ|W : W → G is open and injective, and limn→∞ ϕn(x) = 1
for all x ∈ W . For X ⊆ G , we set

ϕ−n(X) := {x ∈ G | ϕn(x) ∈ X},

while ϕn(X) has the usual meaning as a direct image; note that then for all k ∈ Z
we have ϕ(ϕk(X)) ⊆ ϕk+1(X). For l ∈ Z , set Vl :=

⋂
k≤l ϕ

k(V ). We claim that
then the family (Vl) has the following properties:

(1) Vl is symmetric, Vl ⊇ Vl+1 and ϕ(Vl) ⊆ Vl+1 ;

(2) W ⊆
⋃

l∈Z Vl , and Vl ∩ V has nonempty interior in G for some l ;

(3) for every neighborhood X of 1 there exists n1 ∈ N such that for all n ≥ n1

we have ϕn(V ) ⊆ X ;

(4) (Vl | l ∈ Z) is a neighborhood base of 1.

Item (1) is straightforward to check. To prove (2), let x ∈ W . We can take n0 ∈ N
such that ϕn(x) ∈ V for all n ≥ n0 , so x ∈ V−n0 . This proves W ⊆

⋃
l∈Z Vl . Now

each Vl is closed in G , so by Baire’s theorem some Vl ∩ V has nonempty interior
in G , which is (2).

To prove (3), let X be a neighborhood of 1. Take a compact symmetric
neighborhood A of 1 with A ⊆ V , V A × A ⊆ Ω, and A2 ⊆ X . By (1) and (2),
with A in place of V , we obtain n0 ∈ N such that

B := {x ∈ A | ϕn(x) ∈ A for all n ≥ n0}

has nonempty interior in G . Take b ∈ interior(B); so b−1 ∈ A . Let x ∈ V ; then
(xb−1, b) ∈ Ω and x = (xb−1)b . By the local homogeneity lemma 2.16 of [1] we
can take an open neighborhood U = Ux of 1 such that

{x} × U , {b} × U ⊆ Ω, {xb−1} × bU ⊆ Ω, bU ⊆ B,

and xU and bU are open neighborhoods of x and b respectively. Since V is
compact, we have x1, . . . , xm ∈ V such that V ⊆ x1Ux1 ∪ · · · ∪ xmUxm . Choose
n1 ∈ N such that n1 ≥ n0 and ϕn(x1b

−1), . . . , ϕn(xmb−1) ∈ A for all n ≥ n1 .
Since ϕn(B) ⊆ A for all n ≥ n0 , and for i = 1, . . . ,m we have

xiUxi
= (xib

−1)bUxi
, bUxi

⊆ B,

it follows that ϕn(V ) ⊆ A2 ⊆ X for all n ≥ n1 . This proves (3).

Applying (3) to X = V gives n1 ∈ N such that V ⊆ V−n for all n ≥ n1 , and
thus V−n is a neighborhood of 1 for all n ≥ n1 . Since ϕ is open near 1, it follows
from the last part of (1) that all Vl are neighborhoods of 1. Since Vn ⊆ ϕn(V ) for
all n , this yields (4) as a consequence of (3).

Thus U := interior(V0) satisfies the conclusion of the lemma.
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Proof of Theorem 1.1. Let G be locally compact and locally connected, and
let ϕ : G → G be a contractive pseudo-automorphism. Our job is to show that
then G is locally isomorphic to a contractive Lie group.

By Lemma 4.3 and a remark at the end of the Introduction we can reduce
to the case that G is neat and ϕ is open and injective, with limn→∞ ϕn(x) = 1
for all x ∈ G . Then by Lemma 3.5 and with H , D , φD as in that lemma,
G is locally isomorphic to the topological group L = H/D , which has φD as
a contractive near-automorphism. Since G is locally connected, G is then also
locally isomorphic to L1 , the connected component of the identity of L , and L1

is a contractive Lie group by Lemma 3.4 and Fact 4.1.

To obtain the local analogue of Fact 4.2, we need the next lemma, which is
essentially Fact 4.2 with a contractive near-automorphism of H instead of a
contractive automorphism.

Lemma 4.4. Let H be locally compact and τ a contractive near-automorphism
of H . Then there exists a totally disconnected, closed, normal subgroup P of H
such that (h, p) 7→ hp : H1 × P → H is an isomorphism of topological groups,
τ(P ) ⊆ P , and τ |P is a contractive near-automorphism of P .

Proof. By Lemma 3.4, τ |H1 is a contractive automorphism of H1 , so by Fact
4.1, H1 is a Lie group. The remainder of the proof is just like that of Proposition
4.2 in [6].

Theorem 4.5. Suppose G is locally compact and contractive. Then G is locally
isomorphic to a direct product L×P , where L is a contractive Lie group and P is
a totally disconnected locally compact group with a contractive near-automorphism.

Proof. As in the proof of Theorem 1.1 we reduce to the case that G is neat
and we have an injective open morphism ϕ : G → G of local groups such that
limn→∞ ϕn(x) = 1 for all x ∈ G . Let H , D and ϕD be as in Lemma 3.5. By that
lemma, G is locally isomorphic to H/D , and so it remains to apply Lemma 4.4
to H/D and ϕD in the role of H and τ .
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