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Abstract. Lie quasi-states on a real Lie algebra are functionals which are
linear on any abelian subalgebra. We show that on the symplectic Lie algebra of
rank at least 3 there is only one continuous non-linear Lie quasi-state (up to a
scalar factor, modulo linear functionals). It is related to the asymptotic Maslov
index of paths of symplectic matrices.
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1. Introduction and main results

1.1. Lie quasi-states.

Let W ⊂ g be a vector subspace of a finite-dimensional Lie algebra g over
R . A function ζ : W → R will be called quasi-linear if:

[x1, x2] = 0 =⇒ ζ(c1x1 + c2x2) = c1ζ(x1) + c2ζ(x2) ∀c1, c2 ∈ R.

A quasi-linear function on the whole Lie algebra g will be called a Lie quasi-state.

Continuous Lie quasi-states on g form a vector space Q̂(g). Set Q(g) :=

Q̂(g)/g∗ , where g∗ is the dual space to g . It can be viewed as the space of non-
linear continuous Lie quasi-states on g .

In the present paper we focus on Lie quasi-states on the symplectic Lie
algebra sp (2n, R), that is on the Lie algebra of the group Sp(2n, R) of 2n × 2n
symplectic matrices. Our main finding is that the notion of a continuous Lie
quasi-state is rigid in the following sense.

Theorem 1.1. Let g = sp (2n, R), n ≥ 3. Then dimQ(g) = 1.

As we shall see below, the generator of Q(g) looks as follows: its value on a matrix
B ∈ sp (2n, R) equals, roughly speaking, to the asymptotic Maslov index of the
path etB as t →∞ .
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Let us discuss the assumptions of the theorem. In the case n = 1,
dimQ(sp (2, R)) = +∞ . Indeed, any two commuting matrices in sp (2, R) dif-
fer by a scalar factor, and hence any odd homogeneous function on sp (2, R) is a
Lie quasi-state. The case n = 2 is so far absolutely open.

The next result shows that the continuity assumption in Theorem 1.1 is essential.

Theorem 1.2. The space of (not necessarily continuous) Lie quasi-states on
sp (2n, R) which are bounded on a neighborhood of zero is infinite-dimensional for
all n ≥ 1.

At the same time any Lie quasi-state which is differentiable at 0 is automatically
linear since it is homogeneous of degree 1.

1.2. Origins of Lie quasi-states.

The interest to the notion of Lie quasi-states is three-fold.

Lie quasi-states and quasi-morphisms on Lie groups: Recall that a ho-
mogeneous quasi-morphism on a group G is a function µ : G → R such that

• There exists C > 0 so that |µ(xy)− µ(x)− µ(y)| ≤ C for all x, y ∈ G .

• µ(xk) = kµ(x) for all k ∈ Z , x ∈ G .

It is known that restriction of any homogeneous quasi-morphism to an
abelian subgroup is a genuine morphism, and that homogeneous quasi-morphisms
are conjugation invariant (see e.g. [2] for introduction to quasi-morphisms). There-
fore, given a homogeneous quasi-morphism µ on a Lie group G , its pull-back to the
Lie algebra g by the exponential map, which we will call the directional derivative
of µ ,

ζ : g → R, a 7→ µ(exp a) ,

is an AdG -invariant Lie quasi-state. Clearly, ζ is continuous whenever µ is
continuous.

In fact, if G is a simply connected real Lie group with a Hermitian simple
Lie algebra g (see Section 4 for the definition; in particular, G = S̃p(2n, R), the
universal cover of Sp(2n, R), is such a Lie group and its Lie algebra is sp (2n, R)),
then the space of homogeneous quasi-morphisms on G is 1-dimensional [18], cf.
[3], and these quasi-morphisms are continuous [18]. We shall show that in such a
case the space of AdG -invariant Lie quasi-states on g is also one-dimensional – see
Section 4.

Lie quasi-states and Gleason’s theorem: Gleason’s theorem [10] is one of
the most famous and important results in the mathematical formalism of quantum
mechanics (see e.g. [17, 5]). In the finite-dimensional setting the proof of Gleason’s
theorem yields the following result about Lie quasi-states.

Theorem 1.3 (Gleason). Let V be a finite-dimensional vector space over R
(respectively, over C), equipped with a real (respectively, Hermitian) inner product.
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Denote by S(V ) the subspace of the self-adjoint operators (viewed as the subspace
of the Lie algebra of all operators on V ). Let ζ : S(V ) → R be a quasi-linear
function which is bounded on a neighborhood of zero in S(V ). Assume also that
dim V ≥ 3.

Then ζ is linear and has the form ζ(A) = tr(HA) for some H ∈ S(V ).

Corollary 1.4. Any Lie quasi-state ζ on the Lie algebra u(n), n ≥ 3, which
is bounded on a neighborhood of zero, is linear and has the form ζ(A) = tr(HA)
for some H ∈ u(n).

Indeed, u(n) = iS(Cn), where S(Cn) is the space of Hermitian n × n-
matrices.

The statement of Theorem 1.3 is slightly different from the original for-
mulation in Gleason’s paper [10]: instead of boundedness of ζ near zero Gleason
assumes that ζ is non-negative on the set of non-negative self-adjoint operators.
To obtain this non-negativity condition from the boundedness near zero one just
needs to add to ζ a linear function A 7→ Tr(cA) for a sufficiently large positive
c ∈ R . After such a modification, ζ becomes positive on the set of all orthogonal
projectors, and hence (by the spectral theorem) non-negative on all non-negative
self-adjoint operators.

Our proof of Theorem 1.1 uses Gleason’s theorem. Let us mention that
the most difficult and non-trivial part of the proof of Gleason’s Theorem 1.3 is
to show that the boundedness of ζ near zero implies its continuity – the latter
yields (by basic representation theory) that ζ is linear. Since in Theorem 1.1 we
assume that ζ is continuous, our proof of the theorem does not use the difficult
part of Gleason’s proof (and there is no analogue of this part in our proof due to
Theorem 1.2).

Lie quasi-states in symplectic topology: As the third point of interest in
Lie quasi-states, we note that such functionals on the infinite-dimensional Poisson-
Lie algebra of Hamiltonian functions on a symplectic manifold appeared recently in
symplectic topology and Hamiltonian dynamics before they were properly studied
in the finite-dimensional setting. We refer the reader to [6, 7, 8] for various aspects
of this development.

1.3. Maslov quasi-state on sp (2n, R).

The Lie quasi-state ζM generating the 1-dimensional space Q(sp (2n, R)),
n ≥ 3, comes from the Maslov index of paths of symplectic matrices and can be
defined as follows. Given B ∈ sp (2n, R), write the (unique) polar decomposition
of the matrix etB as etB = P (t)U(t). Here P (t) is symplectic (i.e. belongs to
Sp(2n, R)), symmetric and positive and U(t) is symplectic and complex-linear.
The real operator U(t) can be identified with a unitary operator on Cn and we
denote by

detCU(t) ∈ S1 = {z ∈ C | |z| = 1}
the determinant of this unitary operator. Note that the families P (t), U(t) are
continuous in t . Now set

ζM(B) := lim
t→+∞

1

t
arg detCU(t).
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One can check that ζM is a continuous non-linear Lie quasi-state – in
fact, it is a directional derivative of a unique (up to a non-zero constant factor)

homogeneous quasi-morphism on S̃p(2n, R) (cf. Section 4).

For n = 1 one can easily write an explicit formula for ζM . Namely,

sp (2, R) =

{
A =

(
a b
c −a

)
, a, b, c ∈ R

}
and

ζM(A) =


√
|a2 + bc|, if a2 + bc < 0, b < 0, c > 0,

−
√
|a2 + bc|, if a2 + bc < 0, b > 0, c < 0,

0, if a2 + bc ≥ 0.

(1)

As we see, ζM is continuous but not differentiable.

1.4. Perspective and open questions.

Theorem 1.1 raises the following general problem: given a Lie algebra g ,
describe the space Q(g) of continuous non-linear Lie quasi-states on g .

Besides the Lie algebras mentioned above, there are a few other (finite-
dimensional) cases where the answer is known: for instance, the Heizenberg algebra
(in this case Q(g) = 0 – see Section 2) and the algebra so(3, R) (in this case any
two commuting elements must be proportional to each other so any continuous
R-homogeneous function is a continuous Lie quasi-state). A partial result on Lie
quasi-states on gl (n, R), needed for the proof of Theorem 1.1 can be found in
Section 2. Otherwise, as far as the classical Lie algebras are concerned, the answer
is unknown already for sl(3, R).

Further, in view of Theorem 1.2 it would be interesting to relax the con-
tinuity assumption and to describe the space of non-linear Lie quasi-states on g

that are bounded on a neighborhood of 0. We do not know the complete answer
even for the case of sp (2n, R). A possible interesting modification of the question
above would be to explore Lie quasi-states on g that are positive on a certain cone
in g . This is motivated by the original version of Gleason’s theorem and by the
theory of symplectic quasi-states which have this sort of property (see [6]).

Another set of questions arises from the relation between Lie quasi-states
and homogeneous quasi-morphisms.

First, note that homogeneous quasi-morphisms appear as a part of a certain
remarkable cohomological theory on groups, called bounded cohomology – see e.g.
[2, 12, 16]. It would be interesting to find a helpful cohomology theory for Lie
algebras incorporating Lie quasi-states.

Second, note that the directional derivative of a functional µ : G → R on a
Lie group G is a Lie quasi-state on the Lie algebra g of G provided

µ(xy) = µ(x) + µ(y) for all commuting x, y ∈ G (2)

(and, in particular, µ(xk) = kµ(x) for any k ∈ Z). It would be interesting to find
whether a continuous µ satisfying (2) always has to be a quasi-morphism and,
more generally, to describe the quotient of the space of all such µ on a given G
by the space of continuous homogeneous quasi-morphisms on G .



Entov and Polterovich 617

Third, given the Lie algebra g of a (simply connected) Lie group G , one

can consider the following subsets of Q̂(g):

Q̂qm(g) := {the space of continuous Lie quasi-states on g coming from
continuous homogeneous quasi-morphisms on G} ;

Q̂Ad(g) := {the set of continuous Lie quasi-states on g which are invariant
under the adjoint action of G} .

Clearly,
Q̂qm(g) ⊂ Q̂Ad(g) ⊂ Q̂(g).

By Theorem 1.1 these spaces coincide for sp (2n, R). It would be interesting to
explore these inclusions for other algebras g . For instance, assume that g is
a compact simple Lie algebra. In this case Q̂qm(g) = 0 since any continuous
homogeneous quasi-morphism on a compact group has to be zero. Further, we
show in Section 4 below that Q̂Ad(g) = 0. At the same time note that Q̂(g) might
sometimes be infinite-dimensional, for instance, if g = so(3, R).

Let us mention finally that the study of homogeneous quasi-morphisms
on groups is closely related to geometrical structures and dynamics on spaces
where these groups act – see e.g. [9]. It would be interesting to understand
geometric and/or dynamical meaning of non-linear Lie quasi-states, for instance,
those constructed in Section 3 below.

2. Proof of the main theorem

Let ζ be a continuous Lie quasi-state on sp (2n, R), n ≥ 3. We want to show that
ζ is a sum of cζM , c ∈ R , and a linear functional on sp (2n, R).

2.1. Preliminaries.

For each k ∈ N denote by Mk(R) (respectively, Mk(C)) the spaces of real
(respectively, complex) k × k -matrices.

Let ω =
∑n

k=1 dpk ∧ dqk be the standard linear symplectic form on the
vector space R2n with the coordinates p1, . . . , pn, q1, . . . , qn on it.

For each A ∈ M2n(R) there exists a unique Aω ∈ M2n(R) such that
ω(Ax, y) = ω(x, Ay) for any x, y ∈ R2n . We say that A is ω -symmetric, if
A = Aω , and skew-symplectic, if A = −Aω . With this terminology, sp (2n, R) is
the algebra of skew-symplectic matrices A ∈ M2n(R).

Given two vectors ξ, η ∈ R2n , define the following operators on R2n :

Tξ,η(x) = ω(ξ, x)η,

Yξ,η(x) := Tξ,ξ(x) + Tη,η(x) = ω(ξ, x)ξ + ω(η, x)η,

Zξ,η(x) := Tη,ξ(x) + Tξ,η(x) = ω(η, x)ξ + ω(ξ, x)η.

One readily checks that

Tξ,ξ, Yξ,η, Zξ,η ∈ sp (2n, R).

Note also that
Yξ,η = Yη,ξ, Zξ,η = Zη,ξ
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and Tξ,η, Zξ,η depend linearly on ξ and η . Finally, an easy computation shows
that

ζM(Yξ,η) = −|ω(ξ, η)|, ζM(Zξ,η) = 0.

Consider C2n = R2n ⊕ iR2n as the complexification of R2n . We write
elements of C2n as v = a + ib , a, b ∈ R2n .

Denote by (·, ·) the standard Euclidean inner product on R2n and by 〈·, ·〉
the standard Hermitian inner product on C2n so that

〈a + ib, c + id〉 = (a, c) + (b, d) + i(b, c)− i(a, d).

We say that a function Q : C2n → R is a real Hermitian quadratic form
if Q is a real quadratic form satisfying Q(λv) = |λ|2Q(v) for any λ ∈ C , or,
equivalently, if Q(v) = H(v, v) for some Hermitian form H : C2n × C2n → C . By
definition, a Hermitian form H is given by H(v, w) = 〈Hv, w〉 for some Hermitian
2n× 2n-matrix H , which, in turn, can be always written as H = A + iB , where
A, B ∈ M2n(R), A = AT , B = −BT . The corresponding real Hermitian quadratic
form Q can then be written as

Q(a + ib) = (Aa, a) + (Ab, b) + 2(Ba, b). (3)

On the other hand, since ω is non-degenerate, any real bilinear form on R2n can
be uniquely represented as ω(C·, ·) for some C ∈ M2n(R), and moreover, such a
bilinear form is symmetric (respectively, anti-symmetric) if and only if C = −Cω

(respectively, C = Cω ). Together with (3) this yields that any real Hermitian
quadratic form Q on C2n can be written as

Q(a + ib) = ω(Ca, a) + ω(Cb, b) + ω(Da, b), (4)

where
C, D ∈ M2n(R), C = −Cω, D = Dω.

2.2. Reduction to the computation of ζ on Yξ,η, Zξ,η .

First, we will show the following

Proposition 2.1. Any continuous Lie quasi-state ζ on sp (2n, R) is completely
determined by its values on elements of the form Yξ,η, Zξ,η .

Proof. Since semi-simple (i.e. diagonalizable over C) elements are dense in
sp (2n, R) and ζ is continuous, it is enough to show that for any semi-simple
A ∈ sp (2n, R) the computation of ζ(A) can be reduced to the computation of ζ
on some Yξ,η, Zξ,η .

Recall that a Darboux basis e1, . . . , en, f1, . . . , fn on R2n is a basis which
satisfies

ω(ei, ek) = ω(fi, fk) = 0, ω(ei, fk) = δik ,

for all i, k = 1, ..., n . Here δik = 0 for i 6= k and δii = 1.

By Williamson’s results on the normal forms of skew-symplectic matrices
with respect to the adjoint action of the symplectic group (see [19], cf. [1],
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Appendix 6, and [14]), any semi-simple A ∈ sp (2n, R) can be represented in
an appropriate basis as a block-diagonal matrix, where the blocks correspond to
symplectic subspaces of R2n spanned by vectors ek, . . . , ek+l, fk, . . . , fk+l from a
Darboux basis. Each such block, written in the basis ek, . . . , ek+l , fk, . . . , fk+l ,
belongs to one of the following three types:

(i)

(
−a 0
0 a

)
, corresponding to a 2-dimensional symplectic subspace of R2n

spanned by some ek, fk .

(ii)

(
0 b
−b 0

)
, corresponding to a 2-dimensional symplectic subspace of R2n

spanned by some ek, fk .

(iii)


−a b 0 0
−b −a 0 0
0 0 a b
0 0 −b a

 , corresponding to a 4-dimensional symplectic sub-

space of R2n spanned by some ek, ek+1, fk, fk+1 .

Note that

I. A block-diagonal 2n× 2n-matrix having only one block which is the 2× 2-
block (i) can be represented as aZek,fk

.

II. A block-diagonal 2n× 2n-matrix having only one block which is the 2× 2-
block (ii) can be represented as bYek,fk

.

III. A block-diagonal 2n×2n-matrix A having only one block which is the 4×4-
block (iii) can be represented as

A = aZek,fk
+ aZek+1,fk+1

− bY ek+1−fk√
2

,
ek+fk+1√

2

+ bY ek−fk+1√
2

,
ek+1+fk√

2

,

where[
aZek,fk

+ aZek+1,fk+1
,−bY ek+1−fk√

2
,
ek+fk+1√

2

+ bY ek−fk+1√
2

,
ek+1+fk√

2

]
= 0, (5)

[Zek,fk
, Zek+1,fk+1

] = 0, (6)[
Y ek+1−fk√

2
,
ek+fk+1√

2

, Y ek−fk+1√
2

,
ek+1+fk√

2

]
= 0. (7)

Thus every semi-simple A ∈ sp (2n, R) can be represented as a sum of
pairwise commuting block-diagonal matrices, each of which has one of the forms I,
II, III, and thus the computation of ζ(A) reduces to the computation of ζ on the
block-diagonal matrices I, II, III. The latter in turn reduces to the computation of
ζ on some Yξ,η , Zξ,η – for I and II this is trivial and for III this follows from the
commutation relations (5), (6), (7).
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Given ξ, η ∈ R2n , denote

F (ξ, η) := ζ(Yξ,η), (8)

G(ξ, η) := ζ(Zξ,η). (9)

Let C2n = R2n + iR2n be the complexification of R2n . Put

W := {x + iy ∈ C2n, ω(x, y) > 0} .

Consider the function F (ξ, η) as a function on C2n : F (ξ, η) := F (ξ + iη). We will
prove the following key proposition:

Proposition 2.2.

(i) There exists a real Hermitian quadratic form on C2n which coincides with
F on W .

(ii) The function G is a symmetric bilinear form on R2n .

The proof of the proposition uses Gleason’s theorem, and hence the as-
sumption n ≥ 3. Postponing the proof, let us show how the proposition implies
the main theorem.

Deducing Theorem 1.1 from Proposition 2.2: By (4) we can write the real
Hermitian quadratic form F as

F (ξ + iη) = ω(Cξ, ξ) + ω(Cη, η) + ω(Dξ, η) ∀ ξ + iη ∈ W (10)

for some C, D ∈ M2n(R), C = −Cω, D = Dω . Put

W− := {x + iy ∈ C2n, ω(x, y) < 0} .

Observe that Yξ,η = Yξ,−η and hence, since ζ is R-homogeneous,

F (ξ + iη) = F (ξ − iη) ∀ξ, η ∈ R2n .

Since ξ + iη ∈ W whenever ξ − iη ∈ W− we get that

F (ξ + iη) = ω(Cξ, ξ) + ω(Cη, η)− ω(Dξ, η) ∀ξ + iη ∈ W− .

Next, we claim that D = c1l for some c ∈ R . Indeed, otherwise there exist
ξ, η so that ω(Dξ, η) 6= 0 and ω(ξ, η) = 0. Hence F is discontinuous at ξ + iη , so
we get a contradiction.

Since W ∪W− is dense in C2n and F is continuous, we conclude that

F (ξ + iη) = ω(Cξ, ξ) + ω(Cη, η) + c|ω(ξ, η)| ∀ ξ + iη ∈ C2n . (11)

Noting that Yξ,ξ = Zξ,ξ (and hence F (ξ + iξ) = ζ(Yξ,ξ) = ζ(Zξ,ξ) = G(ξ, ξ))
we get

F (ξ + iξ) = G(ξ, ξ) = 2ω(Cξ, ξ),
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and therefore
G(ξ, η) = 2ω(Cξ, η) . (12)

Define a linear functional α : sp (2n, R) → R by α(A) := −tr(CA). We
claim that ζ equals to α − cζM on each Yξ,η , Zξ,η – as it was explained in the
beginning of this section, this claim would imply the theorem.

In order to prove the claim, we observe that

α(Yξ,η) = −tr(CYξ,η) = −tr(CTξ,ξ)− tr(CTη,η) =

= −trTξ,Cξ − trTη,Cη = ω(Cξ, ξ) + ω(Cη, η),

α(Zξ,η) = −tr(CZξ,η) = −tr(CTξ,η)− tr(CTη,ξ) =

= −trTξ,Cη − trTη,Cξ = ω(Cη, ξ) + ω(Cξ, η) = 2ω(Cξ, η).

Thus, by (11) and (12)

ζ(Yξ,η) = α(Yξ,η) + c|ω(ξ, η)|,

ζ(Zξ,η) = α(Zξ,η) .

The claim follows, since

ζM(Yξ,η) = −|ω(ξ, η)|, ζM(Zξ,η) = 0.

This finishes the proof of the theorem modulo Proposition 2.2.

Outline of the proof of Proposition 2.2(i): We reduce the problem to the case
when F is smooth on W (see Section 2). Further, for any ω -compatible almost
complex structure J on R2n the space LJ := ξ + iJξ is Lagrangian with respect
to the complexification ωC of ω . We observe that the transformation Yξ,Jξ lies
in the J -unitary subalgebra of sp (2n, R), and hence Gleason’s theorem (complex
version) yields that the restriction of F to each LJ is a Hermitian quadratic form,
say, qJ . Note that qJ = qI on LJ ∩ LI for every two compatible almost complex
structures J, I . This yields a restriction on the differential ∂qJ/∂J which can be
translated into a system of first order PDE’s. The analysis of the system (see
Section 2) eventually yields that F on W is quadratic (see Section 2).

Outline of the proof of Proposition 2.2(ii): The proof of (ii) is a bit trickier.
First, we show that for n ≥ 3 any continuous Lie quasi-state on gl (n, R), when
restricted to rank 1 operators Bξ,ηx = (x, η)ξ , is given by ζ(Bξ,η) = trNBξ,η for
some fixed matrix N . Interestingly enough, the proof of this statement is very
similar to the proof of Proposition 2.2(i) outlined above, but over the field R , see
Section 2.

This result readily yields that for a fixed ξ , the restriction of G(ξ, ·) to
every Lagrangian subspace of R2n is linear, see Section 2.

Finally, we make a detour to the Heisenberg Lie algebra: we show that on
this algebra every (not necessarily continuous) quasi-state is linear, see Section 2.
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As an immediate consequence we get that G(ξ, η) is linear in the variable η . Since
G is symmetric in ξ and η , this completes the proof.

The rest of Section 2 contains a proof of Proposition 2.2. The plan described
above serves as a rough guideline only, the specific details are often formulated in
a different language and appear in a different order.

2.3. Smoothing Lie quasi-states. Eventually, we wish to reduce Proposi-
tion 2.2 to the case when the functions F and G are smooth on W ∪W− . For
that purpose we show that a continuous Lie quasi-state on any Lie algebra can be
suitably approximated by Lie quasi-states which are smooth along the orbits of
the adjoint action of the Lie group. We thank Semyon Alesker for explaining this
to us.

Let g be the Lie algebra of a (connected) Lie group G . Fix a norm ‖ · ‖ on
g , set

S := {x ∈ g, ‖x‖ = 1}
and define a metric d on Q̂(g) by

d(ζ1, ζ2) := sup
x∈S

|ζ1(x)− ζ2(x)|.

Limits with respect to d will be called d-limits.

We will say that a function ζ : g → R is orbit-smooth if the restriction of ζ
on any orbit of the adjoint action of G on g is smooth, or, in other words, if the
function g 7→ ζ(gx) is a smooth function on G for every x ∈ g . (Here gx denotes
the adjoint action of g on x).

Proposition 2.3. Every ζ ∈ Q̂(g) is a d-limit of orbit-smooth continuous Lie
quasi-states.

Proof. Let µ be a right-invariant smooth measure on G . We will measure
diameters of sets in G with respect to some fixed distance function defined by a
Riemannian metric on G .

Let ϕi , i ∈ N , be a delta-like sequence of C∞ -smooth functions on G . In
particular, assume that

• ϕi ≥ 0 for all i ;

• supp ϕi ⊂ Ui , i ∈ N , for some open neighborhoods Ui of 1l ∈ G such that
diam Ui → 0 as i → +∞ ;

•
∫

G
ϕidµ = 1 for all i .

Given i ∈ N , put

ζi(x) :=

∫
G

ζ(hx)ϕi(h)dµ(h).

Note that since ζ is continuous, ζi : g → R is continuous as well. Moreover, for
any x0 ∈ g and g ∈ G we have

ζi(gx0) =

∫
G

ζ(hgx0)ϕi(h)dµ(h) =

∫
G

ζ(h′x0)ϕi(h
′g−1)dµ(h′g−1),
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where h′ = hg . Since µ is right-invariant, the latter integral is equal to∫
G

ζ(h′x0)ϕi(h
′g−1)dµ(h′).

Obviously, this integral depends smoothly on g . Thus for any i ∈ N the functional
ζi is orbit-smooth.

Let us estimate d(ζi, ζ). Note that

|ζi(x)− ζ(x)| =
∫

G

|ζ(hx)− ζ(x)|ϕi(h)dµ(h) =

=

∫
Ui

|ζ(hx)− ζ(x)|ϕi(h)dµ(h) ≤ max
h∈Ui

|ζ(hx)− ζ(x)|.

Since diam Ui → 0 and ζ is uniformly continuous on S , there exist δ1(i), 0 <
δ1(i) < 1, and δ2(i) > 0, such that limi→+∞ δ1(i) = 0, limi→+∞ δ2(i) = 0, and
such that for any x ∈ S and any h ∈ Ui

1− δ1(i) ≤ ‖hx‖ ≤ 1 + δ1(i),∣∣∣∣ζ(
hx

‖hx‖

)
− ζ(x)

∣∣∣∣ ≤ δ2(i).

Then, by the homogeneity of ζ , we get for any x ∈ S and any h ∈ Ui

|ζ(hx)− ζ(x)| =
∣∣∣∣‖hx‖ζ

(
hx

‖hx‖

)
− ζ(x)

∣∣∣∣ ≤
≤

∣∣∣∣‖hx‖ζ
(

hx

‖hx‖

)
− ‖hx‖ζ(x)

∣∣∣∣ +

∣∣∣∣‖hx‖ζ(x)− ζ(x)

∣∣∣∣ ≤
≤ ‖hx‖δ2(i) + |ζ(x)|δ1(i) ≤

(
1 + δ1(i)

)
δ2(i) + max

S
|ζ| · δ1(i).

Thus

d(ζi, ζ) = max
x∈S

|ζ(hx)− ζ(x)| ≤
(

1 + δ1(i)

)
δ2(i) + max

S
|ζ| · δ1(i),

and therefore limi→+∞ d(ζi, ζ) = 0.

2.4. Functions whose restrictions on Lagrangian subspaces are quadratic
forms.

Recall that
W = {x + iy ∈ C2n, ω(x, y) > 0} .

Denote by J the space of all J ∈ M2n(R) such that J2 = −1l and (·, ·)J := ω(·, J ·)
is a J -invariant inner product on R2n . (Such a J is called a a complex structure
on R2n compatible with ω ).

Given J ∈ J , define a complex vector subspace LJ of C2n by

LJ := {x + iJx ∈ C2n, x ∈ R2n}.
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Consider a complex-valued symplectic form ωC on C2n = R2n⊕ iR2n which
is the complexification of ω :

ωC(a + ib, c + id) = ω(a, c)− ω(b, d) + i
(
ω(b, c) + ω(a, d)

)
.

Note that each LJ , J ∈ J , is Lagrangian with respect to ωC and, more generally,
an ωC -Lagrangian complex vector subspace L ⊂ C2n has the form L = LJ for
some J ∈ J if and only if L \ 0 ⊂ W . The set of the subspaces LJ , J ∈ J , is
open in the set of ωC -Lagrangian complex vector subspaces of C2n .

Proposition 2.4. Let F : W → R be a C3 -smooth function. Assume that for
any ωC -Lagrangian complex subspace LJ ⊂ W , J ∈ J , the restriction of F to
LJ ∩W is a real Hermitian quadratic form. Then F is the restriction to W of a
real Hermitian quadratic form on C2n .

The proof will be based on the following proposition. Denote the space
of symmetric complex n × n-matrices by Sn(C). Let (z, w) be complex linear
coordinates on the vector space C2n = Cn × Cn , where z = (z1, . . . zn), w =
(w1, . . . , wn). For an open connected neighborhood V of 0 in Sn(C) put

CV := {(z, Az) ∈ C2n : z 6= 0, A ∈ V} .

One readily checks that the set CV is open and invariant under multiplication by
non-zero scalars from C .

Proposition 2.5. Let V be an open connected neighborhood of 0 in Sn(C),
n ≥ 3. Let F : CV → R be a C3 -smooth function so that

F (λv) = |λ|2F (v) ∀λ ∈ C \ {0}, ∀v ∈ CV . (13)

Assume that the restriction of F to any vector subspace

LA := {w = Az} ⊂ C2n, A ∈ V ,

is a real Hermitian quadratic form. Then the function F is the restriction to CV
of some real Hermitian quadratic form on C2n .

As one can easily see, Proposition 2.4 and Proposition 2.5 fail for n = 1.
Nevertheless they do hold for n = 2 though in this case one needs to modify the
proof of Proposition 2.5 slightly – see Remark 2.7 below.

Deducing Proposition 2.4 from Proposition 2.5:

Pick any L := LJ0 , J0 ∈ J . Using the linear Darboux theorem for complex
symplectic forms choose complex coordinates z = (z1, . . . zn), w = (w1, . . . , wn)
on the vector space C2n so that ωC = dz ∧ dw and L = {w = 0} . Fix a
sufficiently small open connected neighborhood V of zero in Sn(C). Then CV ⊂ W
(since L \ 0 ⊂ W ) and F is C3 -smooth on CV (since it is C3 -smooth on W ).
Moreover, any LA , A ∈ V , has the form LA = LJ for some J ∈ J . Therefore,
by Proposition 2.5, F coincides on CV with the restriction of some real Hermitian
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quadratic form defined on C2n . Now letting J0 vary inside J we see that W can
be covered by open cones, invariant under the multiplication by non-zero complex
scalars, on each of which F coincides with the restriction of a real Hermitian
quadratic form. Since F is C3 -smooth on W and W is path-connected, this
yields that F coincides on the whole W with the restriction of some real Hermitian
quadratic form defined on C2n .

Proof of Proposition 2.5: Represent C2n as C2n = Cn × Cn , where z and w
are coordinates along, respectively, the first and the second factors. Accordingly,
we will write the vectors in C2n in the form z ⊕ w . Given A ∈ V , write

F (z, Az) = 〈〈H(A)z, z〉〉,

where H(A) is a Hermitian n × n-matrix and 〈〈·, ·〉〉 is the standard Hermitian
inner product on Cn . Since F is C3 -smooth, the matrix H(A) depends C3 -
smoothly on A ∈ V .

We want to show that there exists a Hermitian 2n×2n-matrix H such that
for any A ∈ V and any z

F (z, Az) = 〈H(z ⊕ Az), z ⊕ Az〉, (14)

〈·, ·〉 is the standard Hermitian inner product on C2n . Write H as a matrix with
four n× n-blocks:

H =

(
P Q
Q̄T R

)
.

Note that P and R are Hermitian n× n-matrices. Rewriting (14) we see that we
need to show that

H(A) = P + QA + ĀQ̄T + ĀRA,

or, in terms of matrix coefficients,

Hij(A) = Pij +
∑

α

QiαAαj +
∑

α

ĀiαQ̄jα +
∑
α,β

ĀiαRαβAβj, ∀i, j = 1, . . . , n. (15)

Remark 2.6. The coordinates on the space of symmetric matrices are Aij with
i ≤ j . Nevertheless, we shall also use the coordinates Aij with i > j identifying
them with Aji : Aij = Aji .

For any 1 ≤ s < t ≤ n put

uts(z) = ust(z) = zszt, uss(z) = −z2
t , utt(z) = −z2

s .

Define a matrix V s,t(z) = (V s,t
ij (z))i,j=1,...,n by

V s,t
ij (z) =

{
uij(z), if i, j ∈ {s, t},
0, otherwise.

Note that for any z
V s,t(z)z = 0.
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Thus for any s, t the expression

〈H(A + εV s,t(z))z, z〉 = F (z, Az + εV s,t(z)z) = F (z, Az)

does not depend on ε , where ε is a complex parameter. Differentiating by ε at
ε = 0 we get the following system of equations for every i, j, s, t , s < t , and any
A ∈ V :∑

i,j

(
∂Hij

∂Ast

(A)ust(z)zj z̄i +
∂Hij

∂Ass

(A)uss(z)zj z̄i +
∂Hij

∂Att

(A)utt(z)zj z̄i+

+
∂Hij

∂Āst

(A)ūst(z)zj z̄i +
∂Hij

∂Āss

(A)ūss(z)zj z̄i +
∂Hij

∂Ātt

(A)ūtt(z)zj z̄i

)
= 0

for any z, z̄ . This is a polynomial in z, z̄ and, since it vanishes on an open set, all
its coefficients have to vanish. These coefficients can be found by collecting similar
terms in the last equation. A straightforward analysis of these terms yields that
for any i, j, s, t = 1, . . . , n , s < t , the partial derivatives of Hij at any A ∈ V
satisfy the following equations:

∂Hit

∂Ast

=
∂His

∂Ass

, (16)

∂His

∂Ast

=
∂Hit

∂Att

, (17)

∂Htj

∂Āst

=
∂Hsj

∂Āss

, (18)

∂Hsj

∂Āst

=
∂Htj

∂Ātt

. (19)

Furthermore,
∂Hij

∂Aαβ

= 0 if j /∈ {α, β}, (20)

∂Hij

∂Āαβ

= 0 if i /∈ {α, β}. (21)

Note that equations (16) and (17) can be summarized as

∂Hij

∂Alj

=
∂Hir

∂Alr

∀i, j, l, r .

Differentiating this equation by Akj and using (20) one gets that

∂2Hij

∂Akj∂Alj

=
∂2Hir

∂Akj∂Alr

= 0,

provided r /∈ {k, j} . But such an r always exists since n ≥ 3. Thus

∂2Hij

∂Akj∂Alj

= 0 ∀i, j, k, l . (22)
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Similarly, using equations (18),(19) and (21) one gets that

∂2Hij

∂Āik∂Āil

= 0 ∀i, j, k, l . (23)

Observe now that for all i, j all the third derivatives of Hij with respect to
Ast, Āst vanish. Indeed, in any third derivative either A-variables or Ā-variables
appear at least twice, and the result follows from the vanishing of the corresponding
lower order derivatives, see formulas (20)–(23). Hence, each Hij , as a function
of the variables Ast, Āst , is a (non-homogeneous) quadratic polynomial. The
equations above on the first and second partial derivatives of Hij allow to recover
the coefficients of this quadratic polynomial and check that this polynomial indeed
has the form (15).

Remark 2.7. In the case n = 2, a slightly more fine analysis of equations (16)-
(21) yields the same result: Hij ’s are non-homogeneous quadratic polynomials of
variables Ast, Āst of the form (15).

A completely similar argument yields the following proposition, which we
will need later and which is an analogue of Proposition 2.5 for functions on a real
vector space.

Let (·, ·) be the Euclidean inner product on Rn . Set

U := {x× y ∈ R2n = Rn × Rn |(x, y) > 0}.

Denote by S+
n (R) the space of symmetric real positive-definite n× n-matrices.

Proposition 2.8. Let F : Rn×Rn → R, n ≥ 2, be a continuous function which
is C3 -smooth on U . Assume that the restriction of F on any vector subspace

LA := {y = Ax} ⊂ Rn × Rn, A ∈ S+
n (R),

is a quadratic form. Then there exists a quadratic form Q on R2n which coincides
with F on U .

Remark 2.9. Denote by L the Lagrangian Grassmannian of the symplectic
vector space R2n . For a connected open subset U ⊂ L consider the set C :=⋃

L∈U L \ {0} . Let F : C → R be a continuous function whose restriction to
every L ∈ U is a quadratic form. Is it true that F is the restriction of some
quadratic form defined on R2n to C? The analogue over R of Proposition 2.5
above yields the affirmative answer provided n ≥ 3 and F is C3 -smooth. We
already mentioned that a small modification of our argument settles the n = 2
case, and there is a strong evidence that C2 -smoothness suffices as well. It would
be interesting to understand what is precisely the minimal regularity assumption
on F for which the question admits the positive answer.

In case when U = L , that is when F is defined on the whole R2n , the
answer is affirmative: one uses the smoothing in the spirit of Section 2 in order
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to reduce the problem to the case when F is not only continuous on R2n but
also smooth on R2n \ 0. Interestingly enough, even when U = L there exist
discontinuous F whose restrictions to every Lagrangian subspace are quadratic
forms. These examples were constructed by Gleason in [11].

Let us mention that this circle of problems extends verbatim into the
complex setting.

2.5. Proof of Proposition 2.2(i).

Note that the group Sp(2n, R) acts transitively on the set of pairs ξ × η ∈
R2n ×R2n such that ω(ξ, η) = 1. Hence, the set {Yξ,η | ω(ξ, η) = 1} is an orbit of
the adjoint action of Sp(2n, R) on sp (2n, R). Hence, by Proposition 2.3, we can
assume without loss of generality that ζ is C∞ -smooth on this orbit. This yields
that F is C∞ -smooth on the set {ξ + iη ∈ C2n | ω(ξ, η) = 1} . One readily checks
that

F (λv) = |λ|2F (v) ∀λ ∈ C, (24)

which yields that F is C∞ -smooth on W = {ξ + iη ∈ C2n, ω(ξ, η) > 0} .

Lemma 2.10. The restriction of F on any LJ , J ∈ J , is a Hermitian
quadratic form (for the definitions of LJ and J see Section 2 above).

Proof. Given J ∈ J , the space of A ∈ sp (2n, R) commuting with J is a Lie
subalgebra u(J) of sp (2n, R) isomorphic to the real Lie algebra u(n) of skew-
Hermitian complex n× n-matrices. As one can easily check, Yξ,Jξ ∈ u(J) for any
ξ ∈ R2n and any J ∈ J . By Corollary 1.4, the restriction of ζ on u(J) ∼= u(n) is
linear and we can write

F (ξ + iJξ) = ζ(Yξ,Jξ) = tr(HYξ,Jξ)

for some H ∈ M2n(R). On the other hand,

tr(HYξ,Jξ) = tr(HTξ,ξ) + tr(HTJξ,Jξ) =

= trTξ,Hξ + trTJξ,HJξ = ω(ξ, Hξ) + ω(Jξ,HJξ).

Thus F (ξ + iJξ) = tr(HYξ,Jξ) is a quadratic form in ξ . In view of (24), it means
that the restriction of F on LJ is a real Hermitian quadratic form.

Combining Lemma 2.10 with Proposition 2.4 finishes the proof of Proposi-
tion 2.2(i).

2.6. Evaluating a continuous Lie quasi-state on gl (n, R) on rank 1 ma-
trices.

Here is another auxiliary proposition that we will need later.

Proposition 2.11. Let ζ be a continuous Lie quasi-state on the Lie algebra
gl (n, R), n ≥ 3. Let P1 ⊂ gl (n, R) be the set of matrices of rank 1. Then there
exists a matrix N ∈ Mn(R) so that ζ(A) = trNA for any A ∈ P1 .



Entov and Polterovich 629

Remark 2.12. If ζ is a continuous Lie quasi-state on gl (n, R) and matrices
A, B, A + B ∈ gl (n, R) are diagonalizable over R , then

ζ(A + B) = ζ(A) + ζ(B).

Indeed, any matrix diagonalizable over R is a sum of commuting rank-1 matrices.

Proof of Proposition 2.11.

By Proposition 2.3, we can assume without loss of generality that ζ is
smooth on any orbit of the adjoint GLn(R)-action on gl (n, R) and, in particular,
on P ′1 := {A ∈ P1 | trA = 1} which is such an orbit.

As before we denote by (·, ·) the Euclidean inner product on Rn . Given
ξ, η ∈ Rn , define an operator Bξ,η ∈ P1 on Rn by

Bξ,η(x) := (x, η)ξ.

One can easily check that if (ξ, η) > 0 then B ξ√
(ξ,η)

, η√
(ξ,η)

∈ P ′1 . Define a function

f : R2n → R by
f(ξ, η) := ζ(Bξ,η).

Then
f(λξ, η) = f(ξ, λη) = λf(ξ, η) ∀λ ∈ R, (25)

and therefore if (ξ, η) > 0, then

f(ξ, η) = ζ(Bξ,η) = (ξ, η)ζ
(
B ξ√

(ξ,η)
, η√

(ξ,η)

)
= (ξ, η)f

(
ξ√
(ξ,η)

, η√
(ξ,η)

)
.

Since ζ is smooth on P ′1 , we get that f is a smooth function on

U := {(ξ, η) ∈ Rn × Rn | (ξ, η) > 0} .

As before, denote by S+
n (R) the space of all symmetric real positive-definite

n× n-matrices. For any M ∈ S+
n (R) define an inner product (·, ·)M on Rn by

(x, y)M := (Mx, y) .

Denote by SM the space of all real n× n-matrices symmetric with respect to this
inner product:

SM := {A ∈ Mn(R) | (Ax, y)M = (x, Ay)M ∀x, y ∈ Rn}.

By Theorem 1.3, for any M ∈ S+
n (R) there exists TM ∈ SM such that

ζ(A) = trTMA ∀A ∈ SM .

Given M ∈ S+
n (R), define

LM := {(ξ, η) ∈ Rn × Rn | η = Mξ}.



630 Entov and Polterovich

One can easily check that for any (ξ, η) ∈ LM the operator Bξ,η lies in SM and
hence

f(ξ, η) = ζ(Bξ,η) = tr(TMBξ,η) = trBTM ξ,η = (TMξ, η).

Thus the restriction of f on any LM , M ∈ S+
n (R), is a quadratic form. Applying

Proposition 2.8 we get that there exists a quadratic form on R2n which coincides
with f on U . It follows from (25) that

f(ξ, η) = (Nξ, η) (26)

for some matrix N .

Observe now that B−ξ,η = −Bξ,η and hence f(−ξ, η) = −f(ξ, η). Further-
more, ξ × η ∈ U whenever (−ξ)× η ∈ U− , where

U− := {(ξ, η) ∈ Rn × Rn | (ξ, η) < 0} .

Thus equality (26) holds on U− as well. Since U∪U− is dense in R2n , we conclude
that f(ξ, η) = (Nξ, η) for all ξ and η which means that ζ(Bξ,η) = trNBξ,η . This
completes the proof.

2.7. Lie quasi-states on a Heisenberg algebra.

Here we will prove an auxiliary result which is, in fact, equivalent to the
claim that any (not necessarily continuous) Lie quasi-state on a Heisenberg Lie
algebra has to be linear.

Proposition 2.13. Assume that the restriction of a function φ : R2n → R,
n ≥ 2 to any isotropic vector subspace of (R2n, ω) is linear (here ω is a linear
symplectic form on R2n ). Then φ is linear.

Proof. Let e1, . . . , en, f1, . . . , fn be the Darboux basis of R2n corresponding to
the coordinate system p1, . . . , pn, q1, . . . , qn .

Any a ∈ R2n can be written as

a = a1 + . . . + an, ai ∈ Span (ei, fi), i = 1, . . . , n,

so that
ω(ai, aj) = 0, ∀i 6= j,

and therefore
φ(a) = φ(a1) + . . . + φ(an).

Thus it suffices to prove that the restriction of φ on each Span (ei, fi), i = 1, . . . , n ,
is linear.

Restricting φ on 1-dimensional vector subspaces of R2n – which are all
isotropic, of course – we get that φ is homogeneous.

Denote
k := φ(e1) + φ(f1)− φ(e1 + f1).

Fix i ∈ N , 2 ≤ i ≤ n . We need to show that

φ(a + b) = φ(a) + φ(b) ∀a, b ∈ Span (ei, fi). (27)
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If ω(a, b) = 0, this follows from the hypothesis of the proposition. Otherwise,
after permuting if necessary a and b , assume that ω(a, b) = −C2 < 0. Then the
vectors Ce1 + a and Cf1 + b are ω -orthogonal. Hence,

φ(Ce1) + φ(a) + φ(Cf1) + φ(b) = φ(Ce1 + a) + φ(Cf1 + b) =

= φ(Ce1 + a + Cf1 + b) = φ(Ce1 + Cf1) + φ(a + b).

Therefore, by the homogeneity of φ ,

φ(a + b)− φ(a)− φ(b) = Ck, ∀a, b ∈ Span (ei, fi).

Substituting −a,−b instead of a, b in the last equation and using again the
homogeneity of φ we get that Ck = 0, hence k = 0, which yields (27). Thus
the restriction of φ on each Span (ei, fi), i = 2, . . . , n , is linear. Switching i 6= 1
and 1 we see immediately that the restriction of φ on Span (e1, f1) is linear as
well, which finishes the proof.

2.8. Proof of Proposition 2.2(ii).

Now we will deal with the function G defined in (9). Let us fix ξ ∈ R2n and
show that G(ξ, ·) : R2n → R is a linear function – since G is obviously symmetric
with respect to ξ, η , this would show that G is a symmetric bilinear form on R2n .
By Proposition 2.13, it is enough to show that

ω(η1, η2) = 0 =⇒ G(ξ, c1η1 + c2η2) = c1G(ξ, η1) + c2G(ξ, η2) ∀c1, c2 ∈ R. (28)

Let us, indeed, assume that ω(η1, η2) = 0. Choose a Lagrangian subspace L2

containing η1, η2 .

If ξ ∈ L2 , then a direct check shows that [Zξ,η1 , Zξ,η2 ] = 0 and hence (28)
follows by the definition of a Lie quasi-state.

If ξ /∈ L2 , then, as one can easily check, there exists a Lagrangian subspace
L1 transversal to L2 and containing ξ . Define a Lie subalgebra

R(L1, L2) := {A ∈ sp (2n, R) | AL1 ⊂ L1, AL2 ⊂ L2}

of sp (2n, R). An easy check using the linear Darboux theorem shows that the
mapping A 7→ A|L1 establishes a Lie algebras isomorphism between R(L1, L2)
and gl (L1) ≈ gl (n, R). Furthermore, any transformation Zξ,v with v ∈ L1 lies in
R(L1, L2). Its image under the above isomorphism has rank 1 provided v 6= 0.
Applying Proposition 2.11 to the elements Zξ,η1 , Zξ,η2 and Zξ,η1+η2 = Zξ,η1 + Zξ,η2

of R(L1, L2) yields (28).

This finishes the proof of Proposition 2.2 and hence of Theorem 1.1.

3. Discontinuous Lie quasi-states

In this section we prove Theorem 1.2. We start from the following general obser-
vation.
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Proposition 3.1. Assume L ⊂ g is an abelian subalgebra of a Lie algebra g

and L0 ⊂ L is a vector subspace so that

[x, v] = 0, x ∈ g, v ∈ L \ L0 =⇒ x ∈ L.

Let α : L → R be a linear functional on L such that α 6≡ 0 and α|L0
≡ 0. Define

a functional ζ : g → R as

ζ(x) =

{
0, if x /∈ L,

α(x), if x ∈ L.

Then ζ is a Lie quasi-state.

Proof. Assume that [x, y] = 0. We have to show that

ζ(x + y) = ζ(x) + ζ(y) . (29)

Vectors x, y, x + y pairwise commute. If at least one of them does not lie in L ,
two others must lie in (g \ L) ∪ L0 . Thus ζ vanishes on each of these vectors and
so (29) holds. If x, y ∈ L equation (29) follows from the linearity of α .

In the case of g = sp (2n, R) one can construct L, L0 as in Proposition 3.1
in the following way.

Lemma 3.2. Let A ∈ sp (2n, R) and let p(t) be a real polynomial. Then
p(A) ∈ sp (2n, R) if and only if p(t) includes only the odd powers of t (i.e. p
is an odd function of t).

This is an immediate consequence of the fact that A ∈ sp (2n, R) if and only if
AJ = −JAT , where J is the standard complex structure on R2n .

Take any matrix A ∈ sp (2n, R) whose Jordan form is a 2n × 2n Jordan
block with the eigenvalue 0 (the existence of such an A is well-known – see e.g.
[19], cf. [1], [14]). Define L0, L as follows:

L := {a1A + a3A
3 + . . . + a2n−1A

2n−1, a1, a3, . . . , a2n−1 ∈ R},

L0 := {a3A
3 + . . . + a2n−1A

2n−1, a3, . . . , a2n−1 ∈ R} ⊂ L.

Let us show that subspaces L0 and L satisfy the hypothesis of Proposition 3.1.

Lemma 3.3.

[x, v] = 0, v ∈ L \ L0 =⇒ [x, A2m−1] = 0 ∀m = 1, . . . , n.

Proof. Without loss of generality,

v = A + a3A
3 + ... + a2n−1A

2n−1 .
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We prove the statement of the lemma using an inverse induction by m (from
m = n to m = 1).

For m = n note that v2n−1 = A2n−1 (we use here that A2n = 0), and hence
[x, v2n−1] = [x, A2n−1] = 0.

Assume now that [x, A2j−1] = 0 for all j = m + 1, ..., n . Put

B = A +
m∑

i=2

a2i−1A
2i−1 .

The inductive assumption together with [x, v] = 0 yields [x, B] = 0. But

B2m−1 = A2m−1 +
∑

i≥2m+1

ciA
i

for some coefficients ci . Together with the inductive assumption this yields
[x, A2m−1] = [x, B2m−1] = 0, as required.

Finally, we recall without proof a standard fact from the linear algebra.

Lemma 3.4. Assume that a real square matrix ∆ is a Jordan block with the
eigenvalue zero. Then any matrix commuting with ∆ is a polynomial of ∆.

Proof of Theorem 1.2: Assume that v ∈ L \ L0 and [x, v] = 0. Then, by
Lemma 3.3, [x, A] = 0. Hence, by Lemma 3.4, x is a polynomial of A , which,
by Lemma 3.2, belongs to L . This shows that subspaces L0 and L satisfy the
hypothesis of Proposition 3.1. Applying this proposition and varying the matrix A
together with a functional α , we get a continuum of linearly independent discon-
tinuous Lie quasi-states on sp (2n, R). All of them are bounded in a neighborhood
of zero.

4. Ad-invariant Lie quasi-states

In this section we will discuss Lie quasi-states invariant under the adjoint action
of a Lie group.

Note that the adjoint actions on g of different connected Lie groups with
the same Lie algebra g have the same orbits because such groups are locally
isomorphic (see e.g. [13], p. 109) so that the local isomorphism intertwines their
adjoint actions, and any connected Lie group is generated by a neighborhood of
the identity. We say that a function on the Lie algebra g is Ad-invariant if it is
constant on any orbit of the adjoint action on g of any Lie group with the Lie
algebra g .

Note also that if G1 is a (closed) Lie subgroup of a Lie group G2 and g1 ⊂ g2

are the corresponding Lie algebras, then any Ad-invariant function on g2 (that
is, invariant with respect to the adjoint action of G2 ) restricts to an Ad-invariant
function on g1 (that is, invariant with respect to the adjoint action of G1 ).

Recall that a real Lie algebra is called compact if it is the Lie algebra of
some compact real Lie group. A Lie group G will be called Hermitian (see e.g.
[15]) if
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• G is connected and non-compact;

• the Lie algebra of G is simple;

• the associated homogeneous space G/K , where K is the maximal compact
subgroup of G , has a complex-manifold structure and G acts on it by
holomorphic transformations.

There is a complete classification of the Lie algebras of Hermitian Lie groups (see
e.g. [15]). In particular, Sp (2n, R) is a Hermitian Lie group.

We will now classify Ad-invariant Lie quasi-states on compact Lie algebras
and the Lie algebras of Hermitian Lie groups. Let us emphasize that a priori these
quasi-states are not assumed to be continuous.

Theorem 4.1. Any Ad-invariant Lie quasi-state on any compact Lie algebra
is linear. If the compact Lie algebra has a trivial center (in particular, if it is
simple), any Ad-invariant Lie quasi-state on it vanishes identically.

Theorem 4.2. Let G be a simply connected Hermitian Lie group and let g be
its Lie algebra. Let µ be the unique (up to a multiplicative constant) non-trivial
homogeneous quasi-morphism on G and let ξ : g → R be its directional derivative:

ξ(x) := µ(exp(x)) ∀x ∈ g .

Then any Ad-invariant Lie quasi-state ζ on g is proportional to ξ .

We refer to [18] (cf. [3]) for the uniqueness (up to a multiplicative constant) of a
non-trivial homogeneous quasi-morphism on G .

Proof of Theorem 4.1: Any compact Lie algebra can represented as a direct
sum of an abelian Lie algebra and a number of compact simple Lie algebras (see
e.g. [13], p. 132). Any Lie quasi-state on an abelian Lie algebra is linear. This
shows that the first claim of the theorem follows from the second one.

Let us show that any Ad-invariant Lie quasi-state ζ on a compact simple
Lie algebra g vanishes identically – this would immediately imply the second claim
of the theorem. Denote by G a compact connected Lie group whose Lie algebra is
g . Any element of g lies in a Cartan subalgebra of g , that is the abelian subalgebra
which is the Lie algebra of a maximal torus in G , and any two Cartan subalgebras
are mapped into each other by the adjoint action of G (see e.g. [4], p.152). Thus it
suffices to show that ζ vanishes on a Cartan subalgebra h ⊂ g . Since h is abelian,
the restriction of ζ to h is linear. Since ζ is Ad-invariant, this linear function on
h is invariant under the actions of Adg , g ∈ G , that preserve h , that is under the
action of the Weyl group W of G on h . Since the action of W on the simple Lie
algebra h has only trivial invariant subspaces (see e.g. [4], p. 172 and p.251), we
have ζ|g ≡ 0, as required.



Entov and Polterovich 635

Proof of Theorem 4.2:

1) The structure of the Hermitian Lie group on G gives rise to the following
features of the Cartan decomposition g = t + p , where t is the Lie algebra of a
maximal compact subgroup K of G : The center c of t is one-dimensional and
contains a preferred element, say J , so that adJ preserves p and acts on p as a
complex structure (see e.g. [15], Theorem 7.117 and p. 513). We shall normalize
ξ and ζ by ξ(J) = ζ(J) = 1.

2) Let us check that any Ad-invariant Lie quasi-state must vanish on p by using
a trick by Ben Simon and Hartnick [3]: they noticed that since (adJ)2 = −1 , one
has exp(π · adJ) = −1 on p (here π is the number π = 3.14 . . .). It follows that
ζ(x) = −ζ(x) for all x ∈ p which yields the claim.

3) Every element x ∈ g can be written as s + n , where s is semi-simple, n is
nilpotent and [s, n] = 0. By Jacobson-Morozov theorem ([15, p.620], pass to the
complexification and use that n is a real nilpotent) , there exists y ∈ g with
[y, n] = n . Therefore, setting f = exp(y) we get (passing to the series for the
exponent) that Adf (n) = e · n , where e is the number e = 2.71 . . . . This yields

ζ(n) = ζ(e · n) = e · ζ(n) .

Therefore ζ(n) = 0 and so ζ(x) = ζ(s). Thus it suffices to check that ζ = ξ on
the semi-simple elements.

4) Every semi-simple element of g lies in some Cartan subalgebra. Every Cartan
subalgebra of g is conjugate to a Cartan subalgebra of the form a + h where
a ⊂ p and h ⊂ t ([15, Proposition 6.59]). Thus every semi-simple element of g is
conjugate to a + h with a ∈ a, h ∈ h and [a, h] = 0. Since ζ and ξ vanish on
a (step 2), it suffices to show that ζ = ξ on h . In fact, we shall show that any
Ad-invariant Lie quasi-state ζ : g → R vanishes on the algebra t′ := [t, t] , which
would yield the desired result in view of the decomposition t = t′ ⊕ c , where c

is the center of t . Indeed, t′ is a compact Lie algebra with a trivial center (see
e.g. [15, p.513]) and the restriction of ζ|t′ is an Ad-invariant Lie quasi-state on t′ .
Therefore, by Theorem 4.1, ζ vanishes identically on t′ , which finishes the proof.
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