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Abstract. The aim of this article is to classify quasi-filiform nilpotent Lie
algebras g , that is with nilindex dimg − 2, admitting a complex structure.
Note that the non-existence of complex structures over nilpotent Lie algebras
of maximal class, also called filiform, has already been proved in [7].
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1. Complex Structures on Lie algebras

Let g be a real, even-dimensional Lie algebra.

Definition 1.1. A complex structure on g is an endomorphism J : g → g such
that:

1. J2 = −Id ,

2. N(J)(X, Y ) = [J(X), J(Y )]− [X, Y ]− J([J(X), Y ])− J([X, J(Y )]) = 0
for all X, Y ∈ g (Nijenhuis condition).

Any such structure defines an invariant complex structure on a real Lie
group G whose real Lie algebra is g . It should be mentioned that nilpotent Lie
algebras provided with a complex structure in dimension less than or equal to 6
have been completely classified ([9] and [10]). The main general result concerns
filiform Lie algebras. We recall that g is a filiform Lie algebra if its nilindex is
equal to dim(g)− 1.

Proposition 1.2. [7] If g is an even-dimensional filiform Lie algebra, then g

admit no complex structure.

∗The author expresses her gratitude to the Ramón Areces foundation which finances her
predoctoral grant.
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In [7], the authors have shown at first the non-existence of complex struc-
tures on the filiform Lie algebra L2n (n ≥ 2) defined in the basis {X0, X1, . . . , X2n}
by the brackets: {

[X0, Xi] = Xi+1, 1 ≤ i ≤ 2n− 1,
[Xi, Xj] = 0, i, j 6= 0.

Therefore, they generalized this result to all 2n-dimensional filiform Lie algebras
by noting that the existence of a complex structure implies the decomposition
g = g1 ⊕ g2 where g1 and g2 are n-dimensional complex subalgebras. Such a
decomposition is impossible on L2n and consequently on any deformation of this
algebra. As every 2n-dimensional filiform Lie algebras is a deformation of L2n ,
they deduce the final result.

This proposition has also been proved in [4] from a completely different
point of view based on the notion of generalized complex structures. Using this
new approach, we will determine the existence of complex structures on other
classes of nilpotent Lie algebras.

2. Generalized complex structures on Lie algebras

2.1. Definitions and link with complex structures.

Generalized complex structures can be defined in the general context of
smooth manifolds, nevertheless, throughout this paper we study generalized com-
plex structures on real Lie groups. We recall the definition in this context, which
is purely algebraic.

Let g be a real 2n-dimensional Lie algebra and g∗ its dual space which can
be identified with the space of left-invariant differential 1-forms on a connected
Lie group with Lie algebra g . We consider the coboundary operator d mapping
g∗ onto Λ2(g∗) and defined by dα(X, Y ) = −α[X, Y ] where α ∈ g∗ and [, ] is the
Lie bracket of g . We define a bracket on g⊕ g∗ called the Courant bracket which
is generally written:

[X + ξ, Y + η]c = [X, Y ] + LXη − LY ξ − 1

2
d(IXη − IY ξ),

where X, Y ∈ g , ξ, η ∈ g∗ and IXη represents the inner product of X on η . As
IXη − IY ξ is a constant, then d(IXη − IY ξ) = 0.

This operation is skew-symmetric and satisfies Jacobi identity (remark that,
in the context of smooth manifolds, this bracket is defined in the sum of tangent and
cotangent bundles and does not satisfy Jacobi identity). Thereby g⊕ g∗ endowed
with the Courant bracket is a 4n-dimensional real Lie algebra. It is moreover a
quadratic Lie algebra. Indeed, the space g ⊕ g∗ admits a natural non-degenerate
inner product of signature (2n, 2n) defined by:

〈X + ξ, Y + η〉 =
1

2
(ξ(Y ) + η(X)).

Definition 2.1. Let g be a real Lie algebra of dimension 2n . A generalized
complex structure on g is a linear endomorphism J of g⊕ g∗ such that:
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1. J 2 = −Id ,

2. J is orthogonal with respect to the scalar product 〈 , 〉 , that is,

〈J (X + ξ),J (Y + η)〉 = 〈X + ξ, Y + η〉 ∀X,Y ∈ g,∀ξ, η ∈ g∗,

3. The +i-eigenspace L of J is required to be involutive with respect to the
Courant bracket, that is [L, L]c ⊂ L .

The subalgebra L of g⊕ g∗ is an isotropic space, which means that

〈X + ξ, Y + η〉 = 0,

for all X + ξ, Y + η ∈ L . Since its dimension is 2n , L is maximal isotropic.
We consider the projection of L on g and denote by k the codimension of this
projection. It is clear that

0 ≤ k ≤ n.

Definition 2.2. The type of a generalized complex structure is the codimension
of the projection of L on g .

Example 2.3. Let g be a real Lie algebra of dimension 2n provided with a
complex structure J : g → g satisfying J2 = −Id and the Nijenhuis condition
N(J)(X, Y ) = 0 for all X, Y ∈ g. We define a generalized complex structure
associated to J

JJ : g⊕ g∗ → g⊕ g∗

by setting

JJ(X + ξ) = −J(X) + J∗(ξ), ∀X ∈ g, ∀ξ ∈ g∗.

The conditions 1 and 2 of Definition 2.1 are easy to check. It remains to prove the
condition 3. We denote by T+ (resp. T− ) the eigenspace of J associated to the
eigenvalue +i (resp. −i) so the +i-eigenspace of JJ is given by:

L = T− ⊕ (T+)∗.

Remark that the involutivity of L with respect to the Courant bracket means that
T− is a subalgebra of g . Therefore JJ is a generalized complex structure of type
n .

Example 2.4. Let g be a 2n-dimensional real Lie algebra endowed with a
symplectic structure ω , that is ω is a skew-symetric 2-form satisfying{

ωn = ω ∧ ω · · · ∧ ω 6= 0,
dω(X, Y, Z) = ω([X, Y ], Z) + ω([Y, Z], X) + ω([Z,X], Y ) = 0.

(1)

This form can be identified to an isomorphism, also named ω :

ω : g −→ g∗
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and given by ω(X) = IXω. Thereby, we define the generalized complex structure

Jω : g⊕ g∗ → g⊕ g∗

by putting
Jω(X + ξ) = ω(X) + ω−1(ξ), ∀X ∈ g, ∀ξ ∈ g∗.

This generalized complex structure is of type 0 since its +i-eigenspace is

L = {X − i IXω , X ∈ g⊗ C}.

In the two previous examples, complex and symplectic geometry appear as
extremal cases of generalized complex structures. According to [4], any generalized
complex structure of type k can be written as a direct sum of a complex structure
of dimension k and a symplectic structure of dimension 2n− 2k . We deduce that
every generalized complex structure of the type 0 arises from a complex structure
and every generalized complex structure of the type n is given by a symplectic
form.

2.2. Spinorial approach.

Let T be the tensor algebra of g ⊕ g∗ and I the ideal generated by
{X + ξ⊗X + ξ−〈X + ξ, X + ξ〉 ·1 , X + ξ ∈ g⊕g∗} . The factor algebra C = T/I
is called the Clifford algebra of g⊕ g∗ associated to the scalar product 〈 , 〉 . As C
is a simple associative algebra, all its simple representations are equivalent ([1]).
A representation φ : C → EndR(S) of the Clifford algebra on the vector space S
is called a spin representation if it is simple. In this case, S is the space of spinors.
Henceforth, we will consider S = ∧g∗ with the spin representation given by the
Clifford action:

◦ : g⊕ g∗ × ∧g∗ → ∧g∗

(X + ξ, ρ) 7→ (X + ξ) ◦ ρ = iXρ + ξ ∧ ρ.

If ρ ∈ ∧g∗ a nonzero spinor, we define its null space Lρ ⊂ g⊕ g∗ as follows:

Lρ = {X + ξ ∈ g⊕ g∗ : (X + ξ) ◦ ρ = 0}.

It is clear that Lρ is an isotropic space. We say that ρ is a pure spinor when Lρ is
maximal isotropic. Conversely, if L is a maximal isotropic space, we can consider
the set UL of pure spinors ρ such that L = Lρ . If L is the +i-eigenspace of a
generalized complex structure, it is proved that the set of pure spinors UL is a line
generated by:

ρ = Ω eB+iω

with B, ω real 2-forms and Ω = θ1 ∧ · · · ∧ θk , where θ1, . . . , θk are complex forms.
Moreover, we deduce from (Proposition III.2.3) that L ∩ L = {0} if and only if:

ω2n−2k ∧ Ω ∧ Ω 6= 0, (2)

where L is the +i-eigenspace of the generalized complex structure. It is also proved
that the involutivity condition among L is equivalent to the following integrability
condition:

∃X + ξ ∈ g⊕ g∗ / dρ = (X + ξ) ◦ ρ. (3)
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2.3. Application to nilpotent Lie algebras.

Let us consider a real nilpotent Lie algebra g of even dimension. The central
descending serie is defined by: {

g0 = g,
gi = [gi−1, g] .

We denote by m the nilpotency index of g . In g∗ , we consider now the increasing
serie of subspaces Vi where Vi is the annihilator of gi , that is to say:{

V0 = {0} ,
Vi =

{
ϕ ∈ g∗ such that ∀X ∈ gi, ϕ(X) = 0

}
.

It is clear that Vm = g∗ . Those subspaces can also be expressed as

Vi = {ϕ ∈ g∗ such that ∀X ∈ g, IXdϕ ∈ Vi−1} .

Definition 2.5. Let α be p-form of g . The nilpotent degree of α , denoted by
nil(α), is the smallest integer i such that α ∈ ∧pVi .

Suppose that g admits a generalized complex structure of type k . We shall
do a special choice of the forms {θ1, . . . , θk} , at first we order these forms according
to their nilpotent degree and we choose them in such a way that {θj : nil(θj) > i}
are linearly independent modulo Vi , then the decomposition Ω = θ1 ∧ · · · ∧ θk

satisfies

a) nil(θi) ≤ nil(θj) for i < j ,

b) for each i , the forms {θj : nil(θj) > i} are linearly independent modulo Vi .

Such a decomposition will be called appropriate.

Theorem 2.6. If g is a nilpotent Lie algebra provided with a generalized com-
plex structure, the corresponding pure spinor must be a closed differential form.

Corollary 2.7. If we choose an appropriate decomposition of Ω, then

a) dθi ∈ I({θj : nil(θj) < nil(θi)}). In particular

dθi ∈ I(θ1 . . . θi−1).

b) If dim
(

Vj+1

Vj

)
= 1 then, either there exists θi with nilpotent degree j , or no

θi has nilpotent degree j + 1.

Remark 2.8. Supppose there exists a j > 0 such that:

dim

(
Vi+1

Vi

)
= 1, ∀i ≥ j;
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It is a consequence of the previous corollary that if none θi has nilpotent degree
s ≥ j then there can be none with nilpotent degree upper than s . Using this fact,
we can find an upper bound for all the nilpotent degrees. From Corollary 2.7, we
deduce that nil(θ1) = 1. If j > 1, we can see that nil(θ2) ≤ j . Otherwise it
would not exist any θi of nilpotent degree j and neither of upper degree. This
leads to a contradiction with nil(θ2) > j . Likewise, we prove by induction that
nil(θi) ≤ j + i− 2. For j = 1, we see in the same way that nil(θi) ≤ i .

Theorem 2.9. Let g be a real nilpotent Lie algebra of dimension 2n endowed
with a generalized complex structure of type k > 1. If there exists j > 0 such that:

dim

(
Vi+1

Vi

)
= 1, ∀i ≥ j,

then k is bounded above by:

k ≤
{

2n− nil(g) + j − 2 if j > 1,
2n− nil(g) if j = 1.

Proof. Suppose j > 1. According to the above remark, nil(θk) ≤ j + k − 2
and thus all the θ1, . . . , θk belong to Vj+k−2 . Since Ω ∧ Ω 6= 0 , we have

dim Vj+k−2 ≥ 2k.

On the other hand, dim Vj+k−2 = 2n−dim

(
g∗

Vj+k−2

)
and

g∗

Vj+k−2

'
Vnil(g)

Vnil(g)−1

⊕ · · · ⊕ Vj+k−1

Vj+k−2

,

so the dimension of Vj+k−2 is equal to 2n−nil(g) + j + k− 2. By replacing in the
above inequality we finally obtain:

k ≤ 2n− nil(g) + j − 2.

For j = 1, we deduce the required result by using similar arguments and consid-
ering that nil(θk) ≤ k .

Remark 2.10. Application to filiform Lie algebras. The main result stated
in [7] for filiform Lie algebras is a consequence of the previous theorem. In fact,
by taking m = 2n − 1 and j = 1 we obtain that k < 2. Thereby, there are no
generalized complex structures of type n excepted for n = 1 but in this case the
algebra is abelian. In the next section, we are going to study the quasi-filiform
case for which m = 2n− 2.

3. Complex structures on quasi-filiform Lie algebras

3.1. Classification of naturally graded quasi-filiform Lie algebras.



Garcia-Vergnolle and Remm 257

Let g be nilpotent Lie algebra with nilindex m . This algebra is naturally
filtered by the descending sequence of derived ideals:

g0 = g ⊃ g1 ⊃ g2 ⊃ · · · ⊃ gk ⊃ · · · ⊃ gm = {0} .

We can associate a graded Lie algebra to g which is usually denoted by gr(g), and
defined by:

gr(g) =
m∑

i=1

gi−1

gi
=

m∑
i=1

Wi,

with the brackets:

[X + gi, Y + gj] = [X, Y ] + gi+j, ∀X ∈ gi−1, ∀Y ∈ gj−1.

By definition, a Lie algebra is naturally graded if g and gr(g) are isomorphic Lie
algebras. We say that the algebra g has the form {p1, . . . , pm} when dim Wi = pi .
Clearly, the graded Lie algebra gr(g) has the same form as g .
Note that a nilpotent Lie algebra is filiform if and only if it has the form {2, 1, 1, . . . , 1} .
Therefore, the graded algebra of a filiform Lie algebra is also filiform.

Definition 3.1. Let g be a nilpotent Lie algebra , g is said quasi-filiform if its
nilindex m is equal to dim g− 2.

If g is quasi-filiform, there are two possibilities:

1. either g has the form t1 = {p1 = 3, p2 = 1, p3 = 1, . . . , pm = 1} .

2. or g has the form tr = {p1 = 2, p2 = 1, . . . , pr−1 = 1, pr = 2, pr+1 =
1, . . . , pm = 1} where r ∈ {2, . . . ,m} .

Proposition 3.2. Let g be a quasi-filiform naturally graded Lie algebra of
dimension 2n. If g has the form tr with r ∈ {1, . . . , 2n − 2} then there exists a
homogeneous basis {X0, X1, X2, . . . , X2n−1} of g in which X0 and X1 belong to
W1 , Xi ∈ Wi for i ∈ {2, . . . , 2n− 2} and X2n−1 ∈ Wr . Futhermore, g is given in
this basis by one of the algebras specified below.

1. If g has the form t1
L2n−1 ⊕ R (n ≥ 2)

{[X0, Xi] = Xi+1, 1 ≤ i ≤ 2n− 3.

2. If g has the form tr with r ∈ {2, . . . , 2n− 2}

(a) L2n,r; n ≥ 3, r odd, 3 ≤ r ≤ 2n− 3{
[X0, Xi] = Xi+1, i = 1, . . . , 2n− 3,
[Xi, Xr−i] = (−1)i−1X2n−1, i = 1, . . . , r−1

2
.
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(b) T2n,2n−3; n ≥ 3
[X0, Xi] = Xi+1, i = 1, . . . , 2n− 4,
[X0, X2n−1] = X2n−2,
[Xi, X2n−3−i] = (−1)i−1X2n−1, i = 1, . . . , n− 2,
[Xi, X2n−2−i] = (−1)i−1(n− 1− i)X2n−2, i = 1, . . . , n− 2.

(c) N6,3 
[X0, Xi] = Xi+1, i = 1, 2, 3,
[X1, X2] = X5,
[X1, X5] = X4,

The nonwritten brackets are zero, excepted those that follow from antisym-
metry.

In order to obtain this classification, we have to revised the complex one
([3]). For example, if g is a quasi-filiform Lie algebra of dimension 6 with the form
t3 , then there exists a basis {X0, X1, . . . , X5} satisfying

[X0, Xi] = Xi+1, i = 1, 2, 3,
[X1, X3] = bX4,
[X1, X2] = bX3 −X5,
[X5, X1] = aX4.

When a = b = 0, g and L6,3 are isomorphic algebras. In other way, by making
the change of basis

Y0 = αX0, Y1 = βX1 + X0, Y2 = αβX2, Y3 = α2βX3, Y4 = α3βX4, Y5 = −αβ2X5,

with β =

 − 1

b−
√

|a|
if b 6=

√
|a|,

− 1

2
√

|a|
if b =

√
|a|,

and α = bβ + 1, we obtain the brackets


[Y0, Yi] = Yi+1, i = 1, 2, 3,
[Y1, Y3] = Y4,
[Y1, Y2] = Y3 + Y5,
[Y5, Y1] = δY4, δ = ±1.

With another change of basis, we can see that g is isomorphic to the algebras T6,3

for δ = 1 and N6,3 for δ = −1. We remark that, those algebras T6,3 and N6,3 are
isomorphic as complex algebras. Beyond dimension 6, the way of construction in
the complex case gives the real classification.

Corollary 3.3. Let g be a quasi-filiform Lie algebra of dimension 2n. Then
there exists a basis {X0, X1, X2, . . . , X2n−1} of g such that:

1. If gr(g) ' L2n−1 ⊕ R (n ≥ 2),
[X0, Xi] = Xi+1, 1 ≤ i ≤ 2n− 3,

[Xi, Xj] =
2n−2∑

k=i+j+1

Ck
i,jXk, 1 ≤ i < j ≤ 2n− 3− i,

[Xi, X2n−1] =
2n−2∑
k=i+2

Ck
i,2n−1Xk, 1 ≤ i ≤ 2n− 4.
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2. If gr(g) ' L2n,r n ≥ 3, r : odd, 3 ≤ r ≤ 2n− 3,

[X0, Xi] = Xi+1, i = 1, . . . , 2n− 3,

[X0, X2n−1] =
2n−2∑

k=r+2

Ck
0,2n−1Xk,

[Xi, Xj] =
2n−1∑

k=i+j+1

Ck
i,jXk, 1 ≤ i < j ≤ r − i− 1,

[Xi, Xj] =
2n−2∑

k=i+j+1

Ck
i,jXk, 1 ≤ i < j ≤ 2n− 3− i, r < i + j,

[Xi, X2n−1] =
2n−2∑

k=r+i+1

Ck
i,2n−1Xk, 1 ≤ i ≤ 2n− 3− r,

[X1, Xr−1] = X2n−1,

[Xi, Xr−i] = (−1)(i−1)X2n−1 +
2n−2∑

k=r+1

Ck
i,r−iXk, 2 ≤ i ≤ r−1

2
.

3. If gr(g) ' T2n,2n−3 n ≥ 3,

[X0, Xi] = Xi+1, i = 1, . . . , 2n− 4,
[X0, X2n−1] = X2n−2,

[Xi, Xj] =
2n−1∑

k=i+j+1

Ck
i,jXk, 1 ≤ i < j ≤ 2n− 4− i,

[X1, X2n−4] = X2n−1,
[Xi, X2n−3−i] = (−1)(i−1)X2n−1 + C2n−2

i,2n−3−iX2n−2, 2 ≤ i ≤ n− 2.

4. If gr(g) ' N6,3 then g ' N6,3 ,
[X0, Xi] = Xi+1, i = 1, 2, 3,
[X1, X2] = X5,
[X1, X5] = X4.

Such a basis {X0, X1, X2, . . . , X2n−1} is called an adapted basis of g .

3.2. Complex structures on quasi-filiform Lie algebras.

The aim of this section is to find the quasi-filiform Lie algebras endowed
with a complex structure or equivalently a generalized complex structure of type
k = n . If g has the form t1 , Theorem 2.9 says that k = n = 2 so the algebra g is
isomorphic to L3⊕R . We can check that this algebra admits a complex structure
associated to the pure spinor

Ω = (ω0 + iω1) ∧ (ω2 + iω3),

where {ω0, ω1, ω2, ω3} denotes the dual basis corresponding to the homogeneous
basis {X0, X1, X2, X3} of Proposition 3.2. Assume that g is a quasi-filiform Lie
algebra the form tr with r ≥ 3. According to Theorem 2.9, n = k ≤ r .

Lemma 3.4. Let g be a quasi-filiform Lie algebra of the form tr with r ≥ 3.
If g admits a generalized complex structure of the type k , then we can choose
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the complex forms θ1, . . . , θk corresponding to the generalized complex structure,
satisfying either:

nil(θ1) = 1, nil(θ2) = r, nil(θ3) = r + 1, . . . , nil(θk) = r + k − 2

or
nil(θ1) = 1, nil(θ2) = r, nil(θ3) = r . . . , nil(θk) = r + k − 3

and in this case, k < r .

Proof. Let us consider an appropriate decomposition {θ1 . . . θk} . From Corol-
lary 2.7, we deduce that nil(θ1) = 1 and nil(θ2) ∈ {1, 2, r} . As dimV1 = 2 and
dimV2 = 3, Condition (2) implies nil(θ2) = r . According to Corollary 2.7:

nil(θi−1) ≤ nil(θi) ≤ r + i− 2 i = 3, . . . , k.

Indeed, there are two possible values for nil(θ3):

1. nil(θ3) = r + 1
If we suppose that nil(θ4) = nil(θ3) = r + 1, the forms θ4 and θ3 belong
to Vr+1 and as they are linearly independent modulo Vr , this leeds to

dim
(

Vr+1

Vr

)
≥ 2 in contradiction with dim

(
Vr+1

Vr

)
= 1. We deduce that

nil(θ4) = r + 2 and by the same way we obtain:

nil(θi) = r + i− 2, for i = 3, . . . , k.

2. nil(θ3) = r
By using similar arguments, we can prove that nil(θi) = r + i − 3 for
i = 3, . . . , k . In this case, we remark that, when k = r , the nilindex of
θr is equal to 2r − 3 and then dimV2r−3 ≥ 2r . This is impossible because
dimV2r−3 = 2r − 1. Indeed k < r .

Example 3.5. Let us consider a quasi-filiform Lie algebra g of dimension 6
defined in the basis {X0, X1, . . . , X5} by:

[X0, Xi] = Xi+1, i = 1, 2, 3,
[X1, X2] = X5,
[X1, X5] = δX4, δ ∈ {0, 1,−1}.

Let us suppose that g admits a complex structure which determines a generalized
complex structure of the type k = 3 and with the spinor:

Ω = θ1 ∧ θ2 ∧ θ3,

where θ1, θ2 and θ3 are complex forms. Note that this algebra has the form t3
and according to the previous lemma the corresponding nilindices are given by:

nil(θ1) = 1, nil(θ2) = 3, nil(θ3) = 4.
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The complex forms θ1, θ2 and θ3 can be written as:

θ1 = λ0ω0 + λ1ω1,
θ2 = β0ω0 + β1ω1 + β2ω2 + β3ω3 + β5ω5,
θ3 = γ0ω0 + γ1ω1 + γ2ω2 + γ3ω3 + γ4ω4 + γ5ω5,

where ω1, · · · , ω5 is the dual basis of X0, · · · , X6 , λi, βi, γi ∈ C , γ4 is non-zero
and β3, β5 can not be simultaneously zero. Moreover, the condition θ1 ∧ θ1 6= 0
means that the imaginary part of λ0λ1 is non-zero. Corollary 2.7 leads to:{

θ1 ∧ dθ2 = 0,
θ1 ∧ θ2 ∧ dθ3 = 0,

that is 
β5λ0 − β3λ1 = 0,
−γ3β3λ1 + γ4β2λ1 + γ5β3λ0 = 0,
γ4(β5λ1 + δβ3λ0) = 0,
−γ3β5λ1 − δγ4β2λ0 + γ5β5λ0 = 0.

From the first and third equations, we deduce:

λ2
1 + δλ2

0 = 0.

For δ = 0, this is in contradiction with θ1 ∧ θ1 6= 0. If δ = −1, we deduce that
λ1 = ±λ0 and since the spinor is uniquely defined up to a multiplicative constant,
we can take θ1 = ω0 ± ω1 in contradiction with θ1 ∧ θ1 6= 0. Finally, when δ = 1,
the spinor Ω = (ω0 + iω1) ∧ (ω3 + iω5) ∧ (ω2 + iω4) is associated to a complex
structure of g . We conclude that the Lie algebra g admits a complex structure if
and only if δ = 1.

Theorem 3.6. Let g be a real quasi-filiform Lie algebra endowed with a complex
structure. Then g is isomorphic either to the four-dimensional algebra L3 ⊕R or
to the algebra n10

6 of dimension 6.

Proof. Let g be a 2n-dimensional real quasi-filiform Lie algebra of the form
tr with r ∈ {1, 3, . . . , 2n− 3} . Let us suppose that g admits a complex structure
which determines a generalized complex structure of the type k = n .
For r = 1, g is isomorphic to L3⊕R and this algebra admits a complex structure.
Henceforth, we assume r ∈ {3, . . . , 2n − 3} . Applying Theorem 2.9 and the
inequality

nil(θk) = nil(θn) ≤ nil(g)

in each of the possibilities of Lemma 3.4, we deduce:

1. If nil(θ3) = r + 1 then nil(θk) = r + k − 2 and:

n = k ≤ r ≤ n ⇒ r = n.

2. If nil(θ3) = r then nil(θk) = r + k − 3 and in this case, k < r so

n = k < r ≤ n + 1 ⇒ r = n + 1.
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Moreover, since the graduate algebra gr(g) must be isomorphic to one of
the algebras of Proposition 3.2 we obtain the following possibilities:

1. gr(g) ∼ L2n,r; n ≥ 3, r odd, 3 ≤ r ≤ 2n− 3.

(a) If nil(θ3) = r + 1 then gr(g) ∼ L2n,n with n ≥ 3 odd.
For n = 3, g is the algebra of Example 3.5 with δ = 0 and it does not
admit a complex structure. Suppose n > 3. If {X0, X1, . . . , X2n−1} is
an adapted basis of g and {ω0, ω1, . . . , ω2n−1} is its dual basis, then θ1 = λ0

1ω0 + λ1
1ω1,

θ2 =
n∑

k=0

λk
2ωk + λ2n−1

2 ω2n−1.

Since θ1 ∧ dθ2 = 0, grouping together ω0 ∧ ω1 ∧ ωn−1 , ω0 ∧ ω2 ∧ ωn−2

and ω0 ∧ ω3 ∧ ωn−3 in θ1 ∧ dθ2 , it results:

λn
2 = λ2n−1

2 = 0.

This is impossible since nil(θ2) = n . Hence, there are no complex
structures, excepted for n = 3. Suppose nil(θ3) = r then gr(g) ∼
L2n,n+1 with n ≥ 4 even. We can write θ1 and θ2 as:

θ1 = λ0
1ω0 + λ1

1ω1,

θ2 =
n+1∑
k=0

λk
2ωk + λ2n−1

2 ω2n−1.

where {ω0, ω1, . . . , ω2n−1} is the dual basis of an adapted basis of g .
In the equation θ1 ∧ dθ2 = 0, the coefficients of ω0 ∧ ω1 ∧ ωn and
ω0 ∧ ω2 ∧ ωn−1 give: {

λ0
1λ

2n−1
2 − λ1

1λ
n+1
2 = 0,

λ1
1λ

2n−1
2 = 0.

Since θ1 ∧ θ1 6= 0, we deduce that λn+1
2 = λ2n−1

2 = 0 contradicting
nil(θ2) = n + 1.

2. gr(g) ∼ T2n,2n−3; n ≥ 3

(a) If nil(θ3) = r + 1 then gr(g) ∼ T6,3 . In this case g is isomorphic to the
algebra of Example 3.5 with δ = −1 which do not admit any complex
structure.

(b) When nil(θ3) = r , gr(g) ∼ T8,5 and there is an adapted basis {X0, X1, . . . , X7}
of g satisfying:

[X0, Xi] = Xi+1, i = 1, . . . , 4,
[X0, X7] = X6,

[X1, Xi] =
∑7

k=i+2 Ck
1,iXk, i = 2, 3,

[X1, X4] = X7,
[X1, X5] = 2X6,
[X2, X4] = −X6,
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In the dual basis {ω0, ω1, . . . , ω7} , we can write θ1, θ2 and θ3 as:
θ1 = λ0

1ω0 + λ1
1ω1,

θ2 =
5∑

k=0

λk
2ωk + λ7

2ω7,

θ3 =
∑5

k=0 λk
3ωk + λ7

3ω7.

According to Corollary 2.7, θ1 ∧ dθ2 = 0 and θ1 ∧ dθ3 = 0. Thus:{
λ0

1λ
7
2 − λ1

1λ
5
2 = 0,

λ0
1λ

7
3 − λ1

1λ
5
3 = 0.

Assuming that λ1
1 = λ7

2 = λ7
3 = 1, we deduce λ0

1 = λ5
2 = λ5

3 , in contra-
diction with the choice of θ2 et θ3 since they are linearly independent
modulo V4 .

3. gr(g) ∼ n10
6 . g is isomorphic to the algebra n10

6 , which is the algebra of
Example 3.5 with δ = 1 admiting a complex structure.

The notion of characteristic sequence has been defined in [6]. This invariant is
finer than the nilindex. More precisely

s(g) = sup{s(ad(X)) such that X ∈ g, X /∈ D(g)},

where s(ad(X)) is the ordered decreasing sequence of the dimension of Jordan
blocks of the nilpotent operator ad(X). The order relation is the lexicographic
order. If g is filiform then s(g) = (2n − 1, 1). Combining this with the result of
[7] we obtain the following main result:

Corollary 3.7. Let g be a 2n-dimensional real Lie algebra with n ≥ 4. If g

is provided with a complex structure then its characteristic sequence s(g) satisfies
s(g) ≤ (2n− 2, 1, 1).

4. Lie Algebra n10
6

The mentioned paper [10] listed the 6-dimensional nilpotent Lie algebras endowed
with a complex structure, we verify that n10

6 is the only quasi-filiform Lie algebra
in this classification. Our aim is now to write precisely all the complex structures
on this algebra.

We say that two complex structures J1 and J2 on a real Lie algebra g are
equivalent if there exists an automorphism σ ∈ Aut(g) such that σ J1 = J2σ .

Proposition 4.1. The algebra n10
6 has only two non-equivalent complex struc-

tures.
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This result has been proved by Magnin [8]. If we consider the commutation
relations of the basis {X0, X1, . . . , X5} :

[X0, Xi] = Xi+1, i = 1, 2, 3,
[X1, X2] = X5,
[X1, X5] = X4,

the non-equivalent complex strutures can be expressed by the matrix

J(ζ) ∼


0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 ζ 0
0 0 0 0 0 −1
0 0 ζ 0 0 0
0 0 0 1 0 0

 (4)

where ζ = ±1.

The study of Kähler structures on a nilmanifold was initiated by [2] and
completed by [5]. We can quickly look at this result for this special case.

In order to compute all the symplectic structures of the algebra n10
6 , we

consider a skew-symmetric 2-form ω =
∑

0≤i<j≤5 λi,jωi ∧ ωj with {ω0, ω1, . . . , ω5}
the dual of the preceding basis and we impose Conditions (1). We deduce that the
symplectic structures of n10

6 are given by:

ω =λ0,1ω0 ∧ ω1 + λ0,2ω0 ∧ ω2 + λ0,3ω0 ∧ ω3 + λ0,4ω0 ∧ ω4ω0 ∧ ω4 + λ0,5ω0 ∧ ω5

+ λ1,2ω1 ∧ ω2 + λ0,5ω1 ∧ ω3 + λ1,4ω1 ∧ ω4 + λ1,5ω1 ∧ ω5 − λ1,4ω2 ∧ ω3 + λ0,4ω2 ∧ ω5

with

λ0,3λ0,4λ1,4 + λ2
0,4λ0,5 + λ0,4λ1,4λ1,5 − λ0,5λ

2
1,4 6= 0. (5)

A symplectic form ω of a Lie algebra g is a Kähler structure if there exists
a complex structure J which is compatible with ω , that is

ω(JX, JY ) = ω(X, Y ) ∀X, Y ∈ g.

Note that if a symplectic structure ω is compatible with a complex structure J1

and J1 is equivalent to another complex structure J2 then ω is also compatible
with J2 . Thus, to determine the Kähler structures of n10

6 is enough to compute
the symplectic forms compatible with the complex structures J(±1) of (4). We
obtain the extra conditions{

λ0,2 = λ0,4 = λ0,5 = λ1,2 = λ1,4 = 0,
λ0,3 = λ1,5,

(6)

which is in contradiction with (5). We conclude that there is no Kähler structure
on n10

6 .



Garcia-Vergnolle and Remm 265

References

[1] Chevalley, C., “The Algebraic Theory of Spinors and Clifford Algebras,”
Collected Works., Vol. 2, Springer Verlag, 1996.

[2] Cordero, L. A., M. Fernández, and A. Gray, Symplectic manifolds with no
Kähler structure, Topology 25 (1986), 375–380.
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