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Abstract. We introduce a Lie algebra of initial terms of logarithmic vector
fields along a hypersurface singularity. We show that the completely reducible
part of its linear projection lifts formally to a linear Lie algebra of logarithmic
vector fields. For quasihomogeneous singularities, we prove convergence of this
linearization. We relate our construction to the work of Hauser and Müller on
Levi subgroups of automorphism groups of singularities, which proves conver-
gence even for algebraic singularities.
Based on the initial Lie algebra, we introduce a notion of reductive hypersurface
singularity and show that any reductive free divisor is linear.
As an application, we describe a lower bound for the dimension of hypersurface
singularities in terms of the semisimple part of their initial Lie algebra.
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1. Initial logarithmic Lie algebras

Let X = (Cn, 0) the space germ of Cn , n ≥ 1, at the origin with local ring
O = OX . A (reduced) function f ∈ m ⊂ O where m is the maximal ideal of O
defines a hypersurface singularity

0 ∈ D = {f = 0} ⊂ X

Let DerC(O) be the O -module of germs of vector fields at 0 and

Der(− logD) = {θ ∈ DerC(O) | θ(f) ∈ O · f}

the O -module of logarithmic vector fields along D introduced by K. Saito [16].
We shall always assume that

lD := Der(− logD) ⊂ m ·DerC(O) =: ∆ (1.1)
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which means by Rossi’s theorem [14, Cor. 3.4] that D is not isomorphic to a
product D′×C with a smooth factor for some smaller dimensional D′ ⊂ (Cn−1, 0).
Note that

[mk ·∆,ml ·∆] ⊂ mk+l ·∆ (1.2)

and hence
∆k := mk ·∆, ∆k := ∆/∆k+1, k ≥ 0,

are Lie algebras. Note that ∆0 = EndC(m/m2). There are maps of Lie algebras

∆
πk // // ∆k

πk
l // // ∆l , k > l ≥ 0. (1.3)

Definition 1.1. We call
lD := lD/m · lD

the initial logarithmic Lie algebra of D .

For δ, θ ∈ lD and p ∈ m , δ(p) ∈ m by assumption (1.1) and hence

[δ, p · θ] = δ(p) · θ + p · [δ, θ] ∈ m · lD.

This shows that lD is a Lie algebra and π0 in (1.3) induces

lD
λ

// // lD
λ0 // // lD,0 := π0(lD) ⊂ ∆0 (1.4)

with
kerλ0 = (∆1 ∩ lD)/m · lD. (1.5)

Example 1.2. For a normal crossing divisor D = {x1 · · ·xn = 0} ,

lD =
n∑

i=1

C · xi∂i
∼= Cn.

Remark 1.3. In [6, Prop. 6.2] we showed that lD/(lD∩mk ·∆) is solvable for all
k ≥ 0 if D is a free divisor in dimension n ≤ 3. By Krull’s intersection theorem,
the denominator is contained in m · lD for large k . This implies that lD is solvable
in this case.

In Section 4, we shall relate the size of the singular locus SingD of D to
the size of a Levi factor of lD . The following proposition proved in Section 4 and
the following example taken from [5, §6.4] serve as a motivation for this plan.

Proposition 1.4. If D is an isolated singularity of order at least 3 then lD is
solvable.

Remark 1.5. Also for n = 2 the conclusion of Proposition 1.4 holds true as D
is a free divisor and hence dim lD = n < 3 = dim sl2(C). However the statement of
Proposition 1.4 is in general wrong for ordD = 2 and n ≥ 3. Consider for example
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D defined by f = x2
1 + · · · + x2

n where lD is generated by ε = x1∂1 + · · · + xn∂n

and xi∂j − xj∂i with 1 ≤ i < j ≤ n , see (4.2) and (4.3). For n ≥ 3, the latter
elements span the nonsolvable Lie algebra on(C) of all skew symmetric complex
square matrices.

Example 1.6. The divisor D ⊂ C4 defined by

f = y2z2 − 4xz3 − 4y3w + 18xyzw − 27w2x2 = 0

has a basis of logarithmic vector fields
x y z w
−3x −y z 3w
y 2z 3w 0
0 3x 2y z

 ·

∂x

∂y

∂z

∂w

 . (1.6)

Hence lD ∼= gl2(C) = sl2(C)⊕C and m/m2 is an irreducible sl2(C)-representation.
This is an example of a free divisor which means that lD is a free O -module. By
Saito’s criterion [16, Lem. 1.8.ii], this follows from the determinant of the left
matrix in (1.6) being a unit multiple of f . The singular locus of a free divisors is
equidimensional of the maximal possible dimension. In our case,

SingS = {z2 − 3yw = yz − 9xw = y2 − 3xz = 0}, dim SingD = 2. (1.7)

In Theorem 4.3, the preceding observations will be generalized to a lower
bound for SingD in terms of the weight diagram of a Levi factor of lD acting on
m/m2 via λ0 . Denoting completion at 0 and m-adic completion by ̂, we have

Der(− log D̂) = D̂er(− logD), lD = l bD,
by exactness of completion and by Definition 1.1. By faithful flatness of comple-
tion, we also have

dim SingD = dim Sing D̂.

Therefore our problem is purely formal. In Section 2, we shall develop the main
technical tool for our investigations which is an extension of the formal structure
theorem for Der(− logD) from [6, Thm. 5.4]. Theorem 2.1 states that any com-

pletely reducible Lie subalgebra of lD,0 can be lifted to l̂D and linearized in formal
suitable coordinates. In loc. cit. this was only proved for Abelian Lie subalgebras
of semisimple vector fields. The proof of this extension is essentially based on the
idea of [9].

In Section 3, we introduce the notion of a reductive hypersurface singularity
by essentially requiring that lD ∼= lD,0 is reductive. This is motivated by the
recent interest in reductive linear free divisors [3, 5, 7, 4], Example 1.6 being a
representative of this class. We shall show in Theorem 3.4 that a reductive free
divisor is automatically linear. More generally, we show in Theorem 3.5 that
our formal linearization of the completely reducible part of lD,0 in Theorem 2.1 is
convergent if D is a quasihomogeneous singularity. The proof of these convergence
results is based on Artin’s Approximation Theorem [2].
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Finally, we show that our linearized completely reducible Lie algebra is
the Lie algebra of a Levi subgroup of the embedded automorphism group of the
singularity. Using results of Hauser and Müller [13, 8], this yields convergence in
Theorem 2.1 even for algebraic singularities, as formulated in Theorem 3.6.

2. Linearization of completely reducible initial Lie subalgebras

For a Lie algebra g with solvable radical r ( g the natural projection g � g/r
has a section by Levi’s theorem [11, Ch. III, §9]. Its semisimple image s in g is
called a Levi factor of g and g = s⊕ r is called a Levi decomposition.

We call a Lie subalgebra g of ∆̂ formally solvable/nilpotent if πk(g) is

solvable/nilpotent for all k ∈ N . Then any Lie subalgebra g of ∆̂ contains a
formal solvable radical r such that g/r is a finite semisimple Lie algebra. Indeed,
as ∆1 = ker π0 is formally nilpotent, r is just the preimage of the solvable radical
of π0(g) ⊂ ∆0 under the restriction of π0 to g , see the proof of Theorem 2.1.(a).
If s is the image of a section of the natural projection g � g/r , we call g = s⊕ r a
formal Levi decomposition of g . In the same way, we define h ⊂ g to be a formal
Cartan subalgebra of g if πk(h) ⊂ πk(g) is a Cartan subalgebra of πk(g) in the
sense of [19, Ch. III, §1, Def. 1] for all k ∈ N . This means that h is formally
nilpotent and equals its normalizer in g .

A basis of m corresponds to a section φ of π0 in (1.3). For δ ∈ ∆, we call
φ of the semisimple part of the endomorphism π0(δ) ∈ ∆0 the semisimple part of
δ with respect to the basis corresponding to φ .

Theorem 2.1. Let l = lD and l = l̂D with solvable radicals r and r. Then the
following holds:

(a) Any Levi decomposition l = s⊕ r lifts to a formal Levi decomposition l = s⊕ r

and s is linearizable.

(b) The solvable radical r0 = π0(r) of the linear part l0 = π0(l) of l0 can be
decomposed as r0 = d0 ⊕ n0 where d0 is a Lie subalgebra with semisimple
elements that commutes with the Levi factor s0 = π0(s), and n0 is a nilpotent
ideal.

(c) With respect to a basis φ̂ of m̂, s0 lifts to a φ̂-linear formal Levi factor of l, and

d0 lifts to a φ̂-linear Abelian Lie subalgebra d ⊂ r with semisimple elements
that commutes with s. In particular, r = d⊕ n where n = π−1

0 (n0) ∩ l.

(d) Let h be a Cartan subalgebra of s and let c be the centralizer of h ⊕ d in l.
Then c is a formal Cartan subalgebra of l and h ⊕ d is the Lie subalgebra of
semisimple parts of elements in c (with respect to φ̂ in (c));

(e) The representation of s ⊕ d in EndC(m/m2) is defined over Q (with respect

to φ̂ in (c)).

(f) D̂ is defined by a (h⊕ d)-homogeneous f ∈ m̂. Furthermore s and r are both
h- and d-graded modules with trivial d-graduation on s.
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Proof.

(a) Consider the Lie algebras

lk := πk(l) ∼= l/l ∩∆k+1, k ≥ 0,

with solvable radical rk ⊂ lk and projections

l
λk // // lk

λk
l // // ll, k > l ≥ 0

induced by (1.3). By Krull’s intersection theorem there is an l ≥ 0 such that

∆l+1 ∩ l ⊂ m · l (2.1)

and hence a projection

ll
λl

// // l .

As kerλl = (m · l+∆l+1)/∆l+1 ⊂ ∆1/∆l+1 and kerλk
l = ker πk

l ∩ lk ⊂ ∆1/∆k+1 are
nilpotent by (1.2) and hence solvable, we have that (λl)−1(r) = rl and (λk

l )
−1(rl) =

rk by [11, Lem. I.7]. We can then construct lifted Levi decompositions

lk = sk ⊕ rk, ll = sl ⊕ rl, sk
λk

l |sk

∼=
// sl

λl|sl

∼=
// s . (2.2)

We shall explain how to lift ll = sl ⊕ rl to lk = sk ⊕ rk along λk
l . The former

is obtained analogously by lifting l = s ⊕ r along λl . The map λk
l induces a

projection

(λk
l )
−1(sl)

λk
l |(λk

l
)−1(sl)

// // sl

whose nilpotent kernel kerλk
l must be the solvable radical of (λk

l )
−1(sl). By Levi’s

Theorem [11, Ch. III, §9], there is a Levi decomposition

(λk
l )
−1(sl) = sk ⊕ kerλk

l

such that λk
l induces the isomorphism in (2.2). Taking the projective limits

s = lim←−k
sk and setting r := λ−1(r), we obtain a formal lifting

l = s⊕ r, s
λ|s
∼=

// s

of the Levi decomposition l = s ⊕ r . We set sk := λk(s) and rk := λk(r) for all

k ≥ 0. Because r = λ
−1

0 (r0) and rk = (λk
0)
−1(r0), there are Levi decompositions

lk = sk ⊕ rk, s
λ0|s
∼=

// s0 sk
λk
0 |sk

∼=
oo .

By [9, Thm. III.1], s can be linearized.
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(b) By the Theorem of Malcev–Harish-Chandra [11, Ch. III, §9] all Levi
factors are conjugate by an inner automorphism, so we may ignore the requirement
π(s) = s0 . By [18, Lem. 1], l0 is the Lie algebra of a linear algebraic group A0 .
Now the theorem of Mostow [12] on the existence of a Levi decomposition of this
group yields the claim. However we present a more elementary argument:

As r0 is the Lie algebra of a linear algebraic group, namely that of the solvable
radical of A0 , [10, §15.2] shows that r0 is closed under the operation of taking the
semisimple or nilpotent part of an element. Moreover, r0 can be triangularized by
Lie’s Theorem [11, Ch. II,§6] and then the strictly triangular or nilpotent elements
of r0 form an ideal n0 ⊂ r0 . Let d0 be a maximal dimensional Lie subalgebra of
r0 consisting of diagonal matrices in some coordinate system that triangularizes
r0 . With respect to d0 , l0 decomposes as a direct sum of weight spaces

lχ0 = {δ ∈ l0 | ∀σ ∈ d0 : [σ, δ] = χ(σ) · δ}, χ ∈ d∗0, (2.3)

corresponding to a block decomposition of matrices. Also r0 decomposes as a
direct sum of weight spaces rχ

0 = dχ
0 ∩ r0 , χ ∈ d∗0 . The Lie subalgebras l00 ⊂ l0 and

r0
0 ⊂ r0 consists exactly of the block-diagonal elements. Denote r 6=0

0 =
⊕

0 6=χ∈d∗0
rχ
0

the complement of r0 consisting of strictly block-triangular elements. Modulo n0 ,
any element of δ ∈ r0 lies in r0

0 and is semisimple. So it can be diagonalized
keeping r0 triangular and d0 diagonal. By the maximality assumption, this means
that δ ∈ d0 . We conclude that r0 = d0 ⊕ n0 .

Now let s′0 be any Levi factor of l0 . As r0 is an ideal and d0 acts by characters
on the matrix blocks, [s′0, d0] ⊂ r 6=0

0 ∩ n0 and hence s′0 ⊂ l00 ⊕ (r 6=0
0 ∩ n0) consists

of block-diagonal matrices. Since s′0 ∩ r0 = 0, the projection onto the l00 is a
monomorphism of Lie algebras. Its image s0

∼= s′0 is a Levi factor of l0 that
commutes with d0 .

(c) First, we construct a linear lift d ⊂ r of d0 with respect to some basis of
m̂ . To this end, pick δ ∈ r such that λ0(δ) ∈ d0 and consider its Poincaré–Dulac
decomposition [1, Ch. 3. §3.2]

δ = σ + ν, [σ, ν] = 0, (2.4)

into commuting semisimple and nilpotent part, with respect to some basis of m̂ .
The proof of [6, Thm. 5.4] shows that the decomposition (2.4) takes place in l , in
particular, ν ∈ l . On the other hand, λ0(δ) = λ0(σ)+λ0(ν) ∈ d0 is semisimple and
hence ν ∈ ∆1 . But by nilpotency of ∆1 , we have ν ∈ ∆1 ∩ l ⊂ r and hence σ ∈ r .
As λ0(δ) = λ0(σ), we may therefore assume that δ = σ is linear. By [6, Thm. 5.3],
the Poincaré–Dulac decomposition (2.4) can be iterated to simultaneously lift all
elements in d0 to a linear Abelian Lie subalgebra d ⊂ r of semisimple elements.
Let lχ denote the weight space with respect to χ ∈ d∗ defined as in (2.3). The
construction from (a) applied to the centralizer l0 ⊂ l of d serves to lift s0 ⊂ l00 to
l0 .

Now, a slight modification of construction in the proof of [9, Thm. III.1] serves to
linearize s without destroying the linearity of d . To see this, replace in loc. cit. the
space V j of homogeneous elements of degree j in ∆̂ by its intersection V j

0 with

the centralizer of d in ∆̂. As s and d commute, s is contained in this centralizer
and each V j

0 is an s-module via λ0 . Then the infinitesimal coordinate changes
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W j ∈ ∆̂ linearizing s constructed in loc. cit. are in the centralizer of d in ∆̂. By
[9, §II], the resulting infinitesimal coordinate change W yields a d-homogeneous
coordinate change exp(AdW ) that leaves d invariant by [6, Lem. 2.7]. This gives

the desired basis φ̂ of m̂ .

(d) By [19, Ch. III, §5, Thm. 3.(b)], h equals its centralizer in s . So
c = h ⊕ d′ , where d′ is the centralizer of h ⊕ d in r . For χ ∈ (h ⊕ d)∗ , consider
the χ-weight spaces rχ defined as in (2.3). As n = λ−1(n0) ⊂ r is an ideal, it is
(h⊕ d)-homogeneous and nχ = n ∩ rχ . Then d′ = r0 is a Lie subalgebra of r and

d′ = d⊕ n0, n0 = n ∩ d′, (2.5)

is a commuting sum of the Abelian Lie subalgebra d ⊂ d′ and the nilpotent ideal
n0 ⊂ d′ . Thus, d′ is formally nilpotent and its semisimple parts lie in d .

It remains to show that c equals its normalizer in h ⊕ r which reduces to prove
that if η ∈ r normalizes h⊕ d′ then η ∈ d′ . Expanding it as

η =
∑

χ∈(h⊕d)∗

ηχ, ηχ ∈ rχ,

we obtain that

∀δ ∈ d ⊂ d′ : [δ, η] =
∑
χ∈d∗

χ(δ) · ηχ ∈ d′ = r0.

Hence, ηχ = 0 for χ 6= 0 and therefore η = η0 ∈ r0 = d′ .

(e) By complete reducibility [11, Ch. III, §7, Thm. 8], the s-module V =
m/m2 = ⊕m

j=1Vj decomposes into irreducible s-modules Vj . Each of these modules
is defined over Q by semisimplicity of s [7, Lem. 2.6]. As s and d commute and d

is Abelian, d acts on each Vj through a character χj ∈ d∗ , that is, δ(vj) = χj(δ)·vj

for δ ∈ d and vj ∈ Vj . By the construction in [15, Lem. 1.4], there is a basis of d

on which these characters take values in Q .

(f) A (h⊕d)-homogeneous f ∈ m̂ defining D̂ is constructed as in the proof
of [6, Thm. 5.4]. The second statement is clear since h ⊂ s , d commutes with s ,
and r is an ideal in l .

Remark 2.2. 1. Theorem 2.1.(d) shows that the space h⊕d satisfies the
maximality condition in [6, Thm. 5.4.(2)]. So sD := dimC(h ⊕ d) is the maximal
multihomogeneity of D defined in [18].

2. By [19, Ch. III, §4, Cor. 1], the rank rk l0 of the Lie algebra l0 is the
dimension of any of its Cartan subalgebras. According to (2.5) it is equal to

rk l0 = dimC λ0(d
′) = dimC(h⊕ d) + dimC(n ∩ λ0(d

′))

= dimC(h⊕ d) + dimC(n ∩ λ0(c)).

Here nD := dimC(n∩λ0(c)) is the dimension of the Lie algebra of nilpotent elements
in any Cartan subalgebra of l0 . This shows that sD is intrinsically defined as

sD = rk l0 − nD.
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3. Reductive free divisors and algebraic singularities

Definition 3.1. (a) We call D and D̂ reductive if λ0|r : r→ d0 in Theorem 2.1
is an isomorphism.

(b) We call D linear if lD admits linear generators in some (convergent) coordi-

nate system. Similarly, we call D̂ linear if l bD admits linear generators in some
(formal) coordinate system.

With this terminology we draw the following conclusion from Theorem 2.1.

Corollary 3.2. Any formal reductive hypersurface singularity D̂ is linear.

Proof. By Nakayama’s Lemma, Definition 3.1.(a) implies that the linearization
s⊕ d in Theorem 2.1 generates l .

Following K. Saito, we call D free if lD is a free O -module. Then Saito’s
Criterion [16, Thm. 1.8.ii] states that, for δ1, . . . , δn ∈ lD , D is free with δ1, . . . , δn
being a basis of lD if and only if

f = det(δi(xj)) (3.1)

is a reduced defining equation of D . In case of a formal hypersurface singularity
D̂ , the latter property implies the former one [6, Prop. 4.2].

Proposition 3.3. Let D be a free divisor and let φ̂ ∈ Aut(X̂) with inverse ψ̂

such that φ̂∗̂lD = lbφ( bD) (which is Ô -free) has a (convergent) Ô -basis δ′1, . . . , δ
′
n ∈

φ̂∗∆. Then f ′ defined as in (3.1) using the basis δ′1, . . . , δ
′
n and x′j = ψ̂∗xj defines

a (free) divisor D′ isomorphic to D and δ′1, . . . , δ
′
n is a basis of lD′ .

Proof. Let δ1, . . . , δn be an O -basis of lD . Then f in (3.1) is a reduced
defining equation of D and

(δ1, . . . , δn) · Û = (ψ̂∗δ
′
1, . . . , ψ̂∗δ

′
n)

for some invertible matrix Û ∈ Ôn×n . Note that

ψ̂∗∂x′k
=

n∑
j=1

∂ψ̂j

∂x′k
◦ φ̂ · ∂xj

and hence

(ψ̂∗∂x′k
)(xj) = φ̂∗

∂ψ̂j

∂x′k
which implies that

ψ̂∗(δ
′
i)(xj) =

n∑
k=1

ψ̂∗(δ
′
i(x

′
k)∂x′k

)(xj) =
n∑

k=1

ψ̂∗(δ
′
i(x

′
k)) · (ψ̂∗∂x′k

)(xj)

=
n∑

k=1

φ̂∗(δ′i(x
′
k)) · φ̂∗

∂ψ̂j

∂x′k
.
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In matrix notation, these equalities read

((ψ̂∗δ
′
i)(xj)) = (φ̂∗(δ′i(x

′
j))) ◦ φ̂∗(Dψ̂)t

Setting û = det(Û)/ det(φ̂∗(Dψ̂)) ∈ Ô∗ , we conclude that

φ̂∗f ′ = det(φ̂∗(δ′i(x
′
j))) = û · det(δi(xj)) = û · f. (3.2)

This shows that φ̂(D̂) = D̂′ and hence δ′1 . . . , δ
′
n ∈ l bD′ = l̂D′ . But then convergence

of f ′ and δ′1 . . . , δ
′
n immediately implies that δ′1 . . . , δ

′
n ∈ lD′ . Due to faithful

flatness of completion or Saito’s Criterion, δ′1, . . . , δ
′
n even form a basis of lD′ .

Now (3.2) can be read as (y0, y) = (û, φ̂) being a formal solution of the
convergent equation

f ′(y) = y0 · f. (3.3)

By Artin’s Approximation Theorem [2], (3.3) has convergent solutions (y0, y) =

(u, φ) arbitrarily close to (û, φ̂) ∈ (Ô∗,Aut(Ô)) in the m-adic topology. In
particular, we can assume that (u, φ) ∈ (O∗,Aut(X)). Then φ∗f ′ = u · f yields
φ(D) = D′ and hence D ∼= D′ .

Corollary 3.2 and Proposition 3.3 now show that the word “linear” in the
term “reductive linear free divisor” is redundant.

Theorem 3.4. Reductive free divisors are linear.

As a generalization of Theorem 3.4 we note the following convergent version
of Theorem 2.1 for quasihomogeneous singularities.

Theorem 3.5. For a quasihomogeneous singularity D , Theorem 2.1 holds con-
vergently, that is, with l̂D and m̂ replaced by lD and m.

Proof. For a quasihomogeneous D , lD,0 contains a semisimple element with
strictly positive eigenvalues. By [6, Thm. 5.4], Remark 2.2.(1), and the conjugacy
of all Cartan subalgebras [19, Ch. III, §4, Thm. 2], such an element occurs in
h ⊕ d as constructed in Theorem 2.1. Then f in Theorem 2.1.(f) must be a
quasihomogeneous polynomial and we can apply Artin’s Approximation Theorem
as in (3.3) to conclude that f is a defining equation of D .

Finally, we shall generalize Theorem 3.5 to algebraic singularities using
results of Hauser and Müller [13, 8]. Denote by

ΛD := {φ ∈ Aut O | φ∗f ∈ O∗ · f} (3.4)

the group of embedded automorphisms of D . Using the projections

A := Aut O
πk // // Aut(O/mk+2) =: Ak , k ≥ 0,

we define the truncations

ΛD,k := πk(ΛD), k ≥ 0.
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By [18, Lem. 1], each ΛD,k is an algebraic group with Lie algebra lD,k . Let L be
a Levi subgroup in ΛD,0 . Its Lie algebra is then of the form s0⊕ d0 ⊂ lD,0 with s0

and d0 as in Theorem 2.1.(c). By Theorem 2.1 it lifts to s⊕ d ⊂ l̂D ∩ gln(C) with

respect to some basis φ̂ of m̂ . So if we consider L ⊂ GLn(C) ⊂ Ak with respect

to φ̂ , it follows that L ⊂ ΛD,k ∩GLn(C) for all k ≥ 0 by [10, Ch. V, §13.1, Thm.].
Thus, L ⊂ Λ bD with the latter defined as in (3.4). Analogous to the proof of [18,
Thm. 1], one concludes the following result using [13, Hilfssatz 2] and [8, Thm. 2’].

Theorem 3.6. For an algebraic singularity D , Theorem 2.1 holds convergently,
that is, with l̂D and m̂ replaced by lD and m. Moreover, s⊕ d is the Lie algebra
of a Levi subgroup in ΛD .

4. Singular locus and initial Levi factors

A module V over a semisimple Lie algebra s splits into weight spaces

V =
∑
α∈h∗

Vα

with respect to a Cartan algebra h of s . Any h ∈ h acts on Vα through multipli-
cation by α(h). By [19, Ch. VII, Prop. 3], the weights are (complexifications of)
elements of the dual lattice of that generated by the inverse roots of s . As such
they form the weight diagram W of s on V which is finite and invariant under
the Weyl group, see [19, Ch. VII, §4, Rem. (1)].

By the Theorem of Malcev–Harish-Chandra [11, Ch. III, §9], all Levi factors
s of a Lie algebra g are conjugate by an inner automorphism. Therefore the weight
diagram of s on a g-module V is independent of the choice of the Levi factor s .

Definition 4.1. For a g-module V we denote by W = W (g, V ) the weight
diagram of a Levi factor of g on V . Setting d({α}) = dimVα for each α ∈ W
and d(∅) = −∞ defines an additive map d : P(W ) → N where P(A) denotes
the power set of a set A . For any k ≥ 3, let Ck(W ) ⊂ P(W ) be the set of all
subsets C ⊂ W for which

(C + · · ·+ C︸ ︷︷ ︸
l

) ∩W = ∅ (4.1)

for all l ≥ k − 1. Finally, we set Mk(g, V ) = max d(Ck(W )) for k ≥ 3 and
Mk(g, V ) = −∞ otherwise.

Remark 4.2. If sl2(C) ∼= s ⊂ g acts nontrivially on V then Mk(g, V ) ≥ 0 for
all k ≥ 3.

Recall that the order ord f of f is defined as the maximal k for which
f ∈ mk and that ordD = ord f for each f defining D .

Theorem 4.3. dim SingD ≥Mord D(lD,m/m
2).
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Remark 4.4. 1. In Example 1.6 we have s = sl2(C), k = ordD = 4,
W = {−3,−1, 1, 3} , and Mk(lD,m/m

2) = 1 < dim SingD by choosing the facet
C = {3} of the convex hull of W corresponding to the w -coordinate. The reason
why the estimate of Theorem 4.3 is not sharp here is that (1.7) is not a coordinate
space but contains the 1-dimensional w -axis. This will become clear in the proof
of Theorem 4.3.

2. For k ≥ 3, a weak lower bound for Mk(g, V ) is the rank of s . To see this,
pick ` ∈ h such that ` ≤ 1 on W and ` = 1 defines a facet of the convex hull of W
and choose C in Definition 4.1 as C = W ∩ {` = 1} . Then `(C + · · ·+ C︸ ︷︷ ︸

l

) = {l}

which implies (4.1). Moreover, d(C) ≥ |C| ≥ dimC + 1 = dimW = rk s .

3. As Mk(g, V ) = −∞ for k < 3 the statement of Theorem 4.3 is vacuous
if ordD < 3. However if ordD = 1, D is smooth and both sides of the equality
in Theorem 4.3 equal −∞ .

In case ordD = 2, there is a coordinate system y = y1, . . . , yn such that

f(x) = g(y′) + y2
k+1 + · · ·+ y2

n, y′ = y1, . . . , yk,

and D′ = {g = 0} ⊂ (Ck, 0) = X ′ is a hypersurface of order ordD′ ≥ 3 with local
ring O ′ = OX′ . So Theorem 4.3 can be applied to D′ instead of D to get a lower
bound for SingD = SingD′ ⊂ X ′ . However it is not clear how Levi factors of lD
relate to those of lD′ .

By Remark 4.4.2 and 4.4.3, Proposition 1.4 is a consequence of Theorem 4.3.
In the following we deduce it directly from Theorem 2.1.

Proof. [Proof of Proposition 1.4] For a nonquasihomogeneous D , lD is nilpotent
by [17, Prop. 4]. We may hence assume that ε(f) = f for some Euler vector field

ε ∈ lD . Then any other δ ∈ lD may be replaced by δ − δ(f)
f
· ε such that δ(f) = 0

afterward. This shows that

lD = O · ε⊕ lf , lf := Der(− log f) = {θ ∈ DerC(O) | θ(f) = 0}. (4.2)

But lf is isomorphic to the syzygy module of the ideal of partials of f . As f has
an isolated critical point, ∂1(f), . . . , ∂n(f) is a regular sequence, and hence

lf = 〈∂i(f) · ∂j − ∂j(f) · ∂i | 1 ≤ i, j ≤ n〉 ⊂ ∆1. (4.3)

This means that lf/m · lf ⊂ kerλ0 is nilpotent by (1.2), (1.5), and (2.1).

Let s be a semisimple Lie subalgebra of lD and h a Cartan subalgebra of
s . Note that h is Abelian consisting of semisimple elements [19, Ch. III, Thm. 3].
For any h-homogeneous p ∈ m̂ we denote its h-weight by

wt(p) := (h 7→ h(p)/h) ∈ h∗.

By Theorem 2.1, we can identify s with a linear subalgebra s ⊂ l̂D and D̂ is
defined by an h-homogeneous f ∈ m̂ .



220 Granger and Schulze

Lemma 4.5. D̂ is defined by some f ∈ m̂ with wt(f) = 0.

Proof. For k = ord f , 0 6= [f ] = f + mk+1 ∈ mk/mk+1 generates a 1-
dimensional lD - and hence s-module. By the structure of semisimple Lie algebras
[19, Ch. VI], s is a sum of Lie subalgebras isomorphic to sl2(C). The classification
of sl2(C)-modules [19, Ch. IV] then implies that wt(f) = wt([f ]) = 0.

Proof. [Proof of Theorem 4.3] As explained at the end of Section 1, it suffices

to prove the claim for D̂ defined by f considered as an element of m̂ . Let
g = lD , V = m/m2 , W = W (g, V ), and k = ord(f). Pick C ∈ Ck(W ) such

that Mk(g, V ) = d(C). The claim follows if we show that Sing D̂ contains the
linear space defined by all variables x with wt(x) 6∈ C . This means that no
partial derivative of f contains a monomial c that is a product of only variables
x with wt(x) ∈ C . Assume, on the contrary, that such a derivative exists. Then
wt(c) ∈ C + · · ·+ C︸ ︷︷ ︸

l

where l := deg(c) ≥ k− 1 denotes the degree of c . Choosing

f with wt(f) = 0 as in Lemma 4.5, each partial of f is h-homogeneous with
weight in −W which equals W (by invariance of W under the Weyl group). In
particular, wt(c) ∈ W by choice of c in contradiction to (4.1).
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