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Abstract. We present an alternative to existing classifications (Bröcker, L.,
Kinematische Räume, Geom. Dedicata 1 (1973), 241–268, Karzel, H., Kinematic
spaces, Symposia Mathematica 11 (1973), 413–439) of those quadratic algebras
(in the sense of Osborn) which are associative. The alternative consists in study-
ing them as Lie algebras. This generalizes Plebański, J. F. and M. Przanowski,
Generalizations of the quaternion algebra and Lie algebras, J. Math. Phys. 29
(1988), 529–535, where only algebras over the real and the complex numbers
are considered, to algebras over arbitrary fields of characteristic not two; at the
same time, considerable simplifications are obtained. The method is not suit-
able, however, for characteristic two.
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1. Introduction

A (unitary) algebra A over a commutative field F is called quadratic (in the sense
of Osborn [Os]) if for every element a ∈ A the linear subspace Fa + F · 1 is a
subalgebra. This is equivalent to a2 ∈ Fa + F · 1, so that a satisfies a quadratic
equation with coefficients in F , whence the name.

All associative quadratic algebras were classified in 1973 independently by
L. Bröcker [Br] and H. Karzel [Ka73], [Ka74] under the name of kinematic algebras.
They had a geometric goal, namely the classification of kinematic spaces.

Here, we present a different approach to the classification, which was pro-
posed by J. F. Plebański and M. Przanowski [PP] in 1988 for the special case that
F is the field of real or complex numbers. Apparently they did not know about the
general theory of quadratic algebras; associative quadratic algebras were termed
quaternionlike algebras by them. Their method consists in considering the Lie
algebras associated with associative quadratic algebras, which turn out to be very
special Lie algebras, indeed. We show how to make this method work over arbi-
trary fields of characteristic not two; in characteristic two it is not appropriate.
Incidentally, our effort of generalization has rendered the classification very simple.

ISSN 0949–5932 / $2.50 c© Heldermann Verlag
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Where applicable, this way thus seems simpler than the methods of Bröcker and
of Karzel, as well; however, the latter also cover the characteristic two case, in
contrast to the approach here.

In Section 2, we present basic information about quadratic algebras whose
characteristic is different from two; the latter will always be tacitly assumed in
this paper. In such a quadratic algebra A , the elements which are not scalar mul-
tiples of 1, but whose squares are, are the non-zero elements of a linear subspace
V of codimension 1. These elements together with 0 are called vectors. If A is
associative, V is a Lie subalgebra of the Lie algebra associated with A ; this Lie
subalgebra will be called the vector algebra of A . Together with a certain sym-
metric bilinear form on V , the vector algebra determines the whole algebra A . In
Section 3, the Lie algebras which are the vector algebras of associative quadratic
algebras are characterized following Plebański and Przanowski, and a few direct
consequences about their structure are drawn from this characterization. In Sec-
tion 4, the vector algebras of associative quadratic algebras of characteristic not
two are then classified. The quadratic algebras to which they belong will be made
explicit in Section 5.

Much of the material of this paper has been developed in the diploma thesis
[We] of the second author under the supervision of the first. Some arguments are
taken from the diploma thesis [He] of S. Heinz, in which the results of Plebański
and Przanowski for associative quadratic algebras over the real and the complex
numbers are expounded in the framework of the general theory of quadratic alge-
bras and in a coordinate free style.

2. Vectors in quadratic algebras

In what follows, A shall always be a quadratic algebra over a commutative field
F of characteristic not two.

2.1 Definition. An element v ∈ A is called a vector if v2 ∈ F · 1 and v /∈ F · 1
or v = 0. In the sequel, let V be the set of vectors.

We first recall some well-known basic facts about the set of vectors of a
quadratic algebra, see [Di, Lemma 1 p.113], [Os, 2.1 p.202]. They can also be
found in [Eb, Chap.8 §2.1 p.227] under the name of “Frobenius’s lemma” for
F = R , but the proofs given there are valid in general.

2.2 Proposition. Every element of A can be written uniquely as a sum of a
scalar multiple of 1 and a vector. For all vectors u, v , the symmetric product
uv + vu is a scalar multiple of 1. The set V of vectors is a linear subspace of A,
which, by the uniqueness of the scalar-vector decomposition, has codimension 1.

These assertions are not true in general for quadratic algebras of character-
istic two, even if they are associative, as can be seen from the explicit description
of these algebras in [Br] or [Ka74].

The following might be folklore, but it seems that it is not well documented
in the literature. The proof is taken from [He].
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2.3 Proposition. If the quadratic algebra A is associative, then for two vectors
u, v their Lie bracket uv − vu is again a vector, so that the space V of vectors is
a Lie subalgebra of the Lie algebra associated with A. For vectors u, v ∈ V , the
scalar-vector decomposition of the product uv therefore is

uv =
1

2
(uv + vu) +

1

2
(uv − vu)

(note that the first summand on the right hand side is a scalar multiple of 1 by 2.2).

Proof. (uv−vu)2 = (uv)2 +(vu)2−uv2u−vu2v = (uv+vu)2−2uv2u−2vu2v ,
and this is a scalar multiple of 1, since u2 , v2 and (uv + vu)2 are. But uv− vu =
uv + vu− 2vu itself is a scalar multiple of 1 only if it is 0, for then vu, uv ∈ F · 1,
as well, so that (uv)v = v(uv) = (vu)v and hence uv = vu .

2.4 The vector algebra of an associative quadratic algebra and its bi-
linear form. From now on, let A be an associative quadratic algebra over a
commutative field F of characteristic not two, and V the space of vectors of A .
According to 2.3, the operation × defined on V by

u× v :=
1

2
(uv − vu) ∈ V for u, v ∈ V

makes V into a Lie algebra, which will be called the vector algebra of A . Upon
identification of F · 1 ⊆ A with F , the symmetric product uv + vu of two vectors
u, v ∈ V may be considered as an element of the base field F , so that

(u, v) :=
1

2
(uv + vu) ∈ F for u, v ∈ V

defines a symmetric bilinear form ( , ) on V . By 2.3, this symmetric bilinear form
and the operation × determine the product of vectors according to the following
multiplication rule:

uv = (u, v) · 1 + u× v for u, v ∈ V , (∗)

in particular
u2 = (u, u) · 1 .

3. A characterization of vector algebras among Lie algebras

Characterization Theorem 3.1. A bilinear antisymmetric multiplication ×
on a vector space V of characteristic not two makes V into a Lie algebra which
is the vector algebra of an associative quadratic algebra if and only if there is a
symmetric bilinear form ( , ) on V such that the following two identities hold for
all u, v, w ∈ V :

(v × u, w) = −(u, v × w) (1)

(w × u)× v = (u, v)w − (v, w)u . (2)

Remark. A bilinear form on a Lie algebra is commonly called invariant if
identity (1) is satisfied.
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Proof. The assertion is implicit in [PP]. For completeness’ sake, we give a
coordinate-free proof.

First we observe that if identity (2) is satisfied then the Jacobi identity
holds so that we may assume right away that (V, +,×) is a Lie algebra. Indeed,
the right hand side of (2) and the two expressions obtained from it by two-fold
cyclic permutation of the variables u, v, w sum up to 0.

We may use this Lie algebra and the symmetric bilinear form to define an
algebra multiplication on A = F ⊕ V via the multiplication rule 2.4(∗). This
algebra is quadratic, since for a ∈ A there is a vector v in the hyperplane V such
that Fa + F · 1 = Fv + F · 1, and the latter subspace is obviously a subalgebra,
as v2 = (v, v) · 1 ∈ F · 1.

Thus, we have to show that equations (1) and (2) are equivalent to asso-
ciativity. Since the equation expressing associativity is trilinear, and since every
product of three factors one of which belongs to F · 1 satisfies the associativ-
ity law, it suffices to consider products of three vectors from V . Now (uv)w =
(u, v)w+(u×v, w) ·1+(u×v)×w and u(vw) = (v, w)u+(u, v×w) ·1+u×(v×w).
Comparing the scalar and vector parts of these expressions, one obtains that asso-
ciativity is equivalent to the validity of identity (1) together with the identity
(u, v)w + (u × v) × w = (v, w)u + u × (v × w). The latter is equivalent to
(u, v)w − (v, w)u = −(v × w) × u − (u × v) × w . The right-hand side of this
equation equals (w×u)× v by the Jacobi identity, which gives us identity (2).

In the sequel, we make a few observations about the structure of such Lie
algebras. These observations are quite simple due to the strength of identity (2),
but nevertheless very effective in classifying these Lie algebras.

First a remark about the case dim V = 1. The corresponding algebras
are 2-dimensional. Now all 2-dimensional unitary algebras over a field F are
quadratic and associative, and they are all known (quadratic field extensions,
the algebra F (ε) of dual numbers with ε2 = 0, and the algebra F × F with
componentwise multiplication).

Thus, we may assume from now on that dim V ≥ 2.

3.2 Corollary. If the conditions of the Classification Theorem 3.1 are satisfied
and if dim V ≥ 2, then the symmetric bilinear form ( , ) is uniquely determined
by the Lie algebra V .

Indeed, for u, v ∈ V , identity 3.1(2) determines (u, v) if one chooses w to
be linearly independent of u .

Consequently, an associative quadratic algebra of dimension at least 3 over
a field of characteristic not two is uniquely determined by its vector algebra, in
view of the multiplication rule 2.4(∗).

3.3 The radical. In the following structural results, we use the radical

R := rad ( , )

of the symmetric bilinear form ( , ) on V . It should not be confused with the
solvable radical of the Lie algebra V . In many cases, it is rather the Killing
radical of V . Indeed, it can be proved ([He, 2.2]) that if the conditions of the
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Characterization Theorem 3.1 are met and if the dimension of V is finite, then
the Killing form of V is dim V − 1 times the symmetric bilinear form ( , ). Thus,
if the characteristic is 0 or does not divide dim V − 1, then R coincides with the
Killing radical.

One is tempted to use this relation with the Killing form for the structural
investigation (as was done implicitly via the Cartan criterion for solvability in
[PP]), but because of the dimensional restrictions which this would bring about,
the exceptions in positive characteristic and the great simplicity of the arguments
below this is not advisable in the end.

3.4 Proposition. Let (V, +,×) be a Lie algebra together with a symmetric
bilinear form ( , ) such that the conditions of the Characterisation Theorem 3.1
are satisfied. Let V ′ be the commutator algebra of V , and let R be the radical
of ( , ). Furthermore assume that dim V ≥ 2. Then the following assertions hold.

(i) V ′ ×R = 0.

(ii) V ′ 6= V if and only if V ′ ⊆ R .

(iii) If u, w ∈ V are linearly independent and if u× w = 0, then u, w ∈ R .

Proof. (i) follows directly from identity 3.1(2) if one chooses v ∈ R .

Concerning assertion (ii), note that for w ∈ V ′ the left-hand side and the
first term of the right-hand side of identity 3.1(2) belong to V ′ . Hence, if one may
choose u ∈ V \ V ′ , the second term of the right-hand side shows that (v, w) = 0
for all v ∈ V , so that w ∈ R and V ′ ⊆ R . — Conversely, assume that V ′ ⊆ R . If
V ′ = V , then also R = V and thus V would be abelian by (i), so that V ′ = {0} ,
a contradiction.

Assertion (iii) is immediate from identity 3.1(2).

3.5 Corollary. Under the assumptions of Proposition 3.4, the following assertions
are equivalent.

(i) The center of V is non-trivial.

(ii) R = V , i.e. ( , ) is identically zero.

(iii) V is abelian or nilpotent of class 2.

Proof. (i) implies (ii): For a non-zero element c of the center of V and
v ∈ V \Kc one has c× v = 0; it follows from 3.4(iii) that c, v ∈ R .

(ii) implies (iii) by 3.4(i), and it is clear that (iii) implies (i).

4. Classification of the vector algebras of
associative quadratic algebras

The classification will proceed by the codimension of the commutator algebra.

4.1 Classification Theorem: Codimension at least two. Let V be a Lie
algebra of characteristic not two and assume that dim V ≥ 2. Then V is the
vector algebra of an associative quadratic algebra and codim V ′ ≥ 2 if and only if
V is abelian or nilpotent of class 2.
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Proof. Assume that V is the vector algebra of an associative quadratic algebra
and that codim V ′ ≥ 2. Write V as the direct sum of V ′ and a linear subspace W
of dimension at least 2. For linearly independent elements u, w ∈ W and arbitrary
v ∈ V , it follows from identity 3.1(2) that (u, v)w−(v, w)u ∈ V ′∩W = {0} . Hence
(u, v) = 0 = (v, w) for all v ∈ V , so that W ⊆ R . By 3.4(ii), we have V ′ ⊆ R . It
follows that V = R , so that V is abelian or nilpotent of class 2 according to 3.5.

Conversely, assume that V is abelian or nilpotent of class 2. Then V ′

is contained in the center of V and hence has codimension at least 2. If V is
endowed with the symmetric bilinear form which is identically 0, the conditions
of the Characterization Theorem 3.1 are satisfied, since the left-hand side of
identity 3.1(2) is 0. Thus, V is the vector algebra of an associative quadratic
algebra.

Remark. An explicit classification of all nilpotent Lie algebras of class 2 is hard
and even a wild problem for higher dimensions. Of course, it is easy to give
a construction yielding all such algebras; the difficult point is the classification
up to isomorphism. This problem has been tackled systematically by Gauger
[Ga]. Together with a wealth of general results, he has obtained a complete
classification over an algebraically closed field of characteristic not two for Lie
algebras of dimension at most 7, and far-reaching results for dimension 8. Recently,
M. Stroppel [St] achieved a complete classification in low dimensions over arbitrary
fields using properties of the Klein quadric. The classifications by Bröcker and
Karzel of associative quadratic algebras do not help here, since at this point they
are not more detailed than our result 4.1, see 5.1.

4.2 Classification Theorem: Codimension one. Let V be a Lie algebra over
a field of characteristic not two and assume dim V ≥ 2. Then V is the vector
algebra of an associative quadratic algebra and codim V ′ = 1 if and only if V ′ is
abelian and for e ∈ V \V ′ the restriction of ad e to V ′ satisfies (ad e|V ′)2 = λ · id
for some λ ∈ F \ {0}. Such a Lie algebra is solvable, but not nilpotent.

Remark. The Lie algebras of this type can be described explicitly, see 4.3 below.

Proof. Assume that V is the vector algebra of an associative quadratic algebra
and that codim V ′ = 1. By 3.4(ii), V ′ ⊆ R . Now R cannot fill V entirely, for
else 3.5 and 4.1 would imply codim V ′ ≥ 2, contrary to our assumption. Thus
V ′ = R . By 3.4(i), the operation × is trivial on V ′ = R . For e ∈ V \V ′ , it follows
that

λ := (e, e) 6= 0

since R 6= V . One infers from the multiplication rule 2.4(∗) that

e2 = λ · 1, ev = e× v = −v × e = −ve for v ∈ V ′ = R ,

and (ad e)2(v) = e×(e×v) = e(ev) = e2v = λv . Thus, V conforms to the asserted
description.

Conversely, we have to show that such a Lie algebra is always the vector
algebra of an associative quadratic algebra. Fix e ∈ V \ V ′ . A symmetric bilinear
form ( , ) on V is uniquely defined if we decree V ′ to be its radical and (e, e) = λ .
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We have to verify that the conditions of the Characterization Theorem 3.1 are met.
Identity 3.1(1) is trivial since V ′ is the radical of ( , ). As to identity 3.1(2), let
u = αe + u′ , v = βe + v′ , and w = γe + w′ for u′, v′, w′ ∈ V ′ . Since the Lie
operation on V ′ is trivial, we obtain that
(w× u)× v = (γe× u′ + αw′ × e)× (βe + v′) = βγ(e× u′)× e + αβ(w′ × e)× e =
−βγ(u′ × e)× e + αβ(w′ × e)× e = −βγλu′ + αβλw′ .

On the other hand, as V ′ is the radical of ( , ),
(u, v)w − (v, w)u = αβλγe + αβλw′ − βγλαe− βγλu′ .

Thus, identity 3.1(2) holds, and V is the vector algebra of an associative quadratic
algebra by the Characterization Theorem 3.1.

It is clear that the Lie algebra V is solvable, but not nilpotent since
e× (e× V ′) = (ad e)2(V ′) = V ′ .

4.3 Addendum. The Lie algebras of the Classification Theorem 4.2 shall now
be described explicitly. As stated there, the commutator algebra V ′ of such a Lie
algebra V is an abelian subalgebra of codimension 1. Hence, in order to determine
V completely, it suffices to fix an element e ∈ V \ V ′ and to specify e × v for
v ∈ V ′ in such a way that (ad e|V ′)2 = λ · id for some λ ∈ F \ {0} .

1) First let λ be a square in F . Replacing e by a scalar multiple, we may assume
that λ = 1. Then ad e|V ′ is to be an involutory linear automorphism of V ′ .
Decomposition of V ′ into the eigenspaces gives two linear subspaces V ′

+ and V ′
−

such that
V ′ = V ′

+ + V ′
−, V ′

+ ∩ V ′
− = {0}

and
e× v = ±v for v ∈ V ′

± .

2) Now assume that λ is not a square in F . In this case, V is most easily described
if one considers the corresponding quadratic algebra A of which V is the vector
algebra. As λ is not a square, the polynomial x2 − λ is irreducible and is the
minimal polynomial of e over F . Hence the subalgebra F (e) := Fe+F ·1 of A is
a quadratic field extension of F , the commutator algebra V ′ is a left vector space
over F (e), and the restriction of ad e to V ′ is just scalar multiplication by e .

Conversely, if one defines ad e on V ′ according to case 1) or 2) then it
is clear that V satisfies the conditions of Theorem 4.2. In the proof there, it
was shown that this implies the conditions of the Characterization Theorem 3.1,
whereby V is a Lie algebra which is the vector algebra of an associative quadratic
algebra.

Remark. As to possible isomorphisms between such Lie algebras, it is straight-
forward that a Lie algebra of type 1) cannot be isomorphic to a Lie algebra of
type 2). It is not difficult to see that a Lie algebra of type 1) is determined up to
isomorphism by the set of the two cardinalities of bases of V ′

+ and V ′
− , and that

a Lie algebra of type 2) is determined up to isomorphism by the cardinality of a
basis of V ′ and the coset λ · {α2; 0 6= α ∈ F} .

4.4 Classification Theorem: Codimension zero. Let V be a vector space
over a field F of characteristic not two, and let × be a bilinear antisymmetric
multiplication on V . Then the following assertions are equivalent.
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(i) V is the vector algebra of an associative quadratic algebra, and V ′ = V .

(ii) There is a basis e, f, g of V and there are α, β ∈ F \ {0} such that

e× f = g, f × g = αe, g × e = βf .

(iii) V is a simple Lie algebra of dimension 3.

The symmetric bilinear form of the vector algebra V then is given by

(e, e) = −β, (f, f) = −α, (g, g) = −αβ, (e, f) = (f, g) = (g, e) = 0 .

Proof. (i) implies (ii) and (iii): By 3.4(i), the radical R is contained in the
center of V . Hence R = {0} , else the center would be non-trivial, and 3.5 would
imply that V is abelian or nilpotent, in contradiction with V ′ = V .

In order to prove that V is simple, let I 6= V be an ideal of V ; we have to
show that I = {0} . We use identity 3.1(2) for u ∈ I and w ∈ V \ I . Since the
left-hand side and the second term of the right-hand side lie in I , it follows that
(u, v) = 0 for all v ∈ V . Hence u belongs to the radical R , which is zero, so that
u = 0.

Now we produce a basis as asserted in (ii). Since (x + y, x + y) = (x, x) +
2(x, y) + (y, y) and R = {0} , there is an element e ∈ V such that (e, e) 6= 0.
Likewise, the orthogonal space e⊥ = {x ∈ V ; (e, x) = 0} contains an element f
such that (f, f) 6= 0 (or else e⊥ would be contained in the radical R). Then
by 3.4(iii), since R = {0} , we have that g := e × f 6= 0. Let β := −(e, e),
α := −(f, f). Using identity 3.1(2), we now evaluate g × e = (e × f) × e =
(f, e)e − (e, e)f = βf , f × g = −g × f = (f × e) × f = (e, f)f − (f, f)e = αe .
In particular, e, f , and g are linearly independent, else g would be a linear
combination g = γe + δf and g × g = γ(e × g) + δ(f × g) = −γβf + δαe 6= 0,
which is nonsense.

Next we show that I := Fe + Ff + Fg is an ideal of V . It then follows
from simplicity that V = I has dimension 3, and that e, f, g is a basis of V .
For v ∈ V , using again identity 3.1(2), we obtain that e × v = 1

α
((f × g) × v) =

1
α
((g, v)f − (v, f)g) ∈ I and similarly f × v ∈ I and g × v ∈ I .

(ii) implies (i): In order to show that V is the vector algebra of an associa-
tive quadratic algebra, we verify that with the symmetric bilinear form specified
in the assertion the conditions of the Characterization Theorem 3.1 are satisfied.

As to identity 3.1(1), it suffices to consider it for u, v, w ∈ {e, f, g} , since
the expressions in this identity are trilinear. If at least two of such elements u, v, w
coincide, both sides of the identity are zero. The identity is invariant if u and w
are interchanged. Hence, verification for (u, v, w) ∈ {(e, f, g), (e, g, f), (f, e, g)}
suffices. Now,
(f × e, g) = −(g, g) = αβ, −(e, f × g) = −α(e, e) = αβ ,
(g × e, f) = β(f, f) = −αβ, −(e, g × f) = α(e, e) = −αβ ,
(e× f, g) = (g, g) = −αβ, −(f, e× g) = β(f, f) = −αβ .

In the same way, it suffices to verify identity 3.1(2) for u, v, w ∈ {e, f, g} .
Then, if u, v, w are all different, or if w = u , both sides of the identity are zero.
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Moreover, the identity is invariant if u and w are interchanged. Hence, it suffices
to consider the cases u 6= v = w for u, v ∈ {e, f, g} , for which (u, v, w) is one of
the triples (e, f, f), (e, g, g), (f, e, e), (f, g, g), (g, e, e), (g, f, f). Now,
(f × e)× f = −g × f = αe = (e, f)f − (f, f)e ,
(g × e)× g = βf × g = αβe = (e, g)g − (g, g)e ,
(e× f)× e = g × e = βf = (f, e)e− (e, e)f ,
(g × f)× g = −αe× g = αβf = (f, g)g − (g, g)f ,
(e× g)× e = −βf × e = βg = (g, e)e− (e, e)g ,
(f × g)× f = αe× f = αg = (g, f)f − (f, f)g .

Finally, it is immediate that V ′ = V .

(iii) implies (ii) according to [Ja, p.13].

The following reflects the well-known special rôle played by the Lie algebra
sl2F of 2×2-matrices over F having trace 0 among the 3-dimensional simple Lie
algebras, in terms of vector algebras.

4.5 Addendum. For a Lie algebra V over a field F of characteristic not two,
the following assertions are equivalent.

(i) V satisfies the hypotheses of 4.4, and there is a non-zero vector in V which
is isotropic with respect to the symmetric bilinear form ( , ) on V .

(ii) V is isomorphic to the Lie algebra sl2F .

sl2F is the vector algebra of the quadratic algebra F 2×2 of all 2 × 2-matrices
over F .

Proof. Assume (i), and let u ∈ V \{0} such that (u, u) = 0. At the beginning
of the proof of 4.4 it was shown that the radical R is trivial; hence there is v ∈ V
such that (u, v) = 1. For δ ∈ F , we have (v + δu, v + δu) = (v, v) + 2δ ; replacing
v by v − 1/2(v, v)u , we may therefore assume that (v, v) = 0. Let

w := u× v .

By identity 3.1(2) then, w×u = (v, u)u− (u, u)v = u and v×w = −(u×v)×v =
−(v, v)u + (v, u)v = v .

Now, u, v are linearly independent as (u, v) 6= 0 = (u, u), and w is linearly
independent of u, v , for else u = w × u would belong to F (v × u) = Fw , and
u = w × u = 0, which is a contradiction. Thus, u, v, w is a basis of V , and the
Lie algebra V is uniquely determined up to isomorphism by the given products.

In sl2F , the matrices

u =

(
0 2
0 0

)
, v =

(
1 −1
1 −1

)
, w =

(
1 −2
0 −1

)
constitute such a basis satisfying w = u × v = 1/2(uv − vu), v = v × w =
1/2(vw − wv), u = w × u = 1/2(wu− uw).

Every 2× 2-matrix M is annulled by its characteristic polynomial so that
M2 − tr M · M + det M · E = 0 where E is the unit matrix. This shows at the
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same time that F 2×2 is a quadratic algebra and that its vector algebra consists of
the matrices of trace 0.

It can be read off the above basis that sl2F coincides with its commutator
algebra. Thus, version (i) of the hypotheses of 4.4 is met. (Of course, it is also
well known that sl2F is simple, in keeping with 4.4(iii).) Finally, u2 = 0 shows
that (u, u) = 0.

We mention in passing that for simple vector algebras the close relation
between the symmetric bilinear form ( , ) and the Killing form asserted in 3.3
is a special case of the well known fact that on a simple Lie algebra there is
only one invariant symmetric bilinear form up to a constant. On sl2F , the trace
form coincides with ( , ). Note that the usual Killing form of sl2F is four times
the Killing form of the vector algebra sl2F as used here, since by definition the
operation × is half the usual Lie bracket of matrices.

5. Classification of the associative quadratic algebras

In this section, we specify the associative quadratic algebras belonging to the vector
algebras which have been classified in Section 4.

5.1 Associative quadratic algebras with nilpotent vector algebras. Let
A be an associative quadratic algebra of characteristic not two whose vector
algebra V is nilpotent and at least 2-dimensional. According to Classification
Theorems 4.1, 4.2, and 4.4, V is abelian or nilpotent of class 2. By 3.5, the
symmetric bilinear form ( , ) on V is identically zero. Hence

v2 = 0 and uv ∈ V for u, v ∈ V (3)

by the multiplication rule 2.4(∗).
Conversely, if A is an associative quadratic algebra which satisfies (3), then

(v, v) = 0 for all v ∈ V . Hence ( , ) is identically 0, so that by 3.5 the vector
algebra V of A is nilpotent.

In the classification by Bröcker [Br], these algebras appear in Theorem 4
p.265.

5.2 Associative quadratic algebras with solvable not nilpotent vector
algebras. Let A be an associative quadratic algebra A of characteristic not
two whose vector algebra V is solvable but not nilpotent. By Classification
Theorems 4.1, 4.2, and 4.4, the commutator algebra V ′ has codimension 1 in
V and is abelian. In the proof of 4.2, it is shown that furthermore V ′ is the
radical of ( , ), and that, hence, for e ∈ V \ V ′ there is λ ∈ F \ {0} such that for
all v ∈ V ′

e2 = λ · 1, ev = e× v = −ve, so that ad e|V ′ = λ · id .

Moreover, it follows by the multiplication rule 2.4(∗) that

uv = 0 for u, v ∈ V ′ . (4)
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According to 4.3, these algebras fall into two types.

1) The first type is obtained with λ = 1. Then ad e|V ′ is an involution. Consider
the decomposition of V ′ into the eigenspaces V ′

+ and V ′
− of ad e|V ′ as in 4.3, and

let π : V ′ → V ′ be the linear projection such that

π2 = π, im π = V ′
−, ker π = V ′

+ .

The decomposition of v ∈ V ′ is obtained as v = (v−π(v))+π(v), since v−π(v) ∈
ker π = V ′

+ . Using π , the product ev can thus be written as ev = e × v =
v − π(v)− π(v) = v − 2π(v). Now let

i :=
1

2
(1− e) .

As e2 = 1, one has i2 = 1/4 · (1 − 2e + e2) = 1/2 · (1 − e) = i . Moreover,
for v ∈ V ′ , we obtain iv = 1/2 · (v − ev) = 1/2 · (v − v + 2π(v)) = π(v) and
vi = 1/2 · (v − ve) = 1/2 · (v + ev) = 1/2 · (v + v − 2π(v)) = v − π(v) = (1− i)v .
Since F · 1 + Fe = F · 1 + Fi , the algebra A can be described as F · 1 + Fi + V ′ ,
and its multiplication is determined by (4) and the products

i2 = i, iv = π(v), vi = (1− i)v

which we have just obtained. It is in this form that the algebra A is described in
Bröcker’s classification [Br, p.249]. (Note that the multiplication table given there
contains a misprint; of course, B · 1 is B and not A).

2) For the second type, λ is not a square in F . Then, as explained in 4.3,
F (e) = Fe + F · 1 is a quadratic field extension of F and V ′ is a left vector
space over F . The minimal polynomial x2 − λ of e over F has the roots e,−e ,
so that the map

a = (α · 1 + β · e) 7→ ã = (α · 1− β · e)

is an involutory field automorphism of F (e). Since ve = −ev for v ∈ V ′ , we
obtain for a ∈ F (e) that

va = ãv .

Up to isomorphism, this together with (4) determines the multiplication of A =
F (e) + V ′ . In this form, the algebra is presented in Bröcker’s classification [Br,
p.263].

5.3 Associative quadratic algebras with simple vector algebras. Let A be
an associative quadratic algebra A of characteristic not two whose vector algebra V
is simple. We distinguish two cases depending on whether the symmetric bilinear
form ( , ) on V is anisotropic or not.

1) If V contains non-zero isotropic vectors, then V is isomorphic to sl2F , and A
is isomorphic to the algebra F 2×2 of all 2 × 2-matrices by Addendum 4.5; note
that by 3.2, A is uniquely determined by its vector algebra.

2) If ( , ) is anisotropic, A will turn out to be a quaternion skew field.

We first show that every non-zero element of A has a multiplicative inverse,
so that A is a skew field. This is clear for non-zero elements of F ·1 and for elements
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of V \ {0} , since for v ∈ V \ {0} we have v2 = (v, v) · 1 6= 0 by assumption so
that (1/(v, v) · v)v = 1. All other non-zero elements are of the form ρ · 1 + v
for v ∈ V \ {0} and ρ ∈ F \ {0} . Now, the set of invertible elements is closed
under multiplication, hence it suffices to show that ρ · 1 + v is the product of two
elements of V . Choose u ∈ V \{0} such that (u, v) = 0. Then by identities 3.1(1)
and (2) we have (v × u, u) = −(u, v × u), so that (v × u, u) = 0, and therefore
(v × u)u = (v × u)× u = (u, u)v − (u, v)u = (u, u)v . Thus,(

ρ

(u, u)
u +

1

(u, u)
v × u

)
u = ρ · 1 + v

is a product of two elements of V and hence is invertible, and A is indeed a skew
field.

That A is a quaternion skew field can now be easily deduced from the
information given in Classification Theorem 4.4 about the basis e, f, g of V . From
this, the following multiplication table is readily obtained by the multiplication
rule 2.4(∗):

ef = g = −fe, fg = αe = −gf, ge = βf = −ge ,

e2 = −β · 1, f2 = −α · 1, g2 = −αβ · 1 .

References
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