
Journal of Lie Theory
Volume 19 (2009) 725–734
c© 2009 Heldermann Verlag

Riesz Potentials and Fractional Maximal Function
for the Dunkl Transform

Sallam Hassani, Sami Mustapha and Mohamed Sifi∗

Communicated by J. Faraut

Abstract. In this article we investigate the Lp → Lq boundedness properties
of the Riesz potentials Iκ

α and the related fractional maximal function Mκ,α

associated to the Dunkl transform.
Mathematics Subject Classification 2000: Primary 33C52 ; Secondary 43A32,
33C80, 22E30.
Key Words and Phrases: Dunkl transform, Riesz potentials, Fractional maximal
function.

1. Introduction

Let G be a finite reflection group on Rd with a fixed positive root system R+ ,
normalized so that 〈v, v〉 = 2 for all v ∈ R+ , where 〈., .〉 denotes the usual
Euclidean inner product. For a nonzero vector v ∈ Rd , let σv denote the reflection
with respect to the hyperplane perpendicular to v i.e.

xσv = x− 2
〈x, v〉
‖v‖2

v, x ∈ Rd.

Then G is a subgroup of the orthogonal group generated by the reflections {σv, v ∈
R+} . Let κ be a nonnegative multiplicity function v 7→ κv defined on R+ with
the property that κu = κv whenever σu is conjugate to σv in G , then v 7→ κv is
a G-invariant function. The weight function hκ is defined by

hκ(x) =
∏

v∈R+

|〈x, v〉|κv , x ∈ Rd.

This is a G-invariant positive homogeneous function of degree γκ =
∑
v∈R+

κv .

For f ∈ L1(Rd, h2
κ) the Dunkl transform is defined (see [4]) by

f̂(y) = ch

∫
Rd

f(x)E(x,−iy)h2
κ(x)dx, y ∈ Rd,
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where ch is the following constant

c−1
h =

∫
Rd

e−
‖x‖2

2 h2
κ(x)dx,

and where E(x,−iy) denotes the Dunkl kernel (for more details see the next
section). The generalized translation operator is defined on L2(Rd, h2

κ) by the
equation

τ̂yf(x) = E(y,−ix)f̂(x), x ∈ Rd.

It plays the role of the ordinary translation τyf(.) = f(. − y) in Rd , since the

Euclidean Fourier transform satisfies τ̂yf(x) = e−i〈x,y〉f̂(x).

For 0 < α < 2γκ +d , the Riesz potential Iκ
αf is defined on S(Rd) (the class

of Schwartz functions) by (see [10])

Iκ
αf(x) = (dα

κ)−1

∫
Rd

τyf(x)

‖y‖2γκ+d−α
h2

κ(y)dy, (1)

where

dα
κ = 2−γκ−d/2+α Γ(α

2
)

Γ(γκ + d−α
2

)
.

It is easy to see that the Riesz potentials operate on the Schwartz class S(Rd),
as integral operators, and it is natural to inquire about their action on the spaces
Lp(Rd, h2

κ).

The main problem can be formulated as follows. Given α ∈]0, 2γκ + d[ for
what pair (p, q) is it possible to extend (1) to a bounded operator from Lp(Rd, h2

κ)
to Lq(Rd, h2

κ)? That is when do we have the inequality

‖Iκ
αf‖Lq(Rd,h2

κ) ≤ C ‖f‖Lp(Rd,h2
κ). (2)

A necessary condition is given in [10]. This condition says that (2) holds
only if

1

p
− 1

q
=

α

2γκ + d
. (3)

Thangavelu and Xu proved also in [10] that the condition (3) is sufficient to
ensure the boundedness of Iκ

α (save for p = 1 where a weak-type estimate holds)
if one assumes that the reflection group G is Zd

2 or if f are radial functions and
p ≤ 2 (see [10], Theorem 4.4).

Our aim in this paper is to show that it is possible to remove this restrictive
hypothesis and prove that (3) is a sufficient condition for all reflection groups. More
precisely we have the following Theorem.

Theorem 1.1. Let α be a real number such that 0 < α < 2γκ +d and let (p, q)

be a pair of real numbers such that 1 ≤ p < q < ∞ and
1

q
=

1

p
− α

2γκ + d
. Then:

(i) If p > 1, then the mapping f → Iκ
αf can be extended to a bounded operator

from Lp(Rd, h2
κ) to Lq(Rd, h2

κ) and

‖Iκ
αf‖κ,q ≤ Ap,α‖f‖κ,p, f ∈ Lp(Rd, h2

κ),



Hassani, Mustapha and Sifi 727

where Ap,α > 0 depends only on p and α.
(ii) If p = 1, f → Iκ

αf can be extended to a mapping of weak-type (1, q) and∫
{x: |Iκ

αf(x)|>λ}
h2

κ(x)dx ≤ Aα

(
‖f‖κ,1

λ

)q

, f ∈ L1(Rd, h2
κ),

where Aα > 0 depends only on α.

The notation ‖.‖κ,p is used here to denote the norm of Lp(Rd, h2
κ).

The boundedness of Riesz potentials can be used to establish the bounded-
ness properties of the fractional maximal operator associated to Dunkl transform.

For 0 < α < 2γκ + d and f ∈ Lp(Rd, h2
κ), 1 ≤ p < ∞ , we define the

fractional maximal Mκ,αf function by

Mκ,αf(x) = sup
r>0

1

mκrd+2γκ−α

∫
Rd

|f(y)|τxχBr(y)h2
κ(y)dy, x ∈ Rd,

where

mκ = (ch2
γκ+ d

2 Γ(γκ +
d

2
+ 1))

α
d+2γκ

−1,

and where χBr denotes the characteristic function of the ball Br of radius r
centered at 0. We have the following corollary of Theorem 1.1.

Corollary 1.2. Let α be a real number such that 0 < α < 2γk +d and let (p, q)
be a pair of real numbers such that 1 ≤ p < q < ∞ and satisfying (3). Then:
(i) The maximal operator Mκ,α is bounded from Lp(Rd, h2

κ) to Lq(Rd, h2
κ) for

p > 1.
(ii) Mκ,α is of weak type (1, q), that is, for f ∈ L1(Rd, h2

κ)∫
{x: Mκ,αf(x)>λ}

h2
κ(x)dx ≤ Cα

(
‖f‖κ,1

λ

)q

, λ > 0,

where cα > 0 depends only on α.

2. Background

Introduced by C. F. Dunkl in [2], the Dunkl operators Tj , 1 ≤ j ≤ d , on Rd are
the first-order differential-difference operators given by

Tjf(x) = ∂jf(x) +
∑
v∈R+

kv
f(x)− f(xσv)

〈x, v〉
〈v, ej〉, 1 ≤ j ≤ d,

where ∂j denotes the usual partial derivatives and e1, ..., ed the standard basis
of Rd . A fundamental property of these differential-difference operators is their
commutativity, that is, TkTl = TlTk , 1 ≤ k, l ≤ d .

Closely related to them is the so-called intertwining operator Vκ which is
the unique linear isomorphism of

⊕
n≥0Pn determined by (see [4])

Vκ(Pn) = Pn, Vκ(1) = 1, TjVκ = Vκ∂j, for j = 1, ..., d,
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with Pn the subspace of homogeneous polynomials of degree n in d variables.
Even if the positivity of the intertwining operator has been established in [7] by
M. Rösler, an explicit formula of Vκ is not known in general. However, the operator
Vκ possesses the integral representation

Vκf(x) =

∫
Rd

f(y)dµx(y),

where µx is a probability measure on Rd with support in the closed ball B(0, ‖x‖)
of center 0 and radius ‖x‖ (see [7], [12]).

The function E(x, y) = V x
κ [e〈x,y〉] , where the superscript means that Vκ is

applied to the x variable, plays an important role in the development of the Dunkl
transform which is defined on L1(Rd, h2

κ) by

f̂(y) = ch

∫
Rd

f(x)E(x,−iy)h2
κ(x)dx, y ∈ Rd.

If κ = 0, then Vκ = id and the Dunkl transform coincides with the usual Fourier
transform. If d = 1 and G = Z2 then the Dunkl transform is related closely to
the Hankel transform in the real line (see [13]). In fact, in this case,

E(x,−iy) = Γ(κ +
1

2
)(
|xy|
2

)−κ+ 1
2 [Jκ− 1

2
(|xy|)− i sign(xy)Jκ− 1

2
(|xy|)],

where Jα denotes the usual Bessel function

Jα(t) = (
t

2
)α

∞∑
n=0

(−1)n

n!Γ(n + α + 1)
(
t

2
)2n.

Some of the properties of the kernel E(x, y) and the Dunkl transform are collected
below (see [4], [5]).

Proposition 2.1. (i) E(x, y) = E(y, x), x, y ∈ Rd .
(ii) |E(x, y)| ≤ e‖x‖‖y‖, x, y ∈ Cd .

(iii) For f ∈ L1(Rd, h2
κ), f̂ is in C0(Rd).

(iv) The Dunkl transform is a topological automorphism of S(Rd).

(v) (Inversion formula) When both f and f̂ are in L1(Rd, h2
κ) we have

f(x) =

∫
Rd

E(ix, y)f̂(y)h2
κ(y)dy.

(vi) (Plancherel Theorem) The Dunkl transform extends to an isometry of L2(Rd, h2
κ).

The Dunkl transform allows us to define a generalized translation operator
on L2(Rd, h2

κ) by setting

τ̂yf(x) = E(y,−ix)f̂(x), x ∈ Rd.

In the analysis of this generalized translation a particular role is played by
the space (cf. [6], [7] , [9] and [11])

Aκ(Rd) = {f ∈ L1(Rd, h2
κ) : f̂ ∈ L1(Rd, h2

κ)}.
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Note that Aκ(Rd) is contained in the intersection of L1(Rd, h2
κ) and L∞ and hence

is a subspace of L2(Rd, h2
κ). The operator τy satisfies the following properties:

Proposition 2.2. Assume that f ∈ Aκ(Rd) and g ∈ L1(Rd, h2
κ) is bounded.

Then:

(i)

∫
Rd

τyf(x)g(x)h2
κ(x)dx =

∫
Rd

f(x)τ−yg(x)h2
κ(x)dx.

(ii) τyf(x) = τ−xf(−y).

A formula of τyf is known, at the moment, only in two cases. One is in the
case of G = Z2 and hκ(x) = |x|κ on R (see [8]):

τyf(x) = 1
2

∫ 1

−1
f(

√
x2 + y2 − 2xyt)(1 + x−y√

x2+y2−2xyt
)φκ(t)dt

+1
2

∫ 1

−1
f(−

√
x2 + y2 − 2xyt)(1− x−y√

x2+y2−2xyt
)φκ(t)dt,

where φκ(t) = bκ(1 + t)(1 − t2)κ−1 , from which also follows a formula of τyf in
the case of G = Zd

2 . This formula implies easily the Lp -boundedness of τy in this
case.

Another case where a formula of τyf is known is when f are radial functions,
f(x) = f0(‖x‖), and G being any reflection group (see [6])

τyf(x) = Vκ[f0(
√
‖x‖2 + ‖y‖2 − 2‖x‖‖y‖〈x′, .〉)](y′), x′ =

x

|x|
, y′ =

y

|y|

from which it follows that τyf(x) ≥ 0 for all y ∈ Rd if f(x) = f0(‖x‖) ≥ 0.
Several essential properties of τyf (f being radial) follow from this formula. This
is collected in the following proposition (see [9]).

Proposition 2.3. (i) For every f ∈ L1
rad(Rd, h2

κ) (the subspace of radial func-
tions in Lp(Rd, h2

κ)) we have:.∫
Rd

τyf(x)h2
κ(x)dx =

∫
Rd

f(x)h2
κ(x)dx.

(ii) For 1 ≤ p ≤ 2, τy : Lp
rad(Rd, h2

κ) → Lp
rad(Rd, h2

κ) is a bounded operator.

Apart from these two cases, we lack precise information, in particular about
the boundedness of generalized translations (see [1]). Based on this fact we tried
to develop an elementary approach of the Riesz potentials which works with a
minimal knowledge about τy and gives the answer to the problem (1)-(2) in full
generality.

3. Riesz Potentials

For the proof of Theorem 1.1, we need the following version of a classical Schur’s
lemma.
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Lemma 3.1. Assume that k is a measurable function on Rd×Rd that satisfies
the mixed-norm conditions:

C1 = sup
x∈Rd

∫
|k(x, y)|h2

κ(y)dy < ∞, C2 = sup
y∈Rd

∫
|k(x, y)|h2

κ(x)dx < ∞.

Then the integral operator induced by the kernel k(x, y) (i.e. the operator defined

by Tkf(x) =

∫
k(x, y)f(y)h2

κ(y)dy) defines a bounded mapping of Lp(Rd, h2
κ) into

itself for every 1 ≤ p ≤ ∞, with

‖Tk‖Lp(Rd,h2
κ)→Lp(Rd,h2

κ) ≤ C
1− 1

p

1 C
1
p

2 .

Proof of Theorem 1.1 We begin with this simple formula used by Thangavelu
and Xu in [10] and in the same context

‖y‖−a =
1

Γ(a
2
)

∫ ∞

0

s
a
2 e−s‖y‖2 ds

s
, y ∈ Rd, a > 0.

Applying this formula with a = 2γκ + d − α and changing the order of integrals
in (1), we obtain

Iκ
αf(x) =

2γκ+ d
2
−α

Γ(α
2
)

∫ ∞

0

sγκ+ d−α
2 (

∫
Rd

τyf(x)e−s‖y‖2h2
κ(y)dy)

ds

s
, f ∈ S(Rd).

By Proposition 2.2, we have∫
Rd

τyf(x)e−s‖y‖2h2
κ(y)dy =

∫
Rd

τ−xf(−y)e−s‖y‖2h2
κ(y)dy

=

∫
Rd

τ−xf(y)e−s‖y‖2h2
κ(y)dy

=

∫
Rd

f(y)τx(e
−s‖y‖2)(y)h2

κ(y)dy.

We have thus the identity

Iκ
αf(x) =

2γκ+ d
2
−α

Γ(α
2
)

∫ ∞

0

sγκ+ d−α
2

∫
Rd

f(y)τx(e
−s‖y‖2)(y)h2

κ(y)dy
ds

s
, f ∈ S(Rd). (4)

With the aid of this identity it will not be difficult to extend the mapping f → Iκ
αf

to all functions f ∈ Lp(Rd, h2
κ), p ≥ 1. Indeed we first notice that for each x ∈ Rd ,

the function y → τx(e
−s‖y‖2)(y) is positive and satisfies (see [8])

τx(e
−s‖y‖2) = e−s(‖x‖2+‖y‖2)E(2sx, y), s > 0.

Using Proposition 2.1, we deduce that

τx(e
−s‖y‖2)(y) ≤ e−s(‖x‖−‖y‖)2 ≤ 1. (5)
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On the other hand, applying Proposition 2.3, we obtain∫
Rd

τx(e
−s‖y‖2)(y)h2

κ(y)dy =

∫
Rd

e−s‖y‖2h2
κ(y)dy =

1

ch(2s)
2γκ+ d

2

, s > 0. (6)

Let (p, q) be a pair of real numbers satisfying (3) and let f ∈ Lp(Rd, h2
κ) normalized

so that ‖f‖κ,p = 1. We shall prove that the integral

2γκ+ d
2
−α

Γ(α
2
)

∫ ∞

0

sγκ+ d−α
2

∫
Rd

f(y)τx(e
−s‖y‖2)(y)h2

κ(y)dy
ds

s
(7)

converges absolutely for almost every x . Towards this let us decompose (7) as a
sum of two terms S1f(x) + S2f(x) where

S1f(x) =
2γκ+ d

2
−α

Γ(α
2
)

∫ σ

0

sγκ+ d−α
2

∫
Rd

f(y)τx(e
−s‖y‖2)(y)h2

κ(y)dy
ds

s
,

S2f(x) =
2γκ+ d

2
−α

Γ(α
2
)

∫ ∞

σ

sγκ+ d−α
2

∫
Rd

f(y)τx(e
−s‖y‖2)(y)h2

κ(y)dy
ds

s
.

At this instance σ > 0 is a fixed positive constant which need not to be specified
(it suffices to take σ = 1 for example).

Let us estimate ‖S1f‖∞ . Let x ∈ Rd , we have

|S1f(x)| ≤ 2γκ+ d
2
−α

Γ(α
2
)

∫ σ

0

sγκ+ d−α
2 sup

x

∫
Rd

|f(y)|τx(e
−s‖y‖2)(y)dy

ds

s
.

However, it follows from (5) that

sup
x

∫
Rd

|f(y)|τx(e
−s‖y‖2)(y)dy ≤ ‖f‖κ,1,

and from (6)

sup
x

∫
Rd

|f(y)|τx(e
−s‖y‖2)(y)dy ≤

(
supx

∫
Rd τx(e

−s‖y‖2)(y)h2
κ(y)dy

)
‖f‖∞

≤ 1

ch(2s)2γκ+ d
2
‖f‖∞.

Using complex interpolation we deduce then that

sup
x

∫
Rd

|f(y)|τx(e
−s‖y‖2)(y)dy ≤

(
1

ch(2s)γκ+ d
2

)1− 1
p

‖f‖κ,p

= 2
−(1− 1

p )(γκ+ d
2 )

s
−(1− 1

p )(γκ+ d
2 )

c
1− 1

p
h

,

and then

|S1f(x)| ≤ 2
1
p (γκ+ d

2 )−α

c
1− 1

p
h Γ(α

2
)

∫ σ

0
s

1
p
(γκ+ d

2
)−α

2 ds
s

= A σ
1
2
( 2γκ+d

p
−α), x ∈ Rd,
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and so
‖S1f‖∞ ≤ Aσ

1
2
( 2γκ+d

p
−α). (8)

Let us estimate ‖S2f‖κ,p . We write

‖S2f‖κ,p ≤
2γκ+ d

2
−α

Γ(α
2
)

∫ ∞

σ

sγκ+ d−α
2 ‖

∫
Rd

f(y)τx(e
−s‖y‖2)(y)h2

κ(y)dy‖κ,p
ds

s
.

The Lp norm of

∫
Rd

f(y)τx(e
−s‖y‖2)(y)h2

κ(y)dy can be easily estimated by using

Lemma 3.1 which gives

‖
∫

Rd

f(y)τx(e
−s‖y‖2)(y)h2

κ(y)dy‖κ,p ≤

(
sup

x

∫
Rd

τx(e
−s‖y‖2)(y)h2

κ(y)dy

)1− 1
p
(

sup
y

∫
Rd

τx(e
−s‖y‖2)(y)h2

κ(x)dx

) 1
p

,

and then by (6)

‖S2f‖κ,p ≤
2−α

Γ(α
2
)ch

(

∫ ∞

σ

s−
α
2
ds

s
) =

21−α

2Γ(α
2
)ch

σ−
α
2 = Bσ−

α
2 . (9)

Putting together (8) and (9) we deduce that (7) converges absolutely for almost
every x ∈ Rd .

Let now λ > 0 and let us estimate∫
{x: |Iκ

αf(x)|>λ}
h2

κ(x)dx ≤
∫
{x: |S1f(x)|> λ

2
}
h2

κ(x)dx +

∫
{x: |S2f(x)|> λ

2
}
h2

κ(x)dx,

we choose σ to satisfy

Aσ
1
2
( 2γκ+d

p
−α) =

λ

2
, (10)

so that (thanks to (8)) ∫
{x: |S1f(x)|> λ

2
}
h2

κ(x)dx = 0.

We get∫
{x: |Iκ

αf(x)|>λ}
h2

κ(x)dx ≤
∫
{x: |S2f(x)|> λ

2
}
h2

κ(x)dx ≤
(

2

λ

)p

‖S2f‖p
κ,p,

and then by (9) ∫
{x: |Iκ

αf(x)|>λ}
h2

κ(x)dx ≤ 2pBpσ−
α
2

p

λp
.

Using (10) we deduce that

∫
{x: |Iκ

αf(x)|>λ}
h2

κ(x)dx ≤ 2pBp(2A)
αp2

2γκ+d−αp

λ
p(2γκ+d)
2γκ+d−αp

= Cp,α

(
‖f‖κ,p

λ

)q
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since q =
p(2γκ + d)

2γκ + d− αp
and ‖f‖κ,p = 1.

The previous considerations show that the mapping f → Iκ
αf is of weak

type (p, q):∫
{x: |Iκ

αf(x)|>λ}
h2

κ(x)dx ≤ Cp,α

(
‖f‖κ,p

λ

)q

, f ∈ Lp(Rd, h2
κ), λ > 0,

and 1 ≤ p < q < ∞ with
1

q
=

1

p
− α

2γκ + d
. The special case for p = 1 gives

then part (ii) of Theorem 1.1, and part (i) follows by an obvious use of real
interpolation properties of the spaces Lp(Rd, h2

κ) and Marcinkiewicz interpolation
theorem. �

Proof of Corollary 1.2 This is an immediate consequence of Theorem 1.1 and
the following pointwise inequality

Mκ,αf(x) = sup
r>0

1

mκrd+2γκ−α

∫
Rd

|f(y)|τxχBr(y)h2
κ(y)dy ≤ Cκ,d,αIκ

α(|f |)(x),

where Cκ,d,α depends only on κ , d and α . �

Finally one should observe that (3) is also necessary for the boundedness
of the maximal fractional operator Mκ,α from the spaces Lp(Rd, h2

κ) to the space
Lq(Rd, h2

κ) when p > 1 and for the weak-type estimate of Mκ,α when p = 1. The
proof of this fact is straightforward. It suffices to consider the dilation operator
δrf(x) = f(rx), r > 0, and to observe that δr−1Mκ,αδr = r−αMκ,α . It follows then

that ‖δrf‖κ,p = r−
2γκ+d

p ‖f‖κ,p . By dilation, the estimate ‖Mκ,αf‖κ,q ≤ C‖f‖κ,p

(where we assume p > 1) implies then that

‖Mκ,αf‖κ,q ≤ Crα+ 2γκ+d
q

− 2γκ+d
p ‖f‖κ,p, r > 0.

Letting r →∞ and r → 0 we get
1

p
− 1

q
=

α

2γκ + d
. The same argument applies

in the weak case.
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