
Journal of Lie Theory
Volume 19 (2009) 537–542
c© 2009 Heldermann Verlag

Cartan–Helgason Theorem, Poisson Transform, and
Furstenberg–Satake Compactifications

Adam Korányi∗
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Abstract. The connections between the objects mentioned in the title are used
to give a short proof of the Cartan–Helgason theorem and a natural construction
of the compactifications.
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For a real semisimple Lie group G we write, as usual, K for a maximal compact
subgroup and MAN for a minimal parabolic. The Cartan–Helgason theorem
consists of two parts, one of these (Prop. 2 here) states that a finite-dimensional
irreducible representation (ρ, V ) of G has a K -fixed vector e if and only if it has
an MN -fixed vector (which is then a highest weight vector v+ of ρ). Of course,
when ρ is a faithful representation, the orbit ρ(G)e gives an imbedding of the
symmetric space X ' G/K into the space PV of lines in V while ρ(G)v+ gives
an imbedding of a space G/B where B ⊃ MAN (i.e. B is a parabolic subgroup,
and G/B is one of the Poisson boundaries of X in the sense of [2], [12]). In PV
now G/B appears as part of the topological boundary of the image of X .

Two things follow from these observations. First, they give a natural
approach to the Cartan–Helgason theorem [3], [5, p. 535], [6, p. 139] which
we are splitting into Propositions 1 and 2: the proof of Proposition 2 is based on
the Poisson transform. Second, we can consider the full closure of X in PV . It
turns out that this is always one of the compactifications constructed originally by
Satake [13] and reconstructed later in other ways in [2], [12], [1], [9]. In fact, the
construction we sketch here may be conceptually the simplest of all. As J. A. Wolf
tells me, the idea of using spherical representations to construct compactifications
had also been suggested by R. Hermann some time ago.

1. In the following g will be a real semisimple Lie algebra, g = k + p its
decomposition under a Cartan involution θ, gC its complexification, u = k + ip .
We choose a maximal subalgebra a ⊂ p and complete it to a Cartan subalgebra
h = a + t of g (so t ⊂ k). We identify hC with its dual under the Killing form.
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The roots with respect to hC span the real form h0 = a+it of hC . The restriction
of the Killing form to h0 is positive definite, we denote it by (. | .). Given our
identification, a restricted root (a-root) is the same as the orthogonal projection
of an hC -root onto a . For an hC -root α we denote the corresponding root space
in gC by gα . For an a-root γ we denote the corresponding root space by gγ .
We choose an ordering of h0 and we set n =

∑
γ>0 gγ, n̄ = θn . GC will be the

simply connected group with Lie algebra gC . The analytic subgroups of GC for
g, k, a, n, n̄, u will be denoted G, K,A, N, N̄ , U , while M, M ′ with Lie algebra m

will be the centralizer resp. normalizer of a in K . W = M ′/M is the Weyl group,
a+ the open positive Weyl chamber.

The weights of a finite dimensional representation (ρ, V ) of gC (or, what is
the same, of GC ) are in h0 . If Λ is the highest weight we denote by v+ a highest
weight vector. We will always equip V with a Hermitian inner product such that
ρ(U) is unitary (hence, ρ(a) is Hermitian).

The following proposition is the first half of the Cartan–Helgason theorem.
Without claiming any originality, for reference in Sec. 2, we give a proof based on
some fundamental facts about the structure of GC .

Proposition 1.1. (a) v+ is fixed under the connected component M0 of M iff
Λ ∈ a.
(b) v+ is fixed under M iff, in addition,

(Λ|γ)

(γ|γ)
∈ Z (1)

for all restricted roots γ .
(c) Any element λ of ā+ satisfying (1) is the highest weight of a representation of
gC .

Proof. (a) v+ is M0 -fixed iff ρ(H)v+ = 0 (∀H ∈ it) and ρ(Xα)v+ = 0 for
all Xα ∈ gα such that gα ⊂ m . Now ρ(H)v+ = (Λ|H)v+ = 0 (H ∈ it) by
itself amounts to Λ ∈ a . But Λ ∈ a automatically also implies ρ(Xα)v+ = 0 for
gα ⊂ m , i.e. for α ⊥ Λ: In fact by the weight-string property (e.g. [7, p. 114])
Λ±α are either both weights or neither one is, and the first possibility is excluded
by the maximality of Λ.

(b) By a result of Satake [13] (cf. also [4, p. 435]) M = Z1M0 , where
Z1 = exp(ia)∩K . So we have to show only that v+ is Z1 -fixed iff (1) holds. It is
well known (e.g. [4, p. 322]) that, since GC and therefore U are simply connected,
exp iH ∈ K for H in a is equivalent to H being in the lattice generated by the
vectors π

(γ|γ)
γ with the simple restricted roots γ . Since ρ(exp iH)v+ = ei(Λ|H)v+ ,

Z1 -invariance of v+ amounts exactly to (1).

(c) We only have to check the standard integrality condition with respect
to hC -roots. For such a root α we denote by ᾱ its restriction (projection) to a .

It is well known [4, p. 322] that (α|α)
(ᾱ|ᾱ)

= 1, 2 or 4, with 4 only when 2ᾱ is also

a restricted root. In the first two cases 2 (Λ|α)
(α|α)

∈ Z trivially. In the third case

2 (Λ|α)
(α|α)

= (Λ|2ᾱ)
(2ᾱ|2ᾱ)

is again in Z , by (1).
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Now we come to the second half of the Cartan–Helgason theorem. The
proof given here is the main point of this article.

Proposition 1.2. An irreducible representation (ρ, V ) of G has a K -fixed
vector iff it has an MN-fixed vector.

Proof. Again, the existence of an MN -fixed vector amounts to v+ being M -
fixed.

Suppose v+ is M -fixed. Then f(g) = ρ(g)v+ is a V -valued function
transforming as f(gm(exp H)n) = e(Λ|H)f(g) for g ∈ G, m ∈ M, H ∈ a, n ∈ N .
(It is a section lifted to G of a homogeneous line bundle tensored with V .) Its
Poisson transform is

(PΛ+ρf)(g) =

∫
K

ρ(gk)v+dk

(in standard notation, with ρ the half-sum of positive a-roots; cf. [14, p. 81]).
This can also be written ρ(g)e , where e =

∫
K

ρ(k)v+dk is K -fixed, we have to
show only that e 6= 0. Now the Fatou-type theorem of Michelson [11] (see also
[14, p. 83], [6, p. 120]) says that, for H ∈ a+ .

lim
t→∞

e−t(Λ|H)ρ(exp tH)e = cf(e) = cv+

with c > 0. It follows that e 6= 0.

(We also note that, since Λ ∈ a+ , the standard proof of the Fatou-type
theorem can be considerably simplified: The convergence of the integral defining
c is obvious without even using the explicit expression of the Jacobian of the map
n̄ → k(n̄).)

Conversely, suppose there exists a K -invariant e 6= 0. The weight spaces Vλ

for different weights are mutually orthogonal. We write e =
∑

eλ with eλ ∈ Vλ .
Now eΛ 6= 0, because otherwise (e | v+) = 0, hence (e | ρ(k)ρ(a)ρ(n)v+) =
(ρ(k−1)e | ρ(a)ρ(n)v+) = 0 for all k ∈ K, a ∈ A, n ∈ N , which is impossible.

We have ρ(exp tH)e =
∑

λ etλ(H)eλ . For H ∈ a+ , we have Λ(H) > λ(H)
for all weights λ 6= Λ. Hence

lim
t→∞

e−tΛ(H)ρ(exp tH)e = eΛ.

Since eΛ is a limit of M -fixed vectors, it is M -fixed.

2. We continue with the setup of the preceding section, we consider a
faithful representation (ρ, V ) of gC with highest weight Λ ∈ a . When e 6= 0
is a K -fixed vector, the map g · o 7−→ ρ(g)e ( we denote by o ∈ X the point
corresponding to K ) is an equivariant imbedding of X into V . This is clear since
in each simple factor the K -part is a maximal subgroup. We write ṽ for the image
of v in the projective space PV . Then we also have that g · o 7−→ ρ(g)ẽ is an
imbedding X → PV . This is so because ρ(g) is scalar only when g ∈ Z , the
center of G , and Z is contained in K .

Since we also have Z ⊂ M , we see that g 7−→ (ρ(g)v+)̃ is an equivariant
map G → PV . The stabilizer B of (v+)̃ contains MAN by Prop. 2 (so is a
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parabolic group). So we have X and G/B imbedded in PV and the proof of
Prop. 2 shows that G/B is a part of the topological boundary of X .

We may also note that, denoting by V ′ the orthocomplement of e in V
and imbedding it into PV by v′ 7−→ (e + v′)̃ the images of X, G/B are actually
contained in a bounded part of the vector space V ′ . This is clear for ρ(A)ẽ , since
ρ(a)e is a positive combination of the orthogonal system formed by the eλ (cf. the
proof of Prop. 2). Then it is also true for ρ(G)ẽ = ρ(K)ρ(A)ẽ since ρ(K) acts on
V ′ by rotations.

The closure of the image of X in PV (or V ′ ) is a compactification to which
the action of G extends naturally. As we will now indicate, what we get in this
way are exactly the Furstenberg–Satake compactifications [13], [2], [12], [1], [10].
Satake’s construction is a special instance of ours, he works with a special class of
representations which he obtains from an arbitrary representation σ as the Cartan
product of σ and the contragradient σ∧ composed with θ , and which are realized
on vector spaces of Hermitian matrices. So our construction is close in spirit to
Satake’s.

We denote by Π the set of positive restricted roots. Λ determines a subset
E0 ⊂ Π defined as those γ ∈ Π which are orthogonal to Λ. We denote by a(E0)
the common zero-space of the elements of E0 and by a(E0)

+ the subset where all
γ in Π−E0 take positve values. So a(E0)

+ is the largest (open) face of a+ which
is perpendicular to Λ.

Now we can make Proposition 1 a little more precise. The θ -image of
the subalgebra nE0 =

∑
γ⊥a(E0) gγ , and aE0 , the orthocomplement of a(E0) in a ,

annihilate v+ . Together with m + n they form the subalgebra m(E0) + n(E0)
annihilating v+ ; here m(E0) = mK(E0) + aE0 + nE0 + θnE0 with mK(E0) the
centralizer of a(E0) in k and n(E0) =

∑
γ /∈aE0 gγ .

We write B(E0) for the group generated by the analytic subgroup corre-
sponding to b(E0) = m(E0) + a(E0) + n(E0) and by M . This is the stabilizer
of (v+)̃ in PV . (As it is well known and easy to prove, with different choices
of E0 these are the only closed subgroups of G containing MAN . The parabolic
subgroups are, by definition, their conjugates.)

To describe the closure of ρ(G)ẽ in PV , let now E be any subset of Π.
The orbit XE = M(E) · o is a symmetric subspace of X . The imbedding of X in
PV induces an imbedding of XE as ρ(M(E))ẽ . Any point in it can be written as
ρ(kE)ρ(aE)ẽ with kE ∈ MK(E), aE ∈ AE .

We choose an H ∈ a(E)+ . We write e =
∑

λ eλ where λ runs through the
restricted weights of ρ (unlike in Sec. 1 where we worked with the h-weights).
Since Λ is its own restriction, still eΛ 6= 0. We have, for all mE ∈ M(E),

ρ(exp tH)ρ(mE)e = ρ(mE)
∑

λ

et(λ|H)eλ (2)

As t →∞ , the dominating terms in the sum are those with λ ≡ Λ(mod aE). The
limit, on the boundary of the image in PV , will therefore be ρ(mE)(eE )̃ , where
eE =

∑
λ≡Λ(mod aE) eλ . The limit of the family of sets ρ(exptH)ρ(M(E))ẽ will be

ρ(m(E))(eE )̃ .

The restricted weights such that λ ≡ Λ(mod aE) are those that arise in
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the form Λ −
∑

mjδj with δj ∈ E . It is not hard to see (cf. [13 , Lemma 8])
that on V E , the direct sum of the corresponding spaces Vλ , the restriction of ρ
to M(E) is an irreducible representation, to be denoted ρE . Its highest restricted
weight (with respect to aE ) is the projection ΛE of Λ onto aE , and eE is an
MK(E)-fixed vector of it.

In general ρ(M(E))(eE )̃ is not a one-to-one image of XE ; there are in
general several subsets E for which XE has the same image. For any E ⊂ Π
we have that XE is the direct product of irreducible symmetric spaces XEi . The
Ei are called the components of E , and E is said to be Eo -connected if none
of its components is entirely contained in Eo . Clearly, it is exactly when E is
Eo -connected that that the stabilizer of (eE )̃ is not larger than MK(E). In this
case ρ(M(E))(eE )̃ is an imbedded image of XE . Thus, for every Eo -connected E
we have an imbedding of XE into the boundary which we will denote by ιE . It is
interesting to note that, in terms of the vector space V ′ (identified with its image
in PV ), the set ιE(XE) is just the parallel translate by (eE )̃ of XE = M(E)ẽ .
(Observe that ẽ is now identified with 0 ∈ V ′ .)

It is easy to show that, for any E0 -connected E , there is a unique maximal
set E ′ such that E ′ is the union of E and of some components contained in E0 .
Writing E ′ = E ∪ E ′′ , we have XE′

= XE ×XE′′
. For all H ∈ a(E ′)+ , when the

image of XE′
in PV is translated by ρ(exp tH) and we let t →∞ , the limit will

be ιE(XE), while XE′′
will contract and disappear.

We also note that applying ρ(exp tH) and letting t →∞ actually moves all
points of X into ιE(XE). This follows easily from X = M(E ′)A(E ′)XE′

which,
in turn, is a consequence of the Iwasawa decomposition.

It is easy to see that the boundary consists of the K -images of the sets
ιE(XE). In fact if {kνaν · o} is a sequence of points in X tending to infinity, by
compactness it has a subsequence tending to a point in k · ιE(XE) for some E and
some k ∈ K .

To determine the stabilizers of boundary points, let E be E0 -connected and
let H ∈ a(E ′)+ . Then the stabilizer of exp tH ·o is Kexp tH . As t →∞ , this group
gets deformed into MK(E ′)N(E ′). (Indeed, any element of MK(E ′)N(E ′) can be
written mn = m exp

∑
γ Xγ , (Xγ ∈ g, (γ|H) > 0) and is the limit of kexp tH

t with

kt = m exp
∑

e−t(γ|H)(Xγ + θXγ) in K . As explained in [10, Sec. 3] this is the
basic phenomenon behind Bolyai’s and Lobachevsky’s definition of horicycles.) It
follows easily that the stabilizer of ιE(o) is MK(E ′)A(E ′)N(E ′) and the stabilizer
of ιE(XE) is B(E ′).

In this way all the Satake axioms ([13, p. 100], [10, Sec. 4]) are verified,
so our construction gives exactly the same compactifications as the original one of
Satake.
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