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Abstract. Let F◦ be a non-Archimedean local field of characteristic not 2.
Let G be a classical group over F◦ which is not a general linear group, i.e.
a symplectic, orthogonal or unitary group over F◦ (possibly with a skew-field
involved). Let x be a point in the building of G . In this article, we prove that
the lattice filtration (gx,r)r∈R of g = Lie(G) attached to x by Broussous and
Stevens, coincides with the filtration defined by Moy and Prasad.
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Introduction

Let V be a finite dimensional vector space over a locally compact non-Archimedean
field F of characteristic not 2 — residual characteristic 2 is permitted —, and F◦
be a subfield of F such that [F : F◦] ≤ 2. Let σ be the generator of Gal(F/F◦)
if F 6= F◦ , and σ = IdF if F = F◦ . We fix a non-degenerate σ -skew ε-hermitian
form h on V , where ε ∈ {±1} . Let G = U(h) be the subgroup of GL(V ) formed
of those g satisfying h(gx, gy) = h(x, y) for all x, y ∈ V . It is the group of
F◦ -rational points of an F◦ -algebraic group G whose connected component G◦ is
reductive. To each point x of the building I of G , let (gx,r)r∈R be the filtration
of the Lie algebra g of G attached to x by Broussous and Stevens in [BS]1; let
also (gMP

x,r )r∈R be the filtration of g attached to x by Moy and Prasad in [MP]2.
In this article, we prove that the two filtrations coincide:

gx,r = gMP
x,r , r ∈ R.

This result is used by Broussous and Stevens in [BS] — this is the reason for which
we proved it. Note that for a general linear group (i.e. an inner F◦ -form of GLn ),

ISSN 0949–5932 / $2.50 c© Heldermann Verlag
1 In [BS], the base field F◦ is supposed to be of odd residual characteristic, but the definition

of (gx,r)r∈R naturally extends to the residual characteristic 2 (see 1.7 and Remark 1.6).
2 In [MP] the group G is supposed to be simply connected, which is not the case here in

general. But the definition of (gMP
x,r )r∈R naturally extends to a general connected reductive group

(see 3.5).
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the analogous result is proved in [BL] Appendix A.

Recall that the Moy-Prasad filtrations are defined by descent from a max-
imal unramified extension F nr

◦ of F◦ . So let L◦/F◦ be a finite sub-extension of
F nr
◦ /F◦ such that the L◦ -group G◦ ×F◦ L◦ is quasi-split (note that we can choose
L◦ such that G◦ ×F◦ L◦ is residually split, i.e. quasi-split and with the same
relative rank as G◦ ×F◦ F

nr
◦ ). Denote by GL◦ the group of L◦ -rational points of

G , and by L the L◦ -algebra L◦ ⊗F◦ F . There are two cases: L is a field; or
L ' (L◦)

2 . If L is a field, then the form h extends to a non-degenerate (Id⊗ σ)-
skew ε-hermitian form hL on VL , and GL◦ = U(hL). If L ' (L◦)

2 , then F is
isomorphic to a quadratic sub-extension of L◦/F◦ , and we can suppose F ⊂ L◦ ;
then we have GL◦ ' GL(L◦ ⊗F V ).

Let IL◦ be the building of GL◦ , and Γ be the Galois group of L◦/F◦ . There
exists a unique G-invariant affine map I → IL◦ , which allows us to identify I with
the convex subset (IL◦)

Γ of IL◦ formed of those points which are Γ-invariant. The
point x ∈ I defines two filtrations (gL◦,x,r)r∈R and (gMP

L◦,x,r)r∈R of the Lie algebra
gL◦ = L◦ ⊗F◦ g of GL◦ , where (gL◦,x,r)r∈R is the filtration attached in [BS] to
x ∈ (IL◦)

Γ if L is a field, and in [BL] if L ' (L◦)
2 . By definition, we have the

descent property:

(gMP
L◦,x,r)

Γ = gMP
x,r , r ∈ R.

We prove we also have the descent property:

(gL◦,x,r)
Γ = gx,r, r ∈ R.

This reduces the question to the quasi-split case. Now assume that the reductive
F◦ -group G◦ is quasi-split. In that case, we can describe explicitly the intersection
of gx,r (resp. gMP

x,r ) with each root subspace of g with respect to a maximal split
torus S of G , and with the Lie algebra of the centralizer of S in G . This shows
that both filtrations coincide.

Following a suggestion of Gopal Prasad, we also extend the result to a
more general “unitary group” of type U(h), that is with a skew-field — in fact a
quaternionic algebra — involved (cf. [BT4]). Such a group becomes, over a finite
unramified extension L◦ of F◦ , a unitary group of the previous type (i.e. of type
U(hL) with no skew-field involved) or a split general linear group. So taking into
account [BL] Appendix A, the extended result is implied by the descent property
for the Broussous-Stevens filtrations (for a general unitary group); this descent
property is proved (briefly) as in the case with no skew-field involved.

Ultimately, we have that Broussous-Stevens filtrations and Moy-Prasad
filtrations coincide for almost all (cf. Remark 1.1) F◦ -forms of GLn , Sp2n , On .

In chapter 1, we introduce all objects and notation we need — unitary
groups are defined in 1.1 in full generality, but from 1.2 untill the end of chapter
3, we assume that there is no skew-field involved —, and we state the result
(Theorem 1.8). In chapter 2 we reduce the proof of the result to the quasi-split
case. In chapter 3 we prove the result in the quasi-split case. In chapter 4 we
extend the result to a general unitary group.
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1. The objects

1.1. Unitary groups. Let F◦ be a locally compact non-Archimedean commu-
tative field, and F be a Galois extension of F◦ of degree at most 2. We assume
that the characteristic of F◦ is not 2. Let σ be the generator of Gal(F/F◦) if
[F : F◦] = 2, and the identity of F if F = F◦ . Let D be a central division
F -algebra of finite dimension d2 , endowed with an involution extending σ , still
denoted by σ — i.e. σ is an anti-automorphism if D , such that σ2 = IdD and
σ|F is the generator of Gal(F/F◦). We know that d = 1 or 2, i.e. D = F or D
is a quaternionic algebra over F . Let D◦ and D◦ be the sub-F◦ -algebras of D
defined by

D◦ = {λ ∈ D : λσ = λ}, D◦ = {λ ∈ D : λ+ λσ = 0}.

Since char(F ) 6= 2, we have the decomposition D = D◦ ⊕D◦ (with D◦ = {0} if
σ = Id). The notations are coherent: if D = F , then D◦ coincides with F◦ . Put
F ◦ = F ∩D◦ .

Let ε ∈ {±1} . We fix a finite dimensional right D -vector space V , and a
σ -skew ε-hermitian form h on V , that is a Z-bilinear map V ×V → F such that,
for all x, y ∈ V and all λ, µ ∈ D , we have

h(xλ, yµ) = λσh(x, y)µ ,

h(y, x) = εh(x, y)σ .

The form h is supposed to be non-degenerate. Put

Dσ,ε = {λ− ελσ : λ ∈ D}.

It is a subset of {λ ∈ D : λσ = −ελ} , and since for λ ∈ D such that λσ = −ελ ,
we have λ = 1

2
λ− ε(1

2
λ)σ , the two sets coincide. So we have

Dσ,ε = D◦ if ε = 1,

Dσ,ε = D◦ if ε = −1.

Denote by Dσ,ε the F◦ -vector space D/Dσ,ε , and by λ 7→ λ̄ the canonical pro-
jection D → Dσ,ε . Let ξ be an element of F such that ξ + ξσ = 1 (since the
characteristic of F◦ is not 2, we can take ξ = 1

2
). Let q = qh : V → Dσ,ε be the

pseudo-quadratic form associated with h (cf. [BT4] 1.2), defined by

q(x) = ξh(x, x) +Dσ,ε.

It is well defined: if ξ′ is another element of F such that ξ′ + ξ′σ = 1, then
ξ′ − ξ ∈ F ◦ , and (ξ′ − ξ)h(x, x) ∈ Dσ,ε for all x ∈ V . Note we also have

q(x) = {µ ∈ F : µ+ εµσ = h(x, x)}+Dε,σ, x ∈ V.

For all x, y ∈ V and all λ ∈ D , we have

q(xλ) = 1
2
λσh(x, x)λ ,
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q(x+ y) = q(x) + q(y) + h(x, y).

If (σ, ε) = (Id, 1), then q : V → D is a quadratic form in the usual sense and h
is the bilinear form associated with q . If (σ, ε) = (Id,−1), which is equivalent to
Dσ,ε = {0} , then q = 0. If (σ, ε) 6= (Id,−1), then h is determined by q : it is the

unique σ -skew ε-hermitian form on V verifying h(x, y) = q(x + y)− q(x)− q(y)
for all x, y ∈ V .

Put G̃ = GL(V ) (= AutD(V )) and let G = U(h) be the subgroup of G̃
formed of those g satisfying h(gx, gy) = h(x, y) for all x, y ∈ V . Then G is the
group of F◦ -rational points of a linear algebraic group G defined over F◦ , whose
neutral component G◦ is reductive.

Remark 1.1. The algebraic group G is an F◦ -form of one of the (split) classical
groups GLn , Sp2n , On . Moreover, by varying the data F , D , σ , ε , V , h , we
obtain all F◦ -forms of those classical groups, except the inner forms of GLn , and
certain forms corresponding to a Dynkin diagram of symmetric group S3 (e.g. O8

with Dynkin diagram of type D4 ). For the inner forms of GLn , the comparison
of lattice filtrations and Moy-Prasad filtrations is already done in [BL].

From now on, untill the end of chapter 3, we assume D = F and we consider
V as a left F -vector space.

1.2. Derived groups. Put G̃′ = SL(V ) and let G′ = SU(h) be the subgroup

G ∩ G̃′ of G̃′ . Then G′ is the group of F◦ -rational points of a linear algebraic
group G′ defined over F◦ . Put

F 1 = {λ ∈ F× : λσλ = 1}.

Identifying F× with the centre F×IdV ⊂ GL(V ) of G̃ , we have the inclusion

F 1G′ ⊂ G ∩ F×G̃.

Moreover, G′ is a cocompact subgroup of G (see 1.4 and the following remark).

Remark 1.2. If dimF (V ) = 1, then we have G = F 1 and G′ = {1} ; thus
G◦(F ) = G if σ 6= Id, and G◦(F ) = {1} if σ = Id. Now suppose dimF (V ) = 2
and σ = Id. If ε = 1, then G ' F×

◦ n 〈s〉 with λs = λ−1 for all λ ∈ F×
◦ , and

G′ = G◦(F ) ' F×
◦ ; if ε = −1, then we have G = G′ = G◦(F ) = SL(V ).

In the small dimension cases of the Remark 1.2, the lattice filtration of the
Lie algebra of G attached to a point x of the building of G coincides with the
filtration defined by Moy and Prasad in [MP]: it is a straightforward consequence
of the definitions if G is a torus (see 3.5), and it is a consequence of [BL] if
G ' SL(2, F◦). So from now on, we assume that

dimF◦(V ) ≥ 3.

Then G′ is connected ([BT4] 1.5) and semisimple (see [PR] 2.3). In particular,
G′ is a subgroup of G◦ .
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1.3. Root systems. Recall that a subspace W of V is called totally isotropic
if h(W,W ) = {0} . We fix a Witt decomposition

V = V− ⊕ V0 ⊕ V+,

where V− and V+ are two isotropic subspaces of V of maximal dimension such that
V− ∩ V+ = {0} , and V0 = (V− + V+)⊥ ; here, for a subspace W of V , W⊥ denotes
the subspace {x ∈ V : h(x,W ) = 0} of V . Put n = dimF (V ), r = dimF (V−) and
n0 = n− 2r so we have dimF (V0) = n0 . Note that r = 0 if and only if the form h
is anisotropic. Put I = {±1, . . . ,±r} and let (e−i)i=1,...,r and (ei)i=1,...,r be some
basis of V− and V+ such that for all i, j ∈ I and all x ∈ V0 , we have

h(ei, ej) = 0 if i 6= −j ,

h(ei, e−i) = ε(i),

h(ei, x) = 0,

q(x) 6= 0 if x 6= 0;

where ε(i) = 1 if i > 0, and ε(i) = ε if i < 0. Denote by h0 the restriction of
h to V0 × V0 . If V0 6= 0, h0 is a non-degenerate anisotropic σ -skew ε-hermitian
form h0 on V0 . Hence the form h is given by (for λi, µi ∈ F and x, y ∈ V0 ):

h
(∑

i∈Iλiei + x,
∑

i∈Iµiei + y
)

=
∑

i∈Iε(i)λ
σ
i µ−i + h0(x, y).

Let S be the subgroup of G formed of those g satisfying gei ∈ F◦ei for
all i ∈ I , and gx = x for all x ∈ V0 . We have S ⊂ G′ , and S is the group
of F◦ -rational points of a maximal F◦ -split torus S in G◦ (hence in G′ ). For
i ∈ I , let ai be the algebraic character of S given by sei = ai(s)

−1ei . We have
a−i = −ai in the group X∗(S) of algebraic characters of S , denoted additively.
The ai for i > 0 form a basis of X∗(S). For i, j ∈ I , j 6= ±i , put ai,j = ai + aj .
Let Φ = Φ(S,G) be the (relative) root system of G . We have the following cases
([BT1] 10.1), where i, j ∈ I , j 6= ±i :

(B): Φ = {ai, ai,j} when V0 6= {0} and (σ, ε) = (Id, 1);

(BC): Φ = {ai, 2ai, ai,j} when V0 6= {0} and σ 6= Id;

(C): Φ = {2ai, ai,j} when V0 = {0} and (σ, ε) 6= (Id, 1);

(D): Φ = {ai,j} when V0 = {0} and (σ, ε) = (Id, 1).

The case (C) can be divided in two sub-cases: V0 = {0} and (σ, ε) =
(Id,−1) (the symplectic case); V0 = {0} and σ 6= id (a quasi-split unitary case).

1.4. The groups Z = ZG(S) and N = NG(Z). For i ∈ I , put Vi = Fei . The
centralizer Z of S in G is defined over F◦ . Its group of F◦ -rational points is the
subgroup Z of G formed of those g satisfying gVi = Vi for all i ∈ I ∪ {0} . We

have Z = Z̃ ∩G where Z̃ is the Levi subgroup of G̃ formed of those g satisfying
gVi = Vi for all i ∈ I ∪{0} . The centralizer Z ′ of S in G′ is also defined over F0
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(it is a Levi F◦ -subgroup of a parabolic F◦ -subgroup of G′ ), and coincides with
Z ∩ G′ . Its group of F◦ -rational points is Z ′ = Z ∩ G′ . Let us describe Z and
Z ′ . For z ∈ Z , put µ(z) =

∏r
i=1 ai(z).

Suppose first V0 = {0} . Then the decomposition

V = V−r ⊕ · · · ⊕ V−1 ⊕ V1 ⊕ · · · ⊕ Vr

allows us to represent each element g ∈ G̃ by a matrix (gi,j)i,j∈I . An element
z ∈ Z is represented by a diagonal matrix

diag(z−r, . . . , z−1, z1, . . . , zr) ∈ GL(2r, F )

such that zσ
−izi = 1 for i = 1, . . . , r . Moreover, we have z ∈ Z ′ if and only if

µ(z) ∈ F◦ . So the map z 7→ (a1(z), . . . , ar(z)) identifies Z with (F×)r , and the
map z 7→ (a1(z), . . . , ar−1(z), µ(z)) identifies Z ′ with (F×)r−1 × F×

◦ .

Now suppose V0 6= {0} . Then the decomposition

V = V−r ⊕ · · · ⊕ V−1 ⊕ V0 ⊕ V1 ⊕ · · · ⊕ Vr

allows us to represent each element g ∈ G̃ by a matrix (gi,j)i,j∈I∪{0} . An element
z ∈ Z is represented by a block diagonal matrix

diag(z−r, . . . , z−1, z0, z1, . . . , zr) ∈ GL(2r + n0, F )

such that zσ
−izi = 1 for i = 1, . . . , r , and z0 ∈ U(h0). Moreover, we have z ∈ Z ′ if

and only if µ(z)−1µ(z)σ det(z0) = 1. So the map z 7→ (z−1
0 , a1(z), . . . , ar(z)) iden-

tifies Z with U(h0) × (F r)× , and the map z 7→ (µ(z)−1µ(z)σz0, a1(z), . . . , ar(z))
identifies Z ′ with SU(h0)× (F×)r .

From the above description, the group Z ′ is a cocompact subgroup of Z .
Since G = ZG′ , we obtain that G′ is a cocompact subgroup of G . If dimF (V0) ≤ 1,
then the connected component Z of Z◦ is a torus (hence a maximal torus of G◦ ),
and the groups G◦ and G′ are quasi-split over F◦ . Conversely, if G◦ is quasi-split
over F◦ , then dimF (V0) ≤ 1 ([BT4] 3.5). If σ = Id, we have Z ′ = S = Z◦ and
G′ = G◦ .

The normalizer N of Z is the group of F◦ -rational points of the
F◦ -subgroup N of G which stabilizes V0 and permutes the lines Vi , i ∈ I .
It is the semidirect product N n Z where N is the subgroup of N which fixes
(pointwise) V0 and permutes the ei , i ∈ I .

1.5. Root subgroups. For i, j ∈ I , j 6= ±i and u ∈ F , let ui,j(u) ∈ G be the
linear transformation of V defined by

x 7→ x for all x ∈ V0 ,

ei 7→ ei + ε(−j)uσe−j ,

ej 7→ ej − ε(i)ue−i ,

ek 7→ ek for all k ∈ I r {i, j} .
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The set Uai,j
= {ui,j(u) : u ∈ F} is the group of F◦ -rational points of the F◦ -

subgroup U ai,j
of G associated with the (relative) root ai,j .

Suppose V0 6= {0} (case (B) or (BC)). Recall that for x ∈ V0 and µ ∈ F ,
we have µ ∈ q(x) if and only if µ + εµσ = h(x, x); in particular if σ = Id (case
(B)), we have q(x) = 1

2
h(x, x) ∈ F . For x ∈ V0 and µ ∈ q(x), let ui(x, µ) ∈ G be

the linear transformation of V defined by

y 7→ y − ε(i)h(x, y)e−i for all y ∈ V0 ,

ei 7→ ei + x− ε(i)µe−i ,

ek 7→ ek for all k ∈ I r {i} .

The set Uai
= {ui(x, µ) : x ∈ V0, µ ∈ q(x)} is the group of F◦ -rational points of the

F◦ -subgroup U ai
of G associated with the root ai . Moreover if σ 6= Id (case

(BC)), the set U2ai
= {ui(0, v) : v ∈ Fσ,ε} is the group of F◦ -rational points of the

F◦ -subgroup U 2ai
of G associated with the root 2ai .

Suppose V0 = {0} and (σ, ε) 6= (Id, 1) (case (C)). For i ∈ I and v ∈ Fσ,ε ,
let ui(0, v) ∈ G be the linear transformation of V defined by

ei 7→ ei − ε(i)ve−i ,

ek 7→ ek for all k ∈ I r {i} .

The set U2ai
= {ui(0, v) : v ∈ Fσ,ε} is the group of F◦ -rational points of the

F◦ -subgroup U 2ai
of G associated with the root 2ai .

Let vF be the unique valuation on F extending the normalized valuation
on F◦ , i.e. such that vF (F×

◦ ) = Z . Recall that (Z, (Ua)a∈Φ) is a generating root
datum in G ([BT1] 6.1.1, 6.1.3.c and 10.1.6). Let ϕ = (ϕa)a∈Φ be the valuation of
(Z, (Ua)a∈Φ) given by:

ϕai,j
(ui,j(u)) = vF (u) for i, j ∈ I , i 6= ±j , u ∈ F ;

ϕai
(ui(x, µ)) = 1

2
vF (µ) for i ∈ I , x ∈ V0 , µ ∈ q(x) (case (B) or (BC));

ϕ2ai
(ui(0, v)) = vF (v) for i ∈ I , v ∈ Fσ,ε (case (BC) or (C)).

1.6. Building, norms and lattice-functions. Let I = I(G, F◦) be the (non-
enlarged) Bruhat-Tits building of G , i.e. the building of the valuated root datum
(Z, (Ua)a∈Φ, ϕ). Since G′ is semisimple and G′ is cocompact in G , the connected
centre of G◦ is an anisotropic F -torus; thus we have I = I(G◦, F◦) = I(G′, F◦)
and I coincides with the enlarged building of G◦(F ). Let A be the apartment
of I attached to the maximal F◦ -split torus S of G . It is an affine space with
underlying space A = HomZ(X∗(S),R). We identify A with A by taking ϕ ∈ A

as the origin (cf. [BT1], §10). Thus X∗(S)⊗Z R becomes identified with the dual
space HomR(A,R).

Let Ĩ1 be the enlarged building of G̃ , and N1 = Norm1
F (V ) be the set of

(F -)norms on V ([BT3] 1.1); recall that since F is complete, each norm on V
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splits with respect to an F -basis of V . The group G̃ acts naturally on N1 by
g · α(v) = α(g−1v) for g ∈ G̃ , α ∈ N1 and v ∈ V . Moreover, N1 is endowed
with an affine structure ([BT3] 1.27). From [BT3] 2.11, there exists a bijective

G̃-equivariant affine map j : Ĩ1 → N1 ; moreover, up to translation by a real
number, j is the unique G̃-equivariant affine map from Ĩ1 to N1 . Let L1 =
Latt1

oF
(V ) be the set of (oF -)lattice-functions in V ([BL] 2.1), where oF denotes

the ring of integers of F . The group G̃ acts on L1 via its action on V . For
α ∈ N1 , let Λα be the oF -lattice-function in V defined by

Λα(r) = {v ∈ V : α(v) ≥ r}, r ∈ R,

and for Λ ∈ L1 , let αΛ be the norm on V defined by

αΛ(v) = sup{r ∈ R : v ∈ Λ(r)}, v ∈ V.

The maps N1 → L1, α 7→ Λα and L1 → N1, Λ 7→ αΛ are bijective, G̃-equivariant
and mutually inverse ([BL] 2.4); via these maps, we transfer to L1 the affine
structure on N1 . For p ∈ I1 , denote by Λp the oF -lattice-function Λj(p) in V .

By construction, the map Ĩ1 → L1, p 7→ Λp is bijective, G̃-equivariant and affine,

and up to translation by a real number, it is the unique G̃-equivariant affine map
from Ĩ1 to L1 .

Remark 1.3. Let Ĩ be the (non-enlarged) building of G̃ , and let V1 be the

R-vector space HomZ(X∗(G̃),R), where X∗(G̃) denotes the free Z-module of

rank 1 generated by the character det : G̃ → F× . We have the decomposition
Ĩ1 = Ĩ× V1 , and the action of G̃ on Ĩ1 is given by the map

G̃× (Ĩ× V1), (g, (p̄, v)) 7→ g · (x, v) = (g · p̄, v + θ(v))

where θ(g) ∈ V1 is defined by 〈det, θ(g)〉 = −vF (det(g)). We also have some
natural actions of R on N1 and on L1 , given by the maps

R×N1 → N1, (r, α) 7→ α+ r, R× L1 → L1, (r,Λ) 7→ r · Λ,

where (α+r)(v) = α(v)+r for all v ∈ V , and (r ·Λ)(r′) = Λ(r′−r) for all r′ ∈ R .
Let N (resp. L) be the quotient of N1 (resp. L1 ) by the action of R . The actions

of G̃ on N1 and L1 induce some actions on N and L , and the affine structures
on N1 and L1 induce some affine structures on N and L . The maps j : Ĩ1 → N1

and N1 → L1, α 7→ Λα induce some maps Ĩ → N and N → L which are bijective,
G̃-equivariant and affine. So we obtain a canonical bijective G̃-equivariant affine
map Ĩ → N (resp. Ĩ → L): it is the unique G̃-equivariant affine map from Ĩ to
N (resp. from Ĩ to L).

The valuation vF is an F◦ -norm on F , and we define an F◦ -norm vF on
the F◦ -space F σ,ε = F/Fσ,ε :

vF = sup{vF (λ+ µ− εµσ) : µ ∈ F}, λ ∈ F.

Since F is complete, Fσ,ε is closed in F and vF is well-defined. Let us recall the
definition 2.1 of [BT4]:
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Definition 1.4. Let α ∈ N1 . We write α ≤ h (“α minore h” in French) if

α(x) + α(y) ≤ vF (h(x, y)) for all x, y ∈ V .

We write α ≤ (h, q) (“α minore (h, q)” in French) if α ≤ h and

α(x) ≤ 1
2
vF (q(x)) for all x ∈ V .

We say that α is an MM-norm (“norme maximinorante” in French) for h (resp.
for (h, q)) if α ≤ h (resp. α ≤ (h, q)) and α is maximal for this property.

Let N1
h be the subset of N1 formed of the MM-norms for h , and N1

h,q be
the subset of N1

h formed of the MM-norms for (h, q).

Definition 1.5. We say that we are in the tame case if one of the following two
conditions is satisfied:

(σ, ε) = (id,−1), i.e. q = 0;

the extension F/F◦ is tamely ramified.

If we are in the tame case, then we have N1
h,q = N1

h ([BT4] 2.2).

Let vV0 = vV0,h0 be the F◦ -norm on V0 defined by

vV0(x) = 1
2
vF (q(x)), x ∈ V0.

Thus we have

vV0(x) = 1
2
sup{vF (λ) : λ+ ελσ = h(x, x)}, x ∈ V0.

Remark 1.6. Suppose ε = 1, and let ξ be an element of F such that ξ+ξσ = 1
and vF (ξ) ≥ vF (ξ′) for all ξ′ ∈ F such that ξ′ + ξ′σ = 1. Put l = 1

2
vF (ξ). We

have l ≤ 0 with equality if and only if the extension F/F◦ is quadratic unramified
or the residual characteristic of F◦ is not 2 (i.e. the extension F/F◦ is tamely
ramified if σ 6= Id, and the residual characteristic of F◦ is not 2 if σ = Id). If
σ = Id, we have ξ = 1

2
. If σ 6= Id, we can take ξ = 1

2
if and only if and l = 0.

Since ε = 1, for all x ∈ V0 , we have h(x, x) ∈ F◦ and

q(x) = {ξh(x, x) + µ− µσ : µ ∈ F} = {ξ′h(x, x) : ξ′ ∈ F, ξ′ + ξ′σ = 1}.

Hence we obtain
vV◦(x) = 1

2
vF (h(x, x)) + l, x ∈ V0.

In particular if the residual characteristic of F◦ is not 2, then the F◦ -norm vV0 on
V0 is the one used by Broussous and Stevens [BS].

For p ∈ A (= A), let αp be the MM-norm for (h, q) on V defined by
([BT4] 2.9):

αp(x0 +
∑

i∈I λiei) = inf(vV0(x0), infi∈I(vF (λi)− ai(p))),
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where λi ∈ F and x0 ∈ V0 . The map A → N1
h,q, p 7→ αp is injective (loc. cit.)

and N -equivariant ([BT4] 2.11), and it extends in a unique way to a G-equivariant
map I → N1

h,q, p 7→ αp which is bijective and affine ([BT4] 2.12); moreover, this is
the unique G-equivariant affine map from I to N1

h,q (loc. cit.). Via j , the building

I identifies with a G-stable convex subset of Ĩ1 . Note that the apartment A of I

is the intersection of I with an apartment Ã1 of Ĩ1 (cf. [BT4] 2.14). Put

L1
h = {Λα : α ∈ N1

h}.

and

L1
h,q = {Λα : α ∈ N1

h,q}.

By construction, L1
h,q is a G-stable convex subset of L1 , and the map Ĩ1 →

L1, p 7→ Λp induces by restriction a bijective, G-equivariant and affine map
I → L1

h,q , which is the unique G-equivariant affine map from I to L1
h,q .

Let α 7→ α be the involution on N1 defined by ([BT4] 2.5)

α(x) = infy∈V (vF (h(x, y)− α(y)), x ∈ V.

A norm α on V is a MM-norm for h if and only if α = α (loc. cit.). In other
terms, a norm α on V is a MM-norm for h if and only if the lattice-function Λα

in V is self-dual in the sense of [BS] ch. 3 (the proof of Corollary 3.4 applies in the
same manner). So L1

h is the set of self-dual lattice-functions in V , and it coincides
with L1

h,q if we are in the tame case.

1.7. Square lattice-functions. Denote by g̃ = Lie(G̃) the Lie algebra of G̃ ,
and by g = Lie(G) that of G . So we have g̃ = EndF (V ). For g ∈ g̃ , denote by
gσh the adjoint of g with respect to h , i.e. the unique element of g̃ such that
h(gx, y) = h(x, gσhy) for all x, y ∈ V . The map g̃ → g̃, g 7→ gσh is an involution,
and we have g = {g ∈ g̃ : g + gσh = 0} . For Λ ∈ L1 , denote by End(Λ) the
(oF -)lattice-function in g̃ defined by

End(Λ)(r) = {g ∈ g̃ : gΛ(s) ⊂ Λ(s+ r), s ∈ R}, r ∈ R.

The lattice-functions in g̃ arising in this way are called square lattice-functions.
Let L2 = Latt2

oF
(g̃) be the set of square lattice-functions in g̃ . For p ∈ Ĩ , we put

g̃p,r = End(Λp)(r), r ∈ R.

The group G̃ acts on L2 via its action on g̃ , and the map
Ĩ1 → L2, p 7→ g̃p,· is surjective and G̃-equivariant ([BL] §4).

Remark 1.7. The map Ĩ1 → L1, p 7→ Λp depends on the choice of j : Ĩ1 → N1 ,

but the map Ĩ1 → L2, p 7→ g̃p,· does not depend on it. In fact, for Λ, Λ′ ∈ L1 ,
we have End(Λ′) = End(Λ) if and only if there exists r ∈ R such that Λ′ = r · Λ
([BT3] 1.13). In particular, the map Ĩ1 → L2, p 7→ g̃p,· factorizes through the non-

enlarged building Ĩ (cf. Remark 1.3). We obtain a bijective and G̃-equivariant
map Ĩ → L2 .
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The involution σh on g̃ induces also an involution on L2 , still denoted by
σh : for Λ ∈ L1 , we put

End(Λ)σh(r) = End(Λ)(r)σh .

Let L2
h be the subset of L2 formed of those lattice-functions which are

σh -invariant. For α ∈ N1 , we have ([BT4] 2.5)

End(Λα)σh = End(Λα).

This implies (loc. cit., Cor. 2) that the map L1 → L2, Λ 7→ End(Λ) induces
a bijection from L1

h to L2
h . Thus if we are in the tame case, then the map

Ĩ1 → L2, p 7→ g̃p,· induces a G-equivariant bijection from I to L2
h .

Let p be a point of I . Let gp,· be the oF◦ -lattice-function in g defined by

gp,r = g̃p,r ∩ g = {g ∈ g : gΛp(s) ⊂ Λp(s+ r), s ∈ R}, r ∈ R,

and let (gMP
p,r )r∈R be the filtration of g attached to p by Moy and Prasad ([MP],

see 3.5). The following theorem is the main result of this paper.

Theorem 1.8. For all p ∈ I, we have

gp,r = gMP
p,r , r ∈ R.

2. Reduction to the quasi-split case

2.1. Extension of the base field. Let L◦ be a finite extension of F◦ . Put
L = L◦ ⊗F◦ F . It is a commutative L◦ -algebra, endowed with an involution
Id⊗ σ , still denoted by σ . The field L◦ is the set of fixed points of σ in L . Since
F is a separable extension of F◦ of degree ≤ 2, there are two cases: L is field, in
which case it is an extension of degree [F : F◦] of L◦ ; or L is a cyclic L◦ -algebra
with group Σ = {1, σ} , i.e. a product L1 × L2 of two extension L1 and L2 of
F◦ isomorphic to L◦ , such that σL1 = L2 . Denote by Lσ,ε the L◦ -vector space
L◦ ⊗F◦ Fσ,ε . So F σ,ε identifies with an F◦ -subspace of Lσ,ε = L/Lσ,ε . Moreover,
we have

Lσ,ε = {λ− ελσ : λ ∈ L} = {λ ∈ L : λσ = −ελ}.

Denote by VL the L-vector-space L◦ ⊗F◦ V = L ⊗F V . Even if L is not
a field, by replacing F◦ with L◦ and F with L , we define the notion of σ -skew
ε-hermitian form on VL . The σ -skew ε-hermitian form h on V extends to a
σ -skew ε-hermitian form hL on VL , which is non-degenerate since h is non-
degenerate. Let qL = qhL

: VL → Lσ,ε be the pseudo-quadratic form associated

with hL as in 1.1. Put G̃L = GL(VL) and let GL◦ = U(hL) the subgroup of G̃L

formed of those g satisfying hL(gx, gy) = hL(x, y) for all x, y ∈ VL . Then GL◦ is
the group of L◦ -rational points of the L◦ -algebraic group GL◦ = G ×F◦ L◦ . Put
gL◦ = Lie(GL◦); so we have gL◦ = L◦ ⊗F◦ g .

Let us consider the first case: L is a field. We can replace F◦ with L◦ and F
with L in all the constructions of chapter 1. In particular for p ∈ IL◦ = I(GL◦ , L◦),
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denote by gL◦,p,· the square oL◦ -lattice-function in gL◦ defined in 1.7, and by
(gMP

L◦,p,·)r∈R the filtration of gL◦ attached to p by Moy and Prasad.

2.2. The case L◦ ⊗F◦ F ' (L◦)
2 . Now let us consider the second case: L '

(L◦)
2 . Then [F : F◦] = 2 and, up to F◦ -isomorphism, F is contained in L◦ . So we

can (and do) assume F ⊂ L◦ and L = (L◦)
2 . The embedding F → L, λ = 1⊗ λ

identifies F with the subset {(λ, λσ) : λ ∈ F} , and for λ, µ ∈ F , we have
(λ, µ)σ = (µ, λ). Let ξ1 = (1, 0) and ξ2 = (0, 1) be the two minimal idempotents
of L .

If X is an F -vector-space, the L-vector space XL = L◦ ⊗F◦ X = L ⊗F X
is a product of two copies of XL◦ = L◦ ⊗F X : putting XL◦,i = ξiXL , we have

L◦ ⊗F◦ X = XL◦,1 ×XL◦,2.

In particular we have
VL = VL◦,1 × VL◦,2.

For i = 1, 2, we have gVL◦,i ⊂ VL◦,i for all g ∈ EndL(VL). Thus we have

EndL(VL) = EndL◦(VL◦,1)× EndL◦(VL◦,2)

with EndL◦(VL◦,i) = ξiEndL(VL), identifying L◦ with ξiL . Since h is non-
degenerate, the map x 7→ h(x, ·) defines a σ -isomorphism from V to the dual
space V ∗ = HomF (V, F ), and by extension of scalars, the map x 7→ hL(x, ·)
defines a σ -isomorphism from VL to the dual space V ∗

L = HomL(VL, L) = (V ∗)L .
Since ξσ

1 = ξ2 and ξ1ξ2 = 0, for i = 1, 2 and x, y ∈ VL◦,i , we have

hL(x, y) = hL(ξix, ξiy) = ξiξ
σ
i hL(x, y) = 0.

Hence VL◦,1 and VL◦,2 are two maximal totally isotropic subspaces of VL . Thus
we obtain that the map x 7→ hL(x, ·) induces an isomorphism of L◦ -vector spaces

ϕ : VL◦,1 → V ∗
L◦,2 = HomL◦(VL◦,2, L◦).

Now let g = (g1, g2) ∈ G̃L = GL(VL◦,1) × GL(VL◦,2). By definition, we have
g ∈ U(hL) if and only if ϕ(g1x1)(g2x2) = ϕ(x1)(x2) for all (x1, x2) ∈ VL◦,1 × VL◦,2 ,
i.e. if and only if

g2 = tϕ
−1 ◦ tg1

−1 ◦ tϕ.

So by restriction the map G̃L → GL(VL◦,1), (g1, g2) 7→ g1 gives an isomorphism of
groups ι : U(hL) → GL(VL◦,1) which is defined over L◦ , i.e. which comes from
an isomorphism of algebraic groups defined over L◦ . Moreover, ι restricts to an
isomorphism of groups ι′ : SU(hL) → SL(VL◦,1) which is also defined over L◦ .

Let IL◦ = I(GL◦ , L◦) be the (non-enlarged) building of GL◦ = U(hL), and
LL◦,1 be the quotient of L1

L◦,1 = Latt1
oL◦

(VL◦,1) by the action of R (cf. Remark
1.3). The group GL(VL◦,1) acts on IL◦ via ι , and from the Remark 1.3, there
exists a unique GL(VL◦,1)-equivariant affine map IL◦ → LL◦,1 , still denoted by ι .
Let p be a point of IL◦ . Let gL◦,p,· be the oL◦ -lattice-function in gL◦ defined by

gL◦,p,r = Lie(ι)−1(EndL◦(VL◦,1)ι(p),r), r ∈ R.

Let also (gMP
L◦,p,r)r∈R be the filtration of gL◦ attached to p by Moy and Prasad.
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Remark 2.1. Suppose L◦/F◦ is a Galois extension with Galois group Γ. Then
we can make the action of Γ on GL◦ explicit ([BT4] 1.13, Rem.). Let Γ′ be the
subgroup Gal(L◦/F ) of Γ. The group Γ acts naturally on VL = L◦ ⊗F◦ V and
on EndL(VL) = L◦ ⊗F◦ EndF (V ). For i = 1, 2, the subspace VL◦,i of VL is
Γ′ -stable, whence we have a natural action of Γ′ on EndL◦(VL◦,i). If γ ∈ Γ r Γ′ ,
i.e. if the restriction of γ to F is σ , the automorphism γ ⊗ Id of EndL(VL),
denoted by g 7→ gγ , induces two γ -isomorphisms EndL◦(VL◦,1) → EndL◦(VL◦,2)
and EndL◦(VL◦,2) → EndL◦(VL◦,1), still denoted by g 7→ gγ . Then for γ ∈ Γ and
(g1, g2) ∈ EndL◦(VL◦,1)× EndL◦(VL◦,2), we have

(g1, g2)
γ = (gγ

1 , g
γ
2 ) if γ ∈ Γ′ ,

(g1, g2)
γ = (gγ

2 , g
γ
1 ) if γ ∈ Γ r Γ′ .

In particular, the map ι : U(hL) → GL(VL◦,1) is Γ′ -equivariant, and for γ ∈ ΓrΓ′

and g = (g1, g2) ∈ U(hL), we have

gγ = (gγ
2 , g

γ
1 ) = ((tϕ

−1 ◦ tg1
−1 ◦ tϕ)γ, gγ

1 ).

2.3. Unramified descent: buildings. Let us turn to the general case: L is a
field or L ' (L◦)

2 . Suppose moreover that the extension L◦/F◦ is unramified, and
let Γ be the group Gal(L◦/F◦). We know ([BT4] 4.1) that there exists a unique
G-equivariant and affine map I → IL◦ , whose image is the subset (IL◦)

Γ formed
of those points which are fixed by Γ.

We can describe the canonical bijection I → (IL◦)
Γ in terms of norms

(resp. of lattice-functions). Let vL◦ be the normalized valuation on L◦ . The
L◦ -algebra L is endowed with the L◦ -algebra norm vL defined by vL = vL◦ ⊗ vF .
The ring of integers oL = oL◦ ⊗oF◦

oF of L coincides with the set of λ ∈ L
such that vL(λ) = 0. Let N1

L = Norm1
L(VL) be the set of L-norms on VL , and

L1
L = Latt1

oL
(VL) be the set of oL -lattice-functions in VL . We define, as in 1.6,

the subsets N1
L,(hL,qL) ⊂ N1

L,hL
of N1

L (Definition 1.4 is valid even if L is not a

field), and the subsets L1
L,(hL,qL) ⊂ L1

L,hL
of L1

L . For α ∈ N1 , denote by αL the

L-norm vL◦ ⊗ α on VL , and, for Λ ∈ L1 , denote by ΛL the oL -lattice-function in
VL defined by ΛL(r) = oL◦ ⊗oF◦

Λ(r), r ∈ R . For α ∈ N1
L , denote by Λα the oL -

lattice-function in VL defined (as in 1.6) by Λα(r) = {v ∈ VL : α(v) ≥ r} , r ∈ R .
Hence we have ΛαL

= (Λα)L , for all α ∈ N1 . On the other hand, the group Γ acts
naturally on N1

L (resp. on L1
L ), stabilizing the subset N1

L,(hL,qL) (resp. L1
L,(hL,qL) ),

and the map N1
L → L1

L, α 7→ Λα is Γ-equivariant.

The map α 7→ αL from N1 to N1
L is injective, G̃-equivariant and affine, and

it induces a bijection onto the convex subset (N1
L)Γ of N1

L formed by those norms
which are Γ-invariant. If α ∈ N , from [BT4] 4.2, we have α ≤ (h, q) if and only
if αL ≤ (hL, qL). Hence the map α 7→ αL induces a G-equivariant affine bijection
from N1

h,q to the convex subset N
1,\
L,(hL,qL) of (N1

L)Γ formed by those norms β such

that β ≤ (hL, qL) and which are maximal for this property. A priori we have
the inclusion (N1

L,(hL,qL))
Γ ⊂ N

1,\
L,(hL,qL) , but we know this inclusion is an equality

([BT4] 4.7 and 4.9).
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First case: L is a field. From 1.6, there exists a unique GL◦ -equivariant
affine map IL◦ → N1

L,(hL,qL) , which is Γ-equivariant by unicity. It induces a

G-equivariant affine map I → (N1
L,(hL,qL))

Γ , which (by unicity again) coincides

with the canonical bijection I → N1
h,q composed with the G-equivariant affine

bijection
N1

h,q → (N1
L,(hL,qL))

Γ, α 7→ αL.

So via the canonical bijections I → N1
h,q and IL◦ → N1

L,(hL,qL) , the canonical

bijection I → (IL◦)
Γ is given by α 7→ αL .

Second case: L ' (L◦)
2 . We take the hypotheses and notation of 2.2. Let

Γ′ be the subgroup Gal(L/F ) of Γ. The L◦ -norm vL on L = L◦×L◦ is given by

vL(λ, µ) = inf{vL◦(λ), vL◦(µ)}, λ, µ ∈ L◦.

For i = 1, 2, put N1
L◦,i = Latt1

oL◦
(VL◦,i). For α ∈ N1

L◦,1 , denote by α the L◦ -norm
on VL◦,2 defined by

α(x2) = infx1∈VL◦,1
(vL◦(hL(x1, x2)− α(x1)), x2 ∈ VL◦,2

and by α⊕ α the L-norm on VL = V × V defined by

(α⊕ α)(x1, x2) = inf(α(x1), α(x2)), x1 ∈ VL◦,1, x2 ∈ VL◦,2.

From the lemma of §4.8 in [BT4], the map α 7→ α ⊕ α is a bijection from N1
L◦,1

to the subset N1
L,hL

= N1
L,(hL,qL) of N1

L . Via this bijection, we obtain an action of

Γ on N1
L◦,1 which extends the natural action of Γ′ (cf. Remark 2.1). For α ∈ N1 ,

let αL◦,1 be the L◦ -norm vL◦ ⊗ α on VL◦,1 . Let us identify G̃ with a subgroup
of GL(VL◦,1) via the map g 7→ ξ1(1 ⊗ g). Then the map α 7→ αL◦,1 from N1 to

N1
L◦,1 is injective, G̃-equivariant and affine, and it induces a bijection onto the

convex subset (N1
L◦,1)

Γ′ of N1
L◦,1 formed by those norms which are Γ′ -invariant.

Moreover, if α ∈ N1 , the Γ′ -invariant L◦ -norm αL◦ on VL◦,1 is Γ-invariant if
and only if α = α , i.e. if and only if α ∈ N1

h . So the map α 7→ αL◦,1 induces
a G-equivariant affine bijection from N1

h to the convex subset (N1
L◦,1)

Γ of N1
L◦,1

formed by those norms which are Γ-invariant. Let NL◦,1 be the quotient of N1
L◦,1

by the action of R . The action of Γ on N1
L◦,1 induces an action on NL◦,1 , and

we denote by (NL◦,1)
Γ the convex subset of NL◦,1 formed by those elements which

are Γ-invariant. For α ∈ N1
L◦,1 and c ∈ R , we have

(α+ c, α+ c) = (α+ c, α− c);

so if α is Γ-invariant, then α + c is Γ-invariant if and only if c = 0. Thus the
canonical projection N1

L◦,1 → NL◦,1, α 7→ α′ induces an injective map (N1
L◦,1)

Γ →
(NL◦,1)

Γ , which is also surjective: for α ∈ N1
L◦,1 such that α′ is Γ-invariant, since

Γ induces on the class {α + c : c ∈ R} a finite group of affine automorphisms,
there exists a c ∈ R such that α+ c is Γ-invariant. Thus we have a G-equivariant
affine bijection

N1
h → (NL◦,1)

Γ, α 7→ (αL◦,1)
′.

So via the canonical bijections I → N1
h and IL◦ → NL◦,1 (cf. Remark 1.3), the

canonical bijection I → (IL◦)
Γ is given by α 7→ (αL◦,1)

′ .
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Since the map N1
L → L1

L, α 7→ Λα is Γ-equivariant, the translation of the
description above in terms of lattice-functions is straightforward and left to the
reader.

2.4. Unramified descent: square lattice-functions. We continue with the
hypotheses and notation of 2.3. Let p be a point in I , identified with a point in
(IL◦)

Γ by the canonical bijection I → (IL◦)
Γ . By construction, the filtrations of g

and gL◦ attached to p by Moy and Prasad, satisfy the descent property:

(gMP
L◦,p,r)

Γ = gMP
p,r , r ∈ R.

Let us prove that the lattice-functions gp,· in g and gL◦,p,· in gL◦ satisfy the same
descent property. Put g̃L = EndL(VL); so the L◦ -algebras g̃L and L◦ ⊗F◦ g̃

(= L◦ ⊗F◦ EndF (V )) are canonically isomorphic.

First case: L is a field. As in 1.7, the point p ∈ (IL◦)
Γ ⊂ IL◦ de-

fines a square oL -lattice-function g̃L,p,· in g̃L . More precisely, from 1.6 there
exists a unique GL◦ -equivariant affine map IL◦ → L1

L,(hL,qL), p
′ 7→ Λp′ , which is

Γ-equivariant and, from 2.3, induces a G-equivariant affine map IΓ
L◦ → (L1

L,(hL,qL))
Γ .

By definition, for p′ ∈ IL◦ , we have g̃L,p′,· = End(Λp′). Since p is Γ-invariant, we
have Λp = (Λp)L (cf. 2.3). Thus we have

g̃L,p,r = oL◦ ⊗oF◦
g̃p,r, r ∈ R.

This implies the descent property:

(g̃L,p,r)
Γ = g̃p,r, r ∈ R.

Since (g̃L)Γ = g̃ , we obtain the descent property:

(gL◦,p,r)
Γ = gp,r, r ∈ R.

Second case: L ' (L◦)
2 . We take the hypotheses and notation of 2.2. For

r ∈ R , the oL◦ -lattice gL◦,p,r in gL◦ is the set of

(g1, g2) ∈ EndL◦(VL◦,1)× EndL◦(VL◦,2)

such that g1 ∈ EndL◦(VL◦,1)ι(p),r and g2+
tϕ−1◦tg1◦tϕ = 0. Let Γ′ be the subgroup

Gal(L◦/F ) of Γ. Fix a real number r . Since the map ι : U(hL) → GL(VL◦,1) is
Γ′ -equivariant, we have ι(p) ∈ (LL◦,1)

Γ′ . On the other hand, the isomorphism
ϕ : VL◦,1 → V ∗

L◦,2 is also Γ′ -equivariant. From the first case above, we may and do
assume that L◦ = F . So ϕ is an isomorphism from VF,1 to VF,2 , ι(p) is an element
of LF,1 = Latt1

oF
(VF,1)/R , and gF,p,r is the oF -lattice in gF = F ⊗F◦ g ⊂ g̃F =

EndF (VF,1)× EndF (VF,2) formed by those (g1, g2) satisfying g1 ∈ EndF (VF,1)ι(p),r

and g2 + tϕ−1 ◦ tg1 ◦ tϕ = 0. For i = 1, 2, the map v 7→ ξi(1 ⊗ v) identifies V
with VF,i ; hence we have the identifications EndF (VF,i) = g̃ and LF,1 = L . From
Remark 2.1, the action of Γ = {1, σ} on g̃F = g̃× g̃ is given by (g1, g2)

σ = (g2, g1),
for all g1, g2 ∈ g̃ . We obtain that the map gF → g̃, (g1, g2) 7→ g1 identifies
(gF,p,r)

Γ = gF,p,r ∩ g with the oF -lattice in g̃ formed by those g ∈ g̃ι(p),r satisfying
g + tϕ−1 ◦ tg ◦ tϕ = 0. But, for all x, y ∈ V , we have

ϕ(x)(y) = hL((x, 0), (0, y)) = hL((x, x), (y, y)) = h(x, y).
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Hence for g ∈ g̃ , we have
gσh = tϕ

−1 ◦ tg ◦ tϕ

and g+tϕ−1◦tg◦tϕ = 0 if and only if g ∈ g . Thus we obtain the descent property:

(gF,p,r)
Γ = g̃ι(p),r ∩ g.

The action of Γ on IF induces an action on L : for Λ ∈ L , we put Λσ = ι(ι−1(Λ)σ).
By construction, the map ι : IF → L is Γ-invariant, and induces a bijection,
denoted by ι\ , from I to the convex subset LΓ of L formed by those elements
which are Γ-invariant. Moreover, ι\ is G-equivariant and affine. From 2.3, by
restriction the canonical projection L1 → L induces a bijection ψ : L1

h → LΓ

which is G-equivariant and affine. This implies that the composition ψ◦ι\ : I → L1
h

is bijective, G-equivariant and affine. Since we are in the tame case (the extension
F/F◦ is unramified), we have L1

h = L1
h,q and ψ ◦ ι\ is the unique G-equivariant

affine map from I to L1
h . So we obtain that ι(p) ∈ LΓ , ψ(ι(p)) = Λp and

g̃ι(p),r = g̃p,r . Turning to the general unramified extension L◦/F◦ (i.e. removing
the hypothesis L◦ = F ), we have proved the descent property:

(gL◦,p,r)
Γ = gp,r, r ∈ R.

2.5. Reduction to the quasi-split case. Let L◦ be a finite unramified ex-
tension of F◦ such that the reductive L◦ -group G◦ ×F ◦ L◦ is quasi-split. Put
L = L◦ ⊗F◦ F as before. Suppose that for all p ∈ IL◦ , we have

gL◦,p,r = gMP
L◦,p,r, r ∈ R.

Then the descent property proved in 2.4 implies that for all p ∈ I = (IL◦)
Γ , we

have
gp,r = gMP

p,r , r ∈ R.

If L ' (L◦)
2 , we know from [BL] that for all p ∈ IL◦ , the filtration (gL◦,p,r)r∈R

of g coincide with (gMP
L◦,p,r)r∈R . Thus we have reduced the question to the quasi-

split case: we may suppose that G◦ is quasi-split over F◦ ; note that we may also
suppose that G◦ is residually split over F◦ , i.e. quasi-split and of the same relative
rank as G◦ ×F◦ L

′
◦ for all finite unramified extensions L′

◦ of L◦ .

3. Proof in the quasi-split case

3.1. Root subgroups again. In this chapter, we assume that the group G
is quasi-split over F◦ . Recall that since G is quasi-split, we have dimF (V0) ≤ 1.
From [BT1] 10.1.3, if σ 6= Id, by a “change of coordinate” we may (and do) assume
ε = 1 if V0 6= {0} , and ε = −1 if V0 = {0} . Then we have ε = −1 if and only
if we are in case (C). Let us fix an element e0 ∈ V0 such that e0 6= 0 if V0 6= {0}
(case (B) or (BC)). Moreover if V0 6= {0} , by another “change of coordinate” we
may (and do) assume that h(e0, e0) = 1 (loc. cit.).

For i, j ∈ I , j 6= ±i and u ∈ F , the element ui,j(u) ∈ Uai
(cf. 1.5) acts

trivially on
∑

k∈I∪{0},k 6=±i,±j Vi , stabilizes Xi,j = V−i + V−j + Vj + Vi , and induces
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on Xi,j an automorphism whose matrix with respect to e−i , e−j , ej , ei is given
by 

1 0 −ε(i)u 0
0 1 0 ε(−j)uσ

0 0 1 0
0 0 0 1

 .

Suppose V0 6= {0} (case (B) or (BC)). For i ∈ I and u, v ∈ F such
that v + vσ = uuσ (i.e. such that v = 1

2
u2 if we are in case (B)), the element

ui(u, v) = ui(ue0, v) ∈ Uai
(cf. 1.5) acts trivially on

∑
k∈I,k 6=±i Vi , stabilizes

Xi = V−i + V0 + Vi , and induces on Xi an automorphism whose matrix with
respect to e−i , e0 , ei is given by 1 −uσ −v

0 1 u
0 0 1

 .

Suppose V0 = {0} and (σ, ε) 6= (Id, 1) (case (C)). For i ∈ I and v ∈ Fσ,ε ,
the element ui(0, v) ∈ U2ai

acts trivially on
∑

k∈I,k 6=±i Vi , stabilizes Xi = V−i +Vi ,
and induces on Xi an automorphism whose matrix with respect to e−i , ei is given
by (

1 −ε(i)v
0 1

)
.

For i, j ∈ I , j 6= ±i , the group-law on Ui,j is given by ui,j(u)ui,j(u
′) =

ui,j(u+u′) for all u, u′ ∈ F . For i ∈ I , to describe the group-law on Uai
(case (B)

or (BC)) and the group-law on U2ai
(case (BC) or (C)), it is useful to introduce

the F◦ -spaces H2 = {0} × Fσ,ε and H = {(u, v) ∈ F × F : v + εvσ = uuσ} ⊃ H2 .
The space H is endowed with a multiplicative group-law

(u, v)(u′, v′) = (u+ u′, v + v′ + uσu′)

which makes H2 a subgroup of H : for v, v′ ∈ Fσ,ε , we have v + v′ ∈ Fσ,ε and
(0, v)(0, v′) = (0, v + v′). The group-laws on Uai

and U2ai
are obtained from the

group-laws on H and H2 by transport of structure via ui . In case (BC), since H2

is normal in H , we can define the quotient group Uai
= Uai

/U2ai
. It is the group

of F◦ -rational points of the (geometric) quotient group U ai
/U 2ai

. In case (B), we
put Uai

= Uai
.

3.2. Basis of the Lie algebras. Recall that g denotes the Lie algebra of G ,
and g̃ the Lie algebra of G̃ . For a ∈ Φ, let ua be the subspace of g defined
by ua = Lie(Ua) if 2a 6∈ Φ, and by ua = Lie(Ua) if 2a ∈ Φ. For i, j ∈ I , or

i, j ∈ I ∪ {0} if V0 6= {0} , let Ẽi,j ∈ g̃ be the standard elementary matrix. For
i, j ∈ I , j 6= ±i , u ∈ F , v ∈ Fσ,ε , we put:

Eai,j
(u) = −ε(i)uẼ−i,j + ε(−j)uσẼ−j,i ;

Eai
(u) = −uσẼ−i,0 + uẼ0,i (case (B) or (BC));

E2ai
(v) = −ε(i)vẼ−i,i (case (BC) or (C)).
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Let a ∈ Φ. If 1
2
a 6∈ Φ, the map u 7→ Ea(u) is an isomorphism from F to ua . If

1
2
a ∈ Φ (case (BC)), the map v 7→ Ea(v) is an isomorphism from F ◦ to ua .

Denote by z = Lie(Z) the Lie algebra of Z , and by z′ the Lie algebra of
Z ′ . For i ∈ I , u ∈ F , v ∈ F ◦ , we put:

Ei(u) = uσẼ−i,−i − uẼi,i ;

E0(v) = vẼ0,0 (case (B) or (BC)).

For i ∈ I , the map u 7→ Ẽi is an isomorphism from F to a subspace zi of z . If
V0 6= {0} (case (B) or (BC)), the map v 7→ E0(v) is an isomorphism from F ◦ to
a subspace z0 of z . Note that in case (B), we have z0 = {0} . If V0 = {0} (case
(C) or (D)), we put z0 = {0} . So z0 6= {0} if and only if we are in case (BC).

We have the decompositions

g = z⊕
⊕
a∈Φ

ua, z =
⊕

i∈I∪{0}

zi.

3.3. Lattice-functions and square lattice-functions. Recall that A is the
apartment of the building I of G attached to the maximal F◦ -split torus S of G .
Put

l = 1
2
sup{r ∈ R : vF (λ) = r, λ ∈ F, λ+ λσ = 1}.

Recall we have l ≤ 0, and l = 0 if and only if the extension F/F◦ is quadratic
unramified or the residual characteristic of F◦ is not 2. If V0 6= 0, from Remark
1.6, we have

vV0(λe0) = vF (λ) + l.

Put a0 = −l if V0 6= {0} , and a0 = −∞ if V0 = {0} . We consider a0 as a constant
function on A .

Let p be a point in A . The MM-norm αp for (h, q) on V and the lattice-
function Λp in V are given by

αp

(∑
i∈I∪{0}λiei

)
= inf{vF (λi)− ai(p) : i ∈ I ∪ {0}}, λi ∈ F,

and

Λp(r) = {x ∈ V : αp(x) ≥ r}, r ∈ R.

Put η = 1 if the extension F/F◦ is unramified, and η = 2 if it is ramified. So ηvF

is the normalized valuation on F , and we have

Λp(r) = ⊕i∈I∪{0}p
dη(r+ai(p))e
F ei , r ∈ R,

where dxe denotes the least integer greater than or equal to x (if V0 = {0} , then

we have p
dη(r+a0(p))e
F e0 = {0}). The square lattice-function g̃p,· in g̃ attached to p

is given by

g̃p,r = {g ∈ g̃ : gΛp(s) ⊂ Λp(s+ r), s ∈ R}, r ∈ R.
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Lemma 3.1. Let (p, r) ∈ A× R. We have

g̃p,r =
⊕
i, j

p
dη(r+ai(p)−aj(p))e
F Ẽi,j

where i, j run over the elements of I in case (C) or (D), and over the elements
of I ∪ {0} in case (B) or (BC).

Proof. Let i, j ∈ I and u ∈ F . By definition, the element uẼi,j belongs to

g̃p,r if and only if up
dη(s+aj(p)e
F ⊂ p

dη(s+r+ai(p)e
F for all s ∈ R , i.e. if and only if

ηvF (u) ≥ dr + ai(p) − aj(p)e . Hence we have g̃p,r ∩ FẼi,j = p
dη(r+ai(p)−aj(p))e
F Ẽi,j .

In case (B) or (BC), the same proof applies for i, j ∈ I ∪ {0} .

For p ∈ I , recall that the oF◦ -lattice-function gp,· in g is defined by

gp,r = g̃p,r ∩ g, r ∈ R.

For (p, r) ∈ A× R , we have the decomposition

gp,r =
⊕

i∈I∪{0}

(g̃p,r ∩ zi)⊕
⊕
a∈Φ

(g̃p,r ∩ ua).

Lemma 3.2. Let (p, r) ∈ A× R. Then:

for i ∈ I , we have g̃p,r ∩ zi = Ei(p
dηre
F );

in case (BC), we have g̃p,r ∩ z0 = E0(p
dηre
F ∩ F ◦);

for i, j ∈ I , i 6= ±j , we have g̃p,r ∩ uai,j
= Eai,j

(p
dη(r−ai,j(p))e
F );

in case (B) or (BC), for i ∈ I , we have g̃p,r ∩ uai
= Eai

(p
dη(r−l−ai(p)e
F );

in case (BC) or (C), for i ∈ I , we have g̃p,r∩u2ai
= E2ai

(p
dη(r−2ai(p)e
F ∩Fσ,ε).

Proof. Let i, j ∈ I , i 6= ±j , and u ∈ F . By definition, the element Eai,j
(u)

belongs to g̃p,r if and only if uẼ−i,j ∈ p
dη(r+a−i(p)−aj(p))e
F Ẽ−i,j and uσẼ−j,i ∈

p
dη(r+a−j(p)−ai(p))e
F Ẽ−j,i ; i.e., since a−i = −ai and a−j = −aj , if and only if

u ∈ p
dη(r−(ai(p)+aj(p))e
F . Hence we have

g̃p,r ∩ uai,j
= Eai,j

(p
dη(r−ai,j(p))e
F ).

The same proof shows that for i ∈ I , we have

g̃p,r ∩ zi = Ei(p
dηre
F ).

Suppose we are in case (B) or (BC), and let i ∈ I and u ∈ F . By definition,

the element Eai
(u) belongs to g̃p,r if and only if uσẼ−i,0 ∈ p

dη(r+a−i(p)−a0(p))e
F Ẽ−i,0
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and uẼ0,i ∈ p
dη(r+a0(p)−ai(p))e
F Ẽ0,i ; i.e., since a−i = −ai and a0(p) = −l ≥ 0, if and

only if u ∈ p
dη(r+a0(p)−ai(p))e
F . Hence we have

g̃p,r ∩ uai
= Eai

(p
dη(r−l−ai(p))e
F ).

Suppose we are in case (BC) or (C), and let v ∈ Fσ,ε . By definition, the

element E2ai
(v) belongs to g̃p,r if and only if vẼ−i,i ∈ p

dη(r+a−i(p)−ai(p))e
F Ẽ−i,i ; i.e.,

since a−i = −ai , if and only if v ∈ p
dη(r−2ai(p))e
F . Hence we have

g̃p,r ∩ u2ai
= E2ai

(p
dη(r−2ai(p))e
F ∩ Fσ,ε).

In case (BC), the same proof shows that we have

g̃p,r ∩ z0 = E0(p
dηre
F ∩ F ◦).

The lemma is proved.

3.4. Filtrations of the root subgroups. For a ∈ Φ and r ∈ R , let Ua,r = Uϕ
a,r

be the compact subgroup of Ua defined by

Ua,r = {g ∈ Ua : ϕa(g) ≥ r},

where ϕ = (ϕa)a∈Φ is the valuation of the root datum (Z, (Ua)a∈Φ) defined in 1.5.
For a ∈ Φ such that 2a ∈ Φ (case (BC)), since ϕ2a = 2ϕa|U2a , we have

Ua,r ∩ U2a = U2a,r.

Put

Γa = ϕa(Ua r {1}) ⊂ R , a ∈ Φ;

Γa = {ϕa(u) : u ∈ Ua r {1}, ϕa(u) = supϕa(uU2a)} , a ∈ Φ, 2a ∈ Φ.

So if we are not in case (BC), we have Γa = vF (F×).

Let ξ be an element of F such that ξ + ξσ = 1 and vF (ξ) = l . Recall
that if σ 6= Id and the residual characteristic of F◦ is not 2, we may take ξ = 1

2
.

Suppose we are in case (BC), and let i ∈ I . For u ∈ F , we put

ui(u) = ui(u, ξuu
σ) (modU2ai

) ∈ Uai

and
ϕai

(ui(u)) = l + vF (u).

Then we have
Γai

= ϕai
(Uai

r {1})

and
Γai

= Γai

∐
1
2
Γ2ai

(disjoint union). More explicitly, we have Γai
= l + η−1Z , Γ2ai

= 1
2
vF (F ◦ r {0})

and Γai
= 1

2
vF (F×).
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Let p be a point of A . Denote by ϕp the valuation ϕ + a(p) of the root
datum (Z, (Ua)a∈Φ). For a ∈ Φ and r ∈ R , let Ua,p,r = U

ϕp
a,r be the compact

subgroup of Ua defined by

Ua,p,r = {g ∈ G : g ∈ Ua : ϕa(g) ≥ r − a(p)}.

For a ∈ Φ such that 2a ∈ Φ (case (BC)) and r ∈ R , let Ua,p,r be the compact
subgroup of Ua defined by

Ua,p,r = {g ∈ G : g ∈ Ua : ϕa(g) ≥ r − a(p)}.

3.5. Moy-Prasad filtrations of g. Let p be a point in A . For a ∈ Φ and
r ∈ R , the subgroup Ua,p,r of Ua is the group of oF◦ -rational points of a smooth
affine oF◦ -group-scheme Ua,p,r . Its Lie algebra Lie(Ua,p,r) is an oF◦ -lattice in
Lie(Ua). If, moreover, 2a 6∈ Φ, we put ua = Lie(Ua,p,r).

For a ∈ Φ such that 2a ∈ Φ (case (BC)), the subgroup Ua,p,r of Ua is the
group of oF◦ -rational points of a smooth affine oF◦ -group-scheme Ua,p,r . Denote
by ua,p,r = Lie(Ua,p,r) its Lie algebra; it is an oF◦ -lattice in ua (= Lie(Ua)) and
identifies with a sub-oF◦ -module of Lie(Ua,p,r). Moreover we have the decomposi-
tion

Lie(Ua,p,r) = ua,p,r ⊕ u2a,p,r.

Let X∗(Z) be the group of algebraic characters of Z . Since Z splits over
F , each element of X∗(Z) is defined over F . For r ∈ R , let zr be the oF◦ -lattice
in z defined by

zr = {x ∈ z : vF (dχ(x)) ≥ r, ∀χ ∈ X∗(Z)}.

The filtration (gMP
p,r )r∈R of g attached to p by Moy and Prasad [MP] is

given by

gMP
p,r = zr ⊕

⊕
a∈Φ

ua,p,r, r ∈ R.

Remark 3.3. The Moy-Prasad filtration of g attached to a point p in the
building I of G is usually defined by descent from a maximal unramified extension
F nr
◦ of F◦ (the point p being canonically identified with a Gal(F nr

◦ /F◦)-invariant
point in the building of G(F nr

◦ )). If the group G is residually split over F◦ , the
filtration (gMP

p,r )r∈R of g defined above is clearly the Moy-Prasad filtration attached
to p . If the group G is quasi-split but not residually split over F◦ (i.e. if F is a
quadratic unramified extension of F◦ ), then G splits over F and G(F ) ' GL(V ).
In that case, chapter 2 implies that the filtration (gMP

p,r )r∈R of g defined above is
the Moy-Prasad filtration attached to p (more generally, the result follows [BT2]
5.1.20, Rem. 2). Note that we can also avoid the problem by assuming directly
that G is residually split over F◦ (see 2.5).

Proposition 3.4. Let p be a point in I. We have

gp,r = gMP
p,r , r ∈ R.
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Proof. We may assume that p ∈ A . Then the proposition follows from Lemma
3.2 and the description of the root subgroups Ua,p,r given in 3.4.

This proposition, together with the reduction step in chapter 2, implies
Theorem 1.8.

4. The general case (D 6= F )

4.1. Reduction to the case D = F . In this chapter, we show briefly how to
generalize the main result (Theorem 1.8) to a general classical group (cf. Remark
1.1). So notation and hypothesis are those of 1.1, but we assume D 6= F .

Let L◦ be a finite extension of F◦ of degree a multiple of 2d = 4. Put
L = L◦ ⊗F◦ F and DL = L◦ ⊗F◦ D (= L ⊗F D). Then DL is a semisimple
L◦ -algebra with centre L , endowed with an involution Id ⊗ σ , still denoted by
σ . Denote by VL the right DL -module L◦ ⊗F◦ V = L ⊗F V . The form h
on V extends to a non-degenerate σ -skew ε-hermitian form hL : VL × VL →
DL . Put G̃L = AutDL

(VL) and GL◦ = U(hL). Then GL◦ is the group of
L◦ -rational points of the L◦ -algebraic group GL◦ = G×F◦ L◦ .

Let us consider the first case: L is a field. Then L is an extension of
degree [L◦ : F◦] of F , and DL is a split central simple L-algebra. Moreover, the
restriction of σ (= Id ⊗ σ) to L , say σ1 , is the generator of Gal(L/L◦). Let
us choose a simple right DL -module M . We have the canonical identifications
L = EndDL

(M) and DL = EndL(M). Let Mσ be the simple left DL -module
deduced from M via σ , i.e. the additive group M endowed with the action of DL

given by (a, x) 7→ xaσ for a ∈ DL , x ∈ M . The dual M? = HomL(M,L) is also
a simple left DL -module — canonically identified with HomDL

(M,DL), cf. [BT3]
1.16. Thus we have L = EndDL

(M∗) and DL = EndL(M∗). Moreover there exists
an isomorphism of DL -modules s : Mσ →M∗ which is admissible in the following
sense (cf. [BT4] 1.7, 1.8): let βs : M ×M → DL be the σ -skew form given by
βs(x, y) = s(x)(y); the admissibility condition on s says there exists η ∈ {±1}
such that βs(y, x) = ηβs(x, y)

σ . In other words, βs is a σ -skew η -hermitian form
on M , which is non-degenerate by construction.

Put V1 = HomDL
(M,VL). It is a finite dimensional vector space over L ,

and the map
V1 ⊗L M → VL, v ⊗ x 7→ v(x)

is an isomorphism of (right) DL -vector spaces, which induces a canonical identifi-
cation of L-algebras (cf. [BT3] 1.16)

EndL(V1) = EndDL
(VL).

This gives an identification of G̃1 = AutL(V1) with G̃L . Now put ε1 = εη . From
[BT4] 1.10, Prop., there exists a unique σ -skew form h1 : V1 × V1 → L such that

h(u(x), v(y)) = βs(xh1(u, v), y) = h1(u, v)
σ1βs(x, y);

it is non-degenerate and ε1 -hermitian. Let also q1 : V1 → L/Lσ1,ε1 be the pseudo-
quadratic form associated with h1 as in 1.1. Put G1 = U(h1). It is the group of
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L◦ -rational points of an algebraic L◦ -group G1 whose connected component G◦
1

is reductive, and the identification G̃L = G̃1 induces an identification GL◦ = G1 .

Remark 4.1. The form h1 constructed above depends on the choices of M and
s . The simple right DL -module M is unique up to isomorphism. Now suppose M
is fixed, and let s′ : Mσ →M∗ be another admissible isomorphism of DL -modules.
Then s′ = λs for an element λ in L× such that λσ1 = µλ , µ ∈ {±1} , and the
non-degenerate σ1 -skew form h′1 : V1×V1 → L defined by s′1 is given by h′1 = λh1 ;
it is ε′1 -hermitian, ε′1 = ε1µ . So h1 is well defined up to a “change of coordinates”
in the sense of [BT1], 10.1.3.

Now let us consider the second case: L ' (L◦)
2 . As in 2.2, we assume

F ⊂ L◦ and L = (L◦)
2 . Hence L◦ is an extension of even degree of F . Using the

notation and identifications of 2.2, we have DL = DL◦,1×DL◦,2 where DL◦,i = ξiDL

is a central simple L◦ -algebra (recall that ξ1 , ξ2 are the two minimal idempotents
of L). The involution σ (= Id⊗ σ) on DL induces an anti-isomorphism DL◦,1 →
DL◦,2 (resp. DL◦,2 → DL◦,1 ), still denoted by σ . For a ∈ DL◦,i , we have (aσ)σ = a ,
and for (a, b) ∈ DL , we have (a, b)σ = (bσ, aσ). We also have

EndDL
(VL) = EndDL◦,1

(VL◦,1)× EndDL◦,2
(VL◦,2)

whith EndDL◦,i
(VL◦,i) = ξiEndDL

(VL). Moreover the map v1 7→ hL(v1, ·) induces
a σ -isomorphism ϕ from the right DL◦,1 -module VL◦,1 to the left DL◦,2 -module

HomDL◦,2
(VL◦,2, DL◦,2). For g = (g1, g2) ∈ G̃L = AutDL◦,1

(VL◦,1)×AutDL◦,2
(VL◦,2),

we have g ∈ GL◦ if and only if

g2 = tϕ
−1 ◦ tg1

−1 ◦ ϕt;

so the map G̃L → AutDL◦,1
(VL◦,1), (g1, g2) 7→ g1 by restriction gives an isomor-

phism of groups ι : GL◦ → AutDL◦,0
(VL◦,1). Let us choose a simple right DL◦,1 -

module M1 (since DL◦,1 is a quotient of DL , M is also a simple DL -module). Put
V1 = HomDL◦,1

(M,VL◦,1). From the previous case, we have a canonical identifica-
tion of G1 = AutL◦(V1) with AutDL◦,0

(VL◦,1). Hence we obtain an isomorphism of
groups ι : GL◦ → G1 which is defined over L◦ .

4.2. Unramified descent: buildings. Suppose moreover that the extension
L◦/F◦ is unramified (we could also suppose that the reductive L◦ -group G◦×F◦L◦
is quasi-split, or even residually split, but this is not necessary). Hence L is field if
and only if the extension F/F◦ is trivial or totally ramified. Let I = I(G, F◦) be
the (non-enlarged) building of G — it can be viewed as the building of a valuated
root datum as in 1.5, cf. [BT4] 1.14, 1.15 —, and let IL◦ = I(G ×F◦ L◦, L◦) be
that of GL◦ . From [BT4] 4.1, there exists a unique G-equivariant and affine map
I → IL◦ whose image is the subset (IL◦)

Γ formed of those points which are fixed
by the Galois group Γ = Gal(L◦/F◦).

Let Ĩ1 be the enlarged building of G̃ , N1 be the set of (D -)norms on V
([BT3] 1.1), and L1 be the set of (oD )-lattice-functions in V ([BL] 2.1), where
oD denotes the ring of integers of D . From [BT4] and [BL], by replacing F by

D , the results of 1.6 remain true. In particular, there exists a G̃-equivariant
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affine map Ĩ1 → L1, p 7→ Λp , which is bijective and unique up to translation by
a real number; where the affine structure on L1 is given by that on N1 via the
G̃-equivariant bijection N1 → L1, α 7→ Λα defined by

Λα(r) = {v ∈ V : α(v) ≥ r}, r ∈ R.

This induces a bijective, G-equivariant and affine map I → L1
h,q , which is the

unique G-equivariant affine map from I to L1
h,q ; where L1

h,q is the G-stable convex
subset of L1 corresponding to the set of MM-norms for (h, q) via the bijection
N1 → L1, α 7→ Λα . In particular, I identifies with a G-stable convex subset of
the building Ĩ1 .

Let denote by IL◦,1 = I(G1, L◦) the building of G1 .

If L is a field, the identification GL◦ = G1 gives an identification IL◦ =
IL◦,1 . The actions of Γ on GL◦ and IL◦ give some actions on G1 and IL◦,1 . Note
that we also have an action of Γ on EndD1(V1) = EndDL

(VL) — even if Γ does
not act on V1 , nor on D1 .

Now if L = L2
◦ , the isomorphism ι : GL◦ → G1 gives a bijection IL◦ → I1,L◦ ,

still denoted by ι . The action of Γ on GL◦ ⊂ AutDL◦,1
(VL◦,1) × AutDL◦,2

(VL◦,2)
is described as in Remark 2.1 (cf. [BT4] 1.13, Remarque). In particular, the
subgroup Γ′ = Gal(L◦/F ) of Γ acts on G1 = AutDL◦,1

(VL◦,1), and for γ ∈ Γ r Γ′

and g = (g1, g2) ∈ GL◦ , we have

gγ = (gγ
2 , g

γ
1 ) = ((tϕ

−1 ◦ tg1
−1 ◦ ϕt)γ, gγ

1 );

here the automorphism γ ⊗ Id of EndDL
(VL) = L◦ ⊗F◦ EndD(V ), denoted by

g 7→ gγ , induces two γ -isomorphisms EndDL◦,1
(VL◦,1) → EndDL◦,2

(VL◦,2) and
EndDL◦,2

(VL◦,2) → EndDL◦,1
(VL◦,1), still denoted by g 7→ gγ . This makes the

action of Γ on G1 , identified with GL◦ via ι , explicit. We also have an action of
Γ on IL◦,1 , identified with IL◦ via ι .

In both cases, we obtain a bijection I → (IL◦,1)
Γ , which is the unique G-

equivariant and affine map I → IL◦,1 , and can be described in terms of norms (or
lattice-functions) as in 2.3.

4.3. Filtrations of the Lie algebra. Put g̃ = EndD(V ) and g = Lie(G). For
p ∈ Ĩ1 , denote by g̃p,· the square oD -lattice-function on V defined by (cf. 1.7)

g̃p,r = End(Λp)(r), r ∈ R;

it depends only on the projection of p to the non-enlarged building Ĩ of G̃ . For
p ∈ I , let gp,· be the oF◦ -lattice function in g defined by

gp,r = g̃p,r ∩ g, r ∈ R,

and let (gMP
p,r )r∈R the Moy-Prasad filtration of g attached to p . We claim that

Theorem 1.8 (proved for D = F ) remains true for D 6= F : for all p ∈ I , we have

(1) gp,r = gMP
p,r , r ∈ R.

Put g̃L = EndDL
(VL) and gL = Lie(GL◦). Thus we have g̃L = L◦ ⊗F◦ g =

L ⊗F g and gL = L◦ ⊗F◦ g . Put also h̃ = EndL◦(V1) and h = Lie(G1). The
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identification g̃L = h̃ induces an identification gL = h , and an action of Γ on h

(cf. 4.2) such that hΓ = g . For p ∈ IL◦,1 , denote by hp,· the square oL◦ -lattice-
function on V1 defined as in 1.7 if L is a field, and as in [BL] if L = (L◦)

2 . Let
also (hMP

p,r )r∈R be the filtration of h attached to p by Moy and Prasad.

Let p be a point in I , identified with a point in (IL◦,1)
Γ via the canonical

bijection I → (IL◦,1)
Γ (cf. 4.2). By construction, we have the descent property:

(hMP
p,r )Γ = gMP

p,r , r ∈ R.

From [BL] and Theorem 1.8, we have

hp,r = hMP
p,r , r ∈ R

So to obtain (1), we just need to prove the descent property:

(2) (hp,r)
Γ = gp,r, r ∈ R.

This can be done following 2.4 (the proof is essentially the same, details are left
to the reader). So Theorem 1.8 is true even if D 6= F .
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