Comparison of Lattice Filtrations and Moy-Prasad Filtrations for Classical Groups

Bertrand Lemaire

Communicated by Alain Valette

Abstract. Let F_{\circ} be a non-Archimedean local field of characteristic not 2. Let G be a classical group over F_{\circ} which is not a general linear group, i.e. a symplectic, orthogonal or unitary group over F_{\circ} (possibly with a skew-field involved). Let x be a point in the building of G. In this article, we prove that the lattice filtration $(\mathfrak{g}_{x,r})_{r\in\mathbb{R}}$ of $\mathfrak{g} = \operatorname{Lie}(G)$ attached to x by Broussous and Stevens, coincides with the filtration defined by Moy and Prasad.

Mathematics Subject Classification 2000: 20G25, 11E57.

Key Words and Phrases: Local field, division algebra, classical group, building, lattice filtration, Moy-Prasad filtration, unramified descent.

Introduction

Let V be a finite dimensional vector space over a locally compact non-Archimedean field F of characteristic not 2 — residual characteristic 2 is permitted —, and F_{\circ} be a subfield of F such that $[F:F_{\circ}] \leq 2$. Let σ be the generator of $\operatorname{Gal}(F/F_{\circ})$ if $F \neq F_{\circ}$, and $\sigma = \operatorname{Id}_F$ if $F = F_{\circ}$. We fix a non-degenerate σ -skew ε -hermitian form h on V, where $\varepsilon \in \{\pm 1\}$. Let $G = \operatorname{U}(h)$ be the subgroup of $\operatorname{GL}(V)$ formed of those g satisfying h(gx, gy) = h(x, y) for all $x, y \in V$. It is the group of F_{\circ} -rational points of an F_{\circ} -algebraic group G whose connected component G° is reductive. To each point x of the building \mathfrak{I} of G, let $(\mathfrak{g}_{x,r})_{r\in\mathbb{R}}$ be the filtration of the Lie algebra \mathfrak{g} of G attached to x by Broussous and Stevens in $[\operatorname{BS}]^1$; let also $(\mathfrak{g}_{x,r}^{\mathrm{MP}})_{r\in\mathbb{R}}$ be the filtration of \mathfrak{g} attached to x by Moy and Prasad in $[\operatorname{MP}]^2$. In this article, we prove that the two filtrations coincide:

$$\mathfrak{g}_{x,r} = \mathfrak{g}_{x,r}^{\mathrm{MP}}, \quad r \in \mathbb{R}.$$

This result is used by Broussous and Stevens in [BS] — this is the reason for which we proved it. Note that for a general linear group (i.e. an inner F_{\circ} -form of GL_n),

ISSN 0949–5932 / \$2.50 (c) Heldermann Verlag

¹ In [BS], the base field F_{\circ} is supposed to be of odd residual characteristic, but the definition of $(\mathfrak{g}_{x,r})_{r\in\mathbb{R}}$ naturally extends to the residual characteristic 2 (see 1.7 and Remark 1.6).

² In [MP] the group G is supposed to be simply connected, which is not the case here in general. But the definition of $(\mathfrak{g}_{x,r}^{\text{MP}})_{r\in\mathbb{R}}$ naturally extends to a general connected reductive group (see 3.5).

the analogous result is proved in [BL] Appendix A.

Recall that the Moy-Prasad filtrations are defined by descent from a maximal unramified extension F_{\circ}^{nr} of F_{\circ} . So let L_{\circ}/F_{\circ} be a finite sub-extension of F_{\circ}^{nr}/F_{\circ} such that the L_{\circ} -group $\mathbf{G}^{\circ} \times_{F_{\circ}} L_{\circ}$ is quasi-split (note that we can choose L_{\circ} such that $\mathbf{G}^{\circ} \times_{F_{\circ}} L_{\circ}$ is residually split, i.e. quasi-split and with the same relative rank as $\mathbf{G}^{\circ} \times_{F_{\circ}} F_{\circ}^{nr}$). Denote by $G_{L_{\circ}}$ the group of L_{\circ} -rational points of \mathbf{G} , and by L the L_{\circ} -algebra $L_{\circ} \otimes_{F_{\circ}} F$. There are two cases: L is a field; or $L \simeq (L_{\circ})^2$. If L is a field, then the form h extends to a non-degenerate (Id $\otimes \sigma$)skew ε -hermitian form h_L on V_L , and $G_{L_{\circ}} = U(h_L)$. If $L \simeq (L_{\circ})^2$, then F is isomorphic to a quadratic sub-extension of L_{\circ}/F_{\circ} , and we can suppose $F \subset L_{\circ}$; then we have $G_{L_{\circ}} \simeq \operatorname{GL}(L_{\circ} \otimes_F V)$.

Let $\mathfrak{I}_{L_{\circ}}$ be the building of $G_{L_{\circ}}$, and Γ be the Galois group of L_{\circ}/F_{\circ} . There exists a unique *G*-invariant affine map $\mathfrak{I} \to \mathfrak{I}_{L_{\circ}}$, which allows us to identify \mathfrak{I} with the convex subset $(\mathfrak{I}_{L_{\circ}})^{\Gamma}$ of $\mathfrak{I}_{L_{\circ}}$ formed of those points which are Γ -invariant. The point $x \in \mathfrak{I}$ defines two filtrations $(\mathfrak{g}_{L_{\circ},x,r})_{r\in\mathbb{R}}$ and $(\mathfrak{g}_{L_{\circ},x,r}^{\mathrm{MP}})_{r\in\mathbb{R}}$ of the Lie algebra $\mathfrak{g}_{L_{\circ}} = L_{\circ} \otimes_{F_{\circ}} \mathfrak{g}$ of $G_{L_{\circ}}$, where $(\mathfrak{g}_{L_{\circ},x,r})_{r\in\mathbb{R}}$ is the filtration attached in [BS] to $x \in (\mathfrak{I}_{L_{\circ}})^{\Gamma}$ if L is a field, and in [BL] if $L \simeq (L_{\circ})^2$. By definition, we have the descent property:

$$(\mathfrak{g}_{L_{\circ},x,r}^{\mathrm{MP}})^{\Gamma} = \mathfrak{g}_{x,r}^{\mathrm{MP}}, \quad r \in \mathbb{R}.$$

We prove we also have the descent property:

$$(\mathfrak{g}_{L_{\circ},x,r})^{\Gamma} = \mathfrak{g}_{x,r}, \quad r \in \mathbb{R}.$$

This reduces the question to the quasi-split case. Now assume that the reductive F_{\circ} -group \mathbf{G}° is quasi-split. In that case, we can describe explicitly the intersection of $\mathfrak{g}_{x,r}$ (resp. $\mathfrak{g}_{x,r}^{\mathrm{MP}}$) with each root subspace of \mathfrak{g} with respect to a maximal split torus S of G, and with the Lie algebra of the centralizer of S in G. This shows that both filtrations coincide.

Following a suggestion of Gopal Prasad, we also extend the result to a more general "unitary group" of type U(h), that is with a skew-field — in fact a quaternionic algebra — involved (cf. [BT4]). Such a group becomes, over a finite unramified extension L_{\circ} of F_{\circ} , a unitary group of the previous type (i.e. of type $U(h_L)$ with no skew-field involved) or a split general linear group. So taking into account [BL] Appendix A, the extended result is implied by the descent property for the Broussous-Stevens filtrations (for a general unitary group); this descent property is proved (briefly) as in the case with no skew-field involved.

Ultimately, we have that Broussous-Stevens filtrations and Moy-Prasad filtrations coincide for *almost all* (cf. Remark 1.1) F_{\circ} -forms of GL_n , Sp_{2n} , O_n .

In chapter 1, we introduce all objects and notation we need — unitary groups are defined in 1.1 in full generality, but from 1.2 untill the end of chapter 3, we assume that there is no skew-field involved —, and we state the result (Theorem 1.8). In chapter 2 we reduce the proof of the result to the quasi-split case. In chapter 3 we prove the result in the quasi-split case. In chapter 4 we extend the result to a general unitary group.

1. The objects

1.1. Unitary groups. Let F_{\circ} be a locally compact non-Archimedean commutative field, and F be a Galois extension of F_{\circ} of degree at most 2. We assume that the characteristic of F_{\circ} is not 2. Let σ be the generator of $\operatorname{Gal}(F/F_{\circ})$ if $[F:F_{\circ}] = 2$, and the identity of F if $F = F_{\circ}$. Let D be a central division F-algebra of finite dimension d^2 , endowed with an *involution* extending σ , still denoted by σ — i.e. σ is an anti-automorphism if D, such that $\sigma^2 = \operatorname{Id}_D$ and $\sigma|_F$ is the generator of $\operatorname{Gal}(F/F_{\circ})$. We know that d = 1 or 2, i.e. D = F or Dis a quaternionic algebra over F. Let D_{\circ} and D° be the sub- F_{\circ} -algebras of Ddefined by

$$D_{\circ} = \{\lambda \in D : \lambda^{\sigma} = \lambda\}, \quad D^{\circ} = \{\lambda \in D : \lambda + \lambda^{\sigma} = 0\},\$$

Since char(F) $\neq 2$, we have the decomposition $D = D_{\circ} \oplus D^{\circ}$ (with $D^{\circ} = \{0\}$ if $\sigma = \text{Id}$). The notations are coherent: if D = F, then D_{\circ} coincides with F_{\circ} . Put $F^{\circ} = F \cap D^{\circ}$.

Let $\varepsilon \in \{\pm 1\}$. We fix a finite dimensional *right D*-vector space *V*, and a σ -skew ε -hermitian form *h* on *V*, that is a \mathbb{Z} -bilinear map $V \times V \to F$ such that, for all $x, y \in V$ and all $\lambda, \mu \in D$, we have

$$h(x\lambda, y\mu) = \lambda^{\sigma} h(x, y)\mu,$$
$$h(y, x) = \varepsilon h(x, y)^{\sigma}.$$

The form h is supposed to be *non-degenerate*. Put

$$D_{\sigma,\varepsilon} = \{\lambda - \varepsilon \lambda^{\sigma} : \lambda \in D\}.$$

It is a subset of $\{\lambda \in D : \lambda^{\sigma} = -\varepsilon \lambda\}$, and since for $\lambda \in D$ such that $\lambda^{\sigma} = -\varepsilon \lambda$, we have $\lambda = \frac{1}{2}\lambda - \varepsilon(\frac{1}{2}\lambda)^{\sigma}$, the two sets coincide. So we have

$$D_{\sigma,\varepsilon} = D^{\circ}$$
 if $\varepsilon = 1$,
 $D_{\sigma,\varepsilon} = D_{\circ}$ if $\varepsilon = -1$.

Denote by $\overline{D}_{\sigma,\varepsilon}$ the F_{\circ} -vector space $D/D_{\sigma,\varepsilon}$, and by $\lambda \mapsto \overline{\lambda}$ the canonical projection $D \to \overline{D}_{\sigma,\varepsilon}$. Let ξ be an element of F such that $\xi + \xi^{\sigma} = 1$ (since the characteristic of F_{\circ} is not 2, we can take $\xi = \frac{1}{2}$). Let $q = q_h : V \to \overline{D}_{\sigma,\varepsilon}$ be the pseudo-quadratic form associated with h (cf. [BT4] 1.2), defined by

$$q(x) = \xi h(x, x) + D_{\sigma,\varepsilon}$$

It is well defined: if ξ' is another element of F such that $\xi' + \xi'^{\sigma} = 1$, then $\xi' - \xi \in F^{\circ}$, and $(\xi' - \xi)h(x, x) \in D_{\sigma,\varepsilon}$ for all $x \in V$. Note we also have

$$q(x) = \{\mu \in F : \mu + \varepsilon \mu^{\sigma} = h(x, x)\} + D_{\varepsilon, \sigma}, \quad x \in V.$$

For all $x, y \in V$ and all $\lambda \in D$, we have

$$q(x\lambda) = \frac{1}{2}\overline{\lambda^{\sigma}h(x,x)\lambda},$$

$$q(x+y) = q(x) + q(y) + \overline{h(x,y)}.$$

If $(\sigma, \varepsilon) = (\mathrm{Id}, 1)$, then $q: V \to D$ is a quadratic form in the usual sense and h is the bilinear form associated with q. If $(\sigma, \varepsilon) = (\mathrm{Id}, -1)$, which is equivalent to $\overline{D}_{\sigma,\varepsilon} = \{0\}$, then q = 0. If $(\sigma, \varepsilon) \neq (\mathrm{Id}, -1)$, then h is determined by q: it is the unique σ -skew ε -hermitian form on V verifying $\overline{h(x, y)} = q(x + y) - q(x) - q(y)$ for all $x, y \in V$.

Put $\tilde{G} = \operatorname{GL}(V)$ (= $\operatorname{Aut}_D(V)$) and let $G = \operatorname{U}(h)$ be the subgroup of \tilde{G} formed of those g satisfying h(gx, gy) = h(x, y) for all $x, y \in V$. Then G is the group of F_{\circ} -rational points of a linear algebraic group G defined over F_{\circ} , whose neutral component G° is reductive.

Remark 1.1. The algebraic group **G** is an F_{\circ} -form of one of the (split) classical groups GL_n , Sp_{2n} , O_n . Moreover, by varying the data F, D, σ , ε , V, h, we obtain all F_{\circ} -forms of those classical groups, except the inner forms of GL_n , and certain forms corresponding to a Dynkin diagram of symmetric group S_3 (e.g. O_8 with Dynkin diagram of type D_4). For the inner forms of GL_n , the comparison of lattice filtrations and Moy-Prasad filtrations is already done in [BL].

From now on, untill the end of chapter 3, we assume D = F and we consider V as a left F-vector space.

1.2. Derived groups. Put $\widetilde{G}' = \operatorname{SL}(V)$ and let $G' = \operatorname{SU}(h)$ be the subgroup $G \cap \widetilde{G}'$ of \widetilde{G}' . Then G' is the group of F_{\circ} -rational points of a linear algebraic group G' defined over F_{\circ} . Put

$$F^1 = \{ \lambda \in F^{\times} : \lambda^{\sigma} \lambda = 1 \}.$$

Identifying F^{\times} with the centre $F^{\times} \mathrm{Id}_V \subset \mathrm{GL}(V)$ of \widetilde{G} , we have the inclusion

 $F^1G' \subset G \cap F^{\times}\widetilde{G}.$

Moreover, G' is a cocompact subgroup of G (see 1.4 and the following remark).

Remark 1.2. If $\dim_F(V) = 1$, then we have $G = F^1$ and $G' = \{1\}$; thus $G^{\circ}(F) = G$ if $\sigma \neq \mathrm{Id}$, and $G^{\circ}(F) = \{1\}$ if $\sigma = \mathrm{Id}$. Now suppose $\dim_F(V) = 2$ and $\sigma = \mathrm{Id}$. If $\varepsilon = 1$, then $G \simeq F_{\circ}^{\times} \ltimes \langle s \rangle$ with $\lambda^s = \lambda^{-1}$ for all $\lambda \in F_{\circ}^{\times}$, and $G' = G^{\circ}(F) \simeq F_{\circ}^{\times}$; if $\varepsilon = -1$, then we have $G = G' = G^{\circ}(F) = \mathrm{SL}(V)$.

In the small dimension cases of the Remark 1.2, the lattice filtration of the Lie algebra of G attached to a point x of the building of G coincides with the filtration defined by Moy and Prasad in [MP]: it is a straightforward consequence of the definitions if G is a torus (see 3.5), and it is a consequence of [BL] if $G \simeq SL(2, F_{\circ})$. So from now on, we assume that

$$\dim_{F_{\circ}}(V) \ge 3.$$

Then G' is connected ([BT4] 1.5) and semisimple (see [PR] 2.3). In particular, G' is a subgroup of G° .

1.3. Root systems. Recall that a subspace W of V is called totally isotropic if $h(W, W) = \{0\}$. We fix a Witt decomposition

$$V = V_- \oplus V_0 \oplus V_+,$$

where V_- and V_+ are two isotropic subspaces of V of maximal dimension such that $V_- \cap V_+ = \{0\}$, and $V_0 = (V_- + V_+)^{\perp}$; here, for a subspace W of V, W^{\perp} denotes the subspace $\{x \in V : h(x, W) = 0\}$ of V. Put $n = \dim_F(V)$, $r = \dim_F(V_-)$ and $n_0 = n - 2r$ so we have $\dim_F(V_0) = n_0$. Note that r = 0 if and only if the form h is *anisotropic*. Put $I = \{\pm 1, \ldots, \pm r\}$ and let $(e_{-i})_{i=1,\ldots,r}$ and $(e_i)_{i=1,\ldots,r}$ be some basis of V_- and V_+ such that for all $i, j \in I$ and all $x \in V_0$, we have

$$h(e_i, e_j) = 0 \text{ if } i \neq -j$$

$$h(e_i, e_{-i}) = \varepsilon(i),$$

$$h(e_i, x) = 0,$$

$$q(x) \neq 0 \text{ if } x \neq 0;$$

where $\varepsilon(i) = 1$ if i > 0, and $\varepsilon(i) = \varepsilon$ if i < 0. Denote by h_0 the restriction of h to $V_0 \times V_0$. If $V_0 \neq 0$, h_0 is a non-degenerate anisotropic σ -skew ε -hermitian form h_0 on V_0 . Hence the form h is given by (for $\lambda_i, \mu_i \in F$ and $x, y \in V_0$):

$$h\left(\sum_{i\in I}\lambda_i e_i + x, \sum_{i\in I}\mu_i e_i + y\right) = \sum_{i\in I}\varepsilon(i)\lambda_i^{\sigma}\mu_{-i} + h_0(x,y).$$

Let S be the subgroup of G formed of those g satisfying $ge_i \in F_{\circ}e_i$ for all $i \in I$, and gx = x for all $x \in V_0$. We have $S \subset G'$, and S is the group of F_{\circ} -rational points of a maximal F_{\circ} -split torus **S** in \mathbf{G}° (hence in \mathbf{G}'). For $i \in I$, let a_i be the algebraic character of **S** given by $se_i = a_i(s)^{-1}e_i$. We have $a_{-i} = -a_i$ in the group $X^*(\mathbf{S})$ of algebraic characters of **S**, denoted additively. The a_i for i > 0 form a basis of $X^*(\mathbf{S})$. For $i, j \in I, j \neq \pm i$, put $a_{i,j} = a_i + a_j$. Let $\Phi = \Phi(\mathbf{S}, \mathbf{G})$ be the (relative) root system of **G**. We have the following cases ([BT1] 10.1), where $i, j \in I, j \neq \pm i$:

(B): $\Phi = \{a_i, a_{i,j}\}$ when $V_0 \neq \{0\}$ and $(\sigma, \varepsilon) = (\mathrm{Id}, 1)$; (BC): $\Phi = \{a_i, 2a_i, a_{i,j}\}$ when $V_0 \neq \{0\}$ and $\sigma \neq \mathrm{Id}$; (C): $\Phi = \{2a_i, a_{i,j}\}$ when $V_0 = \{0\}$ and $(\sigma, \varepsilon) \neq (\mathrm{Id}, 1)$; (D): $\Phi = \{a_{i,j}\}$ when $V_0 = \{0\}$ and $(\sigma, \varepsilon) = (\mathrm{Id}, 1)$.

The case (C) can be divided in two sub-cases: $V_0 = \{0\}$ and $(\sigma, \varepsilon) = (\mathrm{Id}, -1)$ (the symplectic case); $V_0 = \{0\}$ and $\sigma \neq \mathrm{id}$ (a quasi-split unitary case).

1.4. The groups $Z = Z_G(S)$ and $N = N_G(Z)$. For $i \in I$, put $V_i = Fe_i$. The centralizer Z of S in G is defined over F_\circ . Its group of F_\circ -rational points is the subgroup Z of G formed of those g satisfying $gV_i = V_i$ for all $i \in I \cup \{0\}$. We have $Z = \widetilde{Z} \cap G$ where \widetilde{Z} is the Levi subgroup of \widetilde{G} formed of those g satisfying $gV_i = V_i$ for all $i \in I \cup \{0\}$. The centralizer Z' of S in G' is also defined over F_0 .

(it is a Levi F_{\circ} -subgroup of a parabolic F_{\circ} -subgroup of G'), and coincides with $Z \cap G'$. Its group of F_{\circ} -rational points is $Z' = Z \cap G'$. Let us describe Z and Z'. For $z \in Z$, put $\mu(z) = \prod_{i=1}^{r} a_i(z)$.

Suppose first $V_0 = \{0\}$. Then the decomposition

$$V = V_{-r} \oplus \cdots \oplus V_{-1} \oplus V_1 \oplus \cdots \oplus V_r$$

allows us to represent each element $g \in \widetilde{G}$ by a matrix $(g_{i,j})_{i,j\in I}$. An element $z \in Z$ is represented by a diagonal matrix

$$\operatorname{diag}(z_{-r},\ldots,z_{-1},z_1,\ldots,z_r) \in \operatorname{GL}(2r,F)$$

such that $z_{-i}^{\sigma} z_i = 1$ for i = 1, ..., r. Moreover, we have $z \in Z'$ if and only if $\mu(z) \in F_{\circ}$. So the map $z \mapsto (a_1(z), ..., a_r(z))$ identifies Z with $(F^{\times})^r$, and the map $z \mapsto (a_1(z), ..., a_{r-1}(z), \mu(z))$ identifies Z' with $(F^{\times})^{r-1} \times F_{\circ}^{\times}$.

Now suppose $V_0 \neq \{0\}$. Then the decomposition

$$V = V_{-r} \oplus \cdots \oplus V_{-1} \oplus V_0 \oplus V_1 \oplus \cdots \oplus V_r$$

allows us to represent each element $g \in \widetilde{G}$ by a matrix $(g_{i,j})_{i,j \in I \cup \{0\}}$. An element $z \in Z$ is represented by a block diagonal matrix

$$diag(z_{-r}, \ldots, z_{-1}, z_0, z_1, \ldots, z_r) \in GL(2r + n_0, F)$$

such that $z_{-i}^{\sigma} z_i = 1$ for i = 1, ..., r, and $z_0 \in U(h_0)$. Moreover, we have $z \in Z'$ if and only if $\mu(z)^{-1}\mu(z)^{\sigma} \det(z_0) = 1$. So the map $z \mapsto (z_0^{-1}, a_1(z), ..., a_r(z))$ identifies Z with $U(h_0) \times (F^r)^{\times}$, and the map $z \mapsto (\mu(z)^{-1}\mu(z)^{\sigma} z_0, a_1(z), ..., a_r(z))$ identifies Z' with $SU(h_0) \times (F^{\times})^r$.

From the above description, the group Z' is a cocompact subgroup of Z. Since G = ZG', we obtain that G' is a cocompact subgroup of G. If $\dim_F(V_0) \leq 1$, then the connected component Z of Z° is a torus (hence a maximal torus of G°), and the groups G° and G' are quasi-split over F_{\circ} . Conversely, if G° is quasi-split over F_{\circ} , then $\dim_F(V_0) \leq 1$ ([BT4] 3.5). If $\sigma = \text{Id}$, we have $Z' = S = Z^{\circ}$ and $G' = G^{\circ}$.

The normalizer N of Z is the group of F_{\circ} -rational points of the F_{\circ} -subgroup N of G which stabilizes V_0 and permutes the lines V_i , $i \in I$. It is the semidirect product $\mathfrak{N} \ltimes Z$ where \mathfrak{N} is the subgroup of N which fixes (pointwise) V_0 and permutes the e_i , $i \in I$.

1.5. Root subgroups. For $i, j \in I, j \neq \pm i$ and $u \in F$, let $u_{i,j}(u) \in G$ be the linear transformation of V defined by

$$\begin{aligned} x &\mapsto x \text{ for all } x \in V_0, \\ e_i &\mapsto e_i + \varepsilon(-j)u^{\sigma}e_{-j}, \\ e_j &\mapsto e_j - \varepsilon(i)ue_{-i}, \\ e_k &\mapsto e_k \text{ for all } k \in I \smallsetminus \{i, j\}. \end{aligned}$$

The set $U_{a_{i,j}} = \{u_{i,j}(u) : u \in F\}$ is the group of F_{\circ} -rational points of the F_{\circ} -subgroup $U_{a_{i,j}}$ of G associated with the (relative) root $a_{i,j}$.

Suppose $V_0 \neq \{0\}$ (case (B) or (BC)). Recall that for $x \in V_0$ and $\mu \in F$, we have $\mu \in q(x)$ if and only if $\mu + \varepsilon \mu^{\sigma} = h(x, x)$; in particular if $\sigma = \text{Id}$ (case (B)), we have $q(x) = \frac{1}{2}h(x, x) \in F$. For $x \in V_0$ and $\mu \in q(x)$, let $u_i(x, \mu) \in G$ be the linear transformation of V defined by

$$y \mapsto y - \varepsilon(i)h(x, y)e_{-i} \text{ for all } y \in V_0,$$
$$e_i \mapsto e_i + x - \varepsilon(i)\mu e_{-i},$$
$$e_k \mapsto e_k \text{ for all } k \in I \smallsetminus \{i\}.$$

The set $U_{a_i} = \{u_i(x,\mu) : x \in V_0, \mu \in q(x)\}$ is the group of F_{\circ} -rational points of the

 F_{\circ} -subgroup U_{a_i} of G associated with the root a_i . Moreover if $\sigma \neq \text{Id}$ (case (BC)), the set $U_{2a_i} = \{u_i(0, v) : v \in F_{\sigma,\varepsilon}\}$ is the group of F_{\circ} -rational points of the F_{\circ} -subgroup U_{2a_i} of G associated with the root $2a_i$.

Suppose $V_0 = \{0\}$ and $(\sigma, \varepsilon) \neq (\mathrm{Id}, 1)$ (case (C)). For $i \in I$ and $v \in F_{\sigma,\varepsilon}$, let $u_i(0, v) \in G$ be the linear transformation of V defined by

$$e_i \mapsto e_i - \varepsilon(i)ve_{-i},$$
$$e_k \mapsto e_k \text{ for all } k \in I \smallsetminus \{i\}$$

The set $U_{2a_i} = \{u_i(0, v) : v \in F_{\sigma,\varepsilon}\}$ is the group of F_{\circ} -rational points of the F_{\circ} -subgroup U_{2a_i} of G associated with the root $2a_i$.

Let v_F be the unique valuation on F extending the normalized valuation on F_{\circ} , i.e. such that $v_F(F_{\circ}^{\times}) = \mathbb{Z}$. Recall that $(Z, (U_a)_{a \in \Phi})$ is a generating root datum in G ([BT1] 6.1.1, 6.1.3.c and 10.1.6). Let $\varphi = (\varphi_a)_{a \in \Phi}$ be the valuation of $(Z, (U_a)_{a \in \Phi})$ given by:

$$\varphi_{a_{i,j}}(u_{i,j}(u)) = v_F(u) \text{ for } i, j \in I, i \neq \pm j, u \in F;$$

$$\varphi_{a_i}(u_i(x,\mu)) = \frac{1}{2}v_F(\mu) \text{ for } i \in I, x \in V_0, \mu \in q(x) \text{ (case (B) or (BC))};$$

$$\varphi_{2a_i}(u_i(0,v)) = v_F(v) \text{ for } i \in I, v \in F_{\sigma,\varepsilon} \text{ (case (BC) or (C))}.$$

1.6. Building, norms and lattice-functions. Let $\mathcal{I} = \mathcal{I}(\boldsymbol{G}, F_{\circ})$ be the (nonenlarged) Bruhat-Tits building of G, i.e. the building of the valuated root datum $(Z, (U_a)_{a \in \Phi}, \varphi)$. Since \boldsymbol{G}' is semisimple and G' is cocompact in G, the connected centre of \boldsymbol{G}° is an anisotropic F-torus; thus we have $\mathcal{I} = \mathcal{I}(\boldsymbol{G}^{\circ}, F_{\circ}) = \mathcal{I}(\boldsymbol{G}', F_{\circ})$ and \mathcal{I} coincides with the enlarged building of $\boldsymbol{G}^{\circ}(F)$. Let \mathcal{A} be the apartment of \mathcal{I} attached to the maximal F_{\circ} -split torus \boldsymbol{S} of \boldsymbol{G} . It is an affine space with underlying space $A = \operatorname{Hom}_{\mathbb{Z}}(X^*(\boldsymbol{S}), \mathbb{R})$. We identify \mathcal{A} with A by taking $\varphi \in \mathcal{A}$ as the origin (cf. [BT1], §10). Thus $X^*(\boldsymbol{S}) \otimes_{\mathbb{Z}} \mathbb{R}$ becomes identified with the dual space $\operatorname{Hom}_{\mathbb{R}}(\mathcal{A}, \mathbb{R})$.

Let $\tilde{\mathcal{I}}^1$ be the enlarged building of \tilde{G} , and $\mathcal{N}^1 = \operatorname{Norm}^1_F(V)$ be the set of (F-)norms on V ([BT3] 1.1); recall that since F is complete, each norm on V

splits with respect to an F-basis of V. The group \widetilde{G} acts naturally on \mathbb{N}^1 by $g \cdot \alpha(v) = \alpha(g^{-1}v)$ for $g \in \widetilde{G}$, $\alpha \in \mathbb{N}^1$ and $v \in V$. Moreover, \mathbb{N}^1 is endowed with an *affine structure* ([BT3] 1.27). From [BT3] 2.11, there exists a bijective \widetilde{G} -equivariant affine map $j : \widetilde{J}^1 \to \mathbb{N}^1$; moreover, up to translation by a real number, j is the unique \widetilde{G} -equivariant affine map from \widetilde{J}^1 to \mathbb{N}^1 . Let $\mathcal{L}^1 = \text{Latt}^1_{\mathfrak{o}_F}(V)$ be the set of (\mathfrak{o}_F) -lattice-functions in V ([BL] 2.1), where \mathfrak{o}_F denotes the ring of integers of F. The group \widetilde{G} acts on \mathcal{L}^1 via its action on V. For $\alpha \in \mathbb{N}^1$, let Λ_{α} be the \mathfrak{o}_F -lattice-function in V defined by

$$\Lambda_{\alpha}(r) = \{ v \in V : \alpha(v) \ge r \}, \quad r \in \mathbb{R},$$

and for $\Lambda \in \mathcal{L}^1$, let α_{Λ} be the norm on V defined by

$$\alpha_{\Lambda}(v) = \sup\{r \in \mathbb{R} : v \in \Lambda(r)\}, \quad v \in V.$$

The maps $\mathcal{N}^1 \to \mathcal{L}^1$, $\alpha \mapsto \Lambda_{\alpha}$ and $\mathcal{L}^1 \to \mathcal{N}^1$, $\Lambda \mapsto \alpha_{\Lambda}$ are bijective, \widetilde{G} -equivariant and mutually inverse ([BL] 2.4); via these maps, we transfer to \mathcal{L}^1 the affine structure on \mathcal{N}^1 . For $p \in \mathcal{I}^1$, denote by Λ_p the \mathfrak{o}_F -lattice-function $\Lambda_{j(p)}$ in V. By construction, the map $\tilde{\mathcal{I}}^1 \to \mathcal{L}^1$, $p \mapsto \Lambda_p$ is bijective, \widetilde{G} -equivariant and affine, and up to translation by a real number, it is the unique \widetilde{G} -equivariant affine map from $\tilde{\mathcal{I}}^1$ to \mathcal{L}^1 .

Remark 1.3. Let $\tilde{\mathbb{J}}$ be the (non-enlarged) building of \tilde{G} , and let \mathcal{V}^1 be the \mathbb{R} -vector space $\operatorname{Hom}_{\mathbb{Z}}(X^*(\tilde{G}), \mathbb{R})$, where $X^*(\tilde{G})$ denotes the free \mathbb{Z} -module of rank 1 generated by the character det : $\tilde{G} \to F^{\times}$. We have the decomposition $\tilde{\mathbb{J}}^1 = \tilde{\mathbb{J}} \times \mathcal{V}^1$, and the action of \tilde{G} on $\tilde{\mathbb{J}}^1$ is given by the map

$$\tilde{G} \times (\tilde{\mathbb{I}} \times \mathcal{V}^1), \, (g, (\bar{p}, v)) \mapsto g \cdot (x, v) = (g \cdot \bar{p}, v + \theta(v))$$

where $\theta(g) \in \mathcal{V}^1$ is defined by $\langle \det, \theta(g) \rangle = -v_F(\det(g))$. We also have some natural actions of \mathbb{R} on \mathcal{N}^1 and on \mathcal{L}^1 , given by the maps

$$\mathbb{R} \times \mathcal{N}^1 \to \mathcal{N}^1, \, (r, \alpha) \mapsto \alpha + r, \quad \mathbb{R} \times \mathcal{L}^1 \to \mathcal{L}^1, \, (r, \Lambda) \mapsto r \cdot \Lambda,$$

where $(\alpha + r)(v) = \alpha(v) + r$ for all $v \in V$, and $(r \cdot \Lambda)(r') = \Lambda(r' - r)$ for all $r' \in \mathbb{R}$. Let \mathcal{N} (resp. \mathcal{L}) be the quotient of \mathcal{N}^1 (resp. \mathcal{L}^1) by the action of \mathbb{R} . The actions of \widetilde{G} on \mathcal{N}^1 and \mathcal{L}^1 induce some actions on \mathcal{N} and \mathcal{L} , and the affine structures on \mathcal{N}^1 and \mathcal{L}^1 induce some affine structures on \mathcal{N} and \mathcal{L} . The maps $j: \widetilde{\mathcal{I}}^1 \to \mathcal{N}^1$ and $\mathcal{N}^1 \to \mathcal{L}^1$, $\alpha \mapsto \Lambda_{\alpha}$ induce some maps $\widetilde{\mathcal{I}} \to \mathcal{N}$ and $\mathcal{N} \to \mathcal{L}$ which are bijective, \widetilde{G} -equivariant and affine. So we obtain a canonical bijective \widetilde{G} -equivariant affine map $\widetilde{\mathcal{I}} \to \mathcal{N}$ (resp. $\widetilde{\mathcal{I}} \to \mathcal{L}$): it is the unique \widetilde{G} -equivariant affine map from $\widetilde{\mathcal{I}}$ to \mathcal{N} (resp. from $\widetilde{\mathcal{I}}$ to \mathcal{L}).

The valuation v_F is an F_{\circ} -norm on F, and we define an F_{\circ} -norm \overline{v}_F on the F_{\circ} -space $\overline{F}_{\sigma,\varepsilon} = F/F_{\sigma,\varepsilon}$:

$$\overline{v}_F = \sup\{v_F(\lambda + \mu - \varepsilon \mu^{\sigma}) : \mu \in F\}, \quad \lambda \in F.$$

Since F is complete, $F_{\sigma,\varepsilon}$ is closed in F and \overline{v}_F is well-defined. Let us recall the definition 2.1 of [BT4]:

Definition 1.4. Let $\alpha \in \mathbb{N}^1$. We write $\alpha \leq h$ (" α minore h" in French) if

$$\alpha(x) + \alpha(y) \le v_F(h(x, y))$$
 for all $x, y \in V$

We write $\alpha \leq (h,q)$ (" α minore (h,q)" in French) if $\alpha \leq h$ and

 $\alpha(x) \leq \frac{1}{2}\overline{v}_F(q(x)) \quad \text{for all } x \in V.$

We say that α is an MM-norm ("norme maximinorante" in French) for h (resp. for (h,q)) if $\alpha \leq h$ (resp. $\alpha \leq (h,q)$) and α is maximal for this property.

Let \mathcal{N}_h^1 be the subset of \mathcal{N}^1 formed of the MM-norms for h, and $\mathcal{N}_{h,q}^1$ be the subset of \mathcal{N}_h^1 formed of the MM-norms for (h,q).

Definition 1.5. We say that we are in the tame case if one of the following two conditions is satisfied:

$$(\sigma, \varepsilon) = (id, -1), i.e. \ q = 0;$$

the extension F/F_{\circ} is tamely ramified.

If we are in the tame case, then we have $\mathcal{N}_{h,q}^1 = \mathcal{N}_h^1$ ([BT4] 2.2). Let $v_{V_0} = v_{V_0,h_0}$ be the F_{\circ} -norm on V_0 defined by

$$v_{V_0}(x) = \frac{1}{2}\overline{v}_F(q(x)), \quad x \in V_0.$$

Thus we have

$$v_{V_0}(x) = \frac{1}{2} \sup\{v_F(\lambda) : \lambda + \varepsilon \lambda^{\sigma} = h(x, x)\}, \quad x \in V_0.$$

Remark 1.6. Suppose $\varepsilon = 1$, and let ξ be an element of F such that $\xi + \xi^{\sigma} = 1$ and $v_F(\xi) \ge v_F(\xi')$ for all $\xi' \in F$ such that $\xi' + \xi'^{\sigma} = 1$. Put $l = \frac{1}{2}v_F(\xi)$. We have $l \le 0$ with equality if and only if the extension F/F_{\circ} is quadratic unramified or the residual characteristic of F_{\circ} is not 2 (i.e. the extension F/F_{\circ} is tamely ramified if $\sigma \neq \mathrm{Id}$, and the residual characteristic of F_{\circ} is not 2 if $\sigma = \mathrm{Id}$). If $\sigma = \mathrm{Id}$, we have $\xi = \frac{1}{2}$. If $\sigma \neq \mathrm{Id}$, we can take $\xi = \frac{1}{2}$ if and only if and l = 0. Since $\varepsilon = 1$, for all $x \in V_0$, we have $h(x, x) \in F_{\circ}$ and

$$q(x) = \{\xi h(x, x) + \mu - \mu^{\sigma} : \mu \in F\} = \{\xi' h(x, x) : \xi' \in F, \, \xi' + \xi'^{\sigma} = 1\}.$$

Hence we obtain

$$v_{V_{\alpha}}(x) = \frac{1}{2}v_F(h(x,x)) + l, \quad x \in V_0.$$

In particular if the residual characteristic of F_{\circ} is not 2, then the F_{\circ} -norm v_{V_0} on V_0 is the one used by Broussous and Stevens [BS].

For $p \in \mathcal{A}$ (= A), let α_p be the MM-norm for (h,q) on V defined by ([BT4] 2.9):

$$\alpha_p(x_0 + \sum_{i \in I} \lambda_i e_i) = \inf(v_{V_0}(x_0), \inf_{i \in I}(v_F(\lambda_i) - a_i(p))),$$

where $\lambda_i \in F$ and $x_0 \in V_0$. The map $\mathcal{A} \to \mathcal{N}_{h,q}^1$, $p \mapsto \alpha_p$ is injective (loc. cit.) and N-equivariant ([BT4] 2.11), and it extends in a unique way to a G-equivariant map $\mathcal{I} \to \mathcal{N}_{h,q}^1$, $p \mapsto \alpha_p$ which is bijective and affine ([BT4] 2.12); moreover, this is the unique G-equivariant affine map from \mathcal{I} to $\mathcal{N}_{h,q}^1$ (loc. cit.). Via j, the building \mathcal{I} identifies with a G-stable convex subset of $\tilde{\mathcal{I}}^1$. Note that the apartment \mathcal{A} of \mathcal{I} is the intersection of \mathcal{I} with an apartment $\tilde{\mathcal{A}}^1$ of $\tilde{\mathcal{I}}^1$ (cf. [BT4] 2.14). Put

$$\mathcal{L}_h^1 = \{\Lambda_\alpha : \alpha \in \mathcal{N}_h^1\}.$$

and

$$\mathcal{L}^1_{h,q} = \{\Lambda_\alpha : \alpha \in \mathcal{N}^1_{h,q}\}.$$

By construction, $\mathcal{L}_{h,q}^1$ is a *G*-stable convex subset of \mathcal{L}^1 , and the map $\tilde{\mathcal{I}}^1 \to \mathcal{L}^1$, $p \mapsto \Lambda_p$ induces by restriction a bijective, *G*-equivariant and affine map $\mathcal{I} \to \mathcal{L}_{h,q}^1$, which is the unique *G*-equivariant affine map from \mathcal{I} to $\mathcal{L}_{h,q}^1$.

Let $\alpha \mapsto \overline{\alpha}$ be the involution on \mathcal{N}^1 defined by ([BT4] 2.5)

$$\overline{\alpha}(x) = \inf_{y \in V} (v_F(h(x, y) - \alpha(y)), \quad x \in V.$$

A norm α on V is a MM-norm for h if and only if $\overline{\alpha} = \alpha$ (loc. cit.). In other terms, a norm α on V is a MM-norm for h if and only if the lattice-function Λ_{α} in V is self-dual in the sense of [BS] ch. 3 (the proof of Corollary 3.4 applies in the same manner). So \mathcal{L}_{h}^{1} is the set of self-dual lattice-functions in V, and it coincides with $\mathcal{L}_{h,q}^{1}$ if we are in the tame case.

1.7. Square lattice-functions. Denote by $\tilde{\mathfrak{g}} = \operatorname{Lie}(\tilde{G})$ the Lie algebra of \tilde{G} , and by $\mathfrak{g} = \operatorname{Lie}(G)$ that of G. So we have $\tilde{\mathfrak{g}} = \operatorname{End}_F(V)$. For $g \in \tilde{\mathfrak{g}}$, denote by g^{σ_h} the adjoint of g with respect to h, i.e. the unique element of $\tilde{\mathfrak{g}}$ such that $h(gx, y) = h(x, g^{\sigma_h} y)$ for all $x, y \in V$. The map $\tilde{\mathfrak{g}} \to \tilde{\mathfrak{g}}, g \mapsto g^{\sigma_h}$ is an involution, and we have $\mathfrak{g} = \{g \in \tilde{\mathfrak{g}} : g + g^{\sigma_h} = 0\}$. For $\Lambda \in \mathcal{L}^1$, denote by $\operatorname{End}(\Lambda)$ the $(\mathfrak{o}_F$ -)lattice-function in $\tilde{\mathfrak{g}}$ defined by

$$\operatorname{End}(\Lambda)(r) = \{ g \in \tilde{\mathfrak{g}} : g\Lambda(s) \subset \Lambda(s+r), \ s \in \mathbb{R} \}, \quad r \in \mathbb{R}$$

The lattice-functions in $\tilde{\mathfrak{g}}$ arising in this way are called *square lattice-functions*. Let $\mathcal{L}^2 = \operatorname{Latt}^2_{\mathfrak{o}_F}(\tilde{\mathfrak{g}})$ be the set of square lattice-functions in $\tilde{\mathfrak{g}}$. For $p \in \tilde{\mathfrak{I}}$, we put

$$\tilde{\mathfrak{g}}_{p,r} = \operatorname{End}(\Lambda_p)(r), \quad r \in \mathbb{R}.$$

The group \widetilde{G} acts on \mathcal{L}^2 via its action on $\tilde{\mathfrak{g}}$, and the map $\widetilde{\mathfrak{I}}^1 \to \mathcal{L}^2$, $p \mapsto \tilde{\mathfrak{g}}_{p,\cdot}$ is surjective and \widetilde{G} -equivariant ([BL] §4).

Remark 1.7. The map $\tilde{\mathcal{I}}^1 \to \mathcal{L}^1$, $p \mapsto \Lambda_p$ depends on the choice of $j : \tilde{\mathcal{I}}^1 \to \mathcal{N}^1$, but the map $\tilde{\mathcal{I}}^1 \to \mathcal{L}^2$, $p \mapsto \tilde{\mathfrak{g}}_{p,\cdot}$ does not depend on it. In fact, for Λ , $\Lambda' \in \mathcal{L}^1$, we have $\operatorname{End}(\Lambda') = \operatorname{End}(\Lambda)$ if and only if there exists $r \in \mathbb{R}$ such that $\Lambda' = r \cdot \Lambda$ ([BT3] 1.13). In particular, the map $\tilde{\mathcal{I}}^1 \to \mathcal{L}^2$, $p \mapsto \tilde{\mathfrak{g}}_{p,\cdot}$ factorizes through the nonenlarged building $\tilde{\mathcal{I}}$ (cf. Remark 1.3). We obtain a bijective and \tilde{G} -equivariant map $\tilde{\mathcal{I}} \to \mathcal{L}^2$.

The involution σ_h on $\tilde{\mathfrak{g}}$ induces also an involution on \mathcal{L}^2 , still denoted by σ_h : for $\Lambda \in \mathcal{L}^1$, we put

$$\operatorname{End}(\Lambda)^{\sigma_h}(r) = \operatorname{End}(\Lambda)(r)^{\sigma_h}.$$

Let \mathcal{L}_{h}^{2} be the subset of \mathcal{L}^{2} formed of those lattice-functions which are σ_{h} -invariant. For $\alpha \in \mathcal{N}^{1}$, we have ([BT4] 2.5)

$$\operatorname{End}(\Lambda_{\alpha})^{\sigma_h} = \operatorname{End}(\Lambda_{\overline{\alpha}}).$$

This implies (loc. cit., Cor. 2) that the map $\mathcal{L}^1 \to \mathcal{L}^2$, $\Lambda \mapsto \operatorname{End}(\Lambda)$ induces a bijection from \mathcal{L}^1_h to \mathcal{L}^2_h . Thus if we are in the tame case, then the map $\tilde{\mathcal{I}}^1 \to \mathcal{L}^2$, $p \mapsto \tilde{\mathfrak{g}}_{p,\cdot}$ induces a *G*-equivariant bijection from \mathcal{I} to \mathcal{L}^2_h .

Let p be a point of \mathfrak{I} . Let $\mathfrak{g}_{p,\cdot}$ be the \mathfrak{o}_{F_\circ} -lattice-function in \mathfrak{g} defined by

$$\mathfrak{g}_{p,r} = \tilde{\mathfrak{g}}_{p,r} \cap \mathfrak{g} = \{g \in \mathfrak{g} : g\Lambda_p(s) \subset \Lambda_p(s+r), s \in \mathbb{R}\}, \quad r \in \mathbb{R},$$

and let $(\mathfrak{g}_{p,r}^{\mathrm{MP}})_{r\in\mathbb{R}}$ be the filtration of \mathfrak{g} attached to p by Moy and Prasad ([MP], see 3.5). The following theorem is the main result of this paper.

Theorem 1.8. For all $p \in \mathcal{I}$, we have

$$\mathfrak{g}_{p,r} = \mathfrak{g}_{p,r}^{\mathrm{MP}}, \quad r \in \mathbb{R}.$$

2. Reduction to the quasi-split case

2.1. Extension of the base field. Let L_{\circ} be a finite extension of F_{\circ} . Put $L = L_{\circ} \otimes_{F_{\circ}} F$. It is a commutative L_{\circ} -algebra, endowed with an involution $\mathrm{Id} \otimes \sigma$, still denoted by σ . The field L_{\circ} is the set of fixed points of σ in L. Since F is a separable extension of F_{\circ} of degree ≤ 2 , there are two cases: L is field, in which case it is an extension of degree $[F:F_{\circ}]$ of L_{\circ} ; or L is a cyclic L_{\circ} -algebra with group $\Sigma = \{1, \sigma\}$, i.e. a product $L_1 \times L_2$ of two extension L_1 and L_2 of F_{\circ} isomorphic to L_{\circ} , such that $\sigma L_1 = L_2$. Denote by $L_{\sigma,\varepsilon}$ the L_{\circ} -vector space $L_{\circ} \otimes_{F_{\circ}} F_{\sigma,\varepsilon}$. So $\overline{F}_{\sigma,\varepsilon}$ identifies with an F_{\circ} -subspace of $\overline{L}_{\sigma,\varepsilon} = L/L_{\sigma,\varepsilon}$. Moreover, we have

$$L_{\sigma,\varepsilon} = \{\lambda - \varepsilon \lambda^{\sigma} : \lambda \in L\} = \{\lambda \in L : \lambda^{\sigma} = -\varepsilon \lambda\}.$$

Denote by V_L the *L*-vector-space $L_{\circ} \otimes_{F_{\circ}} V = L \otimes_F V$. Even if *L* is not a field, by replacing F_{\circ} with L_{\circ} and *F* with *L*, we define the notion of σ -skew ε -hermitian form on V_L . The σ -skew ε -hermitian form *h* on *V* extends to a σ -skew ε -hermitian form h_L on V_L , which is non-degenerate since *h* is nondegenerate. Let $q_L = q_{h_L} : V_L \to \overline{L}_{\sigma,\varepsilon}$ be the pseudo-quadratic form associated with h_L as in 1.1. Put $\widetilde{G}_L = \operatorname{GL}(V_L)$ and let $G_{L_{\circ}} = \operatorname{U}(h_L)$ the subgroup of \widetilde{G}_L formed of those *g* satisfying $h_L(gx, gy) = h_L(x, y)$ for all $x, y \in V_L$. Then $G_{L_{\circ}}$ is the group of L_{\circ} -rational points of the L_{\circ} -algebraic group $\mathbf{G}_{L_{\circ}} = \mathbf{G} \times_{F_{\circ}} L_{\circ}$. Put $\mathfrak{g}_{L_{\circ}} = \operatorname{Lie}(G_{L_{\circ}})$; so we have $\mathfrak{g}_{L_{\circ}} = L_{\circ} \otimes_{F_{\circ}} \mathfrak{g}$.

Let us consider the first case: L is a field. We can replace F_{\circ} with L_{\circ} and F with L in all the constructions of chapter 1. In particular for $p \in \mathcal{I}_{L_{\circ}} = \mathcal{I}(\boldsymbol{G}_{L_{\circ}}, L_{\circ})$,

denote by $\mathfrak{g}_{L_{\circ},p,\cdot}$ the square $\mathfrak{o}_{L_{\circ}}$ -lattice-function in $\mathfrak{g}_{L_{\circ}}$ defined in 1.7, and by $(\mathfrak{g}_{L_{\circ},p,\cdot}^{\mathrm{MP}})_{r\in\mathbb{R}}$ the filtration of $\mathfrak{g}_{L_{\circ}}$ attached to p by Moy and Prasad.

2.2. The case $L_{\circ} \otimes_{F_{\circ}} F \simeq (L_{\circ})^2$. Now let us consider the second case: $L \simeq (L_{\circ})^2$. Then $[F:F_{\circ}] = 2$ and, up to F_{\circ} -isomorphism, F is contained in L_{\circ} . So we can (and do) assume $F \subset L_{\circ}$ and $L = (L_{\circ})^2$. The embedding $F \to L$, $\lambda = 1 \otimes \lambda$ identifies F with the subset $\{(\lambda, \lambda^{\sigma}) : \lambda \in F\}$, and for $\lambda, \mu \in F$, we have $(\lambda, \mu)^{\sigma} = (\mu, \lambda)$. Let $\xi_1 = (1, 0)$ and $\xi_2 = (0, 1)$ be the two minimal idempotents of L.

If X is an F-vector-space, the L-vector space $X_L = L_{\circ} \otimes_{F_{\circ}} X = L \otimes_F X$ is a product of two copies of $X_{L_{\circ}} = L_{\circ} \otimes_F X$: putting $X_{L_{\circ},i} = \xi_i X_L$, we have

$$L_{\circ} \otimes_{F_{\circ}} X = X_{L_{\circ},1} \times X_{L_{\circ},2}$$

In particular we have

$$V_L = V_{L_{\circ},1} \times V_{L_{\circ},2}.$$

For i = 1, 2, we have $gV_{L_{\circ},i} \subset V_{L_{\circ},i}$ for all $g \in \operatorname{End}_{L}(V_{L})$. Thus we have

$$\operatorname{End}_{L}(V_{L}) = \operatorname{End}_{L_{\circ}}(V_{L_{\circ},1}) \times \operatorname{End}_{L_{\circ}}(V_{L_{\circ},2})$$

with $\operatorname{End}_{L_{\circ}}(V_{L_{\circ},i}) = \xi_{i}\operatorname{End}_{L}(V_{L})$, identifying L_{\circ} with $\xi_{i}L$. Since h is nondegenerate, the map $x \mapsto h(x, \cdot)$ defines a σ -isomorphism from V to the dual space $V^{*} = \operatorname{Hom}_{F}(V, F)$, and by extension of scalars, the map $x \mapsto h_{L}(x, \cdot)$ defines a σ -isomorphism from V_{L} to the dual space $V_{L}^{*} = \operatorname{Hom}_{L}(V_{L}, L) = (V^{*})_{L}$. Since $\xi_{1}^{\sigma} = \xi_{2}$ and $\xi_{1}\xi_{2} = 0$, for i = 1, 2 and $x, y \in V_{L_{\circ},i}$, we have

$$h_L(x,y) = h_L(\xi_i x, \xi_i y) = \xi_i \xi_i^{\sigma} h_L(x,y) = 0.$$

Hence $V_{L_{\circ,1}}$ and $V_{L_{\circ,2}}$ are two maximal totally isotropic subspaces of V_L . Thus we obtain that the map $x \mapsto h_L(x, \cdot)$ induces an isomorphism of L_{\circ} -vector spaces

$$\varphi: V_{L_{\circ},1} \to V_{L_{\circ},2}^* = \operatorname{Hom}_{L_{\circ}}(V_{L_{\circ},2}, L_{\circ}).$$

Now let $g = (g_1, g_2) \in \widetilde{G}_L = \operatorname{GL}(V_{L_0,1}) \times \operatorname{GL}(V_{L_0,2})$. By definition, we have $g \in \operatorname{U}(h_L)$ if and only if $\varphi(g_1x_1)(g_2x_2) = \varphi(x_1)(x_2)$ for all $(x_1, x_2) \in V_{L_0,1} \times V_{L_0,2}$, i.e. if and only if

$$g_2 = {}^{\mathrm{t}}\varphi^{-1} \circ {}^{\mathrm{t}}g_1^{-1} \circ {}^{\mathrm{t}}\varphi.$$

So by restriction the map $\widetilde{G}_L \to \operatorname{GL}(V_{L_{\circ,1}}), (g_1, g_2) \mapsto g_1$ gives an isomorphism of groups $\iota : \mathrm{U}(h_L) \to \operatorname{GL}(V_{L_{\circ,1}})$ which is defined over L_{\circ} , i.e. which comes from an isomorphism of algebraic groups defined over L_{\circ} . Moreover, ι restricts to an isomorphism of groups $\iota' : \operatorname{SU}(h_L) \to \operatorname{SL}(V_{L_{\circ,1}})$ which is also defined over L_{\circ} .

Let $\mathcal{J}_{L_{\circ}} = \mathcal{I}(\mathbf{G}_{L_{\circ}}, L_{\circ})$ be the (non-enlarged) building of $G_{L_{\circ}} = \mathrm{U}(h_L)$, and $\mathcal{L}_{L_{\circ,1}}$ be the quotient of $\mathcal{L}_{L_{\circ,1}}^1 = \mathrm{Latt}_{\mathfrak{o}_{L_{\circ}}}^1(V_{L_{\circ,1}})$ by the action of \mathbb{R} (cf. Remark 1.3). The group $\mathrm{GL}(V_{L_{\circ,1}})$ acts on $\mathcal{I}_{L_{\circ}}$ via ι , and from the Remark 1.3, there exists a *unique* $\mathrm{GL}(V_{L_{\circ,1}})$ -equivariant affine map $\mathcal{I}_{L_{\circ}} \to \mathcal{L}_{L_{\circ,1}}$, still denoted by ι . Let p be a point of $\mathcal{I}_{L_{\circ}}$. Let $\mathfrak{g}_{L_{\circ,p}}$ be the $\mathfrak{o}_{L_{\circ}}$ -lattice-function in $\mathfrak{g}_{L_{\circ}}$ defined by

$$\mathfrak{g}_{L_{\circ},p,r} = \operatorname{Lie}(\iota)^{-1}(\operatorname{End}_{L_{\circ}}(V_{L_{\circ},1})_{\iota(p),r}), \quad r \in \mathbb{R}.$$

Let also $(\mathfrak{g}_{L_{\circ},p,r}^{\mathrm{MP}})_{r\in\mathbb{R}}$ be the filtration of $\mathfrak{g}_{L_{\circ}}$ attached to p by Moy and Prasad.

Remark 2.1. Suppose L_{\circ}/F_{\circ} is a Galois extension with Galois group Γ . Then we can make the action of Γ on $G_{L_{\circ}}$ explicit ([BT4] 1.13, Rem.). Let Γ' be the subgroup $\operatorname{Gal}(L_{\circ}/F)$ of Γ . The group Γ acts naturally on $V_L = L_{\circ} \otimes_{F_{\circ}} V$ and on $\operatorname{End}_L(V_L) = L_{\circ} \otimes_{F_{\circ}} \operatorname{End}_F(V)$. For i = 1, 2, the subspace $V_{L_{\circ},i}$ of V_L is Γ' -stable, whence we have a natural action of Γ' on $\operatorname{End}_{L_{\circ}}(V_{L_{\circ},i})$. If $\gamma \in \Gamma \smallsetminus \Gamma'$, i.e. if the restriction of γ to F is σ , the automorphism $\gamma \otimes \operatorname{Id}$ of $\operatorname{End}_L(V_L)$, denoted by $g \mapsto g^{\gamma}$, induces two γ -isomorphisms $\operatorname{End}_{L_{\circ}}(V_{L_{\circ},1}) \to \operatorname{End}_{L_{\circ}}(V_{L_{\circ},2})$ and $\operatorname{End}_{L_{\circ}}(V_{L_{\circ},2}) \to \operatorname{End}_{L_{\circ}}(V_{L_{\circ},1})$, still denoted by $g \mapsto g^{\gamma}$. Then for $\gamma \in \Gamma$ and $(g_1, g_2) \in \operatorname{End}_{L_{\circ}}(V_{L_{\circ},1}) \times \operatorname{End}_{L_{\circ}}(V_{L_{\circ},2})$, we have

$$\begin{split} (g_1,g_2)^{\gamma} &= (g_1^{\gamma},g_2^{\gamma}) & \text{if } \gamma \in \Gamma', \\ (g_1,g_2)^{\gamma} &= (g_2^{\gamma},g_1^{\gamma}) & \text{if } \gamma \in \Gamma \smallsetminus \Gamma' \end{split}$$

In particular, the map $\iota : U(h_L) \to GL(V_{L_o,1})$ is Γ' -equivariant, and for $\gamma \in \Gamma \smallsetminus \Gamma'$ and $g = (g_1, g_2) \in U(h_L)$, we have

$$g^{\gamma} = (g_2^{\gamma}, g_1^{\gamma}) = (({}^{\mathsf{t}} \varphi^{-1} \circ {}^{\mathsf{t}} g_1^{-1} \circ {}^{\mathsf{t}} \varphi)^{\gamma}, g_1^{\gamma}).$$

2.3. Unramified descent: buildings. Let us turn to the general case: L is a field or $L \simeq (L_{\circ})^2$. Suppose moreover that the extension L_{\circ}/F_{\circ} is unramified, and let Γ be the group $\operatorname{Gal}(L_{\circ}/F_{\circ})$. We know ([BT4] 4.1) that there exists a unique G-equivariant and affine map $\mathfrak{I} \to \mathfrak{I}_{L_{\circ}}$, whose image is the subset $(\mathfrak{I}_{L_{\circ}})^{\Gamma}$ formed of those points which are fixed by Γ .

We can describe the canonical bijection $\mathfrak{I} \to (\mathfrak{I}_{L_o})^{\Gamma}$ in terms of norms (resp. of lattice-functions). Let v_{L_o} be the normalized valuation on L_o . The L_o -algebra L is endowed with the L_o -algebra norm v_L defined by $v_L = v_{L_o} \otimes v_F$. The ring of integers $\mathfrak{o}_L = \mathfrak{o}_{L_o} \otimes_{\mathfrak{o}_{F_o}} \mathfrak{o}_F$ of L coincides with the set of $\lambda \in L$ such that $v_L(\lambda) = 0$. Let $\mathcal{N}_L^1 = \operatorname{Norm}_L^1(V_L)$ be the set of L-norms on V_L , and $\mathcal{L}_L^1 = \operatorname{Latt}_{\mathfrak{o}_L}^1(V_L)$ be the set of \mathfrak{o}_L -lattice-functions in V_L . We define, as in 1.6, the subsets $\mathcal{N}_{L,(h_L,q_L)}^1 \subset \mathcal{N}_{L,h_L}^1$ of \mathcal{N}_L^1 (Definition 1.4 is valid even if L is not a field), and the subsets $\mathcal{L}_{L,(h_L,q_L)}^1 \subset \mathcal{L}_{L,h_L}^1$ of \mathcal{L}_L^1 . For $\alpha \in \mathcal{N}^1$, denote by α_L the L-norm $v_{L_o} \otimes \alpha$ on V_L , and, for $\Lambda \in \mathcal{L}^1$, denote by Λ_L the \mathfrak{o}_L -lattice-function in V_L defined by $\Lambda_L(r) = \mathfrak{o}_{L_o} \otimes_{\mathfrak{o}_{F_o}} \Lambda(r), r \in \mathbb{R}$. For $\alpha \in \mathcal{N}_L^1$, denote by Λ_α the \mathfrak{o}_L lattice-function in V_L defined (as in 1.6) by $\Lambda_\alpha(r) = \{v \in V_L : \alpha(v) \ge r\}, r \in \mathbb{R}$. Hence we have $\Lambda_{\alpha_L} = (\Lambda_\alpha)_L$, for all $\alpha \in \mathcal{N}^1$. On the other hand, the group Γ acts naturally on $\mathcal{N}_L^1 \to \mathcal{L}_L^1, \alpha \mapsto \Lambda_\alpha$ is Γ -equivariant.

The map $\alpha \mapsto \alpha_L$ from \mathbb{N}^1 to \mathbb{N}_L^1 is injective, \widetilde{G} -equivariant and affine, and it induces a bijection onto the convex subset $(\mathbb{N}_L^1)^{\Gamma}$ of \mathbb{N}_L^1 formed by those norms which are Γ -invariant. If $\alpha \in \mathbb{N}$, from [BT4] 4.2, we have $\alpha \leq (h, q)$ if and only if $\alpha_L \leq (h_L, q_L)$. Hence the map $\alpha \mapsto \alpha_L$ induces a *G*-equivariant affine bijection from $\mathbb{N}_{h,q}^1$ to the convex subset $\mathbb{N}_{L,(h_L,q_L)}^{1,\natural}$ of $(\mathbb{N}_L^1)^{\Gamma}$ formed by those norms β such that $\beta \leq (h_L, q_L)$ and which are maximal for this property. A priori we have the inclusion $(\mathbb{N}_{L,(h_L,q_L)}^1)^{\Gamma} \subset \mathbb{N}_{L,(h_L,q_L)}^{1,\natural}$, but we know this inclusion is an equality ([BT4] 4.7 and 4.9).

First case: L is a field. From 1.6, there exists a unique $G_{L_{\circ}}$ -equivariant affine map $\mathcal{I}_{L_{\circ}} \to \mathcal{N}_{L,(h_{L},q_{L})}^{1}$, which is Γ -equivariant by unicity. It induces a *G*-equivariant affine map $\mathcal{I} \to (\mathcal{N}_{L,(h_{L},q_{L})}^{1})^{\Gamma}$, which (by unicity again) coincides with the canonical bijection $\mathcal{I} \to \mathcal{N}_{h,q}^{1}$ composed with the *G*-equivariant affine bijection

$$\mathbb{N}^1_{h,q} \to (\mathbb{N}^1_{L,(h_L,q_L)})^{\Gamma}, \ \alpha \mapsto \alpha_L.$$

So via the canonical bijections $\mathfrak{I} \to \mathcal{N}^1_{h,q}$ and $\mathfrak{I}_{L_\circ} \to \mathcal{N}^1_{L,(h_L,q_L)}$, the canonical bijection $\mathfrak{I} \to (\mathfrak{I}_{L_\circ})^{\Gamma}$ is given by $\alpha \mapsto \alpha_L$.

Second case: $L \simeq (L_{\circ})^2$. We take the hypotheses and notation of 2.2. Let Γ' be the subgroup $\operatorname{Gal}(L/F)$ of Γ . The L_{\circ} -norm v_L on $L = L_{\circ} \times L_{\circ}$ is given by

$$v_L(\lambda,\mu) = \inf\{v_{L_o}(\lambda), v_{L_o}(\mu)\}, \quad \lambda, \mu \in L_o.$$

For i = 1, 2, put $\mathfrak{N}^{1}_{L_{\circ},i} = \operatorname{Latt}^{1}_{\mathfrak{o}_{L_{\circ}}}(V_{L_{\circ},i})$. For $\alpha \in \mathfrak{N}^{1}_{L_{\circ},1}$, denote by $\overline{\alpha}$ the L_{\circ} -norm on $V_{L_{\circ},2}$ defined by

$$\overline{\alpha}(x_2) = \inf_{x_1 \in V_{L_0,1}} (v_{L_0}(h_L(x_1, x_2) - \alpha(x_1)), \quad x_2 \in V_{L_0,2})$$

and by $\alpha \oplus \overline{\alpha}$ the *L*-norm on $V_L = V \times V$ defined by

$$(\alpha \oplus \overline{\alpha})(x_1, x_2) = \inf(\alpha(x_1), \overline{\alpha}(x_2)), \qquad x_1 \in V_{L_0, 1}, x_2 \in V_{L_0, 2}.$$

From the lemma of §4.8 in [BT4], the map $\alpha \mapsto \alpha \oplus \overline{\alpha}$ is a bijection from $\mathcal{N}_{L_o,1}^1$ to the subset $\mathcal{N}_{L,h_L}^1 = \mathcal{N}_{L,(h_L,q_L)}^1$ of \mathcal{N}_L^1 . Via this bijection, we obtain an action of Γ on $\mathcal{N}_{L_o,1}^1$ which extends the natural action of Γ' (cf. Remark 2.1). For $\alpha \in \mathcal{N}^1$, let $\alpha_{L_o,1}$ be the L_o -norm $v_{L_o} \otimes \alpha$ on $V_{L_o,1}$. Let us identify \widetilde{G} with a subgroup of $\operatorname{GL}(V_{L_o,1})$ via the map $g \mapsto \xi_1(1 \otimes g)$. Then the map $\alpha \mapsto \alpha_{L_o,1}$ from \mathcal{N}^1 to $\mathcal{N}_{L_o,1}^1$ is injective, \widetilde{G} -equivariant and affine, and it induces a bijection onto the convex subset $(\mathcal{N}_{L_o,1}^1)^{\Gamma'}$ of $\mathcal{N}_{L_o,1}^1$ formed by those norms which are Γ' -invariant. Moreover, if $\alpha \in \mathcal{N}^1$, the Γ' -invariant L_o -norm α_{L_o} on $V_{L_o,1}$ is Γ -invariant if and only if $\overline{\alpha} = \alpha$, i.e. if and only if $\alpha \in \mathcal{N}_h^1$. So the map $\alpha \mapsto \alpha_{L_o,1}$ induces a G-equivariant affine bijection from \mathcal{N}_h^1 to the convex subset $(\mathcal{N}_{L_o,1}^1)^{\Gamma}$ of $\mathcal{N}_{L_o,1}^1$ formed by those norms which are Γ -invariant. Let $\mathcal{N}_{L_o,1}$ be the quotient of $\mathcal{N}_{L_o,1}^1$ by the action of \mathbb{R} . The action of Γ on $\mathcal{N}_{L_o,1}^1$ formed by those elements which are Γ -invariant. For $\alpha \in \mathcal{N}_{L_o,1}^1$ and $c \in \mathbb{R}$, we have

$$(\alpha + c, \overline{\alpha + c}) = (\alpha + c, \overline{\alpha} - c);$$

so if α is Γ -invariant, then $\alpha + c$ is Γ -invariant if and only if c = 0. Thus the canonical projection $\mathcal{N}_{L_{o,1}}^{1} \to \mathcal{N}_{L_{o,1}}, \alpha \mapsto \alpha'$ induces an injective map $(\mathcal{N}_{L_{o,1}}^{1})^{\Gamma} \to (\mathcal{N}_{L_{o,1}})^{\Gamma}$, which is also surjective: for $\alpha \in \mathcal{N}_{L_{o,1}}^{1}$ such that α' is Γ -invariant, since Γ induces on the class $\{\alpha + c : c \in \mathbb{R}\}$ a finite group of affine automorphisms, there exists a $c \in \mathbb{R}$ such that $\alpha + c$ is Γ -invariant. Thus we have a G-equivariant affine bijection

$$\mathbb{N}_h^1 \to (\mathbb{N}_{L_o,1})^{\Gamma}, \ \alpha \mapsto (\alpha_{L_o,1})'.$$

So via the canonical bijections $\mathcal{I} \to \mathcal{N}_h^1$ and $\mathcal{I}_{L^\circ} \to \mathcal{N}_{L_\circ,1}$ (cf. Remark 1.3), the canonical bijection $\mathcal{I} \to (\mathcal{I}_{L_\circ})^{\Gamma}$ is given by $\alpha \mapsto (\alpha_{L_\circ,1})'$.

Since the map $\mathcal{N}_L^1 \to \mathcal{L}_L^1$, $\alpha \mapsto \Lambda_\alpha$ is Γ -equivariant, the translation of the description above in terms of lattice-functions is straightforward and left to the reader.

2.4. Unramified descent: square lattice-functions. We continue with the hypotheses and notation of 2.3. Let p be a point in \mathfrak{I} , identified with a point in $(\mathfrak{I}_{L_{\circ}})^{\Gamma}$ by the canonical bijection $\mathfrak{I} \to (\mathfrak{I}_{L_{\circ}})^{\Gamma}$. By construction, the filtrations of \mathfrak{g} and $\mathfrak{g}_{L_{\circ}}$ attached to p by Moy and Prasad, satisfy the descent property:

$$(\mathfrak{g}_{L_{\circ},p,r}^{\mathrm{MP}})^{\Gamma} = \mathfrak{g}_{p,r}^{\mathrm{MP}}, \quad r \in \mathbb{R}.$$

Let us prove that the lattice-functions $\mathfrak{g}_{p,\cdot}$ in \mathfrak{g} and $\mathfrak{g}_{L_{\circ},p,\cdot}$ in $\mathfrak{g}_{L_{\circ}}$ satisfy the same descent property. Put $\tilde{\mathfrak{g}}_{L} = \operatorname{End}_{L}(V_{L})$; so the L_{\circ} -algebras $\tilde{\mathfrak{g}}_{L}$ and $L_{\circ} \otimes_{F_{\circ}} \tilde{\mathfrak{g}}$ $(= L_{\circ} \otimes_{F_{\circ}} \operatorname{End}_{F}(V))$ are canonically isomorphic.

First case: L is a field. As in 1.7, the point $p \in (\mathfrak{I}_{L_{\circ}})^{\Gamma} \subset \mathfrak{I}_{L_{\circ}}$ defines a square \mathfrak{o}_{L} -lattice-function $\tilde{\mathfrak{g}}_{L,p,\cdot}$ in $\tilde{\mathfrak{g}}_{L}$. More precisely, from 1.6 there exists a unique $G_{L_{\circ}}$ -equivariant affine map $\mathfrak{I}_{L_{\circ}} \to \mathcal{L}^{1}_{L,(h_{L},q_{L})}, p' \mapsto \Lambda_{p'}$, which is Γ -equivariant and, from 2.3, induces a G-equivariant affine map $\mathfrak{I}^{\Gamma}_{L_{\circ}} \to (\mathcal{L}^{1}_{L,(h_{L},q_{L})})^{\Gamma}$. By definition, for $p' \in \mathfrak{I}_{L_{\circ}}$, we have $\tilde{\mathfrak{g}}_{L,p',\cdot} = \operatorname{End}(\Lambda_{p'})$. Since p is Γ -invariant, we have $\Lambda_{p} = (\Lambda_{p})_{L}$ (cf. 2.3). Thus we have

$$ilde{\mathfrak{g}}_{L,p,r} = \mathfrak{o}_{L_{\circ}} \otimes_{\mathfrak{o}_{F_{\circ}}} ilde{\mathfrak{g}}_{p,r}, \quad r \in \mathbb{R}.$$

This implies the descent property:

$$(\tilde{\mathfrak{g}}_{L,p,r})^{\Gamma} = \tilde{\mathfrak{g}}_{p,r}, \quad r \in \mathbb{R}.$$

Since $(\tilde{\mathfrak{g}}_L)^{\Gamma} = \tilde{\mathfrak{g}}$, we obtain the descent property:

$$(\mathfrak{g}_{L_{\circ},p,r})^{\Gamma} = \mathfrak{g}_{p,r}, \quad r \in \mathbb{R}$$

Second case: $L \simeq (L_{\circ})^2$. We take the hypotheses and notation of 2.2. For $r \in \mathbb{R}$, the $\mathfrak{o}_{L_{\circ}}$ -lattice $\mathfrak{g}_{L_{\circ},p,r}$ in $\mathfrak{g}_{L_{\circ}}$ is the set of

$$(g_1, g_2) \in \operatorname{End}_{L_\circ}(V_{L_\circ, 1}) \times \operatorname{End}_{L_\circ}(V_{L_\circ, 2})$$

such that $g_1 \in \operatorname{End}_{L_\circ}(V_{L_\circ,1})_{\iota(p),r}$ and $g_2 + {}^t \varphi^{-1} \circ {}^t g_1 \circ {}^t \varphi = 0$. Let Γ' be the subgroup $\operatorname{Gal}(L_\circ/F)$ of Γ . Fix a real number r. Since the map $\iota : \operatorname{U}(h_L) \to \operatorname{GL}(V_{L_\circ,1})$ is Γ' -equivariant, we have $\iota(p) \in (\mathcal{L}_{L_\circ,1})^{\Gamma'}$. On the other hand, the isomorphism $\varphi : V_{L_\circ,1} \to V_{L_\circ,2}^*$ is also Γ' -equivariant. From the first case above, we may and do assume that $L_\circ = F$. So φ is an isomorphism from $V_{F,1}$ to $V_{F,2}$, $\iota(p)$ is an element of $\mathcal{L}_{F,1} = \operatorname{Latt}_{\mathfrak{o}_F}^1(V_{F,1})/\mathbb{R}$, and $\mathfrak{g}_{F,p,r}$ is the \mathfrak{o}_F -lattice in $\mathfrak{g}_F = F \otimes_{F_\circ} \mathfrak{g} \subset \tilde{\mathfrak{g}}_F = \operatorname{End}_F(V_{F,1}) \times \operatorname{End}_F(V_{F,2})$ formed by those (g_1, g_2) satisfying $g_1 \in \operatorname{End}_F(V_{F,1})_{\iota(p),r}$ and $g_2 + {}^t \varphi^{-1} \circ {}^t g_1 \circ {}^t \varphi = 0$. For i = 1, 2, the map $v \mapsto \xi_i(1 \otimes v)$ identifies V with $V_{F,i}$; hence we have the identifications $\operatorname{End}_F(V_{F,i}) = \tilde{\mathfrak{g}}$ and $\mathcal{L}_{F,1} = \mathcal{L}$. From Remark 2.1, the action of $\Gamma = \{1, \sigma\}$ on $\tilde{\mathfrak{g}}_F = \tilde{\mathfrak{g}} \times \tilde{\mathfrak{g}}$ is given by $(g_1, g_2)^{\sigma} = (g_2, g_1)$, for all $g_1, g_2 \in \tilde{\mathfrak{g}}$. We obtain that the map $\mathfrak{g}_F \to \tilde{\mathfrak{g}}, (g_1, g_2) \mapsto g_1$ identifies $(\mathfrak{g}_{F,p,r})^{\Gamma} = \mathfrak{g}_{F,p,r} \cap \mathfrak{g}$ with the \mathfrak{o}_F -lattice in $\tilde{\mathfrak{g}}$ formed by those $g \in \tilde{\mathfrak{g}}_{\iota(p),r}$ satisfying $g + {}^t \varphi^{-1} \circ {}^t \varphi = 0$. But, for all $x, y \in V$, we have

$$\varphi(x)(y) = h_L((x,0), (0,y)) = h_L((x,x), (y,y)) = h(x,y)$$

Hence for $g \in \tilde{\mathfrak{g}}$, we have

$$g^{\sigma_h} = {}^{\mathrm{t}} \varphi^{-1} \circ {}^{\mathrm{t}} g \circ {}^{\mathrm{t}} \varphi$$

and $g + {}^{\mathrm{t}}\varphi^{-1} \circ {}^{\mathrm{t}}g \circ {}^{\mathrm{t}}\varphi = 0$ if and only if $g \in \mathfrak{g}$. Thus we obtain the descent property:

$$(\mathfrak{g}_{F,p,r})^{\Gamma} = \widetilde{\mathfrak{g}}_{\iota(p),r} \cap \mathfrak{g}.$$

The action of Γ on \mathfrak{I}_F induces an action on \mathcal{L} : for $\Lambda \in \mathcal{L}$, we put $\Lambda^{\sigma} = \iota(\iota^{-1}(\Lambda)^{\sigma})$. By construction, the map $\iota : \mathfrak{I}_F \to \mathcal{L}$ is Γ -invariant, and induces a bijection, denoted by ι^{\natural} , from \mathfrak{I} to the convex subset \mathcal{L}^{Γ} of \mathcal{L} formed by those elements which are Γ -invariant. Moreover, ι^{\natural} is *G*-equivariant and affine. From 2.3, by restriction the canonical projection $\mathcal{L}^1 \to \mathcal{L}$ induces a bijection $\psi : \mathcal{L}_h^1 \to \mathcal{L}^{\Gamma}$ which is *G*-equivariant and affine. This implies that the composition $\psi \circ \iota^{\natural} : \mathfrak{I} \to \mathcal{L}_h^1$ is bijective, *G*-equivariant and affine. Since we are in the tame case (the extension F/F_{\circ} is unramified), we have $\mathcal{L}_h^1 = \mathcal{L}_{h,q}^1$ and $\psi \circ \iota^{\natural}$ is the unique *G*-equivariant affine map from \mathfrak{I} to \mathcal{L}_h^1 . So we obtain that $\iota(p) \in \mathcal{L}^{\Gamma}$, $\psi(\iota(p)) = \Lambda_p$ and $\tilde{\mathfrak{g}}_{\iota(p),r} = \tilde{\mathfrak{g}}_{p,r}$. Turning to the general unramified extension L_{\circ}/F_{\circ} (i.e. removing the hypothesis $L_{\circ} = F$), we have proved the descent property:

$$(\mathfrak{g}_{L_{\circ},p,r})^{\Gamma} = \mathfrak{g}_{p,r}, \quad r \in \mathbb{R}.$$

2.5. Reduction to the quasi-split case. Let L_{\circ} be a finite unramified extension of F_{\circ} such that the reductive L_{\circ} -group $\mathbf{G}^{\circ} \times_{F^{\circ}} L_{\circ}$ is quasi-split. Put $L = L_{\circ} \otimes_{F_{\circ}} F$ as before. Suppose that for all $p \in \mathfrak{I}_{L_{\circ}}$, we have

$$\mathfrak{g}_{L_{\circ},p,r} = \mathfrak{g}_{L_{\circ},p,r}^{\mathrm{MP}}, \quad r \in \mathbb{R}.$$

Then the descent property proved in 2.4 implies that for all $p \in \mathfrak{I} = (\mathfrak{I}_{L_o})^{\Gamma}$, we have

$$\mathfrak{g}_{p,r} = \mathfrak{g}_{p,r}^{\mathrm{MP}}, \quad r \in \mathbb{R}$$

If $L \simeq (L_{\circ})^2$, we know from [BL] that for all $p \in \mathcal{I}_{L_{\circ}}$, the filtration $(\mathfrak{g}_{L_{\circ},p,r})_{r \in \mathbb{R}}$ of \mathfrak{g} coincide with $(\mathfrak{g}_{L_{\circ},p,r}^{\mathrm{MP}})_{r \in \mathbb{R}}$. Thus we have reduced the question to the quasisplit case: we may suppose that \mathbf{G}° is quasi-split over F_{\circ} ; note that we may also suppose that \mathbf{G}° is residually split over F_{\circ} , i.e. quasi-split and of the same relative rank as $\mathbf{G}^{\circ} \times_{F_{\circ}} L_{\circ}'$ for all finite unramified extensions L_{\circ}' of L_{\circ} .

3. Proof in the quasi-split case

3.1. Root subgroups again. In this chapter, we assume that the group G is quasi-split over F_{\circ} . Recall that since G is quasi-split, we have $\dim_F(V_0) \leq 1$. From [BT1] 10.1.3, if $\sigma \neq \mathrm{Id}$, by a "change of coordinate" we may (and do) assume $\varepsilon = 1$ if $V_0 \neq \{0\}$, and $\varepsilon = -1$ if $V_0 = \{0\}$. Then we have $\varepsilon = -1$ if and only if we are in case (C). Let us fix an element $e_0 \in V_0$ such that $e_0 \neq 0$ if $V_0 \neq \{0\}$ (case (B) or (BC)). Moreover if $V_0 \neq \{0\}$, by another "change of coordinate" we may (and do) assume that $h(e_0, e_0) = 1$ (loc. cit.).

For $i, j \in I$, $j \neq \pm i$ and $u \in F$, the element $u_{i,j}(u) \in U_{a_i}$ (cf. 1.5) acts trivially on $\sum_{k \in I \cup \{0\}, k \neq \pm i, \pm j} V_i$, stabilizes $X_{i,j} = V_{-i} + V_{-j} + V_j + V_i$, and induces

on $X_{i,j}$ an automorphism whose matrix with respect to e_{-i} , e_{-j} , e_j , e_i is given by

$$\left(\begin{array}{rrrrr} 1 & 0 & -\varepsilon(i)u & 0 \\ 0 & 1 & 0 & \varepsilon(-j)u^{\sigma} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right).$$

Suppose $V_0 \neq \{0\}$ (case (B) or (BC)). For $i \in I$ and $u, v \in F$ such that $v + v^{\sigma} = uu^{\sigma}$ (i.e. such that $v = \frac{1}{2}u^2$ if we are in case (B)), the element $u_i(u, v) = u_i(ue_0, v) \in U_{a_i}$ (cf. 1.5) acts trivially on $\sum_{k \in I, k \neq \pm i} V_i$, stabilizes $X_i = V_{-i} + V_0 + V_i$, and induces on X_i an automorphism whose matrix with respect to e_{-i} , e_0 , e_i is given by

$$\left(\begin{array}{rrr} 1 & -u^{\sigma} & -v \\ 0 & 1 & u \\ 0 & 0 & 1 \end{array}\right).$$

Suppose $V_0 = \{0\}$ and $(\sigma, \varepsilon) \neq (\text{Id}, 1)$ (case (C)). For $i \in I$ and $v \in F_{\sigma,\varepsilon}$, the element $u_i(0, v) \in U_{2a_i}$ acts trivially on $\sum_{k \in I, k \neq \pm i} V_i$, stabilizes $X_i = V_{-i} + V_i$, and induces on X_i an automorphism whose matrix with respect to e_{-i} , e_i is given by

$$\left(\begin{array}{cc} 1 & -\varepsilon(i)v \\ 0 & 1 \end{array}\right)$$

For $i, j \in I, j \neq \pm i$, the group-law on $U_{i,j}$ is given by $u_{i,j}(u)u_{i,j}(u') = u_{i,j}(u+u')$ for all $u, u' \in F$. For $i \in I$, to describe the group-law on U_{a_i} (case (B) or (BC)) and the group-law on U_{2a_i} (case (BC) or (C)), it is useful to introduce the F_{\circ} -spaces $H_2 = \{0\} \times F_{\sigma,\varepsilon}$ and $H = \{(u, v) \in F \times F : v + \varepsilon v^{\sigma} = uu^{\sigma}\} \supset H_2$. The space H is endowed with a multiplicative group-law

$$(u, v)(u', v') = (u + u', v + v' + u^{\sigma}u')$$

which makes H_2 a subgroup of H: for $v, v' \in F_{\sigma,\varepsilon}$, we have $v + v' \in F_{\sigma,\varepsilon}$ and (0,v)(0,v') = (0, v + v'). The group-laws on U_{a_i} and U_{2a_i} are obtained from the group-laws on H and H_2 by transport of structure via u_i . In case (BC), since H_2 is normal in H, we can define the quotient group $\overline{U}_{a_i} = U_{a_i}/U_{2a_i}$. It is the group of F_{\circ} -rational points of the (geometric) quotient group U_{a_i}/U_{2a_i} . In case (B), we put $\overline{U}_{a_i} = U_{a_i}$.

3.2. Basis of the Lie algebras. Recall that \mathfrak{g} denotes the Lie algebra of G, and $\tilde{\mathfrak{g}}$ the Lie algebra of \tilde{G} . For $a \in \Phi$, let \mathfrak{u}_a be the subspace of \mathfrak{g} defined by $\mathfrak{u}_a = \operatorname{Lie}(U_a)$ if $2a \notin \Phi$, and by $\mathfrak{u}_a = \operatorname{Lie}(\overline{U}_a)$ if $2a \in \Phi$. For $i, j \in I$, or $i, j \in I \cup \{0\}$ if $V_0 \neq \{0\}$, let $\tilde{E}_{i,j} \in \tilde{\mathfrak{g}}$ be the standard elementary matrix. For $i, j \in I, j \neq \pm i, u \in F, v \in F_{\sigma,\varepsilon}$, we put:

$$E_{a_{i,j}}(u) = -\varepsilon(i)u\widetilde{E}_{-i,j} + \varepsilon(-j)u^{\sigma}\widetilde{E}_{-j,i};$$

$$E_{a_{i}}(u) = -u^{\sigma}\widetilde{E}_{-i,0} + u\widetilde{E}_{0,i} \text{ (case (B) or (BC))};$$

$$E_{2a_{i}}(v) = -\varepsilon(i)v\widetilde{E}_{-i,i} \text{ (case (BC) or (C))}.$$

Let $a \in \Phi$. If $\frac{1}{2}a \notin \Phi$, the map $u \mapsto E_a(u)$ is an isomorphism from F to \mathfrak{u}_a . If $\frac{1}{2}a \in \Phi$ (case (BC)), the map $v \mapsto E_a(v)$ is an isomorphism from F° to \mathfrak{u}_a .

Denote by $\mathfrak{z} = \operatorname{Lie}(Z)$ the Lie algebra of Z, and by \mathfrak{z}' the Lie algebra of Z'. For $i \in I$, $u \in F$, $v \in F^{\circ}$, we put:

$$E_{i}(u) = u^{\sigma} \widetilde{E}_{-i,-i} - u \widetilde{E}_{i,i};$$
$$E_{0}(v) = v \widetilde{E}_{0,0} \text{ (case (B) or (BC))}.$$

For $i \in I$, the map $u \mapsto \widetilde{E}_i$ is an isomorphism from F to a subspace \mathfrak{z}_i of \mathfrak{z} . If $V_0 \neq \{0\}$ (case (B) or (BC)), the map $v \mapsto E_0(v)$ is an isomorphism from F° to a subspace \mathfrak{z}_0 of \mathfrak{z} . Note that in case (B), we have $\mathfrak{z}_0 = \{0\}$. If $V_0 = \{0\}$ (case (C) or (D)), we put $\mathfrak{z}_0 = \{0\}$. So $\mathfrak{z}_0 \neq \{0\}$ if and only if we are in case (BC).

We have the decompositions

$$\mathfrak{g} = \mathfrak{z} \oplus igoplus_{a \in \Phi} \mathfrak{u}_a, \qquad \mathfrak{z} = igoplus_{i \in I \cup \{0\}} \mathfrak{z}_i.$$

3.3. Lattice-functions and square lattice-functions. Recall that \mathcal{A} is the apartment of the building \mathcal{I} of G attached to the maximal F_{\circ} -split torus S of G. Put

$$l = \frac{1}{2} \sup\{r \in \mathbb{R} : v_F(\lambda) = r, \, \lambda \in F, \, \lambda + \lambda^{\sigma} = 1\}.$$

Recall we have $l \leq 0$, and l = 0 if and only if the extension F/F_{\circ} is quadratic unramified or the residual characteristic of F_{\circ} is not 2. If $V_0 \neq 0$, from Remark 1.6, we have

$$v_{V_0}(\lambda e_0) = v_F(\lambda) + l.$$

Put $a_0 = -l$ if $V_0 \neq \{0\}$, and $a_0 = -\infty$ if $V_0 = \{0\}$. We consider a_0 as a constant function on \mathcal{A} .

Let p be a point in \mathcal{A} . The MM-norm α_p for (h,q) on V and the latticefunction Λ_p in V are given by

$$\alpha_p\left(\sum_{i\in I\cup\{0\}}\lambda_i e_i\right) = \inf\{v_F(\lambda_i) - a_i(p) : i\in I\cup\{0\}\}, \quad \lambda_i\in F,$$

and

$$\Lambda_p(r) = \{ x \in V : \alpha_p(x) \ge r \}, r \in \mathbb{R}.$$

Put $\eta = 1$ if the extension F/F_{\circ} is unramified, and $\eta = 2$ if it is ramified. So ηv_F is the normalized valuation on F, and we have

$$\Lambda_p(r) = \bigoplus_{i \in I \cup \{0\}} \mathfrak{p}_F^{\lceil \eta(r+a_i(p)) \rceil} e_i \ , \ r \in \mathbb{R},$$

where $\lceil x \rceil$ denotes the least integer greater than or equal to x (if $V_0 = \{0\}$, then we have $\mathfrak{p}_F^{\lceil \eta(r+a_0(p))\rceil}e_0 = \{0\}$). The square lattice-function $\tilde{\mathfrak{g}}_{p,\cdot}$ in $\tilde{\mathfrak{g}}$ attached to pis given by

$$\tilde{\mathfrak{g}}_{p,r} = \{g \in \tilde{\mathfrak{g}} : g\Lambda_p(s) \subset \Lambda_p(s+r), \, s \in \mathbb{R}\}, r \in \mathbb{R}$$

Lemma 3.1. Let $(p,r) \in \mathcal{A} \times \mathbb{R}$. We have

$$\tilde{\mathfrak{g}}_{p,r} = \bigoplus_{i,j} \mathfrak{p}_F^{\lceil \eta(r+a_i(p)-a_j(p)) \rceil} \widetilde{E}_{i,j}$$

where i, j run over the elements of I in case (C) or (D), and over the elements of $I \cup \{0\}$ in case (B) or (BC).

Proof. Let $i, j \in I$ and $u \in F$. By definition, the element $u E_{i,j}$ belongs to $\tilde{\mathfrak{g}}_{p,r}$ if and only if $u\mathfrak{p}_F^{\lceil \eta(s+a_j(p)\rceil} \subset \mathfrak{p}_F^{\lceil \eta(s+r+a_i(p)\rceil}$ for all $s \in \mathbb{R}$, i.e. if and only if $\eta v_F(u) \geq \lceil r+a_i(p)-a_j(p)\rceil$. Hence we have $\tilde{\mathfrak{g}}_{p,r} \cap F \widetilde{E}_{i,j} = \mathfrak{p}_F^{\lceil \eta(r+a_i(p)-a_j(p))\rceil} \widetilde{E}_{i,j}$. In case (B) or (BC), the same proof applies for $i, j \in I \cup \{0\}$.

For $p \in \mathcal{I}$, recall that the \mathfrak{o}_{F_0} -lattice-function $\mathfrak{g}_{p,\cdot}$ in \mathfrak{g} is defined by

$$\mathfrak{g}_{p,r} = \widetilde{\mathfrak{g}}_{p,r} \cap \mathfrak{g}, \ r \in \mathbb{R}$$

For $(p,r) \in \mathcal{A} \times \mathbb{R}$, we have the decomposition

$$\mathfrak{g}_{p,r} = \bigoplus_{i \in I \cup \{0\}} (\tilde{\mathfrak{g}}_{p,r} \cap \mathfrak{z}_i) \oplus \bigoplus_{a \in \Phi} (\tilde{\mathfrak{g}}_{p,r} \cap \mathfrak{u}_a).$$

Lemma 3.2. Let $(p,r) \in A \times \mathbb{R}$. Then:

for $i \in I$, we have $\tilde{\mathfrak{g}}_{p,r} \cap \mathfrak{z}_i = E_i(\mathfrak{p}_F^{\lceil \eta r \rceil});$ in case (BC), we have $\tilde{\mathfrak{g}}_{p,r} \cap \mathfrak{z}_0 = E_0(\mathfrak{p}_F^{\lceil \eta r \rceil} \cap F^\circ);$ for $i, j \in I, i \neq \pm j$, we have $\tilde{\mathfrak{g}}_{p,r} \cap \mathfrak{u}_{a_{i,j}} = E_{a_{i,j}}(\mathfrak{p}_F^{\lceil \eta(r-a_{i,j}(p))\rceil});$ in case (B) or (BC), for $i \in I$, we have $\tilde{\mathfrak{g}}_{p,r} \cap \mathfrak{u}_{a_i} = E_{a_i}(\mathfrak{p}_F^{\lceil \eta(r-l-a_i(p)\rceil});$ in case (BC) or (C), for $i \in I$, we have $\tilde{\mathfrak{g}}_{p,r} \cap \mathfrak{u}_{2a_i} = E_{2a_i}(\mathfrak{p}_F^{\lceil \eta(r-2a_i(p)\rceil} \cap F_{\sigma,\varepsilon}).$

Proof. Let $i, j \in I, i \neq \pm j$, and $u \in F$. By definition, the element $E_{a_{i,j}}(u)$ belongs to $\tilde{\mathfrak{g}}_{p,r}$ if and only if $u \widetilde{E}_{-i,j} \in \mathfrak{p}_F^{[\eta(r+a_{-i}(p)-a_j(p))]} \widetilde{E}_{-i,j}$ and $u^{\sigma} \widetilde{E}_{-j,i} \in \mathfrak{p}_F^{[\eta(r+a_{-j}(p)-a_i(p))]} \widetilde{E}_{-j,i}$; i.e., since $a_{-i} = -a_i$ and $a_{-j} = -a_j$, if and only if $u \in \mathfrak{p}_F^{[\eta(r-(a_i(p)+a_j(p))]}$. Hence we have

$$\widetilde{\mathfrak{g}}_{p,r} \cap \mathfrak{u}_{a_{i,j}} = E_{a_{i,j}}(\mathfrak{p}_F^{\lceil \eta(r-a_{i,j}(p)) \rceil}).$$

The same proof shows that for $i \in I$, we have

$$\tilde{\mathfrak{g}}_{p,r} \cap \mathfrak{z}_i = E_i(\mathfrak{p}_F^{\lceil \eta r \rceil}).$$

Suppose we are in case (B) or (BC), and let $i \in I$ and $u \in F$. By definition, the element $E_{a_i}(u)$ belongs to $\tilde{\mathfrak{g}}_{p,r}$ if and only if $u^{\sigma} \tilde{E}_{-i,0} \in \mathfrak{p}_F^{[\eta(r+a_{-i}(p)-a_0(p))]} \tilde{E}_{-i,0}$

and $u\widetilde{E}_{0,i} \in \mathfrak{p}_F^{[\eta(r+a_0(p)-a_i(p))]}\widetilde{E}_{0,i}$; i.e., since $a_{-i} = -a_i$ and $a_0(p) = -l \ge 0$, if and only if $u \in \mathfrak{p}_F^{[\eta(r+a_0(p)-a_i(p))]}$. Hence we have

$$\tilde{\mathfrak{g}}_{p,r} \cap \mathfrak{u}_{a_i} = E_{a_i}(\mathfrak{p}_F^{\lceil \eta(r-l-a_i(p)) \rceil})$$

Suppose we are in case (BC) or (C), and let $v \in F_{\sigma,\varepsilon}$. By definition, the element $E_{2a_i}(v)$ belongs to $\tilde{\mathfrak{g}}_{p,r}$ if and only if $v \tilde{E}_{-i,i} \in \mathfrak{p}_F^{[\eta(r+a_{-i}(p)-a_i(p))]} \tilde{E}_{-i,i}$; i.e., since $a_{-i} = -a_i$, if and only if $v \in \mathfrak{p}_F^{[\eta(r-2a_i(p))]}$. Hence we have

$$\tilde{\mathfrak{g}}_{p,r} \cap \mathfrak{u}_{2a_i} = E_{2a_i}(\mathfrak{p}_F^{\lceil \eta(r-2a_i(p))\rceil} \cap F_{\sigma,\varepsilon}).$$

In case (BC), the same proof shows that we have

$$\tilde{\mathfrak{g}}_{p,r} \cap \mathfrak{z}_0 = E_0(\mathfrak{p}_F^{\lceil \eta r \rceil} \cap F^\circ).$$

The lemma is proved.

3.4. Filtrations of the root subgroups. For $a \in \Phi$ and $r \in \mathbb{R}$, let $U_{a,r} = U_{a,r}^{\varphi}$ be the compact subgroup of U_a defined by

$$U_{a,r} = \{g \in U_a : \varphi_a(g) \ge r\},\$$

where $\varphi = (\varphi_a)_{a \in \Phi}$ is the valuation of the root datum $(Z, (U_a)_{a \in \Phi})$ defined in 1.5. For $a \in \Phi$ such that $2a \in \Phi$ (case (BC)), since $\varphi_{2a} = 2\varphi_a|_{U_{2a}}$, we have

$$U_{a,r} \cap U_{2a} = U_{2a,r}.$$

Put

$$\begin{split} \Gamma_a &= \varphi_a(U_a \smallsetminus \{1\}) \subset \mathbb{R}, \ a \in \Phi; \\ \overline{\Gamma}_a &= \{\varphi_a(u) : u \in U_a \smallsetminus \{1\}, \ \varphi_a(u) = \sup \varphi_a(uU_{2a})\}, \ a \in \Phi, \ 2a \in \Phi. \end{split}$$

So if we are not in case (BC), we have $\Gamma_a = v_F(F^{\times})$.

Let ξ be an element of F such that $\xi + \xi^{\sigma} = 1$ and $v_F(\xi) = l$. Recall that if $\sigma \neq \text{Id}$ and the residual characteristic of F_{\circ} is not 2, we may take $\xi = \frac{1}{2}$. Suppose we are in case (BC), and let $i \in I$. For $u \in F$, we put

$$\overline{u}_i(u) = u_i(u, \xi u u^{\sigma}) \pmod{U_{2a_i}} \in \overline{U}_{a_i}$$

and

$$\overline{\varphi}_{a_i}(\overline{u}_i(u)) = l + v_F(u).$$

Then we have

$$\overline{\Gamma}_{a_i} = \overline{\varphi}_{a_i}(\overline{U}_{a_i} \smallsetminus \{1\})$$

and

$$\Gamma_{a_i} = \overline{\Gamma}_{a_i} \coprod \frac{1}{2} \Gamma_{2a_i}$$

(disjoint union). More explicitly, we have $\overline{\Gamma}_{a_i} = l + \eta^{-1}\mathbb{Z}$, $\Gamma_{2a_i} = \frac{1}{2}v_F(F^{\circ} \setminus \{0\})$ and $\Gamma_{a_i} = \frac{1}{2}v_F(F^{\times})$.

Let p be a point of \mathcal{A} . Denote by φ_p the valuation $\varphi + a(p)$ of the root datum $(Z, (U_a)_{a \in \Phi})$. For $a \in \Phi$ and $r \in \mathbb{R}$, let $U_{a,p,r} = U_{a,r}^{\varphi_p}$ be the compact subgroup of U_a defined by

$$U_{a,p,r} = \{g \in G : g \in U_a : \varphi_a(g) \ge r - a(p)\}.$$

For $a \in \Phi$ such that $2a \in \Phi$ (case (BC)) and $r \in \mathbb{R}$, let $\overline{U}_{a,p,r}$ be the compact subgroup of \overline{U}_a defined by

$$\overline{U}_{a,p,r} = \{g \in G : g \in \overline{U}_a : \overline{\varphi}_a(g) \ge r - a(p)\}.$$

3.5. Moy-Prasad filtrations of \mathfrak{g} . Let p be a point in \mathcal{A} . For $a \in \Phi$ and $r \in \mathbb{R}$, the subgroup $U_{a,p,r}$ of U_a is the group of \mathfrak{o}_{F_\circ} -rational points of a smooth affine \mathfrak{o}_{F_\circ} -group-scheme $\mathfrak{U}_{a,p,r}$. Its Lie algebra $\operatorname{Lie}(\mathfrak{U}_{a,p,r})$ is an \mathfrak{o}_{F_\circ} -lattice in $\operatorname{Lie}(U_a)$. If, moreover, $2a \notin \Phi$, we put $\mathfrak{u}_a = \operatorname{Lie}(\mathfrak{U}_{a,p,r})$.

For $a \in \Phi$ such that $2a \in \Phi$ (case (BC)), the subgroup $\overline{U}_{a,p,r}$ of \overline{U}_a is the group of \mathfrak{o}_{F_\circ} -rational points of a smooth affine \mathfrak{o}_{F_\circ} -group-scheme $\overline{U}_{a,p,r}$. Denote by $\mathfrak{u}_{a,p,r} = \operatorname{Lie}(\overline{U}_{a,p,r})$ its Lie algebra; it is an \mathfrak{o}_{F_\circ} -lattice in \mathfrak{u}_a (= $\operatorname{Lie}(\overline{U}_a)$) and identifies with a sub- \mathfrak{o}_{F_\circ} -module of $\operatorname{Lie}(\mathfrak{U}_{a,p,r})$. Moreover we have the decomposition

$$\operatorname{Lie}(\mathfrak{U}_{a,p,r}) = \mathfrak{u}_{a,p,r} \oplus \mathfrak{u}_{2a,p,r}.$$

Let $X^*(\mathbf{Z})$ be the group of algebraic characters of \mathbf{Z} . Since Z splits over F, each element of $X^*(\mathbf{Z})$ is defined over F. For $r \in \mathbb{R}$, let \mathfrak{z}_r be the \mathfrak{o}_{F_o} -lattice in \mathfrak{z} defined by

$$\mathfrak{z}_r = \{x \in \mathfrak{z} : v_F(\mathrm{d}\chi(x)) \ge r, \, \forall \chi \in \mathrm{X}^*(\mathbf{Z})\}.$$

The filtration $(\mathfrak{g}_{p,r}^{\mathrm{MP}})_{r\in\mathbb{R}}$ of \mathfrak{g} attached to p by Moy and Prasad [MP] is given by

$$\mathfrak{g}_{p,r}^{\mathrm{MP}} = \mathfrak{z}_r \oplus \bigoplus_{a \in \Phi} \mathfrak{u}_{a,p,r}, \ r \in \mathbb{R}.$$

Remark 3.3. The Moy-Prasad filtration of \mathfrak{g} attached to a point p in the building \mathfrak{I} of G is usually defined by descent from a maximal unramified extension F_{\circ}^{nr} of F_{\circ} (the point p being canonically identified with a $\operatorname{Gal}(F_{\circ}^{\mathrm{nr}}/F_{\circ})$ -invariant point in the building of $\mathbf{G}(F_{\circ}^{\mathrm{nr}})$). If the group \mathbf{G} is residually split over F_{\circ} , the filtration $(\mathfrak{g}_{p,r}^{\mathrm{MP}})_{r\in\mathbb{R}}$ of \mathfrak{g} defined above is clearly the Moy-Prasad filtration attached to p. If the group \mathbf{G} is quasi-split but not residually split over F_{\circ} (i.e. if F is a quadratic unramified extension of F_{\circ}), then \mathbf{G} splits over F and $\mathbf{G}(F) \simeq \operatorname{GL}(V)$. In that case, chapter 2 implies that the filtration $(\mathfrak{g}_{p,r}^{\mathrm{MP}})_{r\in\mathbb{R}}$ of \mathfrak{g} defined above is the Moy-Prasad filtration attached to p (more generally, the result follows [BT2] 5.1.20, Rem. 2). Note that we can also avoid the problem by assuming directly that \mathbf{G} is residually split over F_{\circ} (see 2.5).

Proposition 3.4. Let p be a point in \mathfrak{I} . We have

$$\mathfrak{g}_{p,r} = \mathfrak{g}_{p,r}^{\mathrm{MP}}, \ r \in \mathbb{R}$$

Proof. We may assume that $p \in \mathcal{A}$. Then the proposition follows from Lemma 3.2 and the description of the root subgroups $U_{a,p,r}$ given in 3.4.

This proposition, together with the reduction step in chapter 2, implies Theorem 1.8.

4. The general case $(D \neq F)$

4.1. Reduction to the case D = F. In this chapter, we show briefly how to generalize the main result (Theorem 1.8) to a general classical group (cf. Remark 1.1). So notation and hypothesis are those of 1.1, but we assume $D \neq F$.

Let L_{\circ} be a finite extension of F_{\circ} of degree a multiple of 2d = 4. Put $L = L_{\circ} \otimes_{F_{\circ}} F$ and $D_L = L_{\circ} \otimes_{F_{\circ}} D$ $(= L \otimes_F D)$. Then D_L is a semisimple L_{\circ} -algebra with centre L, endowed with an involution $\mathrm{Id} \otimes \sigma$, still denoted by σ . Denote by V_L the right D_L -module $L_{\circ} \otimes_{F_{\circ}} V = L \otimes_F V$. The form h on V extends to a non-degenerate σ -skew ε -hermitian form $h_L : V_L \times V_L \to D_L$. Put $\widetilde{G}_L = \mathrm{Aut}_{D_L}(V_L)$ and $G_{L_{\circ}} = \mathrm{U}(h_L)$. Then $G_{L_{\circ}}$ is the group of L_{\circ} -rational points of the L_{\circ} -algebraic group $\mathbf{G}_{L_{\circ}} = \mathbf{G} \times_{F_{\circ}} L_{\circ}$.

Let us consider the first case: L is a field. Then L is an extension of degree $[L_{\circ}: F_{\circ}]$ of F, and D_L is a split central simple L-algebra. Moreover, the restriction of σ (= Id $\otimes \sigma$) to L, say σ_1 , is the generator of $\operatorname{Gal}(L/L_{\circ})$. Let us choose a simple right D_L -module M. We have the canonical identifications $L = \operatorname{End}_{D_L}(M)$ and $D_L = \operatorname{End}_L(M)$. Let M^{σ} be the simple left D_L -module deduced from M via σ , i.e. the additive group M endowed with the action of D_L given by $(a, x) \mapsto xa^{\sigma}$ for $a \in D_L$, $x \in M$. The dual $M^* = \operatorname{Hom}_L(M, L)$ is also a simple left D_L -module — canonically identified with $\operatorname{Hom}_{D_L}(M, D_L)$, cf. [BT3] 1.16. Thus we have $L = \operatorname{End}_{D_L}(M^*)$ and $D_L = \operatorname{End}_L(M^*)$. Moreover there exists an isomorphism of D_L -modules $s: M^{\sigma} \to M^*$ which is admissible in the following sense (cf. [BT4] 1.7, 1.8): let $\beta_s: M \times M \to D_L$ be the σ -skew form given by $\beta_s(x, y) = s(x)(y)$; the admissibility condition on s says there exists $\eta \in \{\pm 1\}$ such that $\beta_s(y, x) = \eta \beta_s(x, y)^{\sigma}$. In other words, β_s is a σ -skew η -hermitian form on M, which is non-degenerate by construction.

Put $V_1 = \text{Hom}_{D_L}(M, V_L)$. It is a finite dimensional vector space over L, and the map

$$V_1 \otimes_L M \to V_L, v \otimes x \mapsto v(x)$$

is an isomorphism of (right) D_L -vector spaces, which induces a canonical identification of *L*-algebras (cf. [BT3] 1.16)

$$\operatorname{End}_L(V_1) = \operatorname{End}_{D_L}(V_L).$$

This gives an identification of $\widetilde{G}_1 = \operatorname{Aut}_L(V_1)$ with \widetilde{G}_L . Now put $\varepsilon_1 = \varepsilon \eta$. From [BT4] 1.10, Prop., there exists a unique σ -skew form $h_1 : V_1 \times V_1 \to L$ such that

$$h(u(x), v(y)) = \beta_s(xh_1(u, v), y) = h_1(u, v)^{\sigma_1}\beta_s(x, y);$$

it is non-degenerate and ε_1 -hermitian. Let also $q_1: V_1 \to L/L_{\sigma_1,\varepsilon_1}$ be the pseudoquadratic form associated with h_1 as in 1.1. Put $G_1 = U(h_1)$. It is the group of

 L_{\circ} -rational points of an algebraic L_{\circ} -group \mathbf{G}_1 whose connected component \mathbf{G}_1° is reductive, and the identification $\widetilde{G}_L = \widetilde{G}_1$ induces an identification $G_{L_{\circ}} = G_1$.

Remark 4.1. The form h_1 constructed above depends on the choices of M and s. The simple right D_L -module M is unique up to isomorphism. Now suppose M is fixed, and let $s' : M^{\sigma} \to M^*$ be another admissible isomorphism of D_L -modules. Then $s' = \lambda s$ for an element λ in L^{\times} such that $\lambda^{\sigma_1} = \mu \lambda$, $\mu \in \{\pm 1\}$, and the non-degenerate σ_1 -skew form $h'_1 : V_1 \times V_1 \to L$ defined by s'_1 is given by $h'_1 = \lambda h_1$; it is ε'_1 -hermitian, $\varepsilon'_1 = \varepsilon_1 \mu$. So h_1 is well defined up to a "change of coordinates" in the sense of [BT1], 10.1.3.

Now let us consider the second case: $L \simeq (L_{\circ})^2$. As in 2.2, we assume $F \subset L_{\circ}$ and $L = (L_{\circ})^2$. Hence L_{\circ} is an extension of even degree of F. Using the notation and identifications of 2.2, we have $D_L = D_{L_{\circ},1} \times D_{L_{\circ},2}$ where $D_{L_{\circ},i} = \xi_i D_L$ is a central simple L_{\circ} -algebra (recall that ξ_1 , ξ_2 are the two minimal idempotents of L). The involution σ (= Id $\otimes \sigma$) on D_L induces an anti-isomorphism $D_{L_{\circ},1} \rightarrow D_{L_{\circ},2}$ (resp. $D_{L_{\circ},2} \rightarrow D_{L_{\circ},1}$), still denoted by σ . For $a \in D_{L_{\circ},i}$, we have $(a^{\sigma})^{\sigma} = a$, and for $(a, b) \in D_L$, we have $(a, b)^{\sigma} = (b^{\sigma}, a^{\sigma})$. We also have

$$\operatorname{End}_{D_L}(V_L) = \operatorname{End}_{D_{L_0,1}}(V_{L_0,1}) \times \operatorname{End}_{D_{L_0,2}}(V_{L_0,2})$$

whith $\operatorname{End}_{D_{L_{\circ},i}}(V_{L_{\circ},i}) = \xi_i \operatorname{End}_{D_L}(V_L)$. Moreover the map $v_1 \mapsto h_L(v_1, \cdot)$ induces a σ -isomorphism φ from the right $D_{L_{\circ},1}$ -module $V_{L_{\circ},1}$ to the left $D_{L_{\circ},2}$ -module $\operatorname{Hom}_{D_{L_{\circ},2}}(V_{L_{\circ},2}, D_{L_{\circ},2})$. For $g = (g_1, g_2) \in \widetilde{G}_L = \operatorname{Aut}_{D_{L_{\circ},1}}(V_{L_{\circ},1}) \times \operatorname{Aut}_{D_{L_{\circ},2}}(V_{L_{\circ},2})$, we have $g \in G_{L_{\circ}}$ if and only if

$$g_2 = {}^{\mathbf{t}} \varphi^{-1} \circ {}^{\mathbf{t}} g_1^{-1} \circ \varphi^{\mathbf{t}};$$

so the map $\widetilde{G}_L \to \operatorname{Aut}_{D_{L_0,1}}(V_{L_0,1}), (g_1, g_2) \mapsto g_1$ by restriction gives an isomorphism of groups $\iota : G_{L_0} \to \operatorname{Aut}_{D_{L_0,0}}(V_{L_0,1})$. Let us choose a simple right $D_{L_0,1}$ -module M_1 (since $D_{L_0,1}$ is a quotient of D_L , M is also a simple D_L -module). Put $V_1 = \operatorname{Hom}_{D_{L_0,1}}(M, V_{L_0,1})$. From the previous case, we have a canonical identification of $G_1 = \operatorname{Aut}_{L_0}(V_1)$ with $\operatorname{Aut}_{D_{L_0,0}}(V_{L_0,1})$. Hence we obtain an isomorphism of groups $\iota : G_{L_0} \to G_1$ which is defined over L_0 .

4.2. Unramified descent: buildings. Suppose moreover that the extension L_{\circ}/F_{\circ} is unramified (we could also suppose that the reductive L_{\circ} -group $\mathbf{G}^{\circ} \times_{F_{\circ}} L_{\circ}$ is quasi-split, or even residually split, but this is not necessary). Hence L is field if and only if the extension F/F_{\circ} is trivial or totally ramified. Let $\mathfrak{I} = \mathfrak{I}(\mathbf{G}, F_{\circ})$ be the (non-enlarged) building of G — it can be viewed as the building of a valuated root datum as in 1.5, cf. [BT4] 1.14, 1.15 —, and let $\mathfrak{I}_{L_{\circ}} = \mathfrak{I}(\mathbf{G} \times_{F_{\circ}} L_{\circ}, L_{\circ})$ be that of $G_{L_{\circ}}$. From [BT4] 4.1, there exists a unique G-equivariant and affine map $\mathfrak{I} \to \mathfrak{I}_{L_{\circ}}$ whose image is the subset $(\mathfrak{I}_{L_{\circ}})^{\Gamma}$ formed of those points which are fixed by the Galois group $\Gamma = \operatorname{Gal}(L_{\circ}/F_{\circ})$.

Let $\tilde{\mathcal{I}}^1$ be the enlarged building of \tilde{G} , \mathcal{N}^1 be the set of (*D*-)norms on *V* ([BT3] 1.1), and \mathcal{L}^1 be the set of (\mathfrak{o}_D) -lattice-functions in *V* ([BL] 2.1), where \mathfrak{o}_D denotes the ring of integers of *D*. From [BT4] and [BL], by replacing *F* by *D*, the results of 1.6 remain true. In particular, there exists a \tilde{G} -equivariant

affine map $\tilde{\mathcal{I}}^1 \to \mathcal{L}^1$, $p \mapsto \Lambda_p$, which is bijective and unique up to translation by a real number; where the affine structure on \mathcal{L}^1 is given by that on \mathcal{N}^1 via the \tilde{G} -equivariant bijection $\mathcal{N}^1 \to \mathcal{L}^1$, $\alpha \mapsto \Lambda_\alpha$ defined by

$$\Lambda_{\alpha}(r) = \{ v \in V : \alpha(v) \ge r \}, \quad r \in \mathbb{R}.$$

This induces a bijective, G-equivariant and affine map $\mathfrak{I} \to \mathcal{L}_{h,q}^1$, which is the unique G-equivariant affine map from \mathfrak{I} to $\mathcal{L}_{h,q}^1$; where $\mathcal{L}_{h,q}^1$ is the G-stable convex subset of \mathcal{L}^1 corresponding to the set of MM-norms for (h,q) via the bijection $\mathfrak{N}^1 \to \mathcal{L}^1, \alpha \mapsto \Lambda_{\alpha}$. In particular, \mathfrak{I} identifies with a G-stable convex subset of the building $\tilde{\mathfrak{I}}^1$.

Let denote by $\mathfrak{I}_{L_{\circ},1} = \mathfrak{I}(\mathbf{G}_1, L_{\circ})$ the building of G_1 .

If L is a field, the identification $G_{L_{\circ}} = G_1$ gives an identification $\mathfrak{I}_{L_{\circ}} = \mathfrak{I}_{L_{\circ,1}}$. The actions of Γ on $G_{L_{\circ}}$ and $\mathfrak{I}_{L_{\circ}}$ give some actions on G_1 and $\mathfrak{I}_{L_{\circ,1}}$. Note that we also have an action of Γ on $\operatorname{End}_{D_1}(V_1) = \operatorname{End}_{D_L}(V_L)$ — even if Γ does not act on V_1 , nor on D_1 .

Now if $L = L_{\circ}^2$, the isomorphism $\iota : G_{L_{\circ}} \to G_1$ gives a bijection $\mathfrak{I}_{L_{\circ}} \to \mathfrak{I}_{1,L_{\circ}}$, still denoted by ι . The action of Γ on $G_{L_{\circ}} \subset \operatorname{Aut}_{D_{L_{\circ},1}}(V_{L_{\circ},1}) \times \operatorname{Aut}_{D_{L_{\circ},2}}(V_{L_{\circ},2})$ is described as in Remark 2.1 (cf. [BT4] 1.13, Remarque). In particular, the subgroup $\Gamma' = \operatorname{Gal}(L_{\circ}/F)$ of Γ acts on $G_1 = \operatorname{Aut}_{D_{L_{\circ},1}}(V_{L_{\circ},1})$, and for $\gamma \in \Gamma \smallsetminus \Gamma'$ and $g = (g_1, g_2) \in G_{L_{\circ}}$, we have

$$g^{\gamma} = (g_2^{\gamma}, g_1^{\gamma}) = (({}^{\mathsf{t}} \varphi^{-1} \circ {}^{\mathsf{t}} g_1^{-1} \circ \varphi^{\mathsf{t}})^{\gamma}, g_1^{\gamma});$$

here the automorphism $\gamma \otimes \text{Id}$ of $\text{End}_{D_L}(V_L) = L_{\circ} \otimes_{F_{\circ}} \text{End}_D(V)$, denoted by $g \mapsto g^{\gamma}$, induces two γ -isomorphisms $\text{End}_{D_{L_{\circ,1}}}(V_{L_{\circ,1}}) \to \text{End}_{D_{L_{\circ,2}}}(V_{L_{\circ,2}})$ and $\text{End}_{D_{L_{\circ,2}}}(V_{L_{\circ,2}}) \to \text{End}_{D_{L_{\circ,1}}}(V_{L_{\circ,1}})$, still denoted by $g \mapsto g^{\gamma}$. This makes the action of Γ on G_1 , identified with $G_{L_{\circ}}$ via ι , explicit. We also have an action of Γ on $\mathcal{I}_{L_{\circ,1}}$, identified with $\mathcal{I}_{L_{\circ}}$ via ι .

In both cases, we obtain a bijection $\mathfrak{I} \to (\mathfrak{I}_{L_{\circ},1})^{\Gamma}$, which is the unique *G*-equivariant and affine map $\mathfrak{I} \to \mathfrak{I}_{L_{\circ},1}$, and can be described in terms of norms (or lattice-functions) as in 2.3.

4.3. Filtrations of the Lie algebra. Put $\tilde{\mathfrak{g}} = \operatorname{End}_D(V)$ and $\mathfrak{g} = \operatorname{Lie}(G)$. For $p \in \tilde{\mathfrak{I}}^1$, denote by $\tilde{\mathfrak{g}}_{p,\cdot}$ the square \mathfrak{o}_D -lattice-function on V defined by (cf. 1.7)

$$\tilde{\mathfrak{g}}_{p,r} = \operatorname{End}(\Lambda_p)(r), \quad r \in \mathbb{R};$$

it depends only on the projection of p to the non-enlarged building $\tilde{\mathcal{I}}$ of \tilde{G} . For $p \in \mathcal{I}$, let $\mathfrak{g}_{p,\cdot}$ be the $\mathfrak{o}_{F_{\circ}}$ -lattice function in \mathfrak{g} defined by

$$\mathfrak{g}_{p,r}=\widetilde{\mathfrak{g}}_{p,r}\cap\mathfrak{g},\quad r\in\mathbb{R},$$

and let $(\mathfrak{g}_{p,r}^{\mathrm{MP}})_{r\in\mathbb{R}}$ the Moy-Prasad filtration of \mathfrak{g} attached to p. We claim that Theorem 1.8 (proved for D = F) remains true for $D \neq F$: for all $p \in \mathfrak{I}$, we have

(1)
$$\mathfrak{g}_{p,r} = \mathfrak{g}_{p,r}^{\mathrm{MP}}, \quad r \in \mathbb{R}.$$

Put $\tilde{\mathfrak{g}}_L = \operatorname{End}_{D_L}(V_L)$ and $\mathfrak{g}_L = \operatorname{Lie}(G_{L_\circ})$. Thus we have $\tilde{\mathfrak{g}}_L = L_\circ \otimes_{F_\circ} \mathfrak{g} = L \otimes_F \mathfrak{g}$ and $\mathfrak{g}_L = L_\circ \otimes_{F_\circ} \mathfrak{g}$. Put also $\tilde{\mathfrak{h}} = \operatorname{End}_{L_\circ}(V_1)$ and $\mathfrak{h} = \operatorname{Lie}(G_1)$. The

identification $\tilde{\mathfrak{g}}_L = \tilde{\mathfrak{h}}$ induces an identification $\mathfrak{g}_L = \mathfrak{h}$, and an action of Γ on \mathfrak{h} (cf. 4.2) such that $\mathfrak{h}^{\Gamma} = \mathfrak{g}$. For $p \in \mathfrak{I}_{L_{\circ},1}$, denote by $\mathfrak{h}_{p,\cdot}$ the square $\mathfrak{o}_{L_{\circ}}$ -latticefunction on V_1 defined as in 1.7 if L is a field, and as in [BL] if $L = (L_{\circ})^2$. Let also $(\mathfrak{h}_{p,r}^{MP})_{r\in\mathbb{R}}$ be the filtration of \mathfrak{h} attached to p by Moy and Prasad.

Let p be a point in \mathfrak{I} , identified with a point in $(\mathfrak{I}_{L_{\circ},1})^{\Gamma}$ via the canonical bijection $\mathfrak{I} \to (\mathfrak{I}_{L_{\circ},1})^{\Gamma}$ (cf. 4.2). By construction, we have the descent property:

$$(\mathfrak{h}_{p,r}^{\mathrm{MP}})^{\Gamma} = \mathfrak{g}_{p,r}^{\mathrm{MP}}, \quad r \in \mathbb{R}.$$

From [BL] and Theorem 1.8, we have

$$\mathfrak{h}_{p,r} = \mathfrak{h}_{p,r}^{\mathrm{MP}}, \quad r \in \mathbb{R}$$

So to obtain (1), we just need to prove the descent property:

(2)
$$(\mathfrak{h}_{p,r})^{\Gamma} = \mathfrak{g}_{p,r}, \quad r \in \mathbb{R}$$

This can be done following 2.4 (the proof is essentially the same, details are left to the reader). So Theorem 1.8 is true even if $D \neq F$.

References

- [BL] Broussous, P., and B. Lemaire, Building of GL(m, D) and centralizers, Transformations Groups 7 (2002), 15–50.
- [BS] Broussous, P., and S. Stevens, *Buildings of classical groups and centralizers* of Lie algebra elements, J. Lie theory **19** (2009), 55–78.
- [BT1] Bruhat, F., and J. Tits, Groupes réductifs sur un corps local I. Données radicielles valuée, Publ. Math. IHES 41 (1972), 1–251.
- [BT2] —, Groupes réductifs sur un corps local II. Schémas en groupes. Existence d'une donnée radicielle valuée, Publ. Math. IHES 60 (1984), 1–376.
- [BT3] —, Schémas en groupes et immeubles des groupes classiques sur un corps local, 1ère partie: le groupe linéaire général, Bull. Soc. Math. Fr. 112 (1984), 259–301.
- [BT4] —, Schémas en groupes et immeubles des groupes classiques sur un corps local, 2ème partie: groupes unitaires, Bull. Soc. Math. Fr. 115 (1987), 141–195.
- [MP] Moy, A., and G. Prasad, Unrefined minimal K-types for p-adic groups, Invent. Math. 116 (1994), 393–408.

[PR] Platonov, V., and A. Rapinchuk, "Algebraic Groups and Number Theory," Pure and Applied Math. Series **139**, Academic Press, 1993.

Bertrand Lemaire Institut de Mathématiques de Luminy UMR 6206 du CNRS Univ. Aix-Marseille II, CP 907 163 Av. de Luminy 13288 Marseille, Cedex 9 France lemaire@iml.univ-mrs.fr

Received December 2, 2009 and in final form February 12, 2009