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Abstract. Let F, be a non-Archimedean local field of characteristic not 2.
Let G be a classical group over F, which is not a general linear group, i.e.
a symplectic, orthogonal or unitary group over F, (possibly with a skew-field
involved). Let z be a point in the building of G. In this article, we prove that
the lattice filtration (g, .)rer of g = Lie(G) attached to x by Broussous and
Stevens, coincides with the filtration defined by Moy and Prasad.
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Introduction

Let V be a finite dimensional vector space over a locally compact non-Archimedean
field F of characteristic not 2 — residual characteristic 2 is permitted —, and Fy
be a subfield of F' such that [F': F;] < 2. Let o be the generator of Gal(F/F,)
if '+ F,, and o = Idp if ' = F,. We fix a non-degenerate o-skew e-hermitian
form h on V', where ¢ € {£1}. Let G = U(h) be the subgroup of GL(V') formed
of those ¢ satisfying h(gx,gy) = h(z,y) for all z, y € V. It is the group of
F,-rational points of an F,-algebraic group G whose connected component G° is
reductive. To each point x of the building J of G, let (g, ,)rer be the filtration
of the Lie algebra g of G attached to x by Broussous and Stevens in [BS]'; let
also (gh') )rer be the filtration of g attached to = by Moy and Prasad in [MP]?.
In this article, we prove that the two filtrations coincide:

MP
o =08yr5 TE R.

This result is used by Broussous and Stevens in [BS] — this is the reason for which
we proved it. Note that for a general linear group (i.e. an inner F,-form of GL,,),
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L In [BS], the base field F, is supposed to be of odd residual characteristic, but the definition
of (gs,r)rer naturally extends to the residual characteristic 2 (see 1.7 and Remark 1.6).

2 In [MP] the group G is supposed to be simply connected, which is not the case here in
general. But the definition of (g%f )rer naturally extends to a general connected reductive group
(see 3.5).



30 LEMAIRE

the analogous result is proved in [BL] Appendix A.

Recall that the Moy-Prasad filtrations are defined by descent from a max-
imal unramified extension F™ of F,. So let L./F, be a finite sub-extension of
F™/F, such that the Lo-group G° X p, L, is quasi-split (note that we can choose
L, such that G° xp, L, is residually split, i.e. quasi-split and with the same
relative rank as G° x g, F™). Denote by G, the group of L,-rational points of
G, and by L the L.-algebra L, ®p, F'. There are two cases: L is a field; or
L~ (L,)*. If L is a field, then the form h extends to a non-degenerate (Id ® o)-
skew e-hermitian form h; on Vi, and Gr, = U(hz). If L ~ (L,)?, then F is
isomorphic to a quadratic sub-extension of L,/F,, and we can suppose F' C Lo;
then we have Gy, ~ GL(L, ®Fr V).

Let J;, be the building of G, and I' be the Galois group of L,/F,. There
exists a unique G-invariant affine map J — J_, which allows us to identify J with
the convex subset (Jz )" of Iy, formed of those points which are I'-invariant. The
point z € J defines two filtrations (gz,)rer and (@), )rer of the Lie algebra
gz, = Lo ®p, g of Gp,, where (gr,.,)rer is the filtration attached in [BS] to
x € (Ip,)F if L is a field, and in [BL] if L ~ (L,)?. By definition, we have the
descent property:

() =y, reR.

We prove we also have the descent property:

(gLo,m,r)F =@zry, T E R.

This reduces the question to the quasi-split case. Now assume that the reductive
F,-group G° is quasi-split. In that case, we can describe explicitly the intersection
of g, (resp. gi‘ff ) with each root subspace of g with respect to a maximal split
torus S of G, and with the Lie algebra of the centralizer of S in G. This shows
that both filtrations coincide.

Following a suggestion of Gopal Prasad, we also extend the result to a
more general “unitary group” of type U(h), that is with a skew-field — in fact a
quaternionic algebra — involved (cf. [BT4]). Such a group becomes, over a finite
unramified extension L, of F,, a unitary group of the previous type (i.e. of type
U(hr) with no skew-field involved) or a split general linear group. So taking into
account [BL] Appendix A, the extended result is implied by the descent property
for the Broussous-Stevens filtrations (for a general unitary group); this descent
property is proved (briefly) as in the case with no skew-field involved.

Ultimately, we have that Broussous-Stevens filtrations and Moy-Prasad
filtrations coincide for almost all (cf. Remark 1.1) Fy-forms of GL,,, Sp,,, O,.

In chapter 1, we introduce all objects and notation we need — unitary
groups are defined in 1.1 in full generality, but from 1.2 untill the end of chapter
3, we assume that there is no skew-field involved —, and we state the result
(Theorem 1.8). In chapter 2 we reduce the proof of the result to the quasi-split
case. In chapter 3 we prove the result in the quasi-split case. In chapter 4 we
extend the result to a general unitary group.
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1. The objects

1.1. Unitary groups. Let F, be a locally compact non-Archimedean commu-
tative field, and F' be a Galois extension of F, of degree at most 2. We assume
that the characteristic of F, is not 2. Let o be the generator of Gal(F/F,) if
[F . F,] = 2, and the identity of F' if F' = F,. Let D be a central division
F-algebra of finite dimension d?, endowed with an involution extending o, still
denoted by o — i.e. o is an anti-automorphism if D, such that ¢? = Idp and
o|r is the generator of Gal(F/F,). We know that d =1 or 2,i.e. D =F or D
is a quaternionic algebra over F'. Let D, and D° be the sub- F,-algebras of D
defined by

Do={AeD: X =)}, D°={AeD:\A+\ =0}

Since char(F') # 2, we have the decomposition D = D, @ D° (with D° = {0} if
o = 1d). The notations are coherent: if D = F'| then D, coincides with F,. Put
F°e=FnD°.

Let ¢ € {#1}. We fix a finite dimensional right D-vector space V', and a
o-skew e-hermitian form h on V', that is a Z-bilinear map V x V — F' such that,
forall z, y € V and all A\, p € D, we have

h(aA, yp) = A h(z, y)u,
h(y,z) = eh(z,y)?.
The form h is supposed to be non-degenerate. Put
D,.={\—¢e\: A€ D}.

It is a subset of {\ € D : A7 = —e\}, and since for A € D such that A7 = —e),
we have A = 21X — e(3A)7, the two sets coincide. So we have

Dy.=D° ife=1,
Dye =D, if e =—1.

Denote by D,. the F,-vector space D/D,., and by A — X the canonical pro-
jection D — D,.. Let £ be an element of F such that & +¢7 = 1 (since the
characteristic of F, is not 2, we can take £ = %) Let q=q3:V — 5015 be the
pseudo-quadratic form associated with h (cf. [BT4] 1.2), defined by

q(x) = &h(z,z) + Dy

It is well defined: if & is another element of F' such that ¢ + £ = 1, then
¢ —¢eF°,and (£ —&h(x,z) € D, for all x € V. Note we also have

qx)={peF:p+ep’ =nh(z,2)} +D.p, x€V.
For all x, y € V and all A € D, we have

q(z\) = $A7h(z, z)X,
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q(z +y) = q(z) + q(y) + h(z,y).

If (0,6) = (Id, 1), then ¢ : V — D is a quadratic form in the usual sense and h
is the bilinear form associated with ¢. If (o,¢) = (Id, —1), which is equivalent to
Dye = {0}, then ¢ = 0. If (0,¢) # (Id, —1), then h is determined by ¢: it is the
unique o-skew e-hermitian form on V' verifying h(z,y) = q(z +y) — q(z) — q(y)
forall z, y e V. N

Put G = GL(V) (= Autp(V)) and let G = U(h) be the subgroup of G
formed of those ¢ satisfying h(gzx, gy) = h(z,y) for all , y € V. Then G is the
group of F,-rational points of a linear algebraic group G defined over F,, whose
neutral component G° is reductive.

Remark 1.1.  The algebraic group G is an Fi,-form of one of the (split) classical
groups GL,, Sp,,, O,. Moreover, by varying the data F', D, o, ¢, V, h, we
obtain all F,-forms of those classical groups, except the inner forms of GL,,, and
certain forms corresponding to a Dynkin diagram of symmetric group S; (e.g. Og
with Dynkin diagram of type D,). For the inner forms of GL,, the comparison
of lattice filtrations and Moy-Prasad filtrations is already done in [BL].

From now on, untill the end of chapter 3, we assume D = F' and we consider
V as a left F'-vector space.

1.2. Derived groups. Put G’ = SL(V) and let G/ = SU(h) be the subgroup
G NG of G'. Then G’ is the group of F,-rational points of a linear algebraic
group G’ defined over F,. Put

Fl={\N€e F*: X \=1}.
Identifying F* with the centre F*Idy C GL(V) of G, we have the inclusion
F'G' c GNF*G.
Moreover, G’ is a cocompact subgroup of G (see 1.4 and the following remark).

Remark 1.2. If dimp(V) = 1, then we have G = F!' and G' = {1}; thus
G°(F) =G if 0 #1d, and G°(F) = {1} if 0 = Id. Now suppose dimg(V') = 2
and 0 = Id. If e = 1, then G ~ FX x (s) with \* = A\7! for all A € F, and
G'=G°(F)~ F}; if e = —1, then we have G = G’ = G°(F) = SL(V).

In the small dimension cases of the Remark 1.2, the lattice filtration of the
Lie algebra of GG attached to a point x of the building of G coincides with the
filtration defined by Moy and Prasad in [MP]: it is a straightforward consequence
of the definitions if G is a torus (see 3.5), and it is a consequence of [BL] if
G ~ SL(2, F,). So from now on, we assume that

Then G’ is connected ([BT4] 1.5) and semisimple (see [PR] 2.3). In particular,
G’ is a subgroup of G°.
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1.3. Root systems. Recall that a subspace W of V is called totally isotropic
if h(W, W) = {0}. We fix a Witt decomposition

V:‘/;@%@‘/;,

where V_ and V. are two isotropic subspaces of V' of maximal dimension such that
V_NV,=1{0}, and Vy = (V_ 4+ V,)*; here, for a subspace W of V, W+ denotes
the subspace {x € V : h(x,W) =0} of V. Put n =dimg(V), r = dimp(V_) and
ng = n — 2r so we have dimp(Vy) = ng. Note that r = 0 if and only if the form h
is anisotropic. Put I = {£1,...,£r} and let (e_;);=1.. ., and (&;);=1.. , be some

..........

where (i) = 1 if i > 0, and (i) = ¢ if i < 0. Denote by hq the restriction of
h to Vo x Vy. If Vo # 0, ho is a non-degenerate anisotropic o-skew e-hermitian
form hg on V4. Hence the form h is given by (for A\;, u; € F and x, y € V}):

h (Ziel)\iei +, Zie[:uiei + y) = Zie[g(i)Ag:u—i + ho(z,y).

Let S be the subgroup of G formed of those g satisfying ge; € Fye; for
all i € I, and gr = = for all x € V;. We have S C G’, and S is the group
of Fi-rational points of a maximal F,-split torus S in G° (hence in G'). For
i € I, let a; be the algebraic character of S given by se; = a;(s)"te;. We have
a_; = —a; in the group X*(S) of algebraic characters of S, denoted addltlvely.
The a; for i > 0 form a basis of X*(S). For i, j € I, j # %i, put a;; = a; + a;.
Let @ = ®(S, G) be the (relative) root system of G. We have the following cases
([BT1] 10.1), where i, j € I, j # +i:

B): ® = {a;,a;;} when Vj # {0} and (0,¢) = (Id,1);
BC): ® = {a;,2a4,a;;} when V5 # {0} and o # Id;

(
(
(C): ® ={2a;,a;;} when V= {0} and (o,¢) # (Id, 1);
(D): ® ={a;;} when Vj = {0} and (0,¢) = (Id, 1).

The case (C) can be divided in two sub-cases: Vy = {0} and (0,¢) =
(Id, —1) (the symplectic case); Vo = {0} and ¢ # id (a quasi-split unitary case).
1.4. The groups Z = Z3(S) and N = Ng(Z). For i € I, put V; = Fe;. The
centralizer Z of S in G is defined over F,. Its group of F,-rational points is the
subgroup Z of G formed of those g satisfying gV; = V; for all i € I'U {0}. We

have Z = Z NG where Z is the Levi subgroup of G formed of those g satisfying
gVi =V, for all i € TU{0}. The centralizer Z' of S in G’ is also defined over F;



34 LEMAIRE

(it is a Levi F}-subgroup of a parabolic F,-subgroup of G'), and coincides with
Z NG'. Tts group of F,-rational points is Z’ = Z N G’. Let us describe Z and
Z'. For z € Z,put pu(z) =1[_; ai(z).

Suppose first V5 = {0}. Then the decomposition

v=V,e---eVieVie -V

allows us to represent each element g € G by a matrix (g;;)ijer- An element
z € Z is represented by a diagonal matrix

diag(z_p,...,2-1,21,...,2;) € GL(2r, F)

such that 27,2, = 1 for @« = 1,...,r. Moreover, we have z € Z' if and only if
wu(z) € F,. So the map z — (a1(2),...,a.(2)) identifies Z with (F*)", and the
map 2 — (ai(2),...,a,_1(2), u(z)) identifies Z" with (F*)"~! x F*.

Now suppose Vy # {0}. Then the decomposition

V=V,e eV aoWoeVie --al,

allows us to represent each element g € G by a matrix (g;;)ijeruo}- An element
z € Z is represented by a block diagonal matrix

diag(z_p, ..., 21,20, 21, .- -, 2r) € GL(2r 4+ ng, F)

such that 27,z; =1 for i =1,...,r, and zy € U(hg). Moreover, we have z € 7’ if
and only if u(2)"'u(2)7 det(z0) = 1. So the map z +— (25, a1(2),...,a.(2)) iden-
tifies Z with U(hg) x (F")*, and the map z — (u(2) " 'u(2)720,a1(2), ..., a.(2))
identifies Z" with SU(hg) x (£*)".

From the above description, the group Z’ is a cocompact subgroup of Z.
Since G = ZG', we obtain that G’ is a cocompact subgroup of G. If dimg(Vy) < 1,
then the connected component Z of Z° is a torus (hence a maximal torus of G°),
and the groups G° and G’ are quasi-split over F,. Conversely, if G° is quasi-split
over F,, then dimp (V) < 1 ([BT4] 3.5). If 0 = 1Id, we have Z' = S = Z° and
G =G".

The normalizer N of Z is the group of F,-rational points of the
F,-subgroup IN of G which stabilizes V; and permutes the lines V;, 7 € I.
It is the semidirect product M x Z where M is the subgroup of N which fixes
(pointwise) V; and permutes the e;, i € I.

1.5. Root subgroups. For i, je€ I, j#+i and u € F, let u; j(u) € G be the
linear transformation of V' defined by

x+— x for all x € Vj,
€ € +e(—j)u’e,
e; — e; —e(i)ue_;,

ep — e forall keI~ {ij}.
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The set U,,, = {u;;(u) : u € F} is the group of F,-rational points of the F-
subgroup U, ; of G associated with the (relative) root a, ;.

Suppose Vy # {0} (case (B) or (BC)). Recall that for x € Vj and p € F,
we have pu € ¢g(z) if and only if p+ eu” = h(z,x); in particular if o = Id (case
(B)), we have ¢(z) = $h(z,z) € F. For z € V and p € q(z), let u;(x, pn) € G be
the linear transformation of V' defined by

y—y—e(i)h(z,y)e; for all y € Vj,
e; — e+ —e(i)ue_;,
ex — e forall ke I~ {i}.

The set U,, = {u;(x, ) : x € Vo, u € q(x)} is the group of F,-rational points of the

F,-subgroup U,, of G associated with the root a;. Moreover if o # Id (case
(BQ)), the set Us,, = {u;(0,v) : v € F,.} is the group of F,-rational points of the
F,-subgroup U, of G associated with the root 2a;.

Suppose Vp = {0} and (o0,¢) # (Id, 1) (case (C)). For ¢ € I and v € F,_,
let u;(0,v) € G be the linear transformation of V' defined by

e; — e; —e(i)ve_y,
ep — e forall ke I~ {i}.

The set Us,, = {w;i(0,v) : v € F,.} is the group of F,-rational points of the
F,-subgroup U, of G associated with the root 2a;.

Let vg be the unique valuation on F' extending the normalized valuation
on Fy, ie. such that vp(F)) = Z. Recall that (Z, (U,).co) is a generating root
datum in G ([BT1] 6.1.1, 6.1.3.c and 10.1.6). Let ¢ = (¢4)aca be the valuation of
(Z7 (Ua)aeé) given by:

Pa; ; (Wij(u)) =vp(u) fori, jel,i# %), uel;
Pa; (ui(z, ) = svp(p) for i € I, z € Vo, p € q(z) (case (B) or (BC));
024, (u;(0,v)) = vp(v) for i € I, v € F,. (case (BC) or (C)).

1.6. Building, norms and lattice-functions. Let J=IJ(G, F,) be the (non-
enlarged) Bruhat-Tits building of G, i.e. the building of the valuated root datum
(Z,(Us)aes, p)- Since G’ is semisimple and G’ is cocompact in G, the connected
centre of G° is an anisotropic F-torus; thus we have J = J(G° F,) = J(G', F,)
and J coincides with the enlarged building of G°(F'). Let A be the apartment
of J attached to the maximal F,-split torus S of G. It is an affine space with
underlying space A = Homgy(X*(S),R). We identify A with A by taking ¢ € A
as the origin (cf. [BT1], §10). Thus X*(.S) ®z R becomes identified with the dual
space Homg (A, R).

Let J* be the enlarged building of G, and N* = Normk (V) be the set of
(F-)norms on V ([BT3] 1.1); recall that since F' is complete, each norm on V'
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splits with respect to an F'-basis of V. The group G acts naturally on N! by
g-a) =algtv) for g € G, a € N! and v € V. Moreover, N! is endowed
with an affine structure ([BT3] 1.27). From [BT3] 2.11, there exists a bijective
G- -equivariant affine map J L N': moreover, up to translation by a real
number, j is the unique G- equ1var1ant affine map from T* to N!'. Let L' =
LattiF(V) be the set of (0p-)lattice-functions in V' ([BL] 2.1), where op denotes

the ring of integers of F'. The group G acts on L' via its action on V. For
a € N, let A, be the op-lattice-function in V' defined by

Au(r)={veV:al)>r}, rekR,
and for A € L', let ap be the norm on V defined by
ap(v) =sup{re R:veA(r)}, veV.

The maps N! — L1 @ +— A, and L' — N1, A — a, are bijective, G-equivariant
and mutually inverse ([BL] 2.4); via these maps, we transfer to L! the affine
structure on N'. For p € J', denote by A, the op-lattice-function Aj,y in V.
By construction, the map gL L e A, is bijective, G -equivariant and affine,
and up to translation by a real number, it is the unique G -equivariant affine map
from J* to L1,

Remark 1.3. Let J be the (non-enlarged) building of G, and let V! be the
R-vector space Homgz(X*(G),R), where X*(G) denotes the free Z-module of

rank 1 generated by the character det : G — F*. We have the decomposition
J' =J x V! and the action of G on J! is given by the map

G x (Ix VY, (g,(5,v) = g (z,0) = (g 5,v + 0(v))

where 6(g) € V! is defined by (det,f(g)) = —vp(det(g)). We also have some
natural actions of R on N! and on L!, given by the maps

RxN' =N (ra) —a+r, RxL'— LY (rA)—r-A

where (a+7)(v) = a(v)+r forall v € V and (r-A)(r") = A(r'—r) for all ' € R.
Let N (resp. L) be the quotient of N* (resp. L!) by the action of R. The actions
of G on N! and £! induce some actions on N and L, and the affine structures
on N' and L' induce some affine structures on N and £. The maps j : J' — N*
and N — L' o — A, induce some maps J — N and N — L ‘which are bijective,
G- -equivariant and affine. So we obtain a canonical bijective G- -equivariant affine

map J — N (resp. J— L): it is the unique G- —equivariant affine map from J to
N (resp. from J to L).

The valuation vg is an F,-norm on F', and we define an F,-norm vy on
the F,-space F',. = F/F,.:

Up =sup{vp(A+p—ep’) n e F}, XeF.

Since F' is complete, F; . is closed in F' and vp is well-defined. Let us recall the
definition 2.1 of [BT4]:
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Definition 1.4. Let o € N'. We write @ < h (“a minore h” in French) if
a(z)+ aly) <vp(h(z,y)) forall z,ye V.
We write o < (h,q) (“a minore (h,q)” in French) if « < h and
a(z) < 1op(g(z)) forall z € V.

We say that « is an MM-norm (“norme maximinorante” in French) for h (resp.
for (h,q)) if a« < h (resp. a < (h,q)) and « is maximal for this property.

Let Nj, be the subset of N* formed of the MM-norms for h, and Nj , be
the subset of N} formed of the MM-norms for (h,q).

Definition 1.5. We say that we are in the tame case if one of the following two
conditions is satisfied:

(0,¢) = (id,—1), i.e. ¢ =0;
the extension F'/F, is tamely ramified.

If we are in the tame case, then we have Nj . = Nj ([BT4] 2.2).
Let vy, = vy, n, be the Fio-norm on V{ defined by

o (@) = Yor(g(), © eV
Thus we have

vy, (z) = s sup{vrp(A) : A+ X7 = h(z,2)}, =€ V.

Remark 1.6.  Suppose € = 1, and let £ be an element of F' such that {4+&£7 =
and vp(§) > vp(¢') for all & € F such that £ + &7 = 1. Put I = Lop(£). We
have | < 0 with equality if and only if the extension F'/F, is quadratic unramified
or the residual characteristic of F, is not 2 (i.e. the extension F/F, is tamely
ramified if o # Id, and the residual characteristic of F, is not 2 if ¢ = Id). If
o = 1d, we have £ = % If 0 # Id, we can take £ = % if and only if and [ = 0.
Since ¢ =1, for all z € V), we have h(z,z) € F, and

q(x) ={&h(z,2)+p—p’ pe Fy ={h(x,z) ' € F, & +¢7 =1}

Hence we obtain
vy, () = %vp(h(m,x)) +1, zeW.

In particular if the residual characteristic of £ is not 2, then the F,-norm vy, on
Vo is the one used by Broussous and Stevens [BS].

For p € A (= A), let o, be the MM-norm for (h,q) on V defined by
([BT4] 2.9):

(o + D ier Aiei) = inf(vy, (o), inficr (vr(Ni) — ai(p))),
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where \; € F' and zp € V5. The map A — N}%q, p — «, is injective (loc. cit.)
and N -equivariant ([BT4] 2.11), and it extends in a unique way to a G-equivariant
map J — Nj, ., p — a,, which is bijective and affine ([BT4] 2.12); moreover, this is
the unique G-equivariant affine map from J to N}L, ‘ (loc. cit.). Via j, the building

J identifies with a G-stable convex subset of g, Note that the apartment A of J
is the intersection of J with an apartment A'! of J' (cf. [BT4] 2.14). Put

Ly ={Ay:aeN;}

and
L%%q ={A,: € N,lw}.

By construction, L,lw is a G-stable convex subset of L!, and the map g

L' p — A, induces by restriction a bijective, G-equivariant and affine map

J — L}, which is the unique G-equivariant affine map from J to L} .
Let a — @ be the involution on N! defined by ([BT4] 2.5)

a(z) = infyey (vp(h(z,y) — aly)), xeV.

A norm « on V is a MM-norm for A if and only if @ = a (loc. cit.). In other
terms, a norm « on V is a MM-norm for A if and only if the lattice-function A,
in V is self-dual in the sense of [BS] ch. 3 (the proof of Corollary 3.4 applies in the
same manner). So L} is the set of self-dual lattice-functions in V', and it coincides
with L} if we are in the tame case.

1.7. Square lattice-functions. Denote by g = Lie(é) the Lie algebra of é,
and by g = Lie(G) that of G. So we have g = Endg(V'). For g € g, denote by
g% the adjoint of g with respect to h, i.e. the unique element of g such that
h(gz,y) = h(z, g°y) for all z, y € V. The map g — g, g — ¢°* is an involution,
and we have g = {g € §: g + ¢g°» = 0}. For A € L', denote by End(A) the
(0p-)lattice-function in g defined by

End(A)(r)={g€g:9gA(s) CA(s+71),seR}, reR.

The lattice-functions in g arising in this way are called square lattice-functions.
Let L2 = LattzF (g) be the set of square lattice-functions in g. For p € J, we put

gpr = End(A,)(r), reR.

The group G acts on L2 via its action on g, and the map
gt — L2, p > §,. is surjective and G-equivariant ([BL] §4).

Remark 1.7.  Themap J' — L', p — A, depends on the choice of j : ' — N,
but the map J' — L2, p — §,. does not depend on it. In fact, for A, A’ € L',
we have End(A’) = End(A) if and only if there exists r € R such that A’ =r- A
([BT3] 1.13). In particular, the map J'— L2 p g, factorizes through the non-
enlarged building J (cf. Remark 1.3). We obtain a bijective and G-equivariant
map J— L2,
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The involution o3, on g induces also an involution on L2, still denoted by
op: for A € L', we put

End(A)?"(r) = End(A)(r)°".

Let L% be the subset of L? formed of those lattice-functions which are
op-invariant. For o € N', we have ([BT4] 2.5)

End(A,)?" = End(Ag).

This implies (loc. cit., Cor. 2) that the map L' — L2 A + End(A) induces
a bijection from L} to L. Thus if we are in the tame case, then the map
gl L2, p — @, induces a G-equivariant bijection from J to L7.

Let p be a point of J. Let g,. be the op, -lattice-function in g defined by

Opr = BprNB={g€8: 90, (s) CAy(s+7), s €R}, rER,

and let (9;\,/,[71?%@1{ be the filtration of g attached to p by Moy and Prasad ([MP],
see 3.5). The following theorem is the main result of this paper.

Theorem 1.8.  For all p € J, we have

MP
Opr =8p,, rER

2. Reduction to the quasi-split case

2.1. Extension of the base field. Let L, be a finite extension of F,. Put
L = L, ®g, F. It is a commutative L,-algebra, endowed with an involution
Id ® o, still denoted by o. The field L, is the set of fixed points of ¢ in L. Since
F' is a separable extension of F, of degree < 2, there are two cases: L is field, in
which case it is an extension of degree [F': Fi,] of L,; or L is a cyclic L,-algebra
with group ¥ = {1,0}, i.e. a product L; x Ly of two extension L; and Ly of
F, isomorphic to L, such that oL; = Ly. Denote by L,. the L,-vector space
Lo ®p, Fye. So Fw identifies with an F,-subspace of L,. = L/L,.. Moreover,
we have

Loe={A—eX :AeL}={Ne€L:\ =—c)\}

Denote by Vi the L-vector-space L, ®r, V = L ®pr V. Even if L is not
a field, by replacing F, with L, and F' with L, we define the notion of o-skew
e-hermitian form on V. The o-skew e-hermitian form A on V extends to a
o-skew e-hermitian form h; on V;, which is non-degenerate since h is non-
degenerate. Let g, = q, : Vi — Zw be the pseudo-quadratic form associated
with h; asin 1.1. Put Gy = GL(V7) and let G, = U(hy) the subgroup of G
formed of those g satisfying hy(gz, gy) = hp(x,y) for all z, y € V. Then Gy, is
the group of L,-rational points of the L,-algebraic group G, = G X, L,. Put
gz, = Lie(Gr,); so we have gr, = L, ®pF, g.

Let us consider the first case: L is a field. We can replace F, with L, and F
with L in all the constructions of chapter 1. In particular for p € 3, = I(Gy,, L),
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denote by gr.,. the square oy -lattice-function in gz, defined in 1.7, and by
(gli/lfpv,)reug the filtration of g, attached to p by Moy and Prasad.

2.2. The case L, ®p, F ~ (L,)*>. Now let us consider the second case: L ~
(Lo)?. Then [F : F,] = 2 and, up to F,-isomorphism, F is contained in L. So we
can (and do) assume F C L, and L = (L,)?. The embedding FF — L, A =1® A
identifies F' with the subset {(A\,A?) : A € F}, and for A\, p € F, we have
(A, )7 = (p, A). Let & = (1,0) and & = (0,1) be the two minimal idempotents
of L.

If X is an F'-vector-space, the L-vector space X, = L, ®p, X = L ®p X
is a product of two copies of X, = L, ®r X: putting X ; = X1, we have

Lo ®Fo X = XLo,l X XLO,Z-

In particular we have

VL = VLo,l X VLO,2~
For i =1, 2, we have ¢V ; C Vy ; for all g € End. (V7). Thus we have

EHdL(VL) = EndLO(VLml) X EHdLO(Vng)

with Endg (Vg,;) = &Endg(Vz), identifying L, with &L. Since h is non-
degenerate, the map x +— h(x,-) defines a o-isomorphism from V to the dual
space V* = Hompg(V,F), and by extension of scalars, the map = +— hp(z,-)
defines a o-isomorphism from V7, to the dual space V;* = Hom(V, L) = (V*).
Since £] = & and §& =0, for i =1, 2 and z, y € V;_,, we have

ho(z,y) = ho(&x, &y) = && ho(z,y) = 0.

Hence Vi, and Vi, o are two maximal totally isotropic subspaces of V. Thus
we obtain that the map x +— hy(z,-) induces an isomorphism of L,-vector spaces

@ VLo,l — VL*O,Q = I‘IOII]LO (VL0,27 Lo).

Now let g = (g1,92) € G = GL(V,1) x GL(VL,2). By definition, we have
g € U(hy) if and only if p(g121)(g22) = p(x1)(x2) for all (x1,29) € Vi 1 X VL, 2,
i.e. if and only if
I N
g2= ¥ ©° g1 ©°@

So by restriction the map G — GL(VL. 1), (91, 92) — ¢1 gives an isomorphism of
groups ¢ : U(hg) — GL(V7, 1) which is defined over L, i.e. which comes from
an isomorphism of algebraic groups defined over L,. Moreover, ¢ restricts to an
isomorphism of groups ¢’ : SU(hr) — SL(V}, 1) which is also defined over L.

Let I, = J(Gp,, L,) be the (non-enlarged) building of Gy, = U(hz), and
L1 be the quotient of L} | = Latttl,Lo (VL.1) by the action of R (cf. Remark
1.3). The group GL(V7, 1) acts on I, via ¢, and from the Remark 1.3, there
exists a unique GL(V, 1)-equivariant affine map I, — Ly, 1, still denoted by «¢.
Let p be a point of J; . Let gr.,. be the o -lattice-function in gz, defined by

OLopr = Lie(b)il(EHdLo (VLo,l)L(p),r)> r € R.

Let also (g}, )rer be the filtration of gy, attached to p by Moy and Prasad.
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Remark 2.1.  Suppose L,/F, is a Galois extension with Galois group I". Then
we can make the action of I' on G, explicit ([BT4] 1.13, Rem.). Let I be the
subgroup Gal(L,/F') of T'. The group I' acts naturally on V;, = L, ®p, V' and
on Endp (VL) = Lo ®p, Endp(V). For i = 1, 2, the subspace Vi ,; of Vj is
I[-stable, whence we have a natural action of IV on Endy (V. ;). If y e '\ TV,
i.e. if the restriction of v to F' is o, the automorphism v ® Id of End.(V%),
denoted by g — ¢7, induces two y-isomorphisms End; (V. 1) — Endg, (Vi 2)
and Endy, (V7. 2) — Endg (V5. 1), still denoted by g — ¢7. Then for v € I and
(91,92) € Endp, (Vi 1) x Endy (VL 2), we have

(91792)'7 = (gy’gg) if Y € F/a
(91,92)" = (93,9]) if ye NI,

In particular, the map ¢ : U(hy) — GL(V7, 1) is I"-equivariant, and for v € '\ IV
and g = (g1, g2) € U(hy), we have

-1 -1
9 =1(93.97) = ("¢ o'g o'p),q]).

2.3. Unramified descent: buildings. Let us turn to the general case: L is a
field or L ~ (L,)?. Suppose moreover that the extension L,/F, is unramified, and
let T' be the group Gal(L.,/F,). We know ([BT4] 4.1) that there exists a unique
G-equivariant and affine map J — J;_, whose image is the subset (Jz_ ) formed
of those points which are fixed by I'.

We can describe the canonical bijection J — (I )7 in terms of norms
(resp. of lattice-functions). Let vy, be the normalized valuation on L,. The
L,-algebra L is endowed with the L,-algebra norm vy defined by vy, = vp, @ vg.
The ring of integers o = o1, ®,, or of L coincides with the set of A € L
such that v (\) = 0. Let N} = Norm} (V) be the set of L-norms on V;, and
L} = Latt, (VL) be the set of oy -lattice-functions in V. We define, as in 1.6,
the subsets Ny , v C Np,, ~of Nj (Definition 1.4 is valid even if L is not a
field), and the subsets L , o C L}, of L. For a € N', denote by ay, the
L-norm v, ® a on Vy,, and, for A € L', denote by A, the oy -lattice-function in
Vi, defined by AL(r) = or, ®,, A(r), r € R. For o € N}, denote by A, the of-
lattice-function in Vi, defined (as in 1.6) by Ay(r) ={v € Vy : a(v) > r}, r € R.
Hence we have A,, = (A,)r, for all @ € N'. On the other hand, the group T" acts
naturally on N} (resp. on L1}), stabilizing the subset N}/y(hLnyL) (resp. L1L7(hL7qL)),
and the map N1 — L} o~ A, is T'-equivariant.

The map a — ar, from N! to N1 is injective, G -equivariant and affine, and
it induces a bijection onto the convex subset (N})U' of N} formed by those norms
which are ['-invariant. If a € N, from [BT4] 4.2, we have a < (h,q) if and only
if ar, < (hp,qr). Hence the map a +— «y induces a G-equivariant affine bijection
from Nj, , to the convex subset NE”u(hL’qL) of (ND)Y formed by those norms 3 such
that 6 < (hr,qr) and which are maximal for this property. A priori we have
the inclusion (Ni,(hL, qL))F C Ni’,h( but we know this inclusion is an equality
([BT4] 4.7 and 4.9).

hr,qr)’
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First case: L is a field. From 1.6, there exists a unique (G -equivariant
affine map J,, — N} (hiar)? which is I'-equivariant by unicity. It induces a

G-equivariant affine map J — (Nb( )t which (by unicity again) coincides

hLqu)
with the canonical bijection J — N}%q composed with the G-equivariant affine
bijection
1 1 r
:Nh#l - (NL7(hL7QL)) » X AL

So via the canonical bijections J — Nj  and Jr, — Np the canonical

hLﬂ]L)’
bijection J — (I )b is given by a +— af .

Second case: L ~ (L,)*. We take the hypotheses and notation of 2.2. Let
I'" be the subgroup Gal(L/F) of I". The Lo,-norm vy on L = L, X L, is given by

vr(A p) = inf{or, (A), v, (w)}, A p € Lo

For i =1, 2, put Nj_; = Latty, (VL,). For € Nj_,, denote by @ the Lo-norm
on Vo defined by

a(w2) = infa evy,, (Lo (he(@1, 22) — aay)), @2 € Vie
and by a @ @ the L-norm on V, =V x V defined by
(Oé @@)(1’1,%2) = inf(oz(xl),a(@)), xr1 € VLo,la T € VLO’Q.

From the lemma of §4.8 in [BT4], the map a — a @@ is a bijection from N7 _,
to the subset N7, = Nj (hroar) OF N7 . Via this bijection, we obtain an action of

' on Nj_, which extends the natural action of I (cf. Remark 2.1). For ov € N*,

let a1 be the Lo-norm vy, ® o on Vi, 1. Let us identity G with a subgroup
of GL(Vy, 1) via the map g — & (1 ® g). Then the map a — ay,; from N' to
Ni(hl is injective, é—equivariant and affine, and it induces a bijection onto the
convex subset (N}_ ;)" of N}_, formed by those norms which are I"-invariant.
Moreover, if o € N', the IV-invariant L.-norm «y, on Vi ; is [-invariant if
and only if @ = «, i.e. if and only if @ € N}. So the map a — «r,; induces
a G-equivariant affine bijection from N} to the convex subset (Nj_,)" of N
formed by those norms which are I'-invariant. Let N, 1 be the quotient of N7
by the action of R. The action of I' on Nj_, induces an action on N, and
we denote by (NLO,l)F the convex subset of Ny ; formed by those elements which
are I'-invariant. For o € N}, and ¢ € R, we have

(a+c,a+c)=(a+c,a—c);

so if o is ['-invariant, then a + ¢ is ['-invariant if and only if ¢ = 0. Thus the
canonical projection Nj_; — N 1, a — o induces an injective map (N} )" —
(NL,1)", which is also surjective: for v € N} _; such that o' is I'-invariant, since
I’ induces on the class {a + ¢ : ¢ € R} a finite group of affine automorphisms,
there exists a ¢ € R such that a4+ ¢ is ['-invariant. Thus we have a G-equivariant
affine bijection

Nj, = Nzt am (ag,q1)"

So via the canonical bijections J — N}l and Jpo — N 1 (cf. Remark 1.3), the

canonical bijection J — (Jz.)' is given by o — (ayz, 1) .
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Since the map N} — L}, a+— A, is T'-equivariant, the translation of the
description above in terms of lattice-functions is straightforward and left to the
reader.

2.4. Unramified descent: square lattice-functions. We continue with the
hypotheses and notation of 2.3. Let p be a point in J, identified with a point in
(Jz,)F by the canonical bijection J — (I, )'. By construction, the filtrations of g
and gy, attached to p by Moy and Prasad, satisfy the descent property:

(Orpr) =85, TER

Let us prove that the lattice-functions g,. in g and gz, ,. in gz, satisfy the same
descent property. Put g, = Endj(V7); so the L.-algebras g, and L, ®p, g
(= Lo ®p, Endp(V)) are canonically isomorphic.

First case: L is a field. As in 1.7, the point p € (Jp,)'' C Iy, de-
fines a square oy -lattice-function gr,. in gr. More precisely, from 1.6 there
exists a unique G -equivariant affine map J;, — Li,(hL, )’ p' — Ay, which is
I'-equivariant and, from 2.3, induces a G-equivariant affine map JEO — (LlL’(hL’ qL))F :
By definition, for p’ € Iz, we have g, ,,. = End(A,/). Since p is I'-invariant, we

have A, = (A,)r (cf. 2.3). Thus we have

QLW’ = 0L, Qop, gpﬂ’? reR.

This implies the descent property:

(8rpr)" = 8pr, T ER.

Since (gz)' = g, we obtain the descent property:

(gLo,pm)F =8@pr, TE R.

Second case: L ~ (L,)*. We take the hypotheses and notation of 2.2. For
r € R, the oy -lattice g1, in gz, is the set of

(g1, 92) € Endyp, (V1) x Endy, (Vi 2)

such that g1 € Endy, (Vi,1)up)r and go+¢ totgiotp = 0. Let I be the subgroup

Gal(L,/F) of T'. Fix a real number r. Since the map ¢ : U(hr) — GL(Vy, 1) is
["-equivariant, we have «(p) € (£1,1)". On the other hand, the isomorphism
¢ : Vi1 — V[ o is also I"-equivariant. From the first case above, we may and do
assume that L, = F'. So ¢ is an isomorphism from Vi; to Vg, ¢(p) is an element
of Lpy = LattiF(VFJ)/R, and gr,, is the op-lattice in gr = F ®p, g C gr =
Endp (Vi) x Endp(Vp2) formed by those (g1, g2) satisfying g1 € Endp(Vei)up),r
and go + ‘ol otg ot = 0. For i = 1, 2, the map v — &(1 ® v) identifies V'
with Vg;; hence we have the identifications Endp(Vp,;) = g and Lpy = L. From
Remark 2.1, the action of I' = {1,0} on gr = g x g is given by (g1, 92)” = (92, 1),
for all g1, go € g. We obtain that the map gr — g, (¢1,92) — ¢ identifies
(8Frpr)" = 8rpr N g with the op-lattice in g formed by those g € g,(,) satisfying
g+t totgoty =0. But, for all z, y € V, we have

o(r)(y) = h((2,0),(0,9)) = he((z, ), (y,y)) = h(z,y).
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Hence for g € g, we have X
g™ ="¢ o'go'y

Totgoty = 0 if and only if g € g. Thus we obtain the descent property:

and g+"p~

(gF,p,r)F = gL(p),r ng.

The action of T’ on Jf induces an action on L: for A € £, we put A7 = 1(t7(A)7).
By construction, the map ¢ : Jp — L is I'-invariant, and induces a bijection,
denoted by ¢f, from J to the convex subset L' of L formed by those elements
which are I'-invariant. Moreover, (f is G-equivariant and affine. From 2.3, by
restriction the canonical projection L' — L induces a bijection v : L} — LF
which is G-equivariant and affine. This implies that the composition wof : J — L}
is bijective, G-equivariant and affine. Since we are in the tame case (the extension
F/F, is unramified), we have L} = L} . and ¢ o /* is the unique G-equivariant
affine map from J to L}. So we obtain that t(p) € L', ¥((p)) = A, and
8u(p)r = Opr- Turning to the general unramified extension L./F, (i.e. removing
the hypothesis L, = F'), we have proved the descent property:

(gLo,p,T)F =gpr, T ER

2.5. Reduction to the quasi-split case. Let L, be a finite unramified ex-
tension of F, such that the reductive L,-group G° Xpo L, is quasi-split. Put
L =L, ®p, F as before. Suppose that for all p € J;_, we have

_ MP
Lopr = BLoprr T E R.

Then the descent property proved in 2.4 implies that for all p € J = (Jp)', we
have
Opr = gfff, r € R.

If L ~ (Lo)?, we know from [BL] that for all p € I, the filtration (gr.p,)rer
of g coincide with (glz/lfm,)reﬂg. Thus we have reduced the question to the quasi-
split case: we may suppose that G° is quasi-split over F,; note that we may also
suppose that G° is residually split over F,, i.e. quasi-split and of the same relative
rank as G° x g, L/ for all finite unramified extensions L. of L,.

3. Proof in the quasi-split case

3.1. Root subgroups again. In this chapter, we assume that the group G
is quasi-split over F,. Recall that since G is quasi-split, we have dimg(Vj) < 1.
From [BT1] 10.1.3, if o # 1d, by a “change of coordinate” we may (and do) assume
e=1if Vo # {0}, and ¢ = —1 if Vj; = {0}. Then we have ¢ = —1 if and only
if we are in case (C). Let us fix an element eg € Vj such that ey # 0 if Vy # {0}
(case (B) or (BC)). Moreover if Vj # {0}, by another “change of coordinate” we
may (and do) assume that h(eg,ep) =1 (loc. cit.).

For i,j €I, j # +i and u € F, the element u;;(u) € U,, (cf. 1.5) acts
trivially on Zke[u{o},k;ﬁﬂ,ﬂ:j Vi, stabilizes X;; = V_; + V_; +V; + V;, and induces
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on X;; an automorphism whose matrix with respect to e_;, e_;, €;, €; is given

by

10 —e@u 0
01 0 e(—j)u’
00 1 0
00 0 1

Suppose Vo # {0} (case (B) or (BC)). For i € I and w,v € F such
that v + v7 = wu’ (i.e. such that v = 1u? if we are in case (B)), the element
ui(u,v) = u;(ueg,v) € Uy, (cf. 1.5) acts trivially on 37, .., Vi, stabilizes
X, = V_;+Vy+V;, and induces on X; an automorphism whose matrix with
respect to e_;, eg, e; is given by

1 —uw® —v
0 1 U
0 O 1

Suppose Vp = {0} and (o,¢) # (Id, 1) (case (C)). For ¢ € I and v € F,_,
the element w;(0,v) € Uy, acts trivially on >, _; kti Vio stabilizes X; =V, +V;,
and induces on X; an automorphism whose matrix with respect to e_;, e; is given

by |
< é —5§z)v ) '

For i, j € I, j # =i, the group-law on U, is given by w; ;(u)u; ;(u') =
u; j(u+u') for all u, v € F. For ¢ € I, to describe the group-law on U,, (case (B)
or (BC)) and the group-law on Uy, (case (BC) or (C)), it is useful to introduce
the F,-spaces Hy = {0} x F,. and H = {(u,v) € F x F:v+ev’ =uu’} D Hs.
The space H is endowed with a multiplicative group-law

(u,v)(u,v") = (u+u,v+0v" +uu)

which makes Hy a subgroup of H: for v, v € F,., we have v + v € F,. and
(0,v)(0,v") = (0,v +v"). The group-laws on U,, and Us,, are obtained from the
group-laws on H and H, by transport of structure via u;. In case (BC), since Hy
is normal in H, we can define the quotient group U,, = Uy, /Us,, . It is the group
of F,-rational points of the (geometric) quotient group U, /Us,,. In case (B), we
put U,, = U,, .

3.2. Basis of the Lie algebras. Recall that g denotes the Lie algebra of G,
and g the Lie algebra of G. For a € &, let u, be the subspace of g defined

by u, = Lie(U,) if 2a ¢ ®, and by u, = Lie(U,) if 2a € ®. For i, j € I, or
i, 5 € TU{0} if Vi # {0}, let E;; € g be the standard elementary matrix. For
i,j€1,j#+xi,uec F,veF,., weput:

B, (u) = —()uB_;j + e(—j)u’E_j;;
Eo (u) = —u"E_;y +uky, (case (B) or (BC));

Eaq. (v) = —e(iyvE_;; (case (BC) or (C)).
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Let a € ®. If 1a & ®, the map u +— E,(u) is an isomorphism from F to u,. If
sa € @ (case (BC)), the map v — E,(v) is an isomorphism from F° to u,.

Denote by 3 = Lie(Z) the Lie algebra of Z, and by 3 the Lie algebra of
Z'.Foriel, ueF', ve F°, we put:

EZ(U) = UGE_i’_Z' — UE%“
Ey(v) = ’UEQO (case (B) or (BC)).

For i € I, the map u — Ej is an isomorphism from F to a subspace 3 of 3. If
Vo # {0} (case (B) or (BC)), the map v — FEy(v) is an isomorphism from F° to
a subspace 3o of 3. Note that in case (B), we have 30 = {0}. If V5 = {0} (case
(C) or (D)), we put 30 ={0}. So 30 # {0} if and only if we are in case (BC).

We have the decompositions

i=39Puw. 3= P

acd 1eIU{0}

3.3. Lattice-functions and square lattice-functions. Recall that A is the
apartment of the building J of G attached to the maximal F,-split torus S of G.
Put

l=3isup{r e R:vp(A)=r, A€ F, A+ A7 =1}.

Recall we have [ < 0, and [ = 0 if and only if the extension F/F, is quadratic
unramified or the residual characteristic of F, is not 2. If Vj # 0, from Remark
1.6, we have

vy (Aeg) = vp(A) + 1.

Put ag = =1 if Vi # {0}, and ap = —o0 if Vj = {0}. We consider ay as a constant
function on A.

Let p be a point in A. The MM-norm «, for (h,q) on V and the lattice-
function A, in V' are given by

a, (Zielu{o})\iei) — inf{op(\) —a(p):i e TU{0}}, NeF,
and
A(r)={z eV :ayz) >r}, reR

Put n =1 if the extension F'/F, is unramified, and n = 2 if it is ramified. So nvg
is the normalized valuation on F', and we have

[n(r+ai(p))]

Ap(r) - EBZ’EIU{O}pF e, e Rv
where [z] denotes the least integer greater than or equal to x (if V5 = {0}, then
we have ph7 @) — £01). The square lattice-function §,. in § attached to p
is given by

G ={9€8: 9 (s) CAy(s+7), seR},reR.
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Lemma 3.1.  Let (p,r) € A xR. We have

~ r4a; a;
gp , @ p|—”7( (»)— ] P E

where i, j run over the elements of I in case (C) or (D), and over the elements

of IU{0} in case (B) or (BC).

Proof. Let 7, 7 € I and u € F By definition, the element uE” belongs to

gy, if and only if upLz] o] - p nstrtai®)l gor all s € R, 1 e. if and only if
nop(u) > [r+ a;(p) — a;(p)]. Hence we have §,, N FE;; = p nlrtaie)- aj(mei,j.
In case (B) or (BC), the same proof applies for i, j € I U {0}. [

For p € J, recall that the op, -lattice-function g,. in g is defined by
Opr =0prNg reR

For (p,r) € A x R, we have the decomposition

Opr = @ (gp,r N3:) @ @(gp,r N g).

ie1U{0} acd
Lemma 3.2.  Let (p,r) € AxR. Then:
for i € I, we have §,, N3 = Ei(pl[?ﬂ);
in case (BC), we have g,, N30 = Eo(pl[fﬂ NF°);
fori, jel,i# £j, we have gpr Ny, , = Eg, (p?(r_ai’j(pm);
in case (B) or (BC), for i € I, we have gy, Nty = E,, (pl?" 4@y,
in case (BC) or (C), for i € I, we have §p, Mitsg, = Eag (P 2PN F, .

Proof. Let 4, j € I, i # £j, and u € F'. By definition, the element E,, (u)
belongs to g,, if and only if uE,” € p?(rﬂ ip) el mev’,i,j and u”E,jyi €

pg}(rJra_J(p) ai(p ))WE%“ ie., since a_; = —a; and a_; = —a;, if and only if
" p; (r=(a:(P)+a5PD]  Hence we have

Gpr Ny, = By, (p2" 0,

The same proof shows that for ¢ € I, we have

gp,r ﬂﬁi - (pgﬂ)

Suppose we are in case (B) or (BC), and let 7 € I and u € F. By definition,
the element E,, (u) belongs to g, if and only if u"E_;q € pl/ o =w®)lg
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and uEOJ € p?“*ao(p*‘”(p)” E(]}i; i.e., since a_; = —a; and ap(p) = —1 > 0, if and

only if u € p@(”“(’(p)‘“i(’”m . Hence we have

~ r—l—a;
fpr Nty = B, (pi" 00T,

Suppose we are in case (BC) or (C), and let v € F,.. By definition, the

clement Es,,(v) belongs to g, if and only if UE'_M' € p?(rﬂ’i(p)*ai(pmﬁ_i’i; ie.,

since a_; = —a,, if and only if v € p;"(r_za"(pm . Hence we have

gp,r Mg, = Ea, (pliﬁ(r_zai(pm n Fo,a)-
In case (BC), the same proof shows that we have
gp,r M3 = LEOQ:U[«:W1 N Fo)'

The lemma is proved. [ |

3.4. Filtrations of the root subgroups. Fora € ® and r € R, let U,, = UZ,
be the compact subgroup of U, defined by

Usr ={9 € U, : pa(g) >},

where ¢ = (©4)ace is the valuation of the root datum (Z, (U, )aeqe) defined in 1.5.
For a € ® such that 2a € ® (case (BC)), since @9, = 2¢,|v,, , We have

Uar MUz = Usg .
Put
Io=wa(Us~{1}) CR, a€ ®;
To = {pa(u) : u € Uy ~ {1}, pa(u) = sup 0o (uls)}, a € @, 2a € ®.

So if we are not in case (BC), we have I'y = vp(F™).

Let £ be an element of F' such that £ +¢&7 = 1 and vp(§) = [. Recall
that if o # Id and the residual characteristic of F; is not 2, we may take £ = %
Suppose we are in case (BC), and let ¢ € I. For u € F', we put

Ui (u) = u;(u, Eunu®) (mod Us,,) € U,
and
@, (Wi(w)) =+ vp(u).
Then we have
Lo = %0, (U, ~ {1})
and

N 1
Fai - Fai §F2ai

(disjoint union). More explicitly, we have Ty, =1 + n7'Z, Tsq, = svp(F° \ {0})
and T, = sup(F>).
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Let p be a point of A. Denote by ¢, the valuation ¢ + a(p) of the root
datum (Z, (U,)ecs). For a € ® and r € R, let U,,, = Usr be the compact
subgroup of U, defined by

Ua,p,r = {g eG: g€ Ua : Spa(g) > — a(p)}.

For a € ® such that 2a € ® (case (BC)) and r € R, let Ugp, be the compact
subgroup of U, defined by

U&W ={geG:gcU,:p,(g9) >r—a(p)}.

3.5. Moy-Prasad filtrations of g. Let p be a point in A. For a € & and
r € R, the subgroup U,,, of U, is the group of op, -rational points of a smooth
affine op, -group-scheme U,,,. Its Lie algebra Lie(U,,,) is an og, -lattice in
Lie(U,). If, moreover, 2a ¢ ®, we put u, = Lie(U, ).

For a € ® such that 2a € ® (case (BC)), the subgroup U,,, of U, is the
group of op -rational points of a smooth affine op, -group-scheme ﬂa,pﬂn. Denote
by Ugpr = Lie(ﬂamﬂn) its Lie algebra; it is an op,-lattice in u, (= Lie(U,)) and
identifies with a sub-op, -module of Lie(U,,, ). Moreover we have the decomposi-
tion

Lie(ua,w) = Ugpr S%) U2q,p,r-

Let X*(Z) be the group of algebraic characters of Z. Since Z splits over
F, each element of X*(Z) is defined over F'. For r € R, let 3, be the op, -lattice
in 3 defined by

3r = {w €3 vp(dx(2)) = 7, Vx € X' (Z)}.

The filtration (g}'")rer of g attached to p by Moy and Prasad [MP] is
given by
gi\)/,[f =3 © @ua,p,ru reR.

aed

Remark 3.3. The Moy-Prasad filtration of g attached to a point p in the
building J of G is usually defined by descent from a maximal unramified extension
F* of F, (the point p being canonically identified with a Gal(F2"/F,)-invariant
point in the building of G(F™)). If the group G is residually split over F,, the
filtration (g%f )rer of g defined above is clearly the Moy-Prasad filtration attached
to p. If the group G is quasi-split but not residually split over F, (i.e. if F is a
quadratic unramified extension of F ), then G splits over F' and G(F') ~ GL(V).
In that case, chapter 2 implies that the filtration (g%f )rer Of g defined above is
the Moy-Prasad filtration attached to p (more generally, the result follows [BT2]
5.1.20, Rem. 2). Note that we can also avoid the problem by assuming directly
that G is residually split over F, (see 2.5).

Proposition 3.4.  Let p be a point in J. We have

MP
Opr =8y, r ER
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Proof. We may assume that p € A. Then the proposition follows from Lemma
3.2 and the description of the root subgroups U, ,, given in 3.4. |

This proposition, together with the reduction step in chapter 2, implies
Theorem 1.8.

4. The general case (D # F)

4.1. Reduction to the case D = F'. In this chapter, we show briefly how to
generalize the main result (Theorem 1.8) to a general classical group (cf. Remark
1.1). So notation and hypothesis are those of 1.1, but we assume D # F'.

Let L, be a finite extension of F, of degree a multiple of 2d = 4. Put
L = L,®p F and Dy = Lo ®r, D (= L ®r D). Then Dy is a semisimple
L,-algebra with centre L, endowed with an involution Id ® o, still denoted by
o. Denote by Vi the right Dp-module L, ®g, V = L ®r V. The form h
on V extends to a non-degenerate o-skew e-hermitian form hr : Vi x Vi —
Dy. Put G, = Autp,(Vz) and G, = U(hy). Then Gy, is the group of
L,-rational points of the L,-algebraic group G, = G xp, L.

Let us consider the first case: L is a field. Then L is an extension of
degree Lo : Fy] of F, and Dy is a split central simple L-algebra. Moreover, the
restriction of o (= Id ® o) to L, say oy, is the generator of Gal(L/L,). Let
us choose a simple right Dy-module M. We have the canonical identifications
L = Endp, (M) and D, = Endy(M). Let M? be the simple left Dy-module
deduced from M via o, i.e. the additive group M endowed with the action of Dy,
given by (a,z) — za’ for a € Dy, x € M. The dual M* = Homy(M, L) is also
a simple left Dy -module — canonically identified with Homp, (M, Dy), cf. [BT3]
1.16. Thus we have L = Endp, (M*) and Dy, = End(M*). Moreover there exists
an isomorphism of Dj-modules s : M? — M* which is admissible in the following
sense (cf. [BT4] 1.7, 1.8): let By : M x M — Dj, be the o-skew form given by
Bs(x,y) = s(z)(y); the admissibility condition on s says there exists n € {£1}
such that Os(y,z) = nfs(z,y)?. In other words, s is a o-skew n-hermitian form
on M, which is non-degenerate by construction.

Put Vi = Homp, (M, Vy). It is a finite dimensional vector space over L,
and the map

ViorM — Vi, v @z v()

is an isomorphism of (right) Dp-vector spaces, which induces a canonical identifi-
cation of L-algebras (cf. [BT3] 1.16)

EDdL(‘/l) = EndDL(VL).

This gives an identification of G, = Aut (V1) with G;. Now put e; = en. From
[BT4] 1.10, Prop., there exists a unique o-skew form h; : V; x V3 — L such that

h(w(@),v(y)) = Bs(xha(u,v), y) = ha(u,v)" Bs(, y);

it is non-degenerate and e;-hermitian. Let also ¢ : V; — L/L,, ., be the pseudo-
quadratic form associated with hq as in 1.1. Put Gy = U(hy). It is the group of
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L,-rational points of an algebraic L,-group G; whose connected component GY
is reductive, and the identification Gy = GG; induces an identification G, = G.

Remark 4.1.  The form h; constructed above depends on the choices of M and
s. The simple right Dy-module M is unique up to isomorphism. Now suppose M
is fixed, and let s’ : M? — M* be another admissible isomorphism of D -modules.
Then s' = As for an element A in L* such that A\* = pX, pu € {1}, and the
non-degenerate oy-skew form b} : V3 xV; — L defined by s) is given by h] = Ahy;
it is €} -hermitian, ] = e;p. So hy is well defined up to a “change of coordinates”
in the sense of [BT1], 10.1.3.

Now let us consider the second case: L ~ (L,)*. As in 2.2, we assume
FcCL,and L= (LO)2. Hence L, is an extension of even degree of F'. Using the
notation and identifications of 2.2, we have Dy, = Dy 1x Dy, o where Dy ; = &Dy,
is a central simple L,-algebra (recall that &, & are the two minimal idempotents
of L). The involution ¢ (=1d ® ¢) on D/, induces an anti-isomorphism Dy, ; —
Dy, 2 (vesp. Dy, o — Dy, 1), still denoted by o. For a € Dy ;, we have (a”)? = a,
and for (a,b) € Dy, we have (a,b)” = (b7,a”). We also have

EndDL(VL) = EndDLoJ(VLo,l) X EndDLmQ(VLO,g)

whith Endp,_,(Vi.:) = &Endp, (Vz). Moreover the map vy +— hz(vi,-) induces
a o-isomorphism ¢ from the right Dy ;-module V7 ; to the left Dj_,-module
HomDLO,Q (VLO,Qa DLo,Q)' For g= (91’92> €G = AUtDLO,l(VLoJ) X AUtDLO,Q (VLo,Q)v
we have g € G, if and only if
-1 -1
gp="p o'g oy

so the map CNJL — Autp, (Vi,1), (91,92) = g1 by restriction gives an isomor-
phism of groups ¢ : G, — Autp,_,(Vi,1). Let us choose a simple right Dy, ;-
module M; (since Dy, ; is a quotient of Dy, M is also a simple Dj-module). Put
Vi = Homp,_,(M,Vg,1). From the previous case, we have a canonical identifica-
tion of G1 = Autg, (V1) with Autp, ,(Vz,1). Hence we obtain an isomorphism of
groups ¢ : G, — G which is defined over L.

4.2. Unramified descent: buildings. Suppose moreover that the extension
L,/ F, is unramified (we could also suppose that the reductive L,-group G° X g, L
is quasi-split, or even residually split, but this is not necessary). Hence L is field if
and only if the extension F/F, is trivial or totally ramified. Let J = J(G, F,) be
the (non-enlarged) building of G — it can be viewed as the building of a valuated
root datum as in 1.5, cf. [BT4] 1.14, 1.15 —, and let I, = (G X g, Lo, Lo) be
that of G, . From [BT4] 4.1, there exists a unique G-equivariant and affine map
J — Jr, whose image is the subset (Jz, )l formed of those points which are fixed
by the Galois group I' = Gal(L,/F5).

Let J' be the enlarged building of G, N be the set of (D-)norms on V
([BT3] 1.1), and L' be the set of (op)-lattice-functions in V' ([BL] 2.1), where
op denotes the ring of integers of D. From [BT4]| and [BL], by replacing F' by
D, the results of 1.6 remain true. In particular, there exists a é—equivariant
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affine map gt L p — A,, which is bijective and unique up to translation by
a real number; where the affine structure on L' is given by that on N! via the
G-equivariant bijection N!' — L' o +— A, defined by

Au(r)={veV:al)>r}, rekR

This induces a bijective, G-equivariant and affine map J — L} 4» Which is the
unique G-equivariant affine map from J to £} _; where Ll is the G-stable convex
subset of L' corresponding to the set of MM norms for (h q) via the bijection
Nt — L' a — A,. In particular, J identifies with a G-stable convex subset of

the building J*.

Let denote by Iz 1 = J(Gq, L) the building of G} .

If L is a field, the identification G, = G; gives an identification J; =
Jr.1. The actions of I' on G, and J;, give some actions on G; and Jz_ ;. Note
that we also have an action of I' on Endp, (Vi) = Endp, (V) — even if T" does
not act on Vi, nor on D;.

Now if L = L?, the isomorphism ¢ : G, — G, gives a bijection J;, — L.,
still denoted by ¢. The action of I' on G, C Autp,_ ,(Vi,1) x Autp,_,(Vi,2)
is described as in Remark 2.1 (cf. [BT4] 1.13, Remarque). In particular, the
subgroup I" = Gal(L./F) of I' acts on G1 = Autp,_,(Vi,1), and for v € I' \T”
and g = (g1,92) € Gr,, we have

—1 —1
9 =1(95.97) = ("¢ o'g o0¢"),q]);

here the automorphism v ® Id of Endp,(Vy) = Lo ®p, Endp(V'), denoted by
g +— g7, induces two 7-isomorphisms Endp, ,(Vi.,) — Endp, ,(Vz,,) and
Endp, ,(Vi.,) — Endp,_ ,(Vi,,), still denoted by g +— ¢”. This makes the
action of I' on G, identified with G, via ¢, explicit. We also have an action of
I' on Jz, 1, identified with J;, via ¢.

In both cases, we obtain a bijection I — (Jz,1)"', which is the unique G-
equivariant and affine map J — J;_ ;, and can be described in terms of norms (or
lattice-functions) as in 2.3.

4.3. Filtrations of the Lie algebra. Put g =Endp(V) and g = Lie(G). For
p € J', denote by g,. the square op-lattice-function on V' defined by (cf. 1.7)

gpr = End(A,)(r), reR;

it depends only on the projection of p to the non-enlarged building J of G. For
p €7, let g,. be the op, -lattice function in g defined by

Opr = gp,r Nng, rekR,

and let (g)'");er the Moy-Prasad filtration of g attached to p. We claim that
Theorem 1.8 (proved for D = F') remains true for D # F': for all p € J, we have

(1) Op,r = g;\)/,lfa reR.

Put g, = Endp, (VL) and gr = Lie(Gr,). Thus we have g, = L, ®p, g =
L®pg and g, = L, ®, g. Put also h = End, (V1) and h = Lie(Gy). The
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identification §; = b induces an identification g; = b, and an action of T on h
(cf. 4.2) such that h' = g. For p € Jr, 1, denote by b,. the square oy, -lattice-
function on V; defined as in 1.7 if L is a field, and as in [BL] if L = (L,)*. Let
also (b)Y )rer be the filtration of h attached to p by Moy and Prasad.

Let p be a point in J, identified with a point in (Jy_ ;)" via the canonical
bijection J — (Jp, 1)" (cf. 4.2). By construction, we have the descent property:

O -, reR

From [BL] and Theorem 1.8, we have

bpr = MP e R

— Vpro

So to obtain (1), we just need to prove the descent property:

(2) (hp,r)r — gp,'r, r € R.

This can be done following 2.4 (the proof is essentially the same, details are left
to the reader). So Theorem 1.8 is true even if D # F'.
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