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Abstract. Let G be a Lie group acting smoothly on a manifold M . A closed,
nonsingular submanifold S ⊂ M is called maximally symmetric if its symmetry
subgroup GS ⊂ G has the maximal possible dimension, namely dim GS = dim S ,
and hence S = GS · z0 is an orbit of GS . Maximally symmetric submanifolds
are characterized by the property that all their differential invariants are con-
stant. In this paper, we explain how to directly compute the numerical values
of the differential invariants of a maximally symmetric submanifold from the in-
finitesimal generators of its symmetry group. The equivariant method of moving
frames is applied to significantly simplify the resulting formulae. The method is
illustrated by examples of curves and surfaces in various classical geometries.
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1. Introduction.

Suppose G is a Lie group acting smoothly on a manifold M , and let g denote the
corresponding Lie algebra of infinitesimal generators. The symmetry group of a
closed submanifold S ⊂M is, by definition, the subgroup GS = { g ∈ G | g·S = S }
consisting of all group transformations that map S to itself. A submanifold S is
called nonsingular if GS acts locally freely on S , [17]. A nonsingular submanifold
is called maximally symmetric if dimGS = dimS , and hence coincides with an
orbit of its symmetry group: S = GS · z0 , for some z0 ∈ M . According to a
theorem of É. Cartan, [3, 5], a nonsingular submanifold is maximally symmetric if
and only if all its differential invariants are constant. The goal of this paper is to
develop effective formulae for computing the values of the differential invariants of
such a maximally symmetric orbit GS ·z0 directly from the infinitesimal generators
of its symmetry group, namely the symmetry subalgebra gS ⊂ g .

As a simple example illustrating our concern, suppose G = SE(3) is the
special Euclidean group consisting of the orientation-preserving rigid motions of
M = R3 . The fundamental differential invariants of a space curve C ⊂ R3 are its
curvature κ and torsion τ . A (topologically closed) curve is maximally symmetric
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if and only if it is the orbit, C =
{

exp(tv)z0

}
, of a one-parameter subgroup

generated by a Euclidean vector field v ∈ se(3). All such curves are circles or
helices, and our task is to determine the curvature and torsion of the orbit curve
directly from the infinitesimal generator v .

Interestingly, the formulae that we derive for the differential invariants of
maximally symmetric submanifolds shed new light on the classical prolongation
formula for vector fields on jet bundles, [16]. However, they turn out to be quite
intricate even for fairly simple geometries. A significant simplification can be
effected by normalizing some or all of the parameters — base point and subgroup
— by applying an adapted group element. The most effective means of producing
compact formulae is to appeal to the new equivariant formulation, [5, 19], of the
classical Cartan method of moving frames, which we review in Section 4. Our
methods and results will be illustrated by a number of examples from classical
geometries. This investigation was motivated by several applications arising in
geometry, [12, 21], differential equations, [16], and computer vision, [19].

2. Jets of Orbits.

Let M be a smooth m-dimensional manifold. For fixed 0 < p < m , let Jn =
Jn(M, p) denote the associated n-th order (extended) jet space of p-dimensional
submanifolds S ⊂ M ; see [16] for details. We use jnS|z to denote the jet of S at
the point z ∈M .

Let z = (x, u) = (x1, . . . , xp, u1, . . . , uq) be local coordinates on M , where
we view the first p as independent variables, and the latter q = m−p as dependent
variables. We locally identify submanifolds with graphs of functions u = f(x).
(This omits submanifolds that are not transversal to the vertical fibers {x = c} ,
which can behandled by suitably changing coordinates, e.g., switching the roles of
the independent and dependent variables.) The induced local coordinates on Jn

are denoted z(n) = (x, u(n)) = ( . . . xi . . . uα
J . . . ), with uα

J , for 0 ≤ #J ≤ n
and 1 ≤ α ≤ q , representing the partial derivatives ∂Jfα/∂xJ of the graphing
function.

Let H be a p-dimensional Lie group that acts1 smoothly on M , and let h

denote the Lie algebra containing its infinitesimal generators, which are smooth
vector fields on M . As usual, the prolonged action of H on the jet space Jn will
be denoted by H(n) . If H acts (locally) freely at z0 ∈ M (see below), the orbit
S = H · z0 of H through z0 is a smooth p-dimensional submanifold with tangent
space TS|z0 = h|z0 . The aim of this section is to write out formulas for the jets
(derivatives) of the orbit in terms of the infinitesimal generators of H .

Before dealing with the general situation, let us first look at the simplest
case. Let M be two-dimensional manifold with local coordinates (x, u). Restrict-
ing to curves given by the graphs of functions u = f(x), the associated jet space
Jn(M, 1) has local coordinates (x, u(n)) = (x, u, ux, uxx, . . . , un) representing the
derivatives of f at the point x .

1To simplify the exposition, we will assume that group actions are global. However, all results
and formulas apply equally well to local group actions.
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Let

v = ξ(x, u)
∂

∂x
+ ϕ(x, u)

∂

∂u
(2.1)

be the infinitesimal generator of a one-parameter transformation group exp(tv)
acting on M . Let z0 = (x0, u0) ∈M . We assume that ξ(x0, u0) 6= 0, as otherwise
the curve has a vertical tangent, or, if ϕ(x0, u0) = 0 also, degenerates to a point.
Our goal is to compute the derivatives

uk,0 =
dku

dxk
(x0), k = 1, 2, . . . ,

of the curve C = exp(tv) · z0 at the point z0 . To this end, let

v(n) = ξ(x, u)
∂

∂x
+

n∑
k=0

ϕk(x, u
(k))

∂

∂uk

(2.2)

denote the corresponding prolonged vector field, generating the prolonged action
on Jn , so that exp(tv(n)) = exp(tv)(n) . The coefficients of v(n) are prescribed by
the well-known prolongation formula, [16, Theorem 4.16]:

ϕk = Dk
x

[
ϕ(x, u)− ux ξ(x, u)

]
+ uk+1 ξ(x, u), (2.3)

where

Dx =
∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux

+ · · · (2.4)

is the total derivative with respect to the independent variable x .

Proposition 2.1. Under the above assumptions, the jet coordinates

u
(n)
0 = (u0, u1,0, . . . , un,0)

of the orbit curve C =
{

exp(tv) · (x0, u0)
}

at the base point x0 are given by the
recursive formula

uk,0 =
ϕk−1(x0, u

(k−1)
0 )

ξ(x0, u0)
, k = 1, . . . , n. (2.5)

Furthermore, define the modified total derivative operator

D̂x =
∂

∂x
+

ϕ(x, u)

ξ(x, u)

∂

∂u
, (2.6)

obtained by replacing u1 by the right hand side of (2.5) with k = 1 and truncating.
Set

ψk(x, u) = D̂k
xu. (2.7)

Then one has the alternative formula

uk,0 = ψk(x0, u0) =
ϕk−1(x0, u0, ψ1(x0, u0), . . . , ψk−1(x0, u0))

ξ(x0, u0)
. (2.8)

Thus, if F (x, u(n)) is any differential function, then its value on the orbit curve at
the base point can be computed as

F (x0, u
(n)
0 ) = F (x0, u0, ψ1(x0, u0), . . . , ψn(x0, u0)). (2.9)
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Proof : The curve jet

jnC =
{

exp(tv(n)) · z(n)
0

}
⊂ Jn(M, 1), where z

(n)
0 = (x0, u

(n)
0 ) = jnC|z0 ,

is obtained by integrating the ordinary differential equations

dx

dt
= ξ(x, u),

du

dt
= ϕ(x, u),

du1

dt
= ϕ1(x, u, u1), . . . ,

dun

dt
= ϕn(x, u(n)),

prescribing the prolonged flow of the vector field v(n) on Jn . Thus, by implicit
differentiation,

uk+1 =
duk

dx
=
duk/dt

dx/dt
=
ϕk

ξ
,

which immediately establishes the first formula.

Moreover, given any smooth function F (x, u), its total derivative, when
restricted to the first order curve jet j1C , is given by

DxF (x, u, u1) =
∂F

∂x
+ u1

∂F

∂u
=
∂F

∂x
+
ϕ

ξ

∂F

∂u
= D̂xF,

proving (2.8) when k = 1. A simple induction on k establishes the general formula.
The final formula (2.9) is an immediate corollary. Q.E.D.

Remark: The fact that (2.5) and (2.8) are equal provides us with an inter-
esting new perspective on the classical prolongation formula (2.3). For example,
taking k = 2, we find

ϕ1

(
x, u,

ϕ

ξ

)
= ξ

(
∂

∂x
+
ϕ

ξ

∂

∂u

)2

u = ξ

(
∂

∂x
+
ϕ

ξ

∂

∂u

)(
ϕ

ξ

)
, (2.10)

which can be verified by direct computation.

The preceding formulas can be straightforwardly adapted to curves in higher
dimensional manifolds. We merely replace u by the various dependent vari-
ables uα , and ϕ(x, u) by the corresponding infinitesimal generator coefficients
ϕα(x, u1, . . . uq). The second term in the modified total derivative (2.6) becomes
a summation over α = 1, . . . , q . Rather than write out the resulting formulas in
detail, let us turn to the general case.

Let H be a p-dimensional Lie group acting smoothly on M . Let

vκ =

p∑
i=1

ξi
κ(x, u)

∂

∂xi
+

q∑
α=1

ϕα
κ(x, u)

∂

∂uα
, κ = 1, . . . , p, (2.11)

be a basis for its infinitesimal generators, spanning a p-dimensional Lie algebra h

of vector fields on M . Their prolongations to the submanifold jet space Jn(M, p)
are given, in local coordinates, by

v(n)
κ = vκ +

q∑
α=1

∑
1≤k=#J≤n

ϕα
J,κ(x, u

(k))
∂

∂uα
J

, (2.12)
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where, for each symmetric multi-index J = (j1, . . . , jk) with 1 ≤ jν ≤ p and
k = #J ,

ϕα
J,κ = DJ

(
ϕα

κ −
p∑

i=1

ξi
κ u

α
i

)
+

p∑
i=1

ξi
κ u

α
J,i, (2.13)

with DJ = Dj1 · · ·Djk
denoting the corresponding iterated total derivative.

Let

Ξ(x, u) =
(
ξi
κ(x, u)

)
=

ξ
1
1(x, u) . . . ξp

1(x, u)
...

. . .
...

ξ1
p(x, u) . . . ξp

p(x, u)

 (2.14)

be the p × p matrix formed by the independent variable coefficients, whose κ-th
row contains the independent variable coefficients of the κ-th generator vκ . If

det Ξ(x0, u0) 6= 0 (2.15)

then the Implicit Function Theorem implies that the orbit S = H · z0 is a p-
dimensional submanifold N ⊂ M that is transverse to the vertical fibers at
z0 = (x0, u0), and hence can be locally represented as the graph of a function
u = f(x). Under this assumption, the following result generalizes Proposition 2.1:

Theorem 2.2. Under the above assumptions, at z0 the jet coordinates of the
group orbit S = H · z0 are provided by the recursive formula

uα
K,0 = Ψα

K(x0, u
(k−1)
0 ), 1 ≤ k = #K ≤ n, α = 1, . . . , q, (2.16)

where the functions Ψα
K(x, u(k−1)) are given byΨα

J1(x, u
(k−1))

...
Ψα

Jp(x, u
(k−1))

 = Ξ(x, u)−1

ϕ
α
J,1(x, u

(k−1))
...

ϕα
J,p(x, u

(k−1))

 ,
#J = k − 1,

α = 1, . . . , q.
(2.17)

In particular, when k = 1, we use the quantitiesψ
α
1 (x, u)

...
ψα

p (x, u)

 =

Ψα
1 (x, u)

...
Ψα

p (x, u)

 = Ξ(x, u)−1

ϕ
α
1 (x, u)

...
ϕα

p (x, u)

 , α = 1, . . . , q, (2.18)

to define the modified total derivatives

D̂i =
∂

∂xi
+

q∑
α=1

ψα
i (x, u)

∂

∂uα
, i = 1, . . . , p. (2.19)

Let

ψα
K(x, u) = D̂K(uα), 0 ≤ #K ≤ n, α = 1, . . . , q, (2.20)

which is consistent with (2.18). Then we have the alternative formula

uα
K,0 = ψα

K(x0, u0), (2.21)
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which thus implies that

ψα
K(x0, u0) = Ψα

K(x0, ψ
(k−1)(x0, u0)), (2.22)

where the notation means that we use (2.21) to replace all the derivatives uα
J,0

for #J ≤ k − 1 that appear on the right hand side of (2.16). Thus, the value
of a differential function F (x, u(n)) on the orbit at the base point is obtained by
replacing each derivative coordinates by the corresponding function (2.22):

F (x0, u
(n)
0 ) = F (x0, u0, . . . , ψ

α
K(x0, u0), . . . ). (2.23)

Theorem 2.2 is proved by a straightforward adaption of the two-dimensional
argument, and so, for brevity, will be omitted. Examples will appear below.

Remark: Transversality of the orbit implies that we can choose a basis
v1, . . . ,vp of the infinitesimal generators of H with the property that

vκ|(x0,u0) =
∂

∂xκ

∣∣∣∣
(x0,u0)

+

q∑
α=1

ϕα
κ(x0, u0)

∂

∂uα

∣∣∣∣
(x0,u0)

, κ = 1, . . . , p. (2.24)

This choice of basis serves to trivialize the matrix Ξ(x0, u0) = I in (2.14), and

hence allows us to inductively determine the orbit jet coordinates u
(n)
0 directly

from the infinitesimal generator coefficients:

uα
Ji,0 = ψα

Ji(x0, u0) = Ψα
Ji(x0, u

(k−1)
0 ) = ϕα

J,i(x0, ψ
(k−1)(x0, u0)), (2.25)

which is valid for any multi-index J with #J = k − 1 and any i = 1, . . . , p .

Remark: It is easy to see that the modified total derivatives (2.19) mutually

commute: [ D̂i, D̂j ] = 0 for all i, j . Indeed, their construction coincides with the
initial step in the elementary proof of the Frobenius Theorem described in [16, p.
422].

Remark: As above, the identification (2.22) provides a new interpretation
of the standard prolongation formula (2.13). Furthermore, observe that, on the
left hand side of (2.25), J i = (j1, . . . , jk−1, i) denotes a symmetric multi-index,
whereas on the right hand side ϕα

J,i refers to the coefficient of ∂/∂uα
J in the

prolonged vector field v
(n)
i , and thus is not fully symmetric in J, i . It is striking

that, provided the vector fields v1, . . . ,vr span a Lie algebra, the formula yields
the same result for all permutations of the indices in K = J i .

3. Maximally Symmetric Submanifolds.

Let G be a Lie group that acts (locally) on an m-dimensional manifold M . Let
us review some basic terminology.

Definition 3.1. The isotropy subgroup of a subset S ⊂M is

ĜS = { g ∈ G | g · S ⊂ S } . (3.1)
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The global isotropy subgroup

G∗S =
⋂
z∈S

Ĝz = { g ∈ G | g · z = z for all z ∈ S } ⊂ ĜS

consists of those group elements which fix all points in S .

Definition 3.2. The group G acts

• freely if Ĝz = {e} for all z ∈M ,

• locally freely if Ĝz is a discrete subgroup for all z ∈M ,

• effectively if G∗M = {e} ,

• locally effectively if G∗M is a discrete subgroup,

• effectively on subsets if G∗U = {e} for every open U ⊂M ,

• locally effectively on subsets if G∗U is a discrete subgroup for every open U ⊂M .

If S ⊂ M is a closed submanifold, then its symmetry group GS , by def-
inition, coincides with its isotropy subgroup: GS = ĜS . For non-closed sub-
manifolds, there is a distinction between them as we allow local invariance of
the submanifold under its symmetry group. For instance, if G = R2 acts by
translations on M = R2 , then any non-infinite open horizontal line segment, e.g.,
S = { (x, 0) | −1 < x < 1 } , has trivial isotropy subgroup, ĜS = {e} , but is locally
invariant under the one-parameter subgroup of horizontal translations generated
by ∂x , and we wish to encode this fact in the symmetry group. One approach is
to first define the symmetry subalgebra to consist of all infinitesimal generators
v ∈ g that are everywhere tangent to the submanifold:

gS = { v ∈ g | v|z ∈ TS|z for all z ∈ S } .

Then GS ⊂ G will be the connected subgroup having subalgebra gS ⊂ g . Of
course, this fails to address the question of discrete symmetries of non-closed
submanifolds. An alternative approach would be to recast the construction using
the more general machinery of groupoids, [25], but, for simplicity, we will not
pursue this direction any further here.

The following theorem is due to Ovsiannikov, [23], and was slightly corrected
in [17].

Theorem 3.3. If G acts locally effectively on subsets of M , then, for n � 0
sufficiently large, the prolonged action G(n) is locally free on a dense open subset
Vn ⊂ Jn .

Remark: Any analytic action can be made effective by dividing by the global
isotropy normal subgroup G∗M . Although all known examples of prolonged effective
group actions are, in fact, free on an open subset of a sufficiently high order jet
space, there is, frustratingly, as yet no general proof, nor known counterexample,
to this more general result.

The open subset Vn ⊂ Jn described in Theorem 3.3, which consists of all
prolonged group orbits of dimension equal to r = dimG , is called the regular
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subset, and its elements z(n) ∈ Vn are the regular jets. The singular subset
Sn = Jn \ Vn is the remainder, containing the singular jets.

Definition 3.4. A submanifold S ⊂ M is order n regular if jnS ⊂ Vn . A
submanifold S ⊂M is totally singular if jnS ⊂ Sn for all n = 0, 1, . . . .

In [17, Theorem 7.6], the following geometric characterization of totally sin-
gular submanifolds was established. Section 8 of [17] contains further Lie algebra-
theoretic characterizations of totally singular submanifolds of homogeneous spaces.

Theorem 3.5. A submanifold S ⊂ M is totally singular if and only if its
symmetry subgroup GS does not act locally freely on S itself.

A real-valued function2 I : Jn → R is known as a differential invariant if it
is unaffected by the prolonged group transformations, so I(g(n) · z(n)) = I(z(n)) for
all z(n) ∈ Jn and all g ∈ G such that both z(n) and g(n) · z(n) lie in the domain of
I . Any finite-dimensional group action admits an infinite number of functionally
independent differential invariants of progressively higher and higher order. The
Basis Theorem, [16, Theorem 5.49], states that they can all be generated by
repeated invariant differentiation of a finite number of low order invariants.

Theorem 3.6. Given a finite-dimensional Lie group G acting on p-dimensional
submanifolds S ⊂M , then, locally, there exist a finite collection of generating dif-
ferential invariants I1, . . . , I` , along with exactly p invariant differential operators
D1, . . . ,Dp , having the property that every differential invariant can be locally ex-
pressed as a function of the generating invariants and their invariant derivatives:
DJIκ = Dj1Dj2 · · · Djk

Iκ .

When restricted to a given submanifold, the differential invariants will
no longer be functionally independent. As shown by Cartan, [3] — see also [5,
Theorem 14.7] — the dimension of the symmetry group of a regular submanifold
S ⊂ M is completely determined by the number of functionally independent
restricted differential invariants.

Theorem 3.7. Let S ⊂ M be a regular p-dimensional submanifold. Then the
number k of functionally independent differential invariants on S is equal to the
codimension of its symmetry group: k = p− dimGS .

Thus, the maximally symmetric regular p-dimensional submanifolds are
those possessing a p-dimensional symmetry group. As an immediate corollary
of the preceding Theorem, we deduce Cartan’s characterization of maximally
symmetric submanifolds, [3].

Theorem 3.8. A closed, regular p-dimensional submanifold S ⊂ M is maxi-

2Throughout, functions, maps, etc., may only be defined on an open subset of their indicated
domain.
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mally symmetric, with p-dimensional symmetry group H = GS ⊂ G, if and only
if all its differential invariants are constant if and only if S ⊂ H · z0 is an open
submanifold of an H orbit.

In Section 5, we will apply the results of Section 2 to compute the values
of the constant differential invariants of maximally symmetric submanifolds. The
resulting expressions will typically turn out to be quite complicated.

4. Moving Frames.

In order to make additional progress, we will appeal to the equivariant method of
moving frames initiated in [5, 19]. We restrict our attention to the case of finite-
dimensional Lie group actions; recent extensions of the moving frame approach to
infinite-dimensional pseudo-groups can be found in [22].

Definition 4.1. An n-th order moving frame is a smooth, G-equivariant map3

ρ(n) : Jn −→ G.

The group G acts on itself by left or right multiplication; thus a right
moving frame satisfies

ρ(n)(g(n) · z(n)) = ρ(n)(z(n)) · g−1. (4.1)

Local equivariance allows one to restrict this condition to group elements g near
the identity. All classical moving frames, e.g., those appearing in [3, 7, 8, 9, 11],
can be regarded as left equivariant maps, although the right equivariant versions
are often easier to compute, [5]. If ρ(z) is any left-equivariant moving frame then
ρ̃(z) = ρ(z)−1 is right-equivariant and conversely.

The existence of a moving frame imposes certain constraints on the group
action:

Theorem 4.2. A moving frame exists in a neighborhood of a point z(n) ∈ Jn if
and only if G acts freely and regularly near z(n) .

Therefore, a (locally equivariant) moving frame exists in a neighborhood
of any regular jet z(n) ∈ Vn . In practice, one constructs a moving frame by the
process of normalization, relying on the choice of a local cross-section Kn ⊂ Jn to
the prolonged group orbits. The corresponding value of the right moving frame at
a jet z(n) ∈ Jn is the unique group element g = ρ(n)(z(n)) ∈ G that maps it to the
cross-section:

ρ(n)(z(n)) · z(n) = g(n) · z(n) ∈ Kn. (4.2)

The moving frame ρ(n) clearly depends on the choice of cross-section, which is
usually designed so as to simplify the required computations as much as possible.

3As noted earlier, the notation allows ρ(n) to be only defined on an open subset of Jn .
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In most situations, one selects a coordinate cross-section defined by setting a
number of the coordinate functions to specified constant values:

zκ = cκ, κ = 1, . . . , r, (4.3)

where z1, . . . , zr are r coordinates selected from among the jet variables xi, uα
J ,

and the constants c1, . . . , cr chosen so that (4.3) defines a bona fide cross-section.
Extending the constructions to non-coordinate cross-sections is straightforward,
[10, 15, 21].

The moving frame engenders an invariantization process ι that maps each
differential function F : Jn → R to a differential invariant I = ι(F ), defined
as the unique differential invariant that coincides with F on the cross-section.
Thus, invariantization does not affect invariants, ι(I) = I , and, moreover, defines
a morphism projecting the algebra of differential functions onto the algebra of
differential invariants. In particular, the normalized differential invariants induced
by the moving frame are obtained by invariantization of the basic jet coordinates:

H i = ι(xi), Iα
J = ι(uα

J). (4.4)

These naturally split into two classes: Those coming from the coordinates used
to define the cross-section (4.3) will be constant, and are known as the phantom
differential invariants. The remainder, known as the basic differential invariants,
form a complete system of functionally independent differential invariants. Once
the normalized differential invariants are known, the invariantization process is
implemented by simply replacing each jet coordinate by the corresponding nor-
malized differential invariant (4.4), so that

ι
[
F (x, u(n))

]
= ι
[
F ( . . . xi . . . uα

J . . . )
]

= F ( . . . H i . . . Iα
J . . . ) = F (H, I(n)).

(4.5)

Since differential invariants are not affected by invariantization, this implies the
powerful (albeit trivial) Replacement Theorem:

J(x, u(n)) = J(H, I(n)) whenever J is a differential invariant. (4.6)

5. Computing Differential Invariants.

We now turn to the main task at hand — determining the values of the differential
invariants of maximally symmetric submanifolds. Let’s begin with the case of
curves, so p = 1, lying in a manifold M of dimension m = 1 + q . For simplicity,
let us assume G acts transitively on M , i.e., we are looking at curves in a (locally)
homogeneous space. It is known4, that, except for a handful of group actions
that pseudostabilize under prolongation, there are precisely q = m− 1 generating
differential invariants with the property that all others are found by differentiation
with respect to a group-invariant arc length element. For a maximally symmetric
curve, the q generating differential invariants are constant, and so all the higher
order differentiated invariants are automatically zero.

The first main result follows as a direct corollary of Proposition 2.1.

4This follows from the solution to [16, Exercise 5.35], which can be effected by using the
moving frame recurrence formulae, [5]; see also [20, Theorem 7.2].
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Theorem 5.1. Let C =
{

exp(tv) · z0

}
be the maximally symmetric curve

through the point z0 ∈ M generated by v ∈ g. Then we can evaluate the value of
any (necessarily constant) differential invariant I = F (x, u(n)) by replacing each
derivative coordinate uα

k by the corresponding function (2.8):

I = F (x0, u0, . . . ψ
α
k (x0, u0) . . . ). (5.1)

Example 5.2. Consider the equi-affine group SA(2) = SL(2) n R2 acting on
plane curves C ⊂M = R2 via

g · (x, u) = (αx+ βu+ a, γ x+ δu+ b), αδ − β γ = 1. (5.2)

The fundamental differential invariant is the equi-affine curvature

κ = ι(uxxxx) =
uxxuxxxx − 5

3
u2

xxx

u8/3
xx

. (5.3)

All other differential invariants are (locally) expressible as functions of the curva-
ture and its derivatives with respect to the equi-affine arc length

ω = ds = u1/3
xx dx. (5.4)

The totally singular curves are the straight lines, which admit a three-dimensional
symmetry group. The maximally symmetric curves are the conic sections, [2, 17],
and our task is to determine their equi-affine curvature.

A basis for the infinitesimal generators of the action is provided by the
vector fields

v1 = ∂x, v2 = ∂u, v3 = x ∂u, v4 = −x ∂x + u ∂u, v5 = u ∂x, (5.5)

and so the general infinitesimal generator is

v =
5∑

κ=1

aκvκ = (a1 − a4x+ a5u)
∂

∂x
+ (a2 + a3x+ a4u)

∂

∂u
. (5.6)

To compute the equi-affine curvature of the corresponding nondegenerate conic
section C =

{
exp(tv) · (x, u)

}
, we first introduce the modified total derivative

operator (2.6)

D̂x =
∂

∂x
+

a2 + a3x+ a4u

a1 − a4x+ a5u

∂

∂u
.

Thus, according to (2.7), (2.8), the curve’s jet coordinates are given by

ux = ψ1(x, u) = D̂xu =
a2 + a3x+ a4u

a1 − a4x+ a5u
,

uxx = ψ2(x, u) = D̂xψ1(x, u)

= (a1 − a4x+ a5u)
−3
[
a2

1a3 + 2a1a2a4 − a2
2a5 +

+ (a3a5 + a2
4)
(
−2a2x+ 2a1u− a3x

2 − 2a4xu+ a5u
2
)]
,

and, in general,

uk = ψk(x, u) = D̂xψk−1(x, u),
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where the higher order expressions are too unwieldy to reproduce in print. Then,
specializing (5.1), the equi-affine curvature (5.3) of the orbit

{
exp(tv) · (x, u)

}
generated by (5.6) equals

κ =
ψ2(x, u)ψ4(x, u)− 5

3
ψ3(x, u)

2

ψ2(x, u)
8/3

, (5.7)

which is a rather long explicit formula, but eminently computable.

One of the immediate lessons from such examples is that the expressions
following from Theorem 5.1 tend to be rather complicated. A significant simpli-
fication can be effected by applying a preliminary group transformation. Ob-
serve that a group element g ∈ G will map the maximally symmetric curve
C =

{
exp(tv) · z0

}
generated by v ∈ g and based at z0 ∈ M to another maxi-

mally symmetric curve Ĉ = g · C =
{

exp(t v̂) · ẑ0

}
generated by5 v̂ = Ad g(v),

and based at the image point ẑ0 = g · z0 . Moreover, C and Ĉ have the same dif-
ferential invariants. For example, if g represents a translation that maps (x0, u0)
to 0, then its adjoint effect on other infinitesimal generators is to replace (x, u)
by (x− x0, u− u0).

An alternative approach is to use the moving frame cross-section to place
the curve in a normal form. With this restriction, the differential invariants
are found to have particularly simple expressions in terms of the corresponding
“compatible” infinitesimal generators. To this end, let Kn ⊂ Jn|z0 be a cross-
section to the prolonged group orbits, which we assume to be entirely based at the
point z0 = (x0, u0) ∈ M , i.e., its first m = p + q defining equations are given by
xi = xi

0, u
α = uα

0 for i = 1, . . . , p, α = 1, . . . , q .

Definition 5.3. The maximally symmetric orbit curve C =
{

exp(tv) · z0

}
through z0 is compatible with the moving frame cross-section provided its jet at
z0 lies in the cross-section: jnC|z0 ∈ Kn .

The next result is stated for coordinate cross-sections, with an evident
modification in the non-coordinate version.

Proposition 5.4. Let v = ξ(x, u)∂x +
∑

α ϕα(x, u)∂uα ∈ g. Then the induced
orbit curve C =

{
exp(tv) · (x0, u0)

}
is compatible with the moving frame cross-

section if and only if ξ(x0, u0) 6= 0, and, for each cross-section equation uακ
kκ

= cκ ,
the corresponding function (2.7) satisfies

ψακ
kκ

(x0, u0) = cκ. (5.8)

Thus, applying Proposition 2.1, we deduce a simpler formula for the differ-
ential invariants of a compatible maximally symmetric curve.

Theorem 5.5. If the maximally symmetric curve C =
{

exp(tv) · (x0, u0)
}

is

5Here, Ad g denotes the adjoint action of the group element g on the Lie algebra g .
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compatible with the moving frame cross-section, then its basic differential invari-
ants (H, I(n)) = (x0, . . . , u

α
0 , . . . , I

α
k , . . .), as in (4.4), are given by

Iα
k = ψα

k (x0, u0) =
ϕα

k−1(x0, I
(k−1))

ξ(x0, u0)
. (5.9)

We remark that the second formula gives a simple recursive rule for gener-
ating the differential invariants directly from the prolonged infinitesimal generator
coefficients. In particular, all the cross-section variables appearing in I(k−1) are
equal to the constant values prescribed by the cross-section equations (4.3).

We emphasize that, by the cross-section construction of the moving frame,
any maximally symmetric curve can be made compatible by applying the corre-
sponding right moving frame element to it. Namely, given any regular orbit curve
C =

{
exp(tv) · z

}
, the transformed curve Ĉ = ρ(n)(jnC|z) ·C will be compatible,

and generated by v̂ = Ad ρ(n)(jnC|z)v . Thus, having a moving frame already
in hand leads to a significant simplification of the formulae. While the algebraic
manipulations required to compute a moving frame ab initio might offset any com-
putational advantages offered by this approach, there are many other compelling
reasons for finding the moving frame, [19], that could motivate its adoption.

Example 5.6. Let us return to the equi-affine group SA(2) acting on plane
curves, as treated in Example 5.2. To define the classical equi-affine moving frame,
[9, 14], we select the coordinate cross-section

x = u = ux = 0, uxx = 1, uxxx = 0. (5.10)

The fourth order prolongation of the general infinitesimal generator (5.6) is

v(4) = (a1 − a4x+ a5u)
∂

∂x
+ (a2 + a3x+ a4u)

∂

∂u
+ (a3 + 2a4ux − a5u

2
x)

∂

∂ux

+

+ (3a4uxx − 3a5uxuxx)
∂

∂uxx

+
(
4a4uxxx − a5(4uxuxxx + 3u2

xx)
) ∂

∂uxxx

+

+
(
5a4uxxxx − a5(5uxuxxxx + 10uxxuxxx)

) ∂

∂uxxxx

.

(5.11)
Thus, according to (5.9), at the base point (x0, u0) = (0, 0) = 0 , the relevant
functions (2.8) are given by

ψ1(0, 0) =
ϕ(0, 0)

ξ(0, 0)
=
a2

a1

,

ψ2(0, 0) =
ϕ1(0, 0, ψ1(0, 0))

ξ(0, 0)
=
a2

1a3 + 2a1a2a4 − a2
2a5

a3
1

,

ψ3(0, 0) =
ϕ2(0, 0, ψ1(0, 0), ψ2(0, 0))

ξ(0, 0)
=

3(a1a4 − a2a5)(a
2
1a3 + 2a1a2a4 − a2

2a5)

a5
1

,

and so on. Thus, for the orbit generated by v through the base point to be
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compatible with the cross-section (5.10), we require6

0 = ψ1(0, 0) =
ϕ(0, 0)

ξ(0, 0)
=
a2

a1

, 1 = ψ2(0, 0) =
ϕ1(0, 0, 0)

ξ(0, 0)
=
a3

a1

,

0 = ψ3(0, 0) =
ϕ2(0, 0, 0, 1)

ξ(0, 0)
=

3a4

a1

,

and so compatibility requires that

a2 = 0, a3 = a1, a4 = 0.

For such infinitesimal generators v ∈ sa(2), the equi-affine curvature of the conic
section C =

{
exp(tv) · 0

}
is given by

κ = ψ4(0, 0) =
ϕ3(0, 0, 0, 1, 0)

ξ(0, 0)
= − 3a5

a1

. (5.12)

Incidentally, the higher order differential invariants κs, κss, . . . , are clearly all
zero. This can be reconfirmed using the general formula (5.9) and the recurrence
formulas relating the normalized and differentiated invariants [5]; for example,

0 = κs = ι(uxxxxx) = ψ5(0, 0) =
ϕ4(0, 0, 0, 1, 0, κ)

ξ(0, 0)
.

Example 5.7. Consider the projective group PSL(3) acting on curves C ⊂
M = RP2 via

(x, u) 7−→
(
αx+ βu+ γ

ρx+ σu+ τ
,
λx+ µu+ ν

ρx+ σu+ τ

)
, det

∣∣∣∣∣∣
α β γ
λ µ ν
ρ σ τ

∣∣∣∣∣∣ = 1. (5.13)

The classical moving frame, [3], relies on the following cross-section equations:

x = u = ux = 0, uxx = 1, uxxx = u4x = 0, u5x = 1, u6x = 0. (5.14)

The fundamental differential invariant is the projective curvature κ = ι(u7x),
which is a rather complicated seventh order differential function, [4, 16].

The maximally symmetric curves, i.e., those with constant projective cur-
vature, are the W curves studied by Lie and Klein, [13]. We can then use for-
mula (5.1) to compute their projective curvatures. However, since the resulting
formula is much too complicated to display, we will only compute the value for
compatible nondegenerate W curves. Adopting the following basis

v1 = ∂x, v2 = ∂u, v3 = x ∂x, v4 = u ∂x, v5 = x ∂u,

v6 = u ∂u, v7 = x2 ∂x + xu ∂u, v8 = xu∂x + u2 ∂u,
(5.15)

of sl(3), and applying prolongation as before, we find that the general infinites-
imal generator v = a1v1 + · · · + a8v8 generates a compatible W curve C ={

exp(tv) · 0
}

passing through the origin if and only if

a2 = a3 = a6 = 0, a1 = a5 = −6a8, a4 = −a7.

6Note that these expressions can simply be computed directly from the infinitesimal generator
formula (5.11), and do not require the more complicated expressions listed just above.
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The projective curvature of such a curve is equal to

κ =
a7

2a8

. (5.16)

Example 5.8. Consider the Euclidean group SE(3) = SO(3) n R3 acting by
rigid motions on space curves C ⊂ M = R3 . We use coordinates z = (x, u, v)
on M and, for simplicity, assume that the curve is realized as the graph of the
functions u = u(x), v = v(x) . The classical moving frame, [9], relies on the
equations

x = 0, u = 0, v = 0, ux = 0, vx = 0, vxx = 0, (5.17)

which serve to define a coordinate cross-section provided uxx 6= 0. (Indeed, the
classical moving frame is not defined at inflection points of the space curve, [6, 9].)
The generating differential invariants are the curvature and torsion, which are
obtained by invariantizing

κ = ι(uxx) =
| (1 + v2

x)u
2
xx − 2uxvxuxxvxx + (1 + u2

x)v
2
xx |

(1 + u2
x + v2

x)
3/2

,

τ =
ι(vxxx)

ι(uxx)
=
uxxvxxx − vxxuxxx

1 + u2
x + v2

x

,

(5.18)

cf. [18]. All other differential invariants are (locally) expressible as functions of the
curvature, torsion, and their derivatives with respect to the Euclidean arc length

ω = ds =
√

1 + u2
x + v2

x dx. (5.19)

The totally singular curves are the straight lines, which have a two-dimensional
Euclidean symmetry group. The maximally symmetric curves are the circles and
circular helices.

Introducing the basis vector fields

v1 = ∂x, v2 = ∂u, v3 = ∂v,

v4 = v ∂u − u ∂v, v5 = −u ∂x + x ∂u, v6 = −v ∂x + x ∂v,
(5.20)

the general infinitesimal generator v = a1v1 + · · · + a6v6 has second order
prolongation

v(2) = (a1 − a5u− a6v)
∂

∂x
+ (a2 + a4v + a5x)

∂

∂u
+ (a3 − a4u+ a6x)

∂

∂u
+

+
(
a4vx + a5(1 + u2

x) + a6uxvx

) ∂

∂ux

+
(
−a4ux + a5uxvx + a6(1 + v2

x)
) ∂

∂vx

+

+
(
a4vxx + 3a5uxuxx + a6(2uxxvx + uxvxx)

) ∂

∂uxx

+

+
(
−a4uxx + a5(uxxvx + 2uxvxx) + 3a6vxvxx

) ∂

∂vxx

.

Thus, taking into account (5.9), the circular or helical orbit C =
{

exp(tv) · 0
}

will be compatible with the cross-section (5.10) provided

a2 = 0, a3 = 0, a6 = 0.
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Using formula (5.9) and replacing the lower order derivatives appearing in the
infinitesimal generator coefficients by their cross-section values (5.17), (5.18), we
find that its curvature and torsion are given by

κ =
a5

a1

, τ =
−a4κ

a1κ
= − a4

a1

.

In particular, the curve is a circle if and only if a4 = 0; otherwise, it is a helix.

To compute the curvature and torsion of a general orbit, we set

D̂x =
∂

∂x
+

a2 + a4v + a5x

a1 − a5u− a6v

∂

∂u
+

a3 − a4u+ a6x

a1 − a5u− a6v

∂

∂v
,

in accordance with (2.6). Thus, in view of (2.7), (2.8), the orbit jet coordinates
are

ux = ψu
1 (x, u, v) = D̂xu =

a2 + a4v + a5x

a1 − a5u− a6v
,

vx = ψv
1(x, u, v) = D̂xv =

a3 − a4u+ a6x

a1 − a5u− a6v
,

and, in general,

uk = ψu
k (x, u, v) = D̂xψ

u
k−1(x, u, v), uk = ψu

k (x, u, v) = D̂xψ
u
k−1(x, u, v).

Then, specializing (5.9) to the expressions (5.18), the curvature and torsion of the
maximally symmetric curve (helix or circle) exp(tv)(x, u, v) are equal to

κ =

∣∣∣∣ (1 + ψv
1(x, u, v)

2)ψu
2 (x, u, v)2 − 2ψu

1 (x, u, v)vxψ
u
2 (x, u, v)ψv

2(x, u, v) +
+ (1 + ψu

1 (x, u, v)2)ψv
2(x, u, v)

2

∣∣∣∣
(1 + ψu

1 (x, u, v)2 + ψv
1(x, u, v)

2)3/2
,

τ =
ψu

2 (x, u, v)ψv
3(x, u, v)− ψv

2(x, u, v)ψ
u
3 (x, u, v)

1 + ψu
1 (x, u, v)2 + ψv

1(x, u, v)
2

.

(5.21)

Finally, let us extend our method to maximally symmetric submanifolds
of higher dimension p ≥ 2. Let z0 ∈ M , and let h ⊂ g be a p-dimensional Lie
subalgebra whose orbit S = exp(h) · z0 is a regular p-dimensional submanifold;
this requires that dim h|z0 = p = dim h . The orbit is compatible with the moving
frame cross-section provided jnS|z0 ∈ Kn .

Theorem 5.9. Let h ⊂ g be a p-dimensional Lie subalgebra. If the orbit
S = exp(h) ·z0 is compatible with the moving frame cross-section, then its constant
differential invariants are prescribed by the values of the functions defined in (2.22):

Iα
Ji = ψα

Ji(x0, u0) = φα
J,i(x0, I

(k−1)) . (5.22)

Again, the values of the cross-section variables appearing in (5.22) can be
replaced by the corresponding constants, (4.3). The resulting formulas (5.22) can
be used recursively to determine the constant values of the generating differential
invariants. As before, the higher order differentiated invariants all vanish.



Olver 95

Example 5.10. Consider the Euclidean group SE(3) = SO(3) n R3 acting on
surfaces S ⊂ M = R3 . We use coordinates z = (x, y, u), and assume that the
surface is given by the graph of a function u = f(x, y). The classical moving
frame, [9], relies on the equations

x = 0, y = 0, u = 0, ux = 0, uy = 0, uxy = 0, (5.23)

which serve to define a coordinate cross-section provided uxx 6= uyy , i.e., we are
not at an umbilic point on the surface. The fundamental differential invariants
are the principle curvatures κ1 = ι(uxx), κ

2 = ι(uyy) , or, equivalently the mean
curvature H = 1

2
(κ1 + κ2) and the Gauss curvature K = κ1κ2 . As is well known,

the Gauss and mean curvature generate the algebra of Euclidean surface differential
invariants via invariant differentiation with respect to the induced Frenet frame.
Less well known is the recent observation, [21], that, for suitably non-degenerate
surfaces, the differential invariant algebra can, in fact, be generated by the mean
curvature alone via invariant differentiation.

The totally singular surfaces are the planes and spheres; each is totally um-
bilic and, moreover, has a non-freely acting three-dimensional Euclidean symmetry
group. The maximally symmetric surfaces are the cylinders, with isotropy sub-
group consisting of a translation along the cylinder’s axis and a rotation around
it.

Introducing the basis vector fields

v1 = ∂x, v2 = ∂y, v3 = ∂u,

v4 = y ∂x − x ∂y, v5 = −u ∂x + x ∂u, v6 = −u ∂y + y ∂u,
(5.24)

the general infinitesimal generator v = a1v1 + · · · + a6v6 ∈ se(3) has second
order prolongation

v(2)
a = (a1 + a4y − a5u)

∂

∂x
+ (a2 − a4v − a6u)

∂

∂y
+ (a3 + a5x+ a6y)

∂

∂u
+

+
(
a4uy + a5(1 + u2

x) + a6uxuy

) ∂

∂ux

+
(
−a4ux + a5uxuy + a6(1 + u2

y)
) ∂

∂uy

+

+
(
2a4uxy + 3a5uxuxx + a6(uyuxx + 2uxuxy)

) ∂

∂uxx

+

+
(
a4(uyy − uxx) + a5(uyuxx + 2uxuxy) + a6(2uyuxy + uxuyy)

) ∂

∂uxy

+

+
(
−2a4uxy + a5(2uyuxy + uxuyy) + 3a6uyuyy

) ∂

∂uyy

.

(5.25)

Let h ⊂ se(3) be a two-dimensional subalgebra with basis va,vb for a, b ∈
R6 . This requires that [ va,vb ] = cava + cbvb for some ca, cb ∈ R , which imposes
certain quadratic constraints on the coefficients a, b . Indeed, by the classification
of subalgebras of se(3), [1], we can, in fact, assume that va = a1∂x + a2∂y + a3∂u

generates a one-parameter translation subgroup in a direction â = (a1, a2, a3) 6= 0,
while either h is abelian, and so vb generates a translation subgroup in a second,
independent direction, or h is non-abelian, and vb generates a one-parameter
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subgroup consisting of rotations around a line { z0 + t â | t ∈ R } parallel to the
translation direction â . The abelian case leads to a totally singular orbit — a
plane — and so we assume from here on that h ⊂ se(3) is a two-dimensional
non-abelian subalgebra.

With this proviso, we consider the orbit S = exp(h) · 0 through the origin.
(We can employ translations to place any other orbit there, invoking the adjoint
action discussed above to adapt the final formulas.) As in (2.24), we can take our
basis va,vb such that a1 = b2 = 1 while a2 = b1 = 0. In view of (2.25), (5.25), we
find that the orbit will be compatible with the cross-section (5.23) provided

a1 = b2 = 1, a2 = a3 = a4 = a6 = b1 = b3 = b4 = b5 = 0.

Then formula (5.22) implies that the principle curvatures of the compatible cylin-
drical orbit are given, respectively, by the coefficients of ∂ux in va and of ∂uy in
vb , namely,

κ1 = ϕx,a(0, 0, 0, 0, 0) = a5, κ2 = ϕy,b(0, 0, 0, 0, 0) = b6.

One of these is necessarily zero (this follows from the Lie algebra condition), while
the other is the reciprocal of the radius of the cylindrical cross-section. For more
general orbits, one can either employ the adjoint action induced by the moving
frame to make them compatible, or resort to substituting the induced functions
(2.22) into the formulas for the principal curvatures.

Example 5.11. Consider the equi-affine group SA(3) = SL(3) n R3 acting
on surfaces S ⊂ M = R3 . As in the preceding example, we use coordinates
z = (x, y, u), and assume that the surface is given by the graph of a function
u = f(x, y). There are two non-degenerate cases, depending on the sign of the
Hessian determinant H = uxxuyy − u2

xy . We concentrate on the hyperbolic case,
where H < 0, here; the elliptic case H > 0 follows from a simple change of some
signs, while parabolic points, with H = 0 are degenerate, and require a higher
order moving frame. For a hyperbolic surface, the classical moving frame, [9, 21],
relies on the (non-coordinate) cross-section K3 defined by the equations

x = y = u = 0, ux = 0, uy = 0, uxx = 1,

uxy = 0, uyy = −1, uxxy = 0, uyyy = 0, uxxx = uxyy.
(5.26)

There is a single independent third order differential invariant

P = ι(uxxx) = ι(uxyy), (5.27)

whose square, P 2 , is traditionally known as the Pick invariant, [24]. In [21], it
was proved that, for suitably non-degenerate surfaces, the algebra of differential
invariants can be generated by invariant differentiation of the Pick invariant alone.

Omitting the details of the computation, which follow the same lines as
in the preceding example, we introduce the following basis for the infinitesimal
generators in sa(3):

v1 = ∂x, v2 = ∂y, v3 = ∂u, v4 = x∂x − u∂u, v5 = y∂y − u∂u,

v6 = y∂x, v7 = u∂x, v8 = x∂y, v9 = u∂y, v10 = x∂u, v11 = y∂u.
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When restricted to the cross-section (5.26), the prolongation of the general in-
finitesimal generator va = a1v1 + · · · + a11v11 to second order is given by

v(2)|K3 = a1∂x + a2∂y + a3∂u + a10∂ux + a11∂uy −
− (3a4 + a5)∂uxx + (a8 − a6)∂uxy + (a4 + 3a5)∂uyy .

(5.28)

We assume that two such generators va,vb ∈ sa(3) span a two-dimensional
subalgebra h ⊂ sa(3). We further assume, as in (2.24), without loss of generality,
that a1 = b2 = 1, a2 = b1 = 0 . With this fixed, we can use (2.25) and (5.28)
to find the compatibility conditions and determine the value of the Pick invariant
P . The compatibility equations are listed in the same order as the cross-section
equations (5.26), (5.27) (omitting the first set x = y = u = 0):

a3 = b3 = a11 = b10 = 0, a10 = 1, b11 = −1,

−3b4 − b5 = a8 − a6 = 0, b4 + 3b5 = 0,

P = −3a4 − a5 = b8 − b6 = a4 + 3a5.

(5.29)

Note that, in some cases, there are multiple expressions for the derivatives, which
is the result of the non-symmetry of the indices on the ϕ ’s in (5.22). It is worth
emphasizing that the requirement that va,vb span a Lie subalgebra ensures that
the various expressions agree.
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