Invariant Semisimple CR Structures on the Compact Lie Groups SU(n) and $SO(p, \mathbb{R}), 5 \le p \le 7$

Hella Ounaïes-Khalgui and Rupert W.T. Yu

Communicated by J. Faraut

Let G_0 be a compact real Lie group of dimension N and denote Abstract. by \mathfrak{g}_0 its Lie algebra. In an article published in 2004, Charbonnel and the first author studied G_0 -invariant CR structures on G_0 . Such a structure is defined by the fiber of the identity element of G_0 which is a Lie subalgebra \mathfrak{h} of the complexification \mathfrak{g} of \mathfrak{g}_0 , having trivial intersection with \mathfrak{g}_0 . If the dimension of the CR structure is maximal, that is $\left[\frac{N}{2}\right]$, then Charbonnel and the first author showed that \mathfrak{h} is a solvable Lie algebra. In this note, we are interested in G_0 invariant CR structures on G_0 which are defined by a semisimple Lie subalgebra and of maximal dimension. We distinguish two types of these CR structures which we shall call CRSS structure of type I and of type II. In the case of the group SU(n), with $n \ge 3$, we show that there exists always a CRSS structure of type I, while in the case of $SO(p, \mathbb{R})$, with $5 \le p \le 7$, we show that a CRSS structure of type II exists. We obtain from these structures for each of these groups an almost global CR embedding into a finite-dimensional complex vector space.

Mathematics Subject Classification 2000: 22E99, 32V40, 57S15.

Key Words and Phrases: Compact Lie group, Cauchy-Riemann Structure, CR-embedding.

1. Introduction

Let G_0 be a compact real Lie group of dimension N and denote by \mathfrak{g}_0 its Lie algebra. The notion of a CR structure on a \mathcal{C}^{∞} -manifold is well-known ([2] Baouendi and Trèves). In this paper, we are interested in such structures on the group G_0 which are invariant by the left action of G_0 on the tangent bundle and which are semisimple.

For a real \mathcal{C}^{∞} -manifold X of dimension N and T a rank r subbundle of the complexification of the tangent bundle, we denote by \mathcal{L} the space of \mathcal{C}^{∞} -sections of T. We say that T is formally integrable if \mathcal{L} is stable with respect to the Lie algebra structure on the space of vector fields on X. The pair (X,T) is a CR manifold if T is formally integrable and if given any point $x \in X$, the intersection of the fiber T_x of x in T and its conjugate $\overline{T_x}$ is zero, where by conjugate, we

mean the conjugation with respect to the complexification of the tangent bundle whose fixed points give the tangent bundle of X. We shall say that T is a CR structure on X if (X,T) is a CR manifold.

Let (X,T) be a CR manifold. A \mathcal{C}^{∞} map $f: X \to \mathbb{C}^m$ is called a CR map if f is annihilated by the sections of the subbundle T. Furthermore, if f is an embedding, then we shall call f a CR embedding ([4] H. Jacobowitz, [1] M.S. Baouendi and L.P. Rothschild).

Let *H* be a Lie group acting on *X*. The subbundle *T* is said to be *H*-invariant if for all $h \in H$, we have $T_{h,x} = h \cdot T_x$.

Let us consider the action G_0 on itself by left translation. For $\xi \in \mathfrak{g}_0$ and $g \in G_0$, we denote by $g.\xi$ the differential of the map $h \mapsto gh$ of G_0 to G_0 at the identity element e of G_0 . The map $(g,\xi) \mapsto g.\xi$ is an isomorphism from $G_0 \times \mathfrak{g}_0$ onto the tangent bundle TG_0 of G_0 . This isomorphism allows us to identify $G_0 \times \mathfrak{g}_0$ with TG_0 . Denote by \mathfrak{g} the complexification of \mathfrak{g}_0 . Then the complexification $\mathbb{C} \otimes TG_0$ of TG_0 can be identified with $G_0 \times \mathfrak{g}$. A G_0 -invariant CR structure on G_0 is then a CR structure on G_0 which is stable under the automorphisms $(g,\xi) \mapsto (hg,\xi)$ of $\mathbb{C} \otimes TG_0$, where $h \in G_0$.

Observe that a G_0 -invariant CR structure T on G_0 is determined by its fiber at e, which is a complex Lie subalgebra \mathfrak{h}_T of \mathfrak{g} verifying $\mathfrak{h}_T \cap \mathfrak{g}_0 = \{0\}$. Thus the map $T \mapsto \mathfrak{h}_T$ is a bijection between the set of G_0 -invariant CR structures on G_0 and the set of complex Lie subalgebras \mathfrak{h} of \mathfrak{g} verifying $\mathfrak{h} \cap \mathfrak{g}_0 = \{0\}$. We call \mathfrak{h}_T the Lie subalgebra corresponding to the CR structure T.

In [3], Charbonnel and the first author studied G_0 -invariant CR structures on G_0 of maximal rank. They showed that such a CR structure is of rank $\left[\frac{N}{2}\right]$, and the Lie subalgebra corresponding to it has to be solvable. These CR structures of maximal rank do not in general admit any global CR embedding into a complex vector space.

In this paper, we study G_0 -invariant CR structures on G_0 such that the Lie subalgebras corresponding to them are semisimple. We shall call such a CR structure a semisimple G_0 -invariant CR structure, or a CRSS structure. It follows from [3] that a CRSS structure has rank strictly less than $\left\lceil \frac{N}{2} \right\rceil$.

Definition 1.1. A *CRSS* structure *T* is said to be *maximal* if for any *CRSS* structure *T'* satisfying $T \subset T'$, we have T = T'. Equivalently, *T* is maximal if the Lie subalgebra corresponding to *T* is maximal by inclusion among semisimple Lie subalgebras of \mathfrak{g} having trivial intersection with \mathfrak{g}_0 .

We shall distinguish two types of maximal *CRSS* structures.

Definition 1.2. Let T be a CRSS structure on G_0 , and \mathfrak{h}_T the Lie subalgebra corresponding to T.

- We say that T is of type I if \mathfrak{h}_T is maximal by inclusion in the set of semisimple Lie subalgebras of \mathfrak{g} which are strictly contained in \mathfrak{g} .
- We say that T is of type II if the rank of T is maximal among CRSS structures on G_0 .

We show in Section 2 that in the case where $G_0 = \mathrm{SU}(n)$ with $n \geq 3$, *CRSS* structures of type I exist. In this case, $\mathfrak{g}_0 = \mathfrak{su}(n)$ and $\mathfrak{g} = \mathfrak{sl}(n, \mathbb{C})$. We construct a family of complex Lie subalgebras of $\mathfrak{sl}(n, \mathbb{C})$, $\{\mathfrak{h}_{\varepsilon}; \varepsilon \in \mathbb{C}^*, |\varepsilon| \neq 1\}$, such that $\mathfrak{h}_{\varepsilon} \cap \mathfrak{su}(n) = \{0\}$, and $\mathfrak{h}_{\varepsilon}$ is isomorphic to $\mathfrak{so}(n, \mathbb{C})$. The subbundle T_{ε} corresponding to $\mathfrak{h}_{\varepsilon}$ is then a *CRSS* structure of type I.

In Section 3, we treat the case where $G_0 = \mathrm{SO}(p)$ with $5 \leq p \leq 7$. We show that *CRSS* structures of type II exist in these cases, and the Lie subalgebras corresponding to these structures are isomorphic to respectively $\mathfrak{so}(3,\mathbb{C})$, $\mathfrak{so}(3,\mathbb{C}) \times \mathfrak{so}(3,\mathbb{C})$ and $\mathfrak{so}(3,\mathbb{C}) \times \mathfrak{so}(4,\mathbb{C})$. For these cases, we have used the computer program MAPLE to prove the existence of these structures.

Definition 1.3. Let T be a G_0 -invariant CR structure on G_0 . A map f: $G_0 \to \mathbb{C}^m$ is called an *almost global* CR embedding if f is a CR immersion, and if there exists a finite subgroup F of G_0 such that f induces an embedding from G_0/F into \mathbb{C}^m .

We show also that all the CR structures obtained here have an almost global CR embedding into a finite-dimensional complex vector space.

2. CRSS structures on SU(n)

In this section, we shall show that there exists a *CRSS* structure of type I on SU(n) when $n \ge 3$.

The following result is well-known and is a consequence of a more general result on symmetric Lie algebras. For the sake of completeness, we have included a proof in this special case of orthogonal Lie algebras.

Proposition 2.1. Let $n \geq 3$, then $\mathfrak{so}(n, \mathbb{C})$ is a semisimple Lie subalgebra of $\mathfrak{sl}(n, \mathbb{C})$ which is maximal by inclusion.

Proof. Let $\mathfrak{g} = \mathfrak{sl}(n, \mathbb{C})$ and $\mathfrak{k} = \mathfrak{so}(n, \mathbb{C})$. We shall consider \mathfrak{k} as the set of fixed points of the involutive automorphism $A \mapsto -^t A$. So \mathfrak{k} is the set of antisymmetric matrices in \mathfrak{g} . Denote by \mathfrak{p} the set of symmetric matrices in \mathfrak{g} . Then \mathfrak{p} is \mathfrak{k} -stable, $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ and $[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{k}$.

Let \mathfrak{h} be a Lie subalgebra of \mathfrak{g} containing strictly \mathfrak{k} , then $\mathfrak{h} = \mathfrak{k} \oplus \mathfrak{p}_1$ where $\mathfrak{p}_1 = \mathfrak{h} \cap \mathfrak{p} \neq \{0\}$. Since \mathfrak{k} is reductive, there is a \mathfrak{k} -stable complementary subspace \mathfrak{p}_{-1} of \mathfrak{p}_1 in \mathfrak{p} . Thus

$$\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}_1 \oplus \mathfrak{p}_{-1}.$$

One verifies easily for any $i, j \in \{-1, 1\}$ that

 $[\mathfrak{p}_i, \mathfrak{p}_j]$ is an ideal of \mathfrak{k} , and that $[\mathfrak{p}_i, [\mathfrak{p}_j, \mathfrak{p}_j]] \subset \mathfrak{p}_i \cap \mathfrak{p}_j$ (1)

because $[\mathfrak{p}_i, [\mathfrak{p}_j, \mathfrak{p}_j]] \subset [\mathfrak{p}_i, \mathfrak{k}] \subset \mathfrak{p}_i$ and $[\mathfrak{p}_i, [\mathfrak{p}_j, \mathfrak{p}_j]] \subset [[\mathfrak{p}_i, \mathfrak{p}_j], \mathfrak{p}_j] + [\mathfrak{p}_j, [\mathfrak{p}_i, \mathfrak{p}_j]] \subset [\mathfrak{k}, \mathfrak{p}_j] \subset \mathfrak{p}_j$.

Now suppose that $n \geq 3$ and $n \neq 4$, then \mathfrak{k} is simple. So $[\mathfrak{p}_i, \mathfrak{p}_i] = \{0\}$ or \mathfrak{k} . If $[\mathfrak{p}_i, \mathfrak{p}_i] = \mathfrak{k}$, then by (1), $[\mathfrak{k}, \mathfrak{p}_{-i}] = \{0\}$, and therefore

$$\mathfrak{g} = [\mathfrak{g}, \mathfrak{g}] = ([\mathfrak{k}, \mathfrak{k}] + [\mathfrak{p}, \mathfrak{p}]) \oplus [\mathfrak{k}, \mathfrak{p}_1] \oplus [\mathfrak{k}, \mathfrak{p}_{-1}] \subset \mathfrak{k} \oplus \mathfrak{p}_i,$$

hence $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}_i$. Since $\mathfrak{p}_1 \neq \{0\}$, this implies that $[\mathfrak{p}_{-1}, \mathfrak{p}_{-1}] = \{0\}$.

If $[\mathfrak{p}_1, \mathfrak{p}_1] = \{0\}$, then one checks easily that the endomorphism d of \mathfrak{g} verifying

$$d(x) = 0$$
 if $x \in \mathfrak{k}$, and $d(x) = ix$ if $x \in \mathfrak{p}_i$

is a derivation of \mathfrak{g} . Since \mathfrak{g} is semisimple, d is interior, and one checks easily that there exists $z \in \mathfrak{k}$ such that $d = \mathrm{ad}_{\mathfrak{g}} z$. But this would mean that z is a non zero element in the centre of \mathfrak{k} , which is absurd because \mathfrak{k} is simple. Thus $[\mathfrak{p}_1, \mathfrak{p}_1] = \mathfrak{k}$, and $\mathfrak{h} = \mathfrak{g}$. Hence \mathfrak{k} is maximal.

Finally, when n = 4, \mathfrak{k} is semisimple, but not simple. In this special case, one can check directly that \mathfrak{p} is a simple \mathfrak{k} -module, and so \mathfrak{k} is maximal.

For
$$\varepsilon \in \mathbb{C}^*$$
, denote by $D(\varepsilon) = (d_{ij})_{1 \leq i,j \leq n} \in \mathrm{SL}(n,\mathbb{C})$ the matrix where
$$d_{ij} = \varepsilon^{i - \frac{n(n+1)}{2}} \delta_{ij}.$$

Set

$$\mathfrak{h}_{\varepsilon} = D(\varepsilon)\mathfrak{so}(n,\mathbb{C})D(\varepsilon)^{-1} \subset \mathfrak{sl}(n,\mathbb{C}).$$

Proposition 2.2. Let $\varepsilon \in \mathbb{C}^*$ be such that $|\varepsilon| \neq 1$, then

$$\mathfrak{h}_{\varepsilon} \cap \mathfrak{su}(n) = \{0\}$$

So $\mathfrak{h}_{\varepsilon}$ defines a CRSS structure of type I on $\mathrm{SU}(n)$.

Proof. Let $B = (b_{ij})_{1 \le i,j \le n} \in \mathfrak{so}(n, \mathbb{C})$. We have that B is antisymmetric and $D(\varepsilon)BD(\varepsilon)^{-1} = (\varepsilon^{i-j}b_{ij})_{1 \le i,j \le n}$.

Now if $D(\varepsilon)BD(\varepsilon)^{-1} \in \mathfrak{su}(n)$, then

$$\varepsilon^{i-j}b_{ij} = -\overline{\varepsilon}^{j-i}\overline{b_{ji}}$$
, and hence $|\varepsilon|^{2(i-j)}b_{ij} = -\overline{b_{ji}} = \overline{b_{ij}}$

for $1 \leq i, j \leq n$.

So if $|\varepsilon| \neq 1$, then B = 0. Hence

$$\mathfrak{h}_{\varepsilon} \cap \mathfrak{su}(n) = \{0\}.$$

Finally, by Proposition 2.1, the *CRSS* structure on SU(n) defined by $\mathfrak{h}_{\varepsilon}$ is of type I.

We shall now show that the maximal CRSS structure defined by $\mathfrak{h}_{\varepsilon}$, has an almost global CR embedding into the vector space S_n of symmetric n by ncomplex matrices.

Proposition 2.3. Let $n \geq 3$, and $\varepsilon \in \mathbb{C}^*$ such that $|\varepsilon| \neq 1$. Denote by F the finite subgroup of $SL(n, \mathbb{C})$ defined by

$$F = \{ A = (\lambda_i \delta_{ij})_{1 \le i,j \le n} \in \mathrm{SL}(n, \mathbb{C}); \lambda_i^2 = 1 \}.$$

Then SU(n)/F can be identified as a real differentiable submanifold of S_n via the maximal CRSS structure defined by $\mathfrak{h}_{\varepsilon}$.

Thus the group SU(n), endowed with the maximal CRSS structure defined by $\mathfrak{h}_{\varepsilon}$, admits an almost global CR embedding into S_n . **Proof.** Denote by $H_{\varepsilon} = D(\varepsilon) \mathrm{SO}(n, \mathbb{C}) D(\varepsilon)^{-1}$ the connected closed subgroup of $\mathrm{SL}(n, \mathbb{C})$ whose Lie algebra is $\mathfrak{h}_{\varepsilon}$. Consider the action of $\mathrm{SL}(n, \mathbb{C})$ on S_n given by

$$\operatorname{SL}(n,\mathbb{C}) \times S_n \to S_n , \ (g,Z) \mapsto gZ^t g.$$

Let $Z_0 = D(\varepsilon^2)$, then H_{ε} is the stabilizer of Z_0 in $SL(n, \mathbb{C})$.

Since $\mathfrak{h}_{\varepsilon} \cap \mathfrak{su}(n) = \{0\}, H_{\varepsilon} \cap \mathrm{SU}(n)$ is a finite subgroup of $\mathrm{SU}(n)$. One deduces that $F = H_{\varepsilon} \cap \mathrm{SU}(n)$ is the stabilizer of Z_0 in $\mathrm{SU}(n)$.

It follows that the map $\varphi : \mathrm{SU}(n) \to S_n, \ g \mapsto gZ_0^t g$, is a CR immersion which induces an embedding of $\mathrm{SU}(n)/F$ into the $\mathrm{SU}(n)$ -orbit Ω_0 of Z_0 , which is a real submanifold of codimension n+1 in S_n . Thus $\mathrm{SU}(n)/F$, endowed with this CRSS structure, can be identified as a real submanifold Ω_0 of S_n .

3. CRSS structures on SO (p, \mathbb{R}) , $5 \le p \le 7$

In this section, we shall show that there exists a *CRSS* structure of type II on $SO(p, \mathbb{R})$ for $5 \le p \le 7$.

Proposition 3.1. Let $5 \le p \le 7$. There exists a semisimple Lie subalgebra \mathfrak{h}_p of $\mathfrak{so}(p, \mathbb{C})$ such that

$$\mathfrak{h}_p \cap \mathfrak{so}(p, \mathbb{R}) = \{0\}$$

and \mathfrak{h}_p induces a CRSS structure of type II on $SO(p,\mathbb{R})$. The Lie algebras \mathfrak{h}_5 , \mathfrak{h}_6 , \mathfrak{h}_7 are isomorphic respectively to $\mathfrak{so}(3,\mathbb{C})$, $\mathfrak{so}(3,\mathbb{C}) \times \mathfrak{so}(3,\mathbb{C})$ and $\mathfrak{so}(3,\mathbb{C}) \times \mathfrak{so}(4,\mathbb{C})$.

Proof. Let $N_p = \dim \mathrm{SO}(p, \mathbb{R})$. Recall that by [3], if \mathfrak{h}_p is semisimple and $\mathfrak{h}_p \cap \mathfrak{so}(p, \mathbb{R}) = \{0\}$, then $\dim_{\mathbb{C}} \mathfrak{h}_p < \left[\frac{N_p}{2}\right]$. Since there are no semisimple Lie algebras of dimension 4, if \mathfrak{h}_p defines a *CRSS* structure, then it would be of type II.

We are therefore left to show that $\mathfrak{h}_p \cap \mathfrak{so}(p, \mathbb{R}) = \{0\}$. All the computations were done by using the program MAPLE.

i) Let

$$P_5 = \begin{pmatrix} 0 & 1+i & -1 & 1-i & 0\\ -2-4i & -3+6i & -1-3i & 7+i & 0\\ 7+i & -5-9i & 5+i & -7+8i & 1-i\\ -3+6i & 10-2i & -2+4i & -5-9i & 1+i\\ -1-3i & -2+4i & -2i & 5+i & -1 \end{pmatrix} \in \mathrm{SO}(5,\mathbb{C}).$$

We identify $\mathfrak{so}(3,\mathbb{C})$ as the Lie subalgebra of $\mathfrak{so}(5,\mathbb{C})$ consisting of matrices of the form

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & a_1 + ia_2 & b_1 + ib_2 & 0 \\ 0 & -a_1 - ia_2 & 0 & c_1 + ic_2 & 0 \\ 0 & -b_1 - ib_2 & -c_1 - ic_2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

where $a_1, a_2, b_1, b_2, c_1, c_2$ are real numbers.

Set $\mathfrak{h}_5 = {}^tP_5\mathfrak{so}(3,\mathbb{C})P_5$. Any matrix $M = (m_{kl})_{1 \leq k,l \leq 5} \in \mathfrak{h}_5$ is an antisymmetric matrix with

$$\begin{array}{rcl} m_{12} &=& (1-i)a-b+(3-i)c\\ m_{13} &=& -2a-(1+3i)b+(3-i)c\\ m_{14} &=& -2(1+i)a+(1-i)b+(1-2i)c\\ m_{15} &=& -2(3+i)a+2(1-3i)b+(3-i)c\\ m_{23} &=& (1+3i)a-2(1-2i)b-2(3+i)c\\ m_{24} &=& (-1+2i)a+(-3+i)b-2(1+2i)c\\ m_{25} &=& 3(1+3i)a-3(3-i)b-2(2+i)c\\ m_{34} &=& (-3+i)a+(-4-2i)b-(2-2i)c\\ m_{35} &=& (-4-2i)a+(2-4i)b+2c\\ m_{45} &=& (8-6i)a+(6+8i)b+(-1+5i)c \end{array}$$

where $a = a_1 + ia_2$, $b = b_1 + ib_2$, $c = c_1 + ic_2$.

It follows that $M \in \mathfrak{h}_5 \cap \mathfrak{so}(5, \mathbb{R})$ if and only if a_1, a_2, b_1, b_2, c_1 and c_2 verify a Cramer system whose matrix is given by

(-1	1	0	-1	-1	3
	0	-2	-3	-1	-1	3
	-2	-2	-1	1	-2	1
	3	1	4	-2	-2	-6
	2	-1	1	-3	-4	-2
	-2	-6	-6	2	-1	3
	9	3	3	-9	-2	-4
	1	-3	-2	-4	-6	2
	-2	-4	-4	2	0	2
ĺ	-6	8	8	6	5	-1 /

which is of rank 6. So M = 0.

ii) Let P_6 be the following matrix in $SO(6, \mathbb{C})$

$$P_{6} = \begin{pmatrix} 0 & 1-i & -1 & 1+i & 0 & 0 \\ 0 & -4+6i & 4 & -4-6i & 5 & 0 \\ -2+4i & -25-60i & -15+25i & 65-5i & -22+36i & 0 \\ -3-6i & 96+20i & -18-40i & -49+85i & -26-58i & 1-i \\ 7-i & -51+81i & 43-3i & -61-74i & 62-4i & 1+i \\ -1+3i & -16-46i & -12+18i & 49-i & -18+26i & -1 \end{pmatrix}$$

We identify $\mathfrak{so}(3,\mathbb{C}) \times \mathfrak{so}(3,\mathbb{C})$ as the Lie subalgebra of $\mathfrak{so}(6,\mathbb{C})$ consisting of matrices of the form

$$\begin{pmatrix} 0 & a_1 + ia_2 & b_1 + ib_2 & 0 & 0 & 0 \\ -a_1 - ia_2 & 0 & c_1 + ic_2 & 0 & 0 & 0 \\ -b_1 - ib_2 & -c_1 - ic_2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & d_1 + id_2 & e_1 + ie_2 \\ 0 & 0 & 0 & -d_1 - id_2 & 0 & f_1 + if_2 \\ 0 & 0 & 0 & -e_1 - ie_2 & -f_1 - if_2 & 0 \end{pmatrix}$$

where $a_1, a_2, b_1, b_2, c_1, c_2, d_1, d_2, e_1, e_2, f_1, f_2$ are real numbers.

Set $\mathfrak{h}_6 = {}^tP_6(\mathfrak{so}(3,\mathbb{C}) \times \mathfrak{so}(3,\mathbb{C}))P_6.$

Similar to the case where p = 5, we obtain that $M \in \mathfrak{h}_6 \cap \mathfrak{so}(6, \mathbb{R})$ if and only if $a_1, a_2, b_1, b_2, c_1, c_2, d_1, d_2, e_1, e_2, f_1, f_2$ verify a Cramer system whose matrix is given by

1	0	0	-2	-6	16	28	-53	19	-72	-34	34	-72)
1	0	0	-2	4	8	-16	19	13	6	32	-32	6
I	0	0	6	-2	-32	4	-3	-56	53	-59	59	53
I	0	0	0	0	10	-20	30	20	10	50	-50	10
I	0	0	0	0	0	0	-3	-1	1	2	-3	-1
I	0	2	-15	-20	10	50	30	-10	40	20	-20	40
I	0	-4	25	15	30	20	10	-20	30	-10	10	30
I	5	-5	14	58	-3	24	8	4	4	12	-12	4
l	0	0	0	0	0	0	46	-16	-34	10	21	-19
I	0	2	-25	-5	50	-10	-10	-30	20	-40	40	20
I	-5	0	22	-36	-13	19	16	8	8	24	-24	8
I	0	0	0	0	0	0	-18	-12	12	10	-13	-3
	5	5	-58	14	-21	13	8	4	4	12	-12	4
I	0	0	0	0	0	0	1	49	1	-35	11	26
	0	0	0	0	0	0	-26	-18	18	14	-18	-4 /

which is of rank 12. So M = 0.

iii) Let

$$P_{7} = \begin{pmatrix} 1+i & 0 & 0 & -1 & 0 & 0 & 1-i \\ 0 & 1-i & -1 & 0 & 1+i & 0 & 0 \\ 0 & 1+2i & 1-i & 0 & -2 & 1-i & 0 \\ -1 & 0 & 0 & 1-i & 0 & 0 & 1+i \\ 0 & -2 & 1+i & 0 & 1-2i & 1+i & 0 \\ 0 & 1-i & 0 & 0 & 1+i & -1 & 0 \\ 1-i & 0 & 0 & 1+i & 0 & 0 & -1 \end{pmatrix} \in \mathrm{SO}(7, \mathbb{C}).$$

Set $\mathfrak{h}_7 = {}^tP_7(\mathfrak{so}(3,\mathbb{C}) \times \mathfrak{so}(4,\mathbb{C}))P_7$. A similar argument using the program MAPLE shows that $\mathfrak{h}_7 \cap \mathfrak{so}(7,\mathbb{R}) = \{0\}$.

We shall end this section by showing that each of these $SO(p, \mathbb{R})$, endowed with the maximal *CRSS* structure defined by \mathfrak{h}_p , admits an almost global *CR* embedding.

Let $\mathbf{r} = (r_1, \ldots, r_k) \in (\mathbb{N}^*)^k$ be such that $p = r_1 + \cdots + r_k$. Denote by Φ the non-degenerate symmetric bilinear form on \mathbb{C}^p whose isotropy group is $\mathrm{SO}(p, \mathbb{C})$. Let (e_1, \ldots, e_p) be an orthonormal basis of \mathbb{C}^p with respect to Φ . Let U_1 denote the subspace spanned by e_1, \ldots, e_{r_1} . For $2 \leq i \leq k$, denote by U_i the subspace spanned by $e_{r_1 + \cdots + r_{i-1} + 1}, \ldots, e_{r_1 + \cdots + r_i}$. So $\mathbb{C}^n = U_1 \oplus \cdots \oplus U_k$ is an orthogonal decomposition of \mathbb{C}^p .

The natural action of $SO(p, \mathbb{C})$ on \mathbb{C}^p extends naturally to an action on $\bigwedge^{r_i} \mathbb{C}^p$, hence also on the vector space

$$E_p(\mathbf{r}) = (\bigwedge^{r_1} \mathbb{C}^p) \times \cdots \times (\bigwedge^{r_k} \mathbb{C}^p),$$

which has dimension $\binom{p}{r_1} + \cdots + \binom{p}{r_k}$.

Let $v_1 = e_1 \wedge \cdots \wedge e_{r_1}$. For $2 \leq i \leq k$, let

 $v_i = e_{r_1 + \dots + r_{i-1} + 1} \wedge \dots \wedge e_{r_1 + \dots + r_i} \in \bigwedge^{r_i} \mathbb{C}^p.$

Let $x \in SO(p, \mathbb{C})$ be an element in the stabilizer $H(\mathbf{r})$ of $(v_1, \ldots, v_k) \in E_p(\mathbf{r})$. Then x leaves each U_i invariant, and so $x \in SO(r_1, \mathbb{C}) \times \cdots \times SO(r_k, \mathbb{C})$. Conversely, it is clear that any element of $SO(r_1, \mathbb{C}) \times \cdots \times SO(r_k, \mathbb{C})$ stabilizes (v_1, \ldots, v_k) . So $H(\mathbf{r}) = SO(r_1, \mathbb{C}) \times \cdots \times SO(r_k, \mathbb{C})$.

Applying the above in our three cases with $\mathbf{r}_5 = (1,3,1)$, $\mathbf{r}_6 = (3,3)$ and $\mathbf{r}_7 = (3,4)$, $\mathbf{\mathfrak{h}}_p$ is conjugate to the Lie algebra of $H(\mathbf{r}_p)$. Using the same arguments as in Proposition 2.3 and the appropriate conjugation, we obtain the following result:

Proposition 3.2. Let $5 \leq p \leq 7$. The group $SO(p, \mathbb{R})$, endowed with the maximal CRSS structure defined by \mathfrak{h}_p , admits an almost global CR embedding into $E_p(\mathbf{r}_p)$.

References

- Baouendi, M. S., and L. P. Rothschild, Embeddability of abstract CR structures and integrability of related systems, Annales de l'Institut Fourier 37 (1987), 131–141.
- [2] Baouendi, M. S., and F. Trèves, A property of the functions and distributions annihilated by a locally integrable system of complex vector fields, Annals of Mathematics 113 (1981), 387–421.
- [3] Charbonnel, J.-Y., and H. Ounaïes-Khalgui, Classification des structures CR invariantes pour les groupes de Lie compacts, Journal of Lie Theory 14 (2004), 165–198.
- [4] Jacobowitz, H., The canonical bundle and realizable CR hypersurfaces, Pacific J. of Math. 127 (1987), 91–101.

Hella Ounaïes-Khalgui Département de Mathématiques Faculté des Sciences de Tunis Université Tunis El-Manar Campus universitaire 1060 Tunis Tunisia o.khalgui@fst.rnu.tn Rupert W.T. Yu UMR 6086 du CNRS Département de Mathématiques Université de Poitiers Téléport 2 – BP 30179 Boulevard Marie et Pierre Curie 86962 Futuroscope Chasseneuil Cedex France yuyu@math.univ-poitiers.fr

Received April 19, 2009 and in final form May 20, 2009