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Abstract. Each even dimensional submanifold of a symplectic manifold
defines a Lie algebra 2-cocycle on the Lie algebra of symplectic vector fields. We
study its integrability to the group of symplectic diffeomorphisms. When the
submanifold is symplectic, we describe a coadjoint orbit of the corresponding
extension.
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1. Introduction

In this paper we study central extensions of the group of symplectic diffeomor-
phisms Symp(M, ω) of a symplectic manifold (M, ω), that are defined by a 2k -
dimensional submanifold N of M . The corresponding Lie algebra extension is
described by the 2-cocycle σN on the Lie algebra of symplectic vector fields of
(M, ω) by

σN(X, Y ) =

∫
N

iXiY ωk+1.

The main result is that for H2k+1(M, R) = 0 and when the cohomology
class [ω]k+1 ∈ H2k+2(M, R) is integral, such a central extension of Symp(M, ω)
exists. Moreover, when the submanifold N is symplectic, then a coadjoint or-
bit of this extension is the connected component containing N of the space of
2k -dimensional symplectic submanifolds of M , the non-linear symplectic Grass-
mannian SGr2k(M).

For k = 0 we recover some results from [5], where a group 2-cocycle on
Symp(M, ω), integrating the Lie algebra 2-cocycle (X,Y ) 7→ ω(X, Y )(x), x ∈ M ,
is given under the assumption that the symplectic form ω is exact. A similar
2-cocycle defined by a 2k -dimensional submanifold N of M is given in Section 3.
Other types of group 2-cocycles on Symp(M, ω) were considered in [12] and [13].
In [12] Neretin constructs a group 2-cocycle on the group of compactly supported
symplectic diffeomorphisms with the help of a group 2-cocycle on Sp(2n, R).
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In general it defines a non-trivial cohomology class, while its restriction to the
connected component of the identity is a coboundary. In [13] Reznikov uses the
closed Sp(2n, R)-invariant closed 2-form on Sp(2n, R)/U(n) due to Borel to define
a group 2-cocycle on Symp(M, ω).

This work is a natural continuation of [2], since it uses the same objects: the
non-linear Grassmannian Grn(M) of n-dimensional submanifolds of M with forms
induced by the tilda map from forms on M , and same tools: Kostant’s central
extension associated to a prequantizable presymplectic manifold (presymplectic
manifold means a manifold with a closed 2-form).

A 2-cocycle similar to σN is the Lichnerowicz 2-cocycle λN on the Lie
algebra of divergence free vector fields of an m-dimensional manifold M with
volume form ν [8] [14]:

λN(X, Y ) =

∫
N

iXiY ν.

In [4] Section 25 it is shown that when ν is an integral volume form, the 2-cocycle
λN is integrable to the group of exact volume preserving diffeomorphisms of M .
The geometric construction uses Kostant’s extension associated to the codimension
two non-linear Grassmannian (Grm−2(M), ν̃), which is a prequantizable symplec-
tic manifold with a hamiltonian action of the group of exact volume preserving
diffeomorphisms. The connected component containing N is a coadjoint orbit of
the central extended lie group [2]. The integrability of λN to the group of all
volume preserving diffeomorphisms is studied in [10] and [15].

Unlike λN , whose cohomology class vanishes only for 0-homologous N , the
restriction of σN to the Lie algebra of hamiltonian vector fields is a coboundary,
hence the integrability to the group of hamiltonian diffeomorphisms of (M, ω)
is obvious. When the cohomology class [ω]k+1 ∈ H2k+2(M, R) is integral, the

presymplectic manifold (Gr2k(M), ω̃k+1) is prequantizable. The Symp(M, ω)-
action on it is hamiltonian if and only if H2k+1(M, R) = 0. Pulling back Kostant’s
central extension by this action, we get a central Lie group extension integrating
σN . When H2k+1(M, R) 6= 0, we pass to covering spaces of Symp(M, ω) and
Gr2k(M). The minimal covering group Symp(M, ω) of Symp(M, ω) on which σN

can be integrated is also determined.

In [2] it is shown that all connected components of the non-linear symplectic
Grassmannian SGr2k(M) appear as coadjoint orbits of the group of Hamiltonian
diffeomorphisms. For H2k+1(M, R) = 0, the connected component containing N
is a coadjoint orbit of the central extension of Symp(M, ω) integrating σN . For
H2k+1(M, R) 6= 0, a certain covering space of it is a coadjoint orbit of the central

extensions of S̃ymp(M, ω) and Symp(M, ω) integrating σN .

We are grateful to Stefan Haller for suggesting to consider minimal covering
groups admitting central extensions and Rui Loja Fernandes for the impulse given
to look for coadjoint orbits of groups of symplectic diffeomorphisms.

2. Non-linear Grassmannians

We start by collecting some facts from [2] about the non-linear Grassmannian and
the non-linear symplectic Grassmannian.
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Let Grn(M) be the non-linear Grassmannian of oriented compact n–dimen-
sional submanifolds without boundary of a smooth manifold M . It is a Fréchet
manifold in a natural way, see [7] Section 44. Suppose N ∈ Grn(M). Then the
tangent space of Grn(M) at N can naturally be identified with the space of smooth
sections of the normal bundle TN⊥ := (TM |N)/TN .

To any k -form α the tilda map associates a (k − n)-form α̃ on Grn(M)
by:

(α̃)N(Y1, . . . , Yk−n) :=

∫
N

iYk−n
· · · iY1α.

Here, all Yj are tangent vectors at N ∈ Grn(M), i.e. sections of TN⊥ . There is
a natural action of the group Diff(M) on Grn(M) by ϕ · N = ϕ(N). For every
vector field X ∈ X(M) on M , the fundamental vector field ζX on Grn(M) is
ζX(N) = X|N , viewed as a section of TN⊥ . One can verify that

d̃α = dα̃ iζX
α̃ = ĩXα

LζX
α̃ = L̃Xα ϕ∗α̃ = ϕ̃∗α.

Theorem 1 from [2] shows that, if [α] ∈ Hk(M, Z), then (Grk−2(M), α̃) is pre-
quantizable, i.e. there exist a principal S1–bundle P → Grk−2(M) and a principal
connection 1-form η ∈ Ω1(P) whose curvature form is α̃ .

Let p : G̃rn(M) → Grn(M) denote the universal covering projection. The

elements in G̃rn(M) are seen as homotopy classes [Nt] of curves t 7→ Nt of n-
dimensional submanifolds of M , starting at a fixed point N0 ∈ Grn(M). Any
closed form α ∈ Ωn+1(M) gives rise to a closed 1-form α̃ on Grn(M), hence to a

smooth function ᾱ on G̃rn(M), uniquely defined by the conditions

p∗α̃ = dᾱ ᾱ([N0]) = 0,

[N0] denoting the homotopy class of the constant curve.

The value of ᾱ at [Nt] can be obtained by integrating the (n + 1)-form
α over an (n + 1)-chain c in M obtained from the class [Nt] . This chain is not
unique, it depends on a representative curve Nt and on a curve ft of embeddings
N0 ↪→ M with ft(N0) = Nt , namely c : (t, x) ∈ I × N0 7→ ft(x) ∈ M . But the
integral

∫
c
α does not depend on these choices and equals ᾱ([Nt]). In the sequel

we will use also the notation
∫

[Nt]
α .

Suppose (M, ω) is a connected 2n–dimensional symplectic manifold. We
denote by SGr2k(M) ⊆ Gr2k(M) the open subset of symplectic submanifolds of

M and we call it the non-linear symplectic Grassmannian. The 2-form ω̃k+1 is
a symplectic form on SGr2k(M). This symplectic manifold is prequantizable if
[ω]k+1 ∈ H2k+2(M, Z).

Theorem 2.1. [2] All connected components of the non-linear symplectic Grass-

mannian (SGr2k(M), ω̃k+1) are coadjoint orbits of the group of Hamiltonian dif-
feomorphisms.
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3. A 2-cocycle on the symplectomorphism group

In this section we generalize the 2-cocycle defined in [5] on the symplectomorphism
group of an exact symplectic manifold M with H1(M, R) = 0.

The space of normalized locally smooth p-cochains on a Lie group G is the
space Cp

s (G) of all maps c : Gk → R , locally smooth in a neighborhood of the
identity, which satisfy c(g1, . . . , gp) = 0 whenever some gj = e . It is a differential
complex with the differential

(dGc)(g0, . . . , gp) = c(g1, . . . , gp) +

p∑
j=1

(−1)jc(g0, . . . , gj−1gj, . . . , gp)

+ (−1)p+1c(g0, . . . , gp−1).

The second locally smooth group cohomology space H2
s (G) is in bijection with

equivalence classes of central Lie group extensions of G by R possessing a smooth
local section.

Let M be a non-compact connected manifold with an exact symplectic
form ω = dα . For k 6= 0, every oriented compact 2k -dimensional submanifold
without boundary N0 of M (i.e. N0 ∈ Gr2k(M)) defines a normalized group
2-cocycle cN0 on Symp(M, ω), the connected component of the identity of the
symplectomorphism group, by

cN0(ϕ1, ϕ2) =

∫ ϕ2(N0)

N0

(α− ϕ∗1α) ∧ ωk. (1)

The integral is taken over any bordism with boundary ϕ2(N0)−N0 , which exists
since ϕ2 can be connected to the identity by a diffeotopy. This integral does not
depend on the chosen bordism since the (2k + 1)-form (α− ϕ∗1α) ∧ ωk is exact.

Proposition 3.1. The cohomology class of cN0 on Symp(M, ω) does not de-
pend on the choice of the 1-form α satisfying ω = dα and on the choice of the
submanifold N0 in a connected component of Gr2k(M), if k 6= 0.

Proof. Let ω = dᾱ and let c̄N0 be the group 2-cocycle defined with ᾱ . The
(2k + 1)-form (ᾱ − α) ∧ ωk is exact. A 2k -form β such that (ᾱ − α) ∧ ωk = dβ
defines a group 1-cochain a(ϕ) =

∫
N0

(ϕ∗β − β). Then c̄N0 − cN0 = da .

Given N0 and N1 in the same connected component of Gr2k(M), there is
a bordism τ in M with boundary N1 −N0 . Then cN0 − cN1 = dGb for the group
1-cochain b(ϕ) =

∫
τ
(α− ϕ∗α) ∧ ωk , ϕ ∈ Symp(M, ω).

Remark 3.2. There is a geometric interpretation of the central Lie group
extension of Symp(M, ω) given by the 2-cocycle cN0 . Let M be the connected

component of N0 in Gr2k(M) and the exact 2-form Ω = ω̃k+1 = dα̃ ∧ ωk on
M . On the trivial bundle M × R → M we consider the connection 1-form

θ = α̃ ∧ ωk + dt with curvature Ω. Then the central extension defined by cN0 ,
denoted Symp(M, ω)×cN0

R , acts on M× R preserving θ . The action is

(ϕ, a) · (N, t) =
(
ϕ(N),

∫ N

N0

(ϕ∗α− α) ∧ ωk + t + a
)
,
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where the integral is taken over any bordism in M with boundary N − N0 .
This central extension can be identified with the group of connection preserving
automorpisms of M× R projectable to diffeomorphisms of M coming from the
canonical Symp(M, ω)-action.

Remark 3.3. For k = 0 we obtain the construction from [5], but in this case
the condition H1(M, R) = 0 has to be imposed to assure that the 1-form α−ϕ∗α

is exact: N0 is a point x0 ∈ M , cx0(ϕ1, ϕ2) =
∫ ϕ2(x0)

x0
(α − ϕ∗1α), M = M and

Ω = ω .

Remark 3.4. Let M = G/K be a non-compact symmetric space admitting a
G-invariant complex structure and ω the symplectic form defined by the Hermitian
metric. It is shown in [5] that the restriction of cx0 to G is cohomologous to the
Guichardet-Wigner 2-cocycle on G . The latter is known to define a non-trivial
cohomology class. We define a generalized Guichardet-Wigner 2-cocycle on G
corresponding to a 2k -dimensional submanifold N0 of M .

Given g1, g2 ∈ G , we denote by (x, g1(x), g1g2(x)) the oriented geodesic
cone having as vertex the point x and as base the geodesic segment from g1(x) to
g1g2(x), and by (N0, g1(N0), g1g2(N0)) the (2k+2)-chain ∪x∈N0(x, g1(x), g1g2(x)).
Generalizing the Guichardet-Wigner construction we define

wN0(g1, g2) =

∫
(N0,g1(N0),g1g2(N0))

ωk+1, (2)

which is a group 2-cocycle on G .

The restriction of cN0 to G is cohomologous to wN0 . Indeed, given g ∈ G ,
we denote by (x, g(x)) the geodesic segment from x to g(x) and by (N0, g(N0)) =
∪x∈N0(x, g(x)) the geodesic cylinder with boundary g(N0) − N0 . The group 1-
cochain aN0(g) =

∫
(N0,g(N0))

α ∧ ωk on G has the property daN0 = wN0 − cN0|G×G .

4. 2-cocycles on the Lie algebra of symplectic vector fields

The space of continuous Lie algebra cochains on the topological Lie algebra g is
Cp

c (g) = {σ : gp → R|σ continuous alternating} . With the differential

(dgσ)(X0, . . . ,Xp) =
∑
i≤j

(−1)i+jσ([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xp)

it becomes a differential complex. Its cohomology is the continuous Lie algebra
cohomology Hp

c (g). The second continuous cohomology space H2
c (g) is in bijection

with equivalence classes of central topological Lie algebra extensions of g by R .

The natural homomorphism from the complex of R-valued locally smooth
group cochains to the complex of R-valued continuous Lie algebra cochains in
degree two has the following form:

c′(X, Y ) =
∂2

∂t∂s

∣∣∣
(0,0)

(c(exp tX, exp sY )− c(exp sY, exp tX)).
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For the exact symplectic manifold (M, ω = dα) we compute the 2-cocycle on the
Lie algebra symp(M, ω) of symplectic vector fields corresponding to the 2-cocycle
cN0 on Symp(M, ω):

c′N0
(X, Y ) = − ∂

∂s

∣∣∣
0

∫ FlYs (N0)

N0

LXα ∧ ωk +
∂

∂t

∣∣∣
0

∫ FlXt (N0)

N0

LY α ∧ ωk

=

∫
N0

(iXLY − iY LX)α ∧ ωk =

∫
N0

(i[X,Y ] + iXiY d− diXiY )α ∧ ωk

=

∫
N0

iXiY ωk+1 +

∫
N0

i[X,Y ](α ∧ ωk).

This proves that:

Proposition 4.1. The Lie algebra 2-cocycle associated to the group 2-cocycle
cN0 is cohomologous to the Lie algebra 2-cocycle

σN0(X, Y ) =

∫
N0

iXiY ωk+1. (3)

Remark 4.2. For a non-exact symplectic form ω on M , σN0 is stil a continuous
Lie algebra 2-cocycle on symp(M, ω).

Remark 4.3. When k = 0, so N0 = x0 is a point of M , we get σσ0(X, Y ) =
ω(X, Y )(x0). The Lie algebra 2-cocycle σx0 defines a non-trivial cohomology class
in H2

c (symp(M, ω) if either M is non-compact, or M is compact with non-zero
linear map a ∈ H1(M, R) 7→ a ∧ ωn−1 ∈ H2n−1(M, R) [5].

For the rest of this section M is assumed to be compact. In the exact
sequence of Lie algebra homomorphisms

0 → ham(M, ω) → symp(M, ω)
sω→ H1(M, R) → 0,

for sω(X) = [iXω] , the ideal ham(M, ω) of Hamiltonian vector fields is perfect
[1]. Therefore the pull-back by sω is an injective homomorphism in continuous Lie
algebra cohomology: s∗ω : H2

c (H1(M, R)) = Λ2H1(M, R)∗ → H2
c (symp(M, ω)).

Remark 4.4. The continuous Lie algebra cohomology space H2
c (ham(M, ω))

is isomorphic to H1(M, R) [14]. For a surface of genus greater than 2, the
Hamiltonian group is contractible and its universal central extension by H1(M, R)
is constructed in [4] as an inductive limit of groups.

Remark 4.5. The continuous cohomology space H2
c (symp(M, ω)) is isomorphic

to Ker(t)⊕ Im(s∗ω) [16] for the transgression map

t : H2
c (ham(M, ω)) = H1(M, R) → H3

c (H1(M, R)) = Λ3H1(M, R)∗

t(a)(b1, b2, b3) = n(n− 1)

∫
M

a ∧ b1 ∧ b2 ∧ b3 ∧ ωn−2

− n2

Vol(M)

∑
cycl

〈a, b1〉M〈b2, b3〉M .
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Here 〈a, b〉M =
∫

M
a ∧ b ∧ ωn−1 denotes the symplectic pairing in H1(M, R) and

Vol(M) =
∫

M
ωn the symplectic volume.

One can easily see that the restriction of the Lie algebra 2-cocycle σN0 to
the ideal ham(M, ω) of Hamiltonian vector fields is a coboundary. This follows
also from the lemma below.

Lemma 4.6. The cohomology class of the 2-cocycle σN0(X, Y ) =
∫

N0
iXiY ωk+1

on symp(M, ω) is in Im(s∗ω). More precisely [σN0 ] = s∗ω[ρ] where ρ ∈ Λ2H1(M, R)∗

is given by

ρ(a, b) = (k + 1)
(
k〈a, b〉N0 − n

Vol(N0)

Vol(M)
〈a, b〉M

)
, a, b ∈ H1(M, R),

Vol denoting the symplectic volume and 〈a, b〉N0 =
∫

N0
a ∧ b ∧ ωk−1 .

Proof. The Lie bracket of two symplectic vector fields X and Y is a Hamil-
tonian vector field with Hamiltonian function −ω(X,Y ). Therefore the unique
Hamiltonian function with zero integral on M for [X, Y ] is

h[X,Y ] = −ω(X,Y ) +
n

Vol(M)
〈[iXω], [iY ω]〉M .

Then

σN0(X,Y ) =

∫
N0

iXiY ωk+1

= k(k + 1)

∫
N0

iXω ∧ iY ω ∧ ωk−1 − (k + 1)

∫
N0

ω(X, Y )ωk

= k(k + 1)〈[iXω], [iY ω]〉N0 − (k + 1)

∫
N0

(−h[X,Y ] +
n

Vol(M)
〈[iXω], [iY ω]〉M)ωk

= ρ(sω(X), sω(Y )) + (k + 1)

∫
N0

h[X,Y ]ω
k.

With the help of a continuous linear retraction r : symp(M, ω) → ham(M, ω), we
write σN0 = s∗ωρ + dτ for the Lie algebra 1-cochain τ(X) = −(k + 1)

∫
N0

hr(X)ω
k

on symp(M, ω). Hence [σN0 ] = s∗ω[ρ] .

All the elements in Im(s∗ω) can be integrated to S̃ymp(M, ω). The corre-
sponding central extensions are the pull-backs of central extensions of H1(M, R) by

the flux homomorphism Sω : S̃ymp(M, ω) → H1(M, R), Sω([ϕt]) =
∫ 1

0
[iδrϕtω]dt .

Here the right logarithmic derivative is δrϕt = d
dt

ϕt ◦ ϕ−1
t .

5. Geometric constructions of central extensions

There is a geometric construction of central Lie group extensions using Kostant’s
extension. The ingredients are a connected Lie group G , a prequantizable presym-
plectic manifold (M, Ω) and a Hamiltonian action of G on M . This means that
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for all fundametal vector fields ζX , X ∈ g , the 1-forms iζX
Ω are exact. Let

P → M be the principal S1 -bundle with connection 1-form η and curvature Ω.
We denote by Aut(P , η) the group of quantomorphisms, i.e. the connected com-
ponent of the group of equivariant connection preserving diffeomorphisms of P ,
and by Ham(M, Ω) the group of Hamiltonian diffeomorphisms of M . Kostant’s
central extension [6] associated to (M, Ω) is

1 → S1 → Aut(P , η) → Ham(M, Ω) → 1. (4)

Its pull-back to G by the Hamiltonian action leads to a 1-dimensional central Lie
group extension of G , even if M is infinite dimensional [11].

Let (M, ω) be a compact connected 2n-dimensional symplectic manifold
with integral [ωk+1] ∈ H2k+2(M, R). We fix a closed 2k -dimensional submanifold
N0 of M and denote by M the connected component of Gr2k(M) containing N0 .
The integrality of [ωk+1] assures (see Section 2) the existence of a principal circle
bundle P → M and a principal connection 1-form η having curvature Ω. To
this data one can associate Kostant’s central group extension (4). The canonical
action of Symp(M, ω) on M preserves Ω, hence it is a symplectic action.

Theorem 5.1. If H2k+1(M, R) = 0, then Symp(M, ω) acts in a Hamiltonian
way on (M, Ω). The pull-back of Konstant’s extension (4) is a central Lie group
extension of Symp(M, ω) integrating σN0 .

Proof. For X ∈ symp(M, ω), the (2k +1)-form iXωk+1 is closed, hence exact.

Let γ ∈ Ω2k(M) such that iXωk+1 = dγ . Then iζX
Ω = ˜iXωk+1 = d̃γ = dγ̃ is exact

too, ensuring that the Symp(M, ω)-action is Hamiltonian.

The pull-back of Kostant’s extension is a Lie group extension by Proposition
3.4 in [11]. Its corresponding Lie algebra 2-cocycle is (X,Y ) 7→ −Ω(ζX , ζY )(N0) =
−

∫
N0

iY iXωk+1 = σN0(X, Y ) (see Section 3 in [2]).

A momentum map µ : M → symp(M, ω)∗ for the Hamiltonian action of

Symp(M, ω) on M is µ(N)(X) =
∫ N

N0
iXωk+1 . The group 1-cocycle measuring its

non-equivariance is

κ : Symp(M, ω) → symp(M, ω)∗

κ(ϕ)(X) = µ(ϕ(N0))(X) =

∫ ϕ(N0)

N0

iXωk+1.

When k = 0, then M = M , Ω = ω , H1(M, R) = 0 and Ham(M, ω) =
Symp(M, ω), so Theorem 5.1 gives just Kostant’s central group extension. Its
corresponding Lie algebra extension is trivial.

When H2k+1(M, R) 6= 0, the Symp(M, ω)-action is no longer Hamiltonian.

Passing to universal covering spaces, we get a Hamiltonian action of S̃ymp(M, ω)
on (M̃, p∗Ω), where p : M̃ →M denotes the universal covering projection. Given
X ∈ symp(M, ω), the fundamental vector field ζ̃X on M̃ satisfies Tp.ζ̃X = ζX , so

iζ̃X
p∗Ω = p∗iζX

Ω = p∗( ˜iXωk+1) = d(iXωk+1),
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where iXωk+1 is a smooth map on M̃ defined as in Section 2. The momentum
map is in this case

µ̃ : M̃ → symp(M, ω)∗, µ̃([Nt])(X) = iXωk+1([Nt]) =

∫
[Nt]

iXωk+1.

The 1-cocycle κ̃ : S̃ymp(M, ω) → symp(M, ω)∗ which measures the failure of µ̃ to
be equivariant is

κ̃([ϕt])(X) = µ̃([ϕt(N0)])(X) =

∫
[ϕt(N0)]

iXωk+1.

Proposition 5.2. The pull-back of Kostant’s central extension (4) associated to
the prequantizable presymplectic manifold (M̃, p∗Ω) by the canonical Hamiltonian

action of S̃ymp(M, ω) is a central Lie group extension integrating the Lie algebra
2-cocycle σN0 .

Proof. Knowing the S̃ymp(M, ω)-action on M̃ is Hamiltonian, we have just
to compute:

−p∗Ω(ζ̃X , ζ̃Y )([N0]) = −Ω(ζX , ζY )(N0) = −
∫

N0

iY iXωk+1 = σN0(X, Y ).

Theorem 3.4 from [11] ensures that we indeed get a Lie group extension.

6. Minimal covering groups for Lie algebra 2-cocycles

Let g be a Lie algebra, z a Mackey complete locally convex space and ω a
continuous z-valued Lie algebra 2-cocycle on g . Then the infinitesimal flux cocycle
fω : X ∈ g 7→ iXω ∈ C1

c (g, z) is a Lie algebra 1-cocycle on g with values in the
g-module C1

c (g, z) of continuous linear maps from g to z .

Let G be a connected Lie group with Lie algebra g and G̃ its universal
covering group. We denote by Xr the right invariant vector field on G defined by
X ∈ g and by ωl the (closed) left invariant 2-form on G defined by ω ∈ Z2

c (g, z).
The abstract flux 1-cocycle F̃ω : G̃ → C1(g, z) associated to ω is defined by
F̃ω([γ])(X) = −

∫
γ
iXrωl [9]. Here [γ] ∈ G̃ denotes the homotopy class of a path

γ in G starting at the identity. Another expression for the flux 1-cocycle is [10]

F̃ω([γ])(X) =

∫ 1

0

ω(γ(t)−1γ′(t), Ad(γ(t))−1X)dt. (5)

By restricting F̃ω to π1(G) we get the flux homomorphism Fω : π1(G) → H1(g, z).
Let Γω be the period group of ω , i.e. the image of the period map [β] ∈ π2(G) 7→∫

S2 β∗ωl ∈ z .

Theorem 6.1. [9] Assuming that the period group Γω is discrete, the central Lie
algebra extension ĝ = z×ωg integrates to a Lie group extension of G by the abelian
Lie group Z = z/Γω if and only if the flux homomorphism Fω : π1(G) → H1(g, z)
vanishes. In particular ĝ always integrates to a Lie group extension of G̃ by Z .
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Proposition 6.2. Let Π be the kernel of the flux homomorphism Fω : π1(G) →
H1(g, z) and let Ḡ be the covering group G̃/Π of G. Then the central Lie algebra
extension ĝ = z×ω g integrates to a Lie group extension of Ḡ by z/Γω . Moreover
the covering group Ḡ of G is minimal with this property.

Proof. The flux homomorphism for Ḡ vanishes since it is the restriction of the
flux homomorphism Fω to π1(Ḡ) = Π = KerFω . Knowing that π2(Ḡ) = π2(G̃) =
π2(G), the result follows from the previous theorem.

We apply this proposition to the cocycle σ = σN0 on the Lie algebra of
symplectic vector fields.

Given V ⊂ H2k+1(M, R), we denote by V o ⊂ H2k+1(M, R) the annihilator
of V with respect to the canonical pairing between homology and cohomology.

Corollary 6.3. Let N0 be a fixed 2k -dimensional submanifold of M and let
σ be the Lie algebra 2-cocycle σ(X, Y ) =

∫
N0

iXiY ωk+1 on the Lie algebra of
symplectic vector fields on M . We consider the subgroup Πσ of the fundamental
group of the group of symplectic diffeomorphisms defined by

Πσ = {[ϕt] ∈ π1(Symp(M, ω))|[ϕ̂|N0 ] ∈ (H1(M, R) ∧ [ω]k)o ⊂ H2k+1(M, R)}.

where ϕ̂|N0 is the (2k + 1)-cycle (t, x) ∈ [0, 1] × N0 7→ ϕt(x) ∈ M . Then
the minimal covering group of Symp(M, ω) on which σ can be integrated is

Symp(M, ω) = S̃ymp(M, ω)/Πσ .

Proof. The flux homomorphism associated to the cocycle σ is

Fσ : π1(Symp(M, ω)) → H1
c (symp(M, ω)), Fσ([ϕt])(X) =

∫
[ϕt(N0)]

iXωk+1.

Indeed, the adjoint action in Diff(M) is Ad(ϕ)X = (ϕ−1)∗X and the relation
between the left logarithmic derivative δlϕt = Tϕ−1

t . d
dt

ϕt and the right logarithmic
derivative is δrϕt = Ad(ϕt)δ

lϕt = (ϕ−1
t )∗δlϕt . Hence

Fσ([ϕt])(X) = −
∫

ϕt

iXrσl (5)
= −

∫ 1

0

σ(Ad(ϕ−1
t )X, δlϕt)dt

= −
∫ 1

0

∫
N0

iϕ∗t Xiδlϕt
ωk+1dt =

∫ 1

0

∫
N0

ϕ∗t iδrϕtiXωk+1dt =

∫
[ϕt(N0)]

iXωk+1.

The commutator Lie algebra of symp(M, ω) is ham(M, ω) [1], so its first cohomol-
ogy space is H1

c (symp(M, ω)) = H1(M, R)∗ . Under this identification the flux ho-
momorphism becomes Fσ([ϕt])(a) = (k+1)〈[ϕ̂|N0 ], a∧[ω]k〉 for any a ∈ H1(M, R).
Then Πσ = KerFσ , so Symp(M, ω) is the minimal covering group of Symp(M, ω)
on which σ can be integrated (by Proposition 6.2).

The flux homomorphism Fσ vanishes when H2k+1(M, R) = 0. In this case
Symp(M, ω) = Symp(M, ω), fact already known from Theorem 5.1.
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A geometric construction of the central extension of Symp(M, ω) can be
done using the covering space q : M̄ → M of the connected component M of
Gr2k(M) containing N0 , defined by M̄ = M̃/ΠM for

ΠM = {[Nt] ∈ π1(M) :

∫
[Nt]

iXωk+1 = 0, for all X ∈ symp(M, ω)}. (6)

Lemma 6.4. The groups S̃ymp(M, ω) and Symp(M, ω) act on (M̄, q∗Ω) in a
Hamiltonian way with momentum map

µ̄ : M̄ → symp(M, ω)∗, µ̄([Nt])(X) =

∫
[Nt]

iXωk+1. (7)

Proof. The group S̃ymp(M, ω) acts on M̄ because for any two represent-
ing paths Nt and N ′

t of the same element [Nt] = [N ′
t ] ∈ M̄ and any [ϕt] ∈

S̃ymp(M, ω), the paths ϕt(Nt) and ϕt(N
′
t) represent the same element in M̄ .

Indeed, N1 = N ′
1 and for all X ∈ symp(M, ω)∫

[ϕt(Nt)]

iXωk+1 =

∫
[Nt]

iXωk+1 +

∫
[ϕt(N1)]

iXωk+1

=

∫
[N ′

t]

iXωk+1 +

∫
[ϕt(N ′

1)]

iXωk+1 =

∫
[ϕt(N ′

t)]

iXωk+1.

The action of Πσ ⊂ S̃ymp(M, ω) on M̄ is trivial. Indeed, let [ϕt] ∈ Πσ

and [Nt] ∈ M̄ . Since iXωk+1 is closed and N0 , N1 cobordant,∫
[ϕt(Nt)]

iXωk+1 −
∫

[Nt]

iXωk+1 =

∫
[ϕt(N1)]

iXωk+1 =

∫
[ϕt(N0)]

iXωk+1 = 0,

so [ϕt(Nt)] = [ϕt] ∈ M̄ . Hence the S̃ymp(M, ω)-action projects to a Symp(M, ω)-
action on M̄ . Given X ∈ symp(M, ω), the fundamental vector field ζ̄X on M̄
satisfies Tq.ζ̄X = ζX , so the action is Hamiltonian:

iζ̄X
q∗Ω = q∗iζX

Ω = q∗ ˜iXωk+1 = diXωk+1,

where iXωk+1 : [Nt] 7→
∫

[Nt]
iXωk+1 is a well defined function on M̄ . Hence a

momentum map is µ̄([Nt])(X) =
∫

[Nt]
iXωk+1 .

Observing that −q∗Ω(ζ̄X , ζ̄Y ) = σN0(X, Y ), and using Lemma 2 together
with Proposition 3.4 in [11], we get the following proposition:

Proposition 6.5. By pulling back Kostant’s central extension for (M̄, q∗Ω), we
obtain a geometric construction of a central Lie group extension of Symp(M, ω),
integrating the Lie algebra cocycle σN0 , Symp(M, ω) being the minimal covering
group of Symp(M, ω) on which σN0 can be integrated.
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7. Coadjoint orbits of Symp(M, ω)

Let (M, ω) be a compact symplectic manifold and N0 a compact 2k -dimensional
symplectic submanifold without boundary of M . The group Ham(M, ω) of Hamil-
tonian diffeomorphisms acts transitively on every connected component of the
non-linear symplectic Grassmannian SGr2k(M), in particular on the connected
component S containing N0 .

S is an open submanifold of M , the connected component of N0 in

Gr2k(M), and the 2-form Ω = ω̃k+1 restricts to a symplectic form on S . The
symplectic manifold (S, Ω) is a coadjoint orbit of Ham(M, ω) by Theorem 2.1.
Let q : M̄ → M be the covering from Section 6 and S̄ ⊂ M̄ the connected
component of q−1(S) containing [N0] .

Proposition 7.1. The symplectic manifold (S̄, q∗Ω) is a coadjoint orbit of the

central extensions of S̃ymp(M, ω) and Symp(M, ω) integrating σN0 .

Proof. The actions of S̃ymp(M, ω) and Symp(M, ω) on S̄ are Hamiltonian.
They lift the transitive action of Symp(M, ω) on S [2], hence it is transitive.

A momentum map µ̄ : S̄ → symp(M, ω)∗ is given by (7) and it is injective.
Indeed, if µ̄([Nt]) = µ̄([N ′

t ]), then
∫

N1
fωk =

∫
N ′

1
fωk for any smooth function f

on M (consider iXω = df ). It follows that N1 = N ′
1 and since

∫
[Nt]

iXωk+1 =∫
[N ′

t]
iXωk+1 , in S̄ the classes of [Nt] and [N ′

t ] coincide.

Applying Proposition 1 from [2] to this transitive hamiltonian action, we
get the result.

Corollary 7.2. For H2k+1(M, R) = 0, the symplectic manifold (S, Ω) is a
coadjoint orbit of the central extension of Symp(M, ω) obtained in Theorem 5.1.
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