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Homogeneous Toric Varieties

Ivan Arzhantsev∗ and Sergey Gaifullin†

Communicated by E. B. Vinberg

Abstract. A description of transitive actions of a semisimple algebraic group
G on toric varieties is obtained. Every toric variety admitting such an action lies
between a product of punctured affine spaces and a product of projective spaces.
The result is based on the Cox realization of a toric variety as a quotient space of
an open subset of a vector space V by a quasitorus action and on investigation
of the G -module structure of V .
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1. Introduction

We study toric varieties X equipped with a transitive action of a connected
semisimple algebraic group G . In this case X is called a homogeneous toric variety.
The ground field K is algebraically closed and of characteristic zero.

Consider a quasiaffine variety

X = X (n1, . . . , nm) := (Kn1 \ {0})× · · · × (Knm \ {0})

with ni ≥ 2. The group G = G1 × . . .×Gm , where every component Gi is either
SL(ni) or Sp(ni), and ni is even in the second case, acts on X transitively and
effectively. Let S = (K×)m be an algebraic torus acting on X by component-wise
scalar multiplication, and

p : X → Y := Pn1−1 × · · · × Pnm−1

be the quotient morphism. Fix a closed subgroup S ⊆ S . The action of the group
S on X admits a geometric quotient pX : X → X := X/S . The variety X is toric,
it carries the induced action of the quotient group S/S , and there is a quotient
morphism pX : X → Y for this action closing the commutative diagram
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The induced action of the group G on X is transitive and locally effective.

We say that the G-variety X is obtained from X by central factorization. The
following theorem gives a classification of transitive actions of semisimple groups
on toric varieties up to a twist by a diagram automorphism of the acting group.

Theorem 1.1. Let X be a toric variety with a transitive locally effective
action of a connected simply connected semisimple algebraic group G. Then
G = G1× . . .×Gm , where every simple component Gi is either SL(ni) or Sp(ni),
and the variety X is obtained from X = X (n1, . . . , nm) by central factorization.
Conversely, any variety obtained from X by central factorization is a homogeneous
toric variety.

Theorem 1.1 also describes homogeneous spaces of a semisimple group that
have a toric structure. It is natural to apply the Cox realization of a variety in
order to search for toric varieties in a given class of varieties. This idea is already
used in [8], where toric affine SL(2)-embeddings are characterized.

In Section 2 we recall basic facts on the Cox realization and its general-
ization. Criterions of existence of an open G-orbit on X in terms of G- and
(G×S)-actions on the total coordinate space Z are also given there. In Section 3
we prove Theorem 1.1. The next section is devoted to special classes of toric ho-
mogeneous varieties and to a characterization of their fans. In the last section we
consider transitive actions of reductive groups on toric varieties.

Our results are closely connected with the results of E.B. Vinberg [17],
where algebraic transformation groups of maximal rank were classified. Recall
that an algebraic transformation group of maximal rank is an effective generically
transitive (i.e., with an open orbit) action of an algebraic group G on an algebraic
variety X such that dim X = rkG , where rkG is the rank of a maximal torus T of
the group G . In this situation the induced action of the torus T on X is effective
and generically transitive, see [6]. If the group G is semisimple, then an open
G -orbit on X is a homogeneous toric variety. It turns out that in this case X is
a product of projective spaces and G acts on X transitively. Theorem 1.1 implies
that every homogeneous toric variety determines a reductive transformation group
of maximal rank; here G is the quotient group (GL(n1)× . . .×GL(nm))/S.

Finally, let us mention a related result from toric topology. A torus manifold
is a smooth real even-dimensional manifold M2n with an effective action of a
compact torus (S1)n such that the set of (S1)n -fixed points is nonempty. In [15],
homogeneous torus manifolds are studied. The latter are torus manifolds M2n

with a transitive action of a compact Lie group K such that the induced action
of a maximal torus of K coincides with the given (S1)n -action. It is proved that
every homogeneous torus manifold may be realized as

M = CPn1 × . . .× CPnk × (S2m1 × . . .× S2ml)/F,
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where S2m is a sphere of dimension 2m , F is a subgroup of Z2×. . .×Z2 (l copies),
and each copy of Z2 acts on the corresponding sphere by central symmetry. A
compact Lie group

K = PSU(n1 + 1)× . . .× PSU(nk + 1)× SO(2m1 + 1)× . . .× SO(2ml + 1)

acts on M transitively. Moreover, the manifold M is orientable if and only if
F ⊂ SO(2m1 + 2m2 + . . . + 2ml + l).

The authors are grateful to E.B.Vinberg and to the referee for useful com-
ments and suggestions.

2. The Cox construction

A toric variety is a normal algebraic variety with an effective generically transitive
action of an algebraic torus T . A toric variety X is non-degenerate if any invertible
regular function on X is constant.

Let Cl(X) be the divisor class group of the variety X . It is well-known
that the group Cl(X) of a toric variety X is finitely generated, see [7, Section 3.4].
Recall that a quasitorus is an affine algebraic group S isomorphic to a direct
product of an algebraic torus S0 and a finite abelian group Γ. Every closed
subgroup of a torus is a quasitorus. The group of characters of a quasitorus S is
a finitely generated abelian group. The Neron-Severi quasitorus of a toric variety
X is a quasitorus S whose group of characters is identified with Cl(X).

We come to a canonical quotient realization of a non-degenerate toric variety
X obtained in [5]. Let d be the number of prime T -invariant Weil divisors on X .
Consider the vector space Kd and the torus T = (K×)d of all invertible diagonal
matrices acting on Kd . Then there are a closed embedding of the Neron-Severi
quasitorus S into T and an open subset U ⊆ Kd such that

• the complement Kd\U is a union of some coordinate subspaces of dimension
≤ d− 2;

• there exist a categorical quotient pX : U → U//S and an isomorphism
ϕ : X → U//S ;

• via isomorphism ϕ , the T -action on X corresponds to the action of the
quotient group T/S on U//S .

Later this realization was generalized to a wider class of normal algebraic
varieties, see [11], [4], [10]. One of the conditions that determines this class is finite
generation of the divisor class group Cl(X). This allows to define the Neron-Severi
quasitorus S of the variety X . The space Kd is replaced by an affine factorial
(or, more generally, factorially graded, see [1]) S -variety Z . It is called the total
coordinate space of the variety X . Further, X appears as the quotient space of
the categorical quotient pX : U → U//S , where U is an open S -invariant subset
of Z such that the complement Z \ U is of codimension at least two in Z . The
morphism pX : U → X ∼= U//S is called the universal torsor over X .

Let a connected affine algebraic group G act on a normal variety X . Passing
to a finite covering we may assume that Cl(G) = 0 [12, Proposition 4.6]. Then the
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action of G on X can be lifted to an action of G on the total coordinate space Z
that commutes with the S -action, see [3, Section 4]. It turns out that the set U
is (G× S)-invariant and pX : U → X is a G-equivariant morphism.

Lemma 2.1. The following conditions are equivalent.

(i) The action of the group G on X is generically transitive.

(ii) The action of the group G× S on Z is generically transitive.

Proof. Let X0 ⊆ X be an open G-orbit. Each point x ∈ X0 is smooth
on X , and thus the fiber p−1

X (x) is isomorphic to the quasitorus S [10, Proposi-
tion 2.2, (iii)]. It shows that the group G× S acts on p−1

X (X0) transitively.

Conversely, if Z0 ⊆ Z is an open (G × S)-orbit, then Z0 ⊆ U and the
action of G on the quotient space U//S is generically transitive.

Assume that the group G has trivial group of characters. Then the lifting
of the action of the group G to Z is unique, compare [3, Remark 4.1] and [9,
Proposition 1.8]. Let H be a closed subgroup of G . Every invertible regular
function on the homogeneous space G/H is constant, see [13, Proposition 1.2].

Proposition 2.2. The following conditions are equivalent.

(i) The action of the group G on X is generically transitive and the complement
of an open G-orbit has codimension at least two in X .

(ii) The action of the group G on the total coordinate space Z is generically
transitive.

(iii) The action of the group G on the total coordinate space Z is generically
transitive and the complement of an open G-orbit has codimension at least
two in Z .

Proof. We check ”(i) ⇒ (iii)”. Let X0 ⊆ X be an open G-orbit. The condition
codimX(X \X0) ≥ 2 implies that pX : p−1

X (X0) → X0 is the universal torsor over
X0 and that the complement to p−1

X (X0) in Z does not contain divisors, see [2,
Section 2]. By [2, Lemma 3.14] (see also [1, Theorem 4.1]), the universal torsor
over a homogeneous space G/H is the projection G/H1 → G/H , where H1 is the
intersection of kernels of all characters of the subgroup H . This shows that the
group G acts on p−1

X (X0) transitively.

In order to obtain ”(iii) ⇒ (i)” note that pX(Z0), where Z0 is the open G-
orbit in Z , is an open G-orbit in X whose complement does not contain divisors.
The implication ”(iii) ⇒ (ii)” is obvious.

To verify ”(ii) ⇒ (iii)” let Z0 ⊆ Z be an open G-orbit. Since the subset Z0

is S -invariant, for every prime divisor D ⊂ Z in the complement to Z0 the set S ·D
is an S -invariant Weil divisor. Each S -invariant Weil divisor on Z is a principal
divisor div(f) of a regular function f ∈ K[Z] , see [10, Proposition 2.2, (iv)]. Then
the non-constant function f is invertible on Z0 , a contradiction.
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The same arguments lead to the following result.

Proposition 2.3. The action of the group G on X is transitive if and only if
the open subset U ⊆ Z is a G-orbit.

3. Classification of homogeneous toric varieties

In this section we prove Theorem 1.1. Since the variety X is toric, its total
coordinate space Z is an affine space.

Lemma 3.1. Let a semisimple group G act on a toric variety X with an open
orbit. Then X is non-degenerate and the action of the group G× S on the affine
space Z is equivalent to a linear one.

Proof. Since any invertible function of the open G-orbit is constant, the
variety X is non-degenerate. By Lemma 2.1, the action of the group G × S on
the space Z is generically transitive, and the second statement follows from [14,
Proposition 5.1].

Later on we assume that G = G1× . . .×Gm acts on X transitively. Denote
by V the total coordinate space Z of the variety X regarded as the (G × S)-
module. We proceed with a description of the G-module structure on V .

Proposition 3.2. Let V = V1 ⊕ . . . ⊕ Vs be a decomposition into irreducible
summands. Then every simple component Gi acts not identically only on one
summand Vi (up to renumbering), and thus m = s. Moreover, every Gi acts on
the set of nonzero vectors in Vi transitively.

Proof. By Proposition 2.3, the complement of the open G-orbit U in V is a
union of coordinate subspaces (in some, possibly nonlinear, coordinate system).
Thus each irreducible component of the complement is a smooth variety. The linear
action of the group G on V commutes with the group K× of scalar operators, and
the open orbit U as well as any component of the complement V \U is (G×K×)-
invariant. But a cone is a smooth variety if and only if it is a subspace. This
shows that each component of V \ U is a maximal proper submodule of V . In
particular, the number of maximal proper submodules is finite and thus the G-
modules V1, . . . , Vs are pairwise non-isomorphic. The orbit U is the set of vectors
v ∈ V whose projection on each Vi is nonzero. This implies that the group G acts
on the set of nonzero vectors of each submodule Vi transitively.

If several components of G act on some Vi not identically, then Vi is
isomorphic to the tensor product of simple modules of these components. Then
the cone of decomposable tensors in Vi is G-invariant, a contradiction.

Suppose that a simple component Gl acts on both Vi and Vj not identically.
Then Gl acts transitively on the set of pairs (vi, vj) with nonzero vi and vj . In
particular, any such pair is an eigenvector of a Borel subgroup of Gl . Fix a Borel
subgroup B ⊂ Gl and a highest vector for B in Vi as vi and a lowest vector for
B in Vj as vj . Since the intersection of two opposite parabolic subgroups of Gl
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does not contain a Borel subgroup, we get a contradiction.

The following lemma is well known. We give a short self-contained proof
suggested by the referee.

Lemma 3.3. Finite-dimensional rational modules of a simple group G such
that G acts on the set of nonzero vectors transitively are

1. the tautological SL(n)-module Kn and Sp(2n)-module K2n ;

2. the dual SL(n)-module (Kn)∗ .

Proof. Since G acts on V \{0} transitively, V is a simple G-module of highest
weight λ and V = gvλ , where g is the tangent algebra of the group G and vλ

is a highest weight vector. In particular, a lowest weight vector is v−λ∗ = e−αvλ ,
where α is a positive root, whence α = λ + λ∗ is the highest root. This occurs
only for G = SL(n) with fundamental weights λ = ω1, ωn−1 , and G = Sp(2n)
with λ = ω1 .

Applying an outer automorphism of G , we may assume that
G = G1 × . . .×Gm and V = V1 ⊕ . . .⊕ Vm ,

where every component Gi is either SL(ni) or Sp(ni), and Vi is the tautological
Gi -module with identical action of other components. The open G-orbit U in
V coincides with the subvariety X = X (n1, . . . , nm). Therefore the variety X is
obtained from X by central factorization.

Let S = (K×)m be an algebraic torus acting on V = V1 ⊕ . . . ⊕ Vm by
component-wise scalar multiplication. It remains to explain why for any subgroup
S ⊆ S there exists a geometric quotient X → X/S . This follows from the fact
that X is a homogeneous space of the group G := GL(n1)× . . .×GL(nm), and S
is a central subgroup of G . The proof of Theorem 1.1 is completed.

Remark 3.4. The collection (n1, . . . , nm) is determined by a homogeneous
toric variety X uniquely. Indeed, if Kd ⊃ U → X is the Cox realization of
X and C1, . . . , Cm are irreducible components of the complement Kd \ U , then
ni = d− dim Ci .

4. Properties of homogeneous toric varieties

In this section we use standard notation of toric geometry, see [7]. Let N be the
lattice of one-parameter subgroups of a d-dimensional torus T and M be the
lattice of characters of T . The torus T acts diagonally on the space Kd = V =
V1 ⊕ . . . ⊕ Vm , and S ⊂ T is the m-dimensional subtorus acting on every Vi by
scalar multiplication. Identification of T with (K×)d defines standard bases in N
and M . Moreover, the decomposition V = V1⊕. . .⊕Vm divides the standard basis
of N into m groups I1, . . . , Im , where each group Ij contains nj basis vectors and
nj := dim Vj . The open subvariety X (n1, . . . , nm) = U ⊂ V is a toric T-variety.
Its fan C = C(n1, . . . , nm) in the lattice N consists of the cones generated by all
collections of standard basis vectors that do not contain any subset Ij .
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Let S ⊆ S be a closed subgroup. There is a sequence of lattices of one-
parameter subgroups NS ⊆ NS ⊂ N , where the lattice NS is determined by the
connected component S0 of the quasitorus S . The fan CS0 of the quotient space
X/S0 is the image of the fan C under the projection

NQ → (N/NS)Q.

The fan CS of the variety X/S coincides with the fan CS0 considered with regard
to an overlattice of N/NS of finite index, see [7, Section 2.2]. In particular, the fan
CS coincides with the fan P of the product of projective spaces Pn1−1×. . .×Pnm−1 ,
and CS may be considered as an intermediate step of the projection:

C → CS → P.

Let us define a sublattice MS ⊆ M as the set of characters of the torus T
containing S in the kernel. Elements of MS are linear functions on the space
(N/NS)Q .

Proposition 4.1. Let X = X/S be a homogeneous toric variety. Then

1. the variety X is quasiprojective;

2. the variety X is not affine;

3. the variety X is projective if and only if it coincides with Pn1−1×. . .×Pnm−1 ;

4. the variety X is quasiaffine if and only if the lattice MS contains a vector
with positive coordinates;

5. the variety X has a nonconstant regular function if and only if the lattice
MS contains a nonzero vector with nonnegative coordinates.

Proof. (1) By Chevalley’s Theorem, any homogeneous space of an affine alge-
braic group is a quasiprojective variety.

(2) A toric variety obtained via Cox construction is affine if and only if
U = V . In our situation this is not the case.

(3) Maximal dimension of a cone in the fan C equals n1 + . . . + nm −m .
Therefore the fan CS is complete if and only if it is obtained from C by projection
to (N/NS)Q , and thus CS coincides with P .

(4) A toric variety is quasiaffine if and only if its fan is a collection of faces
of a strongly convex polyhedral cone. In our case, this condition implies that the
projection K of the support of the fan C to (N/NS)Q is a strongly convex cone.
The latter is equivalent to existence of a linear function on the space (N/NS)Q
that is positive on K \ {0} . This gives the desired element of the lattice MS .

Conversely, assume that the lattice MS contains a vector v with positive
coordinates. We have to show that the projection of each cone of the fan C is a
face of K . Fix proper subsets J1 ⊂ I1, . . . , Jm ⊂ Im of the sets of standard basis
vectors of the lattice N . We claim that there is an element of the lattice MS ,
which vanishes on the vectors of J1∪. . .∪Jm and is positive on other standard basis
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vectors. Indeed, the sublattice MS is defined in terms of the sums of coordinates
of a character over all m groups of its coordinates. The desired vector should have
the same sums of coordinates over the groups as the vector v .

(5) Since regular functions on X form a rational T-module, one may
consider only T-semiinvariant regular functions. Further, regular T-semiinvariants
on X correspond to characters from MS that are nonnegative on the rays of the
fan C , see [7, Section 3.3].

Remark 4.2. Let X be a homogeneous toric variety. Then X is projective if
and only if X contains a T-fixed point. Indeed, the latter condition means that
the fan CS contains a cone of full dimension, thus NS = NS and S = S .

Example 4.3. Let m = 2 and n1 = n2 = 2. Then X = (K2 \{0})× (K2 \{0}).
Set S = {(s, s, s, s) : s ∈ K×}. Then

MS = {(x1, x2, x3, x4) ; xi ∈ Z, x1 + x2 + x3 + x4 = 0},

and the variety X is P3 \ (D1 ∪D2), where Di
∼= P1. If we set

S = {(s, s, s−1, s−1) : s ∈ K×},

then
MS = {(x1, x2, x3, x4) ; xi ∈ Z, x1 + x2 = x3 + x4},

and X is a three-dimensional quadratic cone with the apex removed.

Let us characterize the fans of homogeneous toric varieties. Let N be a
lattice, ∆ be a fan in NQ and P be the set of primitive vectors on the rays of ∆.
Denote by N0 a sublattice of N generated by P . Fix a positive integer m .

Definition 4.4. A fan ∆ is called m-partite if

• the set P spans the vector space NQ ;

• the set P can be decomposed into m subsets P = I1 t . . .t Im , where each
Ij contains at least two elements, and the cones of ∆ are exactly the cones
generated by subsets J ⊂ P that do not contain any Ij .

Set Ij = {ej
1, . . . , e

j
nj
} and qj = ej

1 + . . . + ej
nj

. Let Q be a sublattice of N
generated by q1, . . . , qm , and QQ = Q⊗Z Q .

Proposition 4.5. A fan ∆ is the fan of a homogeneous toric variety if and
only if

1. ∆ is m-partite for some m ≥ 1;

2. every linear relation among elements of P has the form λ1q1+. . .+λmqm = 0
for some rational λi ;

3. N ⊂ N0 + QQ .
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Proof. A fan is m-partite if and only if it is a projection of the fan C(n1, . . . , nm)
with some ni ≥ 2. Condition 2 means that the kernel of the projection is of the
form (NS0)Q , where S ⊆ S . Finally, condition 3 means that N is generated by P
and some elements

r1i

Ri

q1 + . . . +
rmi

Ri

qm, where rji ∈ Z≥0, Ri ∈ Z>0, rji < Ri, and i = 1, . . . , l.

Equivalently, the corresponding toric variety is obtained as the quotient of the
variety X (n1, . . . , nm)/S0 by an action of the group Γ = Γ1 × . . . × Γl , where Γi

is the cyclic group of Ri -th roots of unity and an element ε ∈ Γi multiplies the
j -th factor of X (n1, . . . , nm) by εrji .

5. Some generalizations

Let a connected reductive group G act on a toric variety X transitively. One may
assume that G = Gs×L , where Gs is a simply connected semisimple group, L is
a central torus, and the G-action on X is locally effective. It is well known that
any toric variety X is isomorphic to a direct product X0 × X1 , where X0 is a
non-degenerate toric variety and X1 is an algebraic torus.

Let us give a construction of a transitive G-action on a toric variety
X . Take a Gs -homogeneous toric variety X0 with a locally effective and Gs -
equivariant action of a quasitorus L′ . Fix an inclusion L′ ⊆ L into an algebraic
torus L as a closed subgroup. The group G = Gs × L acts on X0 × L , where Gs

acts on the first factor and L acts on the second one by multiplication. Consider
the G-equivariant action of L′ on X0 × L given by (x0, l) 7→ (sx0, s

−1l) for every
s ∈ L′ . Then

X(X0, G
s, L′, L) := (X0 × L)/L′

is a G-homogeneous toric variety.

Proposition 5.1. Let X be a toric variety endowed with a transitive and locally
effective action of a connected reductive group G = Gs × L. Then the non-
degenerate factor X0 of X is a Gs -homogeneous toric variety. Moreover, if L′

is the stabilizer of a Gs -orbit on X in the torus L, then X is G-equivariantly
isomorphic to X(X0, G

s, L′, L).

Proof. Since the Gs - and L-actions on X commute, all Gs -orbits are of the
same dimension. Let Y be one of these orbits. Any invertible function on Y is
constant. Consider the above decomposition X = X0 × X1 . Since points on X1

are separated by invertible functions, Y is contained in a subvariety X0 × {x1} ,
where x1 ∈ X1 . Let L′ be the stabilizer of the subvariety Y in the torus L .
Then the stabilizer H of a point x ∈ Y is contained in the subgroup Gs × L′

and the homogeneous space G/H projects onto G/(Gs × L′) ∼= L/L′ . Points on
L/L′ are separated by invertible functions, hence X0 × {x1} is contained in a
fiber of the projection. But the fibers coincide with Gs -orbits on X . This implies
Y = X0 × {x1} .

Let us identify the variety X0 with the subvariety Y ⊆ X . Consider the
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morphism
ϕ : X0 × L → X, (x0, l) 7→ lx0.

Two pairs (x0, l) and (x̃0, l̃) are in the same fiber of ϕ if and only if (x̃0, l̃) =

(sx0, s
−1l) with s = l̃−1l . This shows that ϕ induces a bijective morphism

X(X0, G
s, L′, L) → X . Clearly, this is an isomorphism of G-homogeneous spaces.

If the subgroup L′ is connected, then L ∼= L′×L′′ with some complementary
subtorus L′′ , and X ∼= X0 × L′′ . But unlike the case of algebraic transformation
groups of maximal rank [17, Theorem 2], this situation does not always occur.
Indeed, one may consider a toric variety (K2 \ {0})×K× with a transitive locally
effective action of the group SL(2)×K× given as (g, t) · (v, a) = (g(tv), t2a).

Remark 5.2. It would be interesting to generalize [17, Theorem 3] and to
describe toric varieties with transitive actions of non-reductive affine algebraic
groups.

Besides homogeneous toric varieties, our method allows to describe toric va-
rieties with a generically transitive action of a semisimple group G . By Lemma 2.1,
they are quasitorus quotients of open subsets of generically transitive (G × S)-
modules. Such modules are known as (G×S)-prehomogeneous vector spaces. For
an explicit description, one needs a list of prehomogeneous vector spaces. The
classification results here are known only under some restrictions on the group
and on the module. For example, if G is simple and the number of irreducible
summands of the module does not exceed three, the classification is given in a
series of papers of M.Sato, T.Kimura, K.Ueda, T.Yoshigiaki and others.

If the complement of an open G-orbit on a toric variety X has codimen-
sion at least two in X , then X comes from a G-prehomogeneous vector space
(Proposition 2.2). When the group G is simple, the list of G-prehomogeneous
vector spaces is obtained in [16, Theorems 7-8], and the corresponding toric vari-
eties are described in [2, Proposition 4.7]. In constrast to the homogeneous case,
here appear singular [2, Example 5.8] and non-quasiprojective [2, Example 5.9]
varieties.
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