Conformal Actions on Homogeneous Lorentzian Manifolds

Uri Bader^{*}

Communicated by G. A. Margulis

Abstract. A conformal group action on a pseudo-Riemannian manifold is essential if the action is not an isometric action with respect to a conformally equivalent metric. We classify all essential actions of simple Lie groups on Riemannian, Lorentzian and sub-Lorentzian manifolds. *Mathematics Subject Classification 2000:* 57S20, 53C15.

Key Words and Phrases: Lorentzian manifolds, Conformal transformations.

1. Introduction

The purpose of the following paper is to find all Lorentzian manifold, endowed with a transitive simple Lie-group of conformal transformations which acts essentially.

We have in mind an application, which we are going to publish in sequel paper, [1]. Towards that purpose we establish here a little more. In fact we classify all possible *sub-Lorentzian* manifolds endowed with a transitive simple Lie-group of conformal transformations which acts *pre-essentially*. Exact definitions of these terms will be given in the next section. The main theorem will also be formulated there. Section 3 will be devoted to introducing some notations, and stating some preliminary Lemmas. Section 4, which is the heart of this manuscript, is a case by case classification. In section 5, we state some corollaries which are application oriented, and are going to be used in [1].

Acknowledgment: I wish to express my gratitude to the anonymous referee who found and corrected an enormous number of mistakes in an older version of this manuscript.

2. Definitions and statement of results

Let G be a Lie-group. Let (X, t) be a manifold with a bilinear structure (see [2]). We assume that G acts conformally on X.

Definition 2.1. We say that G acts essentially on (X, t) if there is no conformally equivalent bilinear structure s, such that G acts isometrically on (X, s).

^{*}The author wishes to thank the ISF grant no. 704/08 and the GIF grant no. 2011995.

ISSN 0949–5932 / \$2.50 © Heldermann Verlag

When the action of G on X is transitive, there is an infinitesimal criterion for essentiality. Pick a point $x \in X$. Consider the action of $\operatorname{Stab}(x)$ on the vector space $T_x X$. It is conformal with respect to t_x . If it is orthogonal, then the Gaction on (X, t) is not essential (see [2, Lemma 2.6]). We wish to weaken the definition of essentiality. Let \mathfrak{g} be the Lie algebra of G. Consider the form v, induced on \mathfrak{g} by t_x , via the map $\mathfrak{g} \to \mathfrak{g}/\operatorname{Lie}(\operatorname{Stab}(x)) \simeq T_x X$. Denote by $\operatorname{CO}_G(v)$ the conformal group of v in G (that is, the pre-image of $\operatorname{CO}(v) < \operatorname{GL}(\mathfrak{g})$ under the adjoint map of G).

Definition 2.2. We call (X, t) a *G*-pre-essential space if X is a *G*-homogeneous space and $CO_G(v)$ does not act orthogonally on (\mathfrak{g}, v) .

If G acts essentially on the homogeneous space (X, t), then (X, t) must be a pre-essential G-space (because $\operatorname{Stab}(x) < \operatorname{CO}_G(v)$). It will turn out to be that when G is an almost-simple Lie-group, a partial converse is also true. That is, every Riemannian or Lorentzian space, which is pre-essential with respect to a transitive, conformal action of some almost simple Lie-group, is in fact essential. This will follow from a classification of such spaces. In fact we classify a slightly wider class of spaces.

Definition 2.3. Let (V, B) a vector space endowed with a symmetric bilinear form. (V, B) is called *sub-Lorentzian* if one of the following holds:

Lorentzian case: B is of signature $(\dim(V) - 1, 1)$.

Riemannian case: *B* is positive definite.

Degenerate case: B is semi-positive definite, and has one dimensional radical.

Definition 2.4. (X,t) is called a *sub-Lorentzian pre-essential G-space* if it is *G*-pre-essential, and for some $x \in X$, (T_xX, t_x) is sub-Lorentzian.

It is well known that the standard sphere S^n is a Riemannian SO(n+1, 1)-essential (and pre-essential) space. Recall the definition of $C^{n,1}$ from [2]. This is an example of a Lorentzian SO(n+1, 2)-essential (and pre-essential) space. If n is odd then it is also $SU(\frac{n+1}{2}, 1)$ essential space, via the natural map $SU(\frac{n+1}{2}, 1) \rightarrow SO(n+1, 2)$.

Theorem 2.5. Let G be a connected almost simple Lie-group with a finite center. Assume G is not locally isomorphic to $SL_2(\mathbb{R})$. Let X be a sub-Lorentzian G-pre-essential space. Then we have

- If X is Riemannian then G is locally isomorphic to $SO(n,1)^{\circ}$ for some n > 2, and $X \simeq S^{n-1}$. G acts on X by Möbius transformations.
- If X is Lorentzian then either G is locally isomorphic to SO(n, 2)^o and X is a finite cover of the standard model space C^{n-1,1} or G is locally isomorphic to SU(¹/₂n, 1) and X is commensurable to C^{n-1,1} - that is, G and SU(n, 1)

have a common finite cover group which acts on a common finite cover of X and $C^{n-1,1}$, covering the actions of G and of SU(n, 1).

• If X is degenerate then G is locally isomorphic to $SO(n, 1)^o$, and X is a fiber bundle over S^{n-1} with one dimensional fibers.

3. Preliminaries and notations

In the following we are using some basic algebraic group theory, in particular, the relations between algebraic groups and Lie group theory. A standard reference for algebraic group theory is [3]. Some preliminaries concerning real algebraic groups and the relation with Lie theory could be found in [5, Chapter 3]. Abusing the notation (in a way that already became standard), we refer to the Lie-group H as an "algebraic group" not only if H is isomorphic as a Lie-group to a group $\mathbf{G}(\mathbb{R})$, the group of real points of a honest algebraic group \mathbf{G} which is defined over \mathbb{R} , but also if H^o , the connected component of the identity, is of finite index in H and it admits a Lie-group homomorphism with a finite kernel onto $\mathbf{G}(\mathbb{R})^o$, the (topological) connected component of the identity in $\mathbf{G}(\mathbb{R})$. A Lie group morphism between the algebraic groups H, H' is called algebraic if there exists a honest algebraic groups \mathbf{G}, \mathbf{G}' such that the obvious commutative diagram is satisfied.

Recall that a semisimple Lie-group with a finite center is algebraic, and any Lie-group morphism between semisimple Lie-groups with finite centers is algebraic. A parabolic subgroup of a semisimple group with a finite center is algebraic. The intersection of two algebraic subgroups of an algebraic group is algebraic. We will constantly use the notion of \mathbb{R} -split rank, denoted $\operatorname{rk}_{\mathbb{R}}$, which is defined for every algebraic group. Recall that, given an injective algebraic morphism, $G \to H$, we must have $\operatorname{rk}_{\mathbb{R}}(G) \leq \operatorname{rk}_{\mathbb{R}}(H)$.

A sub-Lie-algebra of the Lie-algebra of an algebraic group is called algebraic, if it is the Lie algebra of an algebraic subgroup. Similarly, a sub-Liealgebra is called compact/unipotent/torus, if it is the Lie algebra of a compact/unipotent/torus subgroup. Given an algebraic sub-algebra \mathfrak{h} , which is the Lie-algebra of an algebraic subgroup H, we will often abuse the notation using the term $\mathrm{rk}_{\mathbb{R}}(\mathfrak{h})$ instead of $\mathrm{rk}_{\mathbb{R}}(H)$.

Fix an almost simple Lie-group G. Let (X, t) be a G-pre-essential manifold. Assume the form t does not vanish identically. Fixing once and for all a point $x \in X$, we will denote in the sequel

$$H = \operatorname{Stab}_G(x), \ \mathfrak{h} = \operatorname{Lie}(H).$$

 t_x is considered as a symmetric bilinear form defined on $\mathfrak{g}/\mathfrak{h}$. Pulling this form to \mathfrak{g} by the map $\mathfrak{g} \to \mathfrak{g}/\mathfrak{h}$ we obtain a bilinear form v on \mathfrak{g} , that is an element of $\operatorname{Sym}^2(\mathfrak{g})$. By our non-vanishing assumption on t, this element is non-zero, hence projects to the *G*-space $\mathbb{P}^+(\operatorname{Sym}^2(\mathfrak{g}))$, the space of symmetric bilinear forms on \mathfrak{g} modulo multiplication by positive scalars. We denote the resulting element by $\bar{v} \in \mathbb{P}^+(\operatorname{Sym}^2(\mathfrak{g}))$. We denote

$$S = \operatorname{Stab}_G(\bar{v}), \ \mathfrak{s} = \operatorname{Lie}(S), \ \mathfrak{r} = \operatorname{rad}(\bar{v}).$$

S is an algebraic group. Observe that H < S, and that $\mathfrak{h} < \mathfrak{s} \cap \mathfrak{r}$. Consider the line $V = \mathbb{R}v < \operatorname{Sym}^2(\mathfrak{g})$ which sits above \bar{v} . There is a natural algebraic morphism $S \to \operatorname{GL}(V)$. By the definition of a pre-essential space, this map is not trivial. In particular we see that S has a real character, hence its real rank is non-zero. Let \mathfrak{a}' be a maximal \mathbb{R} -split torus of \mathfrak{s} . Let 2α be the corresponding weight. Keep in mind that $\operatorname{rk}_{\mathbb{R}}(\mathfrak{g}) \geq \operatorname{rk}_{\mathbb{R}}(\mathfrak{s}) \geq 1$.

As an \mathfrak{a}' -module, \mathfrak{g} splits into a direct sum $\mathfrak{g} = \mathfrak{r} \oplus \mathfrak{d}$, where $\mathfrak{d} \simeq \mathfrak{g}/\mathfrak{r}$. The following is an immediate corollary of [2, Lemma 3.3].

Lemma 3.1. \mathfrak{d} is a faithful \mathfrak{a}' -module.

 \mathfrak{d} itself splits into weight-spaces \mathfrak{d}_{λ} , and in particular we have $\mathfrak{d}_{\alpha} < \mathfrak{d}$ (\mathfrak{d}_{α} might be 0). Observe that \mathfrak{d} carries a natural bilinear form - induced from the form v on \mathfrak{g} , as \mathfrak{r} is radical - and that \mathfrak{a}' imbeds in $\mathfrak{co}(\mathfrak{d})$. By choosing a maximal \mathbb{R} -split torus $\tilde{\mathfrak{a}}' < \mathfrak{co}(\mathfrak{d})$ containing (the image of) \mathfrak{a}' we obtain finer weight spaces, to be denoted $\mathfrak{d}_{\tilde{\lambda}}$. We will indeed use the suggestive notation, denoting the restriction of $\tilde{\lambda}$ to \mathfrak{a}' by λ , thus $\mathfrak{d}_{\tilde{\lambda}} < \mathfrak{d}_{\lambda}$ (note that given a weight λ of \mathfrak{a}' there is no "canonical" lift $\tilde{\lambda}$ - it might be that for non-equal weights of $\tilde{\mathfrak{a}}', \tilde{\lambda}, \tilde{\mu}$ we have $\lambda = \mu$).

Lemma 3.2. Consider the bilinear form induced by v on $\mathfrak{d} \simeq \mathfrak{g}/\mathfrak{r}$. If the signature is denoted by (p,q) then

$$\operatorname{rk}_{\mathbb{R}}(S) \le \min\{p, q\} + 1.$$

Proof. By Lemma 3.1, $\mathfrak{g}/\mathfrak{r}$ is a faithful \mathfrak{a}' -module. We get

$$\operatorname{rk}_{\mathbb{R}}(S) = \dim(\mathfrak{a}') \le \dim(\tilde{\mathfrak{a}}') = \operatorname{rk}_{\mathbb{R}}(\operatorname{CO}(\mathfrak{g}/\mathfrak{r})) = \min\{p, q\} + 1.$$

 \mathfrak{a}' is contained in a maximal torus of \mathfrak{g} which we will denote by \mathfrak{a} (do not confuse \mathfrak{a} with $\tilde{\mathfrak{a}}'$ - both are maximal tori containing \mathfrak{a}' , but in different ambient algebras). Denote the root system of \mathfrak{g} associated to \mathfrak{a} by Σ . Let $A \in \mathfrak{a}' < \mathfrak{a}$ be an element such that $\alpha(A) > 0$. We define the parabolic associated to A, \mathfrak{p}_A , written as a sum of root-spaces in the following form

$$\mathfrak{p}_A = \mathfrak{g}_0 \oplus igoplus_{\xi \in \Sigma, \ \xi(A) \leq 0} \mathfrak{g}_\xi = \mathfrak{m}_A \oplus \mathfrak{a}_A \oplus \mathfrak{n}_A^-$$

(the right hand side is the Langlands decomposition of \mathfrak{p}_A). Denote its direct complement by \mathfrak{n}_A^+ or just \mathfrak{n}_A . Observe that $\mathfrak{d}_\alpha < \mathfrak{g}_\alpha < \mathfrak{n}_A$ (notice that \mathfrak{g}_α is not a root-space, but a weight-space for \mathfrak{a}').

The following are useful Lemmas.

Lemma 3.3. Assume $\mathfrak{u} < \mathfrak{s}$ is an algebraic subalgebra which has no split semisimple element (i.e, it is the Lie algebra associated to an algebraic subgroup of S which has no split semisimple element). Then \mathfrak{u} acts orthogonally on $\mathfrak{g}/\mathfrak{r}$.

Proof. This follows immediately from the fact that, denoting by U an algebraic group with $\operatorname{Lie}(U) = \mathfrak{u}$, the maps $U \to \operatorname{CO}(\mathfrak{g}/\mathfrak{r}) \simeq \operatorname{O}(\mathfrak{g}/\mathfrak{r}) \times \mathbb{R}^*_+ \to \mathbb{R}^*_+$ are

algebraic, hence the image of U in $CO(\mathfrak{g}/\mathfrak{r})$ must be contained in the kernel of $CO(\mathfrak{g}/\mathfrak{r}) \to \mathbb{R}^*_+$, namely $O(\mathfrak{g}/\mathfrak{r})$.

Lemma 3.4. Let (X,t) be a sub-Lorentzian G-homogeneous manifold (not necessarily pre-essential). Then \mathfrak{r} is a sub-algebra of \mathfrak{g} .

Proof. If $\mathbf{r} = \mathbf{h}$ then this is trivial. Assume not. Then \mathbf{h} is a codimension one sub-algebra of \mathbf{r} which normalizes it (because $\mathbf{r} = \operatorname{rad}(v)$, and v is \mathbf{h} -invariant). Fix an element w of $\mathbf{r} - \mathbf{h}$. For i = 1, 2, let $\alpha_i w + y_i$ be two elements of \mathbf{r} , where $\alpha_i \in \mathbb{R}$ and $y_i \in \mathbf{h}$. Then

$$[\alpha_1 w + y_1, \alpha_2 w + y_2] = [w, \alpha_1 y_2 - \alpha_2 y_1] + [y_1, y_2]$$

The two terms in the right hand side are in \mathfrak{r} , because \mathfrak{h} normalizes \mathfrak{r} . The Lemma follows.

4. The classification

In this section G is assumed to be an almost simple Lie-group with a finite center, not locally isomorphic to $SL_2(\mathbb{R})$. (X, t) is assumed to be a sub-Lorentzian preessential G-manifold. The division into subsections will correspond to the various cases of the form t.

In the classification that follows we will use in an essential way the fact that a simple real Lie-algebra is determined uniquely by the type of its real root system, together with the multiplicities of the long and the short roots (see [4, p. 535, Ex. 9]). Whenever this datum is given, one can use table VI in [4] in order to actually determine the Lie-algebra. We will do it over and over with out any further comment.

4.1. Riemannian case.

Here $\mathfrak{r} = \mathfrak{h}$, and the induced form on $\mathfrak{d} \simeq \mathfrak{g}/\mathfrak{r}$ is positive definite. \mathfrak{a}' is the Lie-algebra of the group of homotheties of $\mathfrak{g}/\mathfrak{r}$, hence $\mathfrak{d} = \mathfrak{d}_{\alpha}$, and hence $\mathfrak{d} < \mathfrak{n}_A$. It follows that $\mathfrak{r} > \mathfrak{p}_A$, hence $\mathfrak{p}_A < \mathfrak{s}$. By Lemma 3.2, $\mathrm{rk}_{\mathbb{R}}(\mathfrak{s}) \leq 1$, hence $\mathrm{rk}_{\mathbb{R}}(\mathfrak{g}) = \mathrm{rk}_{\mathbb{R}}(\mathfrak{p}_A) \leq 1$, and we get $\mathrm{rk}_{\mathbb{R}}(\mathfrak{g}) = 1$. It follows that $\mathfrak{r} = \mathfrak{p}_A$ and $\mathfrak{d} = \mathfrak{n}_A$.

By the assumption that the form is Riemannian, \mathfrak{d} consists of a single $\tilde{\mathfrak{a}}'$ weight space, hence a single \mathfrak{a}' weight space. As $\mathfrak{d} = \mathfrak{n}_A = \mathfrak{n}$ and $\mathfrak{a} = \mathfrak{a}'$ (because the rank is 1), \mathfrak{n} consists of a single root space, and we deduce that the root system is reduced. From the classification, $\mathfrak{g} = \mathfrak{so}(n,1)$. As $\mathfrak{so}(n-1) \simeq \mathfrak{m} < \mathfrak{p}$ acts irreducibly on $\mathbb{R}^{n-1} \simeq \mathfrak{n}$, the Riemannian form on \mathfrak{n} is uniquely determined (up to a scalar multiple). It follows that G is locally isomorphic to $\mathrm{SO}(n,1)^o$ (for some n > 2, as G is not locally isomorphic to $\mathrm{SL}_2(\mathbb{R})$). We deduce that X is a finite cover of S^{n-1} . As the latter is simply connected, X coincides with S^{n-1} .

4.2. Lorentzian case. Here $\mathfrak{r} = \mathfrak{h}$, and the induced form on $\mathfrak{d} \simeq \mathfrak{g}/\mathfrak{r}$ is Lorentzian. In this case, where $\mathfrak{co}(\mathfrak{d}) \simeq \mathfrak{so}(p,1) \oplus \mathbb{R}$ and $\mathfrak{d} \simeq \mathbb{R}^{p,1}$, the weight-space decomposition of the maximal torus $\tilde{\mathfrak{a}}' < \mathfrak{co}(\mathfrak{d})$ is well known: it has three weights $\tilde{\alpha}, \tilde{\beta}$ and $\tilde{\gamma}$, where $\tilde{\beta} + \tilde{\gamma} = 2\tilde{\alpha}$ and $\dim(\mathfrak{d}_{\tilde{\beta}}) = \dim(\mathfrak{d}_{\tilde{\gamma}}) = 1$. $2\tilde{\alpha}$ is the conformal weight, thus its restriction to \mathfrak{a}' is 2α , as the notation suggests. Thus, as an $(\tilde{\mathfrak{a}}'$ module, hence also as an) \mathfrak{a}' -module, \mathfrak{d} splits into a direct sum $\mathfrak{d} = \mathfrak{d}_{\tilde{\alpha}} \oplus \mathfrak{d}_{\tilde{\beta}} \oplus \mathfrak{d}_{\tilde{\gamma}}$. Notice that β and γ might equal α (for these are restrictions to \mathfrak{a}'), and that \mathfrak{d}_{α} might vanish (if p = 1), but anyway $\alpha \neq 0$ (by our assumption of essentiality). We will always assume in the sequel that $\beta(A) \leq \gamma(A)$ (upon interchanging the role of $\tilde{\beta}$ and $\tilde{\gamma}$ if needed).

We split the discussion into three cases (recall that, by Lemma 3.2 $\operatorname{rk}_{\mathbb{R}}(\mathfrak{s}) \leq 2$):

rk_ℝ(𝔅) = 2: In that case, 𝑌' = 𝑌'. By picking the element A ∈ 𝑌' in the kernel of γ̃ − 𝑌 (but satisfying 𝑌(A) > 0) we can assume that 𝑌(A) = 𝑌(A) = 𝑌(A) = 𝑌(A). As before we get 𝑌 < 𝑘_A, hence 𝔅 > 𝑘_A. We then have rk_ℝ(𝔅) = rk_ℝ(𝔅) ≤ rk_ℝ(𝔅), hence rk_ℝ(𝔅) = rk_ℝ(𝔅) = 2.

The question of finding \mathfrak{p} conformally invariant Lorentzian form on $\mathfrak{g}/\mathfrak{p}$ for rank two groups was solved in [2], and the only solution is $\mathfrak{g} = \mathfrak{so}(n, 2)$. It follows that G is locally isomorphic to $SO(n, 2)^o$, and X is a finite cover of $C^{n-1,1}$.

2) rk_R(𝔅) = 1, rk_R(𝔅) = 1: In that case, 𝑌' = 𝔅. If α = β = γ we get, as in the discussion in the Riemannian case, that 𝔅 = 𝔅𝔅(n, 1) and 𝔅 = 𝔅, which lead to a contradiction (because the unique 𝔅 conformally invariant form on 𝔅/𝔅 is Riemannian).

We get that \mathfrak{a}' has more than one weight in $\mathfrak{d} < \mathfrak{g}$. \mathfrak{a}' being a maximal torus in the rank 1 algebra \mathfrak{g} , we deduce that the root system of \mathfrak{g} is not reduced: it has two positive roots $\xi, 2\xi$, given a choice of positivity. Choosing the positivity so that these positive roots are positive on A, and using $\beta(A) \leq \gamma(A)$ and $\beta + \gamma = 2\alpha$, we obtain the only possibility: $\beta = 0$, $\gamma = 2\xi$ and $\alpha = \xi$. It follows, in particular, that $\mathfrak{r} \oplus \mathfrak{d}_0$ contains the parabolic \mathfrak{p}_A .

We next show that $\mathfrak{a} < \mathfrak{r}$. Otherwise, there exists some $X_{2\xi} \in \mathfrak{d}_{\gamma} < \mathfrak{g}_{2\xi}$ with $\langle A, X_{2\xi} \rangle \neq 0$ (A projects to $\mathfrak{d}_0 = \mathfrak{d}_\beta$ modulo \mathfrak{r} , which is orthogonal to $\mathfrak{d}_\beta \oplus \mathfrak{d}_\alpha$). By Jacobson Morozov Theorem (and the rank 1 assumption on \mathfrak{g}), there exists $X_{-2\xi} \in \mathfrak{g}_{-2\xi}$ satisfying $[X_{-2\xi}, X_{2\xi}] = A$. Now, $X_{-2\xi} \in \mathfrak{g}_{-2\xi} < \mathfrak{p}_A < \mathfrak{r} \oplus \mathfrak{d}_0 < \mathfrak{r} \oplus \mathfrak{g}_0$ projects trivially to \mathfrak{g}_0 . Hence $X_{-2\xi} \in \mathfrak{r} = \mathfrak{h} < \mathfrak{s}$. Being unipotent, by Lemma 3.3, it acts orthogonally on \mathfrak{d} . We get

$$\langle [X_{-2\xi}, X_{2\xi}], X_{2\xi} \rangle = - \langle X_{2\xi}, [X_{-2\xi}, X_{2\xi}] \rangle,$$

and conclude $\langle A, X_{2\xi} \rangle = 0$ - a contradiction.

Writing $\mathfrak{p}_A = \mathfrak{a} \oplus \mathfrak{m}_A \oplus \mathfrak{n}_A^-$, we conclude that \mathfrak{m}_A projects modulo \mathfrak{r} onto \mathfrak{d}_0 (as $\mathfrak{g}_0 = \mathfrak{a} \oplus \mathfrak{m}_A$ does, and \mathfrak{a} is in the kernel). Thus, $\mathfrak{r} \cap \mathfrak{m}_A$ is of codimension one subalgebra (Lemma 3.4) in \mathfrak{m}_A . From the classification, \mathfrak{g} , being a rank one simple algebra with a non-reduced root system, is isomorphic to either $\mathfrak{su}(n, 1), \mathfrak{sp}(n, 1)$ or $\mathfrak{f}_{4,-20}$. From all of the above cases, the only one in which the algebra \mathfrak{m} in the Langlands decomposition of a parabolic subalgebra has a codimension one subalgebra is $\mathfrak{su}(n, 1)$ for which $\mathfrak{m} = \mathfrak{su}(n-1) \oplus \mathfrak{u}(1)$. Since $\mathfrak{su}(n-1)$ has no codimension one subalgebra as well, we conclude that it (or rather, the corresponding isomorphic subalgebra in \mathfrak{m}_A which from now on we identify with $\mathfrak{su}(n-1)$) is contained in \mathfrak{r} .

BADER

Thus, $\mathfrak{g} \simeq \mathfrak{su}(n,1)$, $\mathfrak{m}_A \simeq \mathfrak{su}(n-1) \oplus \mathfrak{u}(1)$ and we have the following inclusions of subalgebras:

$$\mathfrak{n}_A^- \oplus \mathfrak{a} \oplus \mathfrak{su}(n-1) < \mathfrak{r} \lneq \mathfrak{g} \simeq \mathfrak{su}(n,1).$$

We claim that \mathfrak{p}_A is the only subalgebra $\mathfrak{q} < \mathfrak{g}$ which satisfies

$$\mathfrak{n}_A^- \oplus \mathfrak{a} \oplus \mathfrak{su}(n-1) \lneq \mathfrak{q} \lneq \mathfrak{g} \simeq \mathfrak{su}(n,1)$$

Indeed, it is known that a proper maximal dimensional subalgebra is parabolic, and $\mathbf{n}_A^- \oplus \mathbf{a} \oplus \mathfrak{su}(n-1)$ is of codimension one in \mathbf{p}_A , so every such subalgebra \mathbf{q} must be parabolic. A parabolic \mathbf{q} that contains \mathbf{a} contains also its centralizer, \mathbf{m} , thus $\mathbf{q} > \mathbf{n}_A^- \oplus \mathbf{a} \oplus \mathbf{m} = \mathbf{p}_A$, and by the rank one assumption, $\mathbf{q} = \mathbf{p}_A$. From the fact that $\mathbf{r} \neq \mathbf{p}_A$, we finally obtain that $\mathbf{r} = \mathbf{n}_A^- \oplus \mathbf{a} \oplus \mathfrak{su}(n-1)$.

As the \mathfrak{a}' -module \mathfrak{d} was chosen arbitrarily as a direct complement of \mathfrak{r} , we may (and will) change it to be

$$\mathfrak{d} = \mathfrak{u}(1) \oplus \mathfrak{n}_A^+ = \mathfrak{u}(1) \oplus \mathfrak{g}_{\xi} \oplus \mathfrak{g}_{2\xi}$$

We proceed to show that there is a unique \mathfrak{r} conformally invariant Lorentzian form on \mathfrak{d} . Indeed, by Lemma 3.3, the action of $\mathfrak{su}(n-1)$ on \mathfrak{d} is orthogonal, hence preserves the Riemannian form on \mathfrak{g}_{ξ} . As the action of $\mathfrak{su}(n-1)$ on \mathfrak{g}_{ξ} is a conjugate of the standard $\mathfrak{su}(n-1)$ action on \mathbb{R}^{2n-2} , the form on \mathfrak{g}_{ξ} must be a conjugate of the standard inner product on \mathbb{R}^{2n-2} , up to homothety, as every form on \mathbb{R}^{2n-2} which is invariant with respect to the standard $\mathfrak{su}(n-1)$ action is a scalar multiple of the standard inner product (this follows from the irreducibility of the action). The (1,1)-form on $\mathfrak{u}(1) \oplus \mathfrak{g}_{2\xi}$ is also determined, up to homothety, by the fact that the lines $\mathfrak{u}(1)$ and $\mathfrak{g}_{2\xi}$ are isotropic. We are left to show that the ratio between the two homothety constants is determined as well. This follows from the fact that $[\mathfrak{g}_{-\xi}, \mathfrak{g}_{2\xi}] = \mathfrak{g}_{\xi}$. Indeed, fixing elements $X_{-\xi} \in \mathfrak{g}_{-\xi}$ and $X_{2\xi} \in \mathfrak{g}_{2\xi}$ such that $0 \neq X_{\xi} = [X_{-\xi}, X_{2\xi}] \in \mathfrak{g}_{\xi}$, we know by Lemma 3.3 that $X_{-\xi}$ acts orthogonally, hence

$$0 \neq \langle X_{\xi}, X_{\xi} \rangle = \langle [X_{-\xi}, X_{2\xi}], X_{\xi} \rangle = -\langle X_{2\xi}, [X_{-\xi}, X_{\xi}] \rangle.$$

Letting $X_0 \in \mathfrak{u}(1)$ be the projection modulo \mathfrak{r} of $[X_{-\xi}, X_{\xi}]$, we get that the number $\langle X_0, X_{2\xi} \rangle$ (which completely determines the form on $\mathfrak{u}(1) \oplus \mathfrak{g}_{2\xi}$) is determined by the form on \mathfrak{g}_{ξ} .

Now, there exists a familiar Lorentzian action of SU(n, 1), obtained by imbedding SU(n, 1) in SO(2n, 2) and letting it act on the model space $C^{2n-1,1}$ (which can easily checked to be pre-essential). We have seen above that, assuming $\operatorname{rk}_{\mathbb{R}}(\mathfrak{g}) = \operatorname{rk}_{\mathbb{R}}(\mathfrak{s}) = 1$, G has to be locally isomorphic to SU(n, 1), and X is completely determined (locally). It follows that the action of G on X is commensurable to this standard action of SU(n, 1): Ghas a finite cover which is also a finite cover of SU(n, 1) and X has a finite cover which is also a finite cover of $C^{2n-1,1}$.

BADER

 rk_ℝ(𝔅) = 1, rk_ℝ(𝔅) ≥ 2: We will show that there are no more examples of preessential spaces.

In this case $\mathfrak{a}' \leq \mathfrak{a}$. As $\mathfrak{a}' = \mathfrak{a} \cap \mathfrak{s}$, we get that \mathfrak{a} is not contained in \mathfrak{s} , and in particular $\mathfrak{a} \not< \mathfrak{r} = \mathfrak{h} < \mathfrak{s}$. We conclude that \mathfrak{a} projects non-trivially to $\mathfrak{d}_0 < \mathfrak{d}$. In particular $\mathfrak{d}_0 \neq 0$. We know that $\mathfrak{d} = \mathfrak{d}_\beta \oplus \mathfrak{d}_\alpha \oplus \mathfrak{d}_\gamma$, and that α, γ are positive weights of \mathfrak{a}' (by our assumptions $2\alpha(A) > 0$ and $\beta + \gamma = 2\alpha$, $\gamma(A) \geq \beta(A)$). Also we know that \mathfrak{d}_β is one dimensional. We conclude that $\beta = 0$ (hence $\gamma = 2\alpha$) and that \mathfrak{d}_0 is one dimensional. Since the kernel of the projection of \mathfrak{a} to \mathfrak{d}_0 is at most one-dimensional (being contained in \mathfrak{a}' , by the rank one assumption on \mathfrak{s}), we conclude that $\mathfrak{a}' < \mathfrak{r}$, dim $(\mathfrak{a}) = 2$, and in particular $\operatorname{rk}_{\mathbb{R}}(\mathfrak{g}) = 2$.

Next we show that the parabolic subalgebra \mathfrak{p}_A is a minimal parabolic. This is well known to be the case if and only if the subalgebra \mathfrak{m}_A contains no copy of $\mathfrak{sl}(2,\mathbb{R})$. Assume, by negation, the existence of a subalgebra $\mathfrak{c} < \mathfrak{m}_A$, $\mathfrak{c} \simeq \mathfrak{sl}(2,\mathbb{R})$). Observe that by its very definition, $\mathfrak{p}_A < \mathfrak{r} + \mathfrak{a} = \mathfrak{r} \oplus \mathfrak{d}_0$, hence the codimension of $\mathfrak{p}_A \cap \mathfrak{r}$ in \mathfrak{p}_A is at most one, and we get that the codimension of $\mathfrak{c} \cap \mathfrak{r}$ in \mathfrak{c} is at most one as well. It follows that $\mathfrak{c} \cap \mathfrak{r}$ contains an \mathbb{R} -split semisimple element. Observe that $\mathfrak{a}' < \mathfrak{a}_A$ intersects \mathfrak{m}_A trivially. We conclude that the algebra $\mathfrak{a}' \oplus (\mathfrak{m}_A \cap \mathfrak{r}) < \mathfrak{r} < \mathfrak{s}$ contains a two dimensional \mathbb{R} -split torus, contradicting our assumption $\mathrm{rk}_{\mathbb{R}}(\mathfrak{s}) = 1$.

Thus, $A < \mathfrak{a}$ is a regular element, as \mathfrak{p}_A is a minimal parabolic. Therefore, every A-submodule of \mathfrak{g} is automatically an \mathfrak{a} submodule. In particular, we get that \mathfrak{a} normalizes \mathfrak{r} . We conclude that $\mathfrak{r} + \mathfrak{a} = \mathfrak{r} \oplus \mathfrak{d}_0$ is a subalgebra, to be denoted \mathfrak{p}_0 . From $\mathfrak{p}_A < \mathfrak{r} + \mathfrak{a}$ we get that \mathfrak{p}_0 is parabolic, and in particular, algebraic.

We remark that $\mathfrak{r} = \mathfrak{s} \cap \mathfrak{p}_0$. This is because \mathfrak{r} is of codimension one in \mathfrak{p}_0 , hence maximal among proper subspaces, and is contained in (the proper subspace by rank consideration) $\mathfrak{s} \cap \mathfrak{p}_0$. In particular \mathfrak{r} is algebraic.

We proceed to show that $\mathfrak{p}_A = \mathfrak{p}_0$. As $\mathfrak{p}_A < \mathfrak{p}_0$ it is enough to show that \mathfrak{p}_0 is a minimal parabolic. As before, we will see that the semisimple part of its Langlands decomposition does not contain a copy of $\mathfrak{sl}(2,\mathbb{R})$. Let $\mathfrak{p}_0 = \mathfrak{m}_0 \oplus \mathfrak{a}_0 \oplus \mathfrak{n}_0^-$ be the Langlands decomposition of \mathfrak{p}_0 . Denote by \mathfrak{m}'_0 the semisimple component of \mathfrak{m}_0 (indeed, its commutator subalgebra). We need to show that \mathfrak{m}'_0 contains no copy of $\mathfrak{sl}(2,\mathbb{R})$. Denote the complementary subalgebra of \mathfrak{p}_0 by $\mathfrak{n}_0 = \mathfrak{n}_0^+$. As an \mathfrak{a}' module, $\mathfrak{n}_0 \simeq \mathfrak{d}_\alpha \oplus \mathfrak{d}_{2\alpha}$. Observe that all the eigenvalues of A on \mathfrak{n}_0 are positive - these are $\alpha(A)$ and $2\alpha(A)$. \mathfrak{m}'_0 is semisimple, hence its action on \mathfrak{n}_0 is via $\mathfrak{sl}(\mathfrak{n}_0)$, hence $\mathfrak{a}' \cap \mathfrak{m}'_0 = \emptyset$ (A spans \mathfrak{a}'). It follows that there is no subalgebra $\mathfrak{c} < \mathfrak{m}'_0$, $\mathfrak{c} \simeq \mathfrak{sl}(2,\mathbb{R})$). Indeed, as before, for any such \mathfrak{c} , the codimension of $\mathfrak{c} \cap \mathfrak{r}$ is at most one, hence $\mathfrak{c} \cap \mathfrak{r}$ contains an \mathbb{R} -split torus, contradicting our assumption $\mathrm{rk}_{\mathbb{R}}(\mathfrak{s}) = 1$.

By now we have shown that $\mathfrak{p}_A = \mathfrak{p}_0$ is a minimal parabolic, and its complement subalgebra \mathfrak{n}_A has the two \mathfrak{a}' weights, α and 2α , where the 2α weight space is one dimensional. We have enough information in order to determine the root system. Denote the simple roots of Σ by $\Delta = \{\sigma, \tau\}$. \mathfrak{g} is

BADER

simple, hence σ and τ are connected in the Dynkin diagram, and hence $\sigma + \tau$ is a (positive) root too (recall that if the angle between two roots is acute then their sum is also a root). We know that $\sigma(A), \tau(A)$ and $(\sigma + \tau)(A)$ are all taking the values $\alpha(A)$ or $2\alpha(A)$. It follows that $\sigma(A) = \tau(A) = \alpha(A)$.

We claim that that the set of positive roots, Σ_+ , is exactly $\{\sigma, \tau, \sigma + \tau\}$. Assume, for negation, there exists a root $\xi \in \Sigma_+ - \{\sigma, \tau, \sigma + \tau\}$. Recall that ξ is a linear combination of σ and τ with integer coefficients. The sum of these coefficients must be 2 (since $\xi(A) = 2\alpha(A)$), hence we must have $\xi = 2\sigma$ (with out loss of generality). But then $\xi + \tau$ is also a root and $(\xi + \tau)(A) = 3\alpha(A)$, a contradiction.

It follows that Σ is of type A_3 . As $\mathfrak{g}_{\sigma+\tau}$ is one dimensional (having the \mathfrak{a}' weight 2α), all roots-spaces are one dimensional (all the roots are of the same length), and hence \mathfrak{g} is the split form - $\mathfrak{sl}(3,\mathbb{R})$.

Fix non zero elements $X \in \mathfrak{g}_{-\tau}$, $Y \in \mathfrak{g}_{\tau+\sigma}$, and set Z = [X, Y]. Z is a generator of \mathfrak{g}_{σ} . [X, Z] is in $\mathfrak{g}_{\sigma-\tau} = \{0\}$, hence [X, Z] = 0. \mathfrak{g}_{σ} is in the α \mathfrak{a}' weight space, hence the form on it is Riemannian. It follows that

$$\langle [X, Y], Z \rangle + \langle Y, [X, Z] \rangle = \langle Z, Z \rangle \neq 0.$$

We see that the action of X is not orthogonal, contradicting Lemma 3.3, as X is a unipotent element of $\mathfrak{r} < \mathfrak{s}$.

4.3. The degenerate case.

Here we assume that \mathfrak{h} is of codimension one in \mathfrak{r} , and that the form on $\mathfrak{g}/\mathfrak{r}$ is positive definite. By Lemma 3.4, \mathfrak{r} is a proper subalgebra of \mathfrak{g} .

By Lemma 3.2, $\operatorname{rk}_{\mathbb{R}}(\mathfrak{s}) = 1$. Recall that \mathfrak{a}' denotes a maximal split torus in \mathfrak{s} and A is an element that spans \mathfrak{a}' . We have the decomposition of \mathfrak{g} as an \mathfrak{a}' -module, $\mathfrak{g} = \mathfrak{r} \oplus \mathfrak{d}$. The form v restricted to \mathfrak{d} is positive definite, hence \mathfrak{a}' acts by homotheties on \mathfrak{d} . It follows that \mathfrak{d} is contained in the weight space corresponding to the weight α of \mathfrak{a}' . We assume $\alpha(A) > 0$. It follows that $\mathfrak{r} > \mathfrak{p}_A$, hence \mathfrak{r} is a (proper) parabolic sub-algebra of \mathfrak{g} .

We claim that $\mathfrak{r} = \mathfrak{p}_A$, and that this is a minimal parabolic in \mathfrak{g} . It is enough to show that \mathfrak{r} is a minimal parabolic. That is, its semisimple part contains no copy of $\mathfrak{sl}(2,\mathbb{R})$. Let $\mathfrak{r} = \mathfrak{m}_{\mathfrak{r}} \oplus \mathfrak{a}_{\mathfrak{r}} \oplus \mathfrak{n}_{\mathfrak{r}}$ be the Langlands decomposition of \mathfrak{r} . Assume $\mathfrak{m}_{\mathfrak{r}}$ contains a copy of $\mathfrak{sl}(2,\mathbb{R})$. Denote this copy by \mathfrak{c} . Consider $\mathfrak{s} \cap (\mathfrak{c} \oplus \mathfrak{a}_{\mathfrak{r}})$. Its codimension inside $\mathfrak{c} \oplus \mathfrak{a}_{\mathfrak{r}}$ is at most one (because \mathfrak{h} is a codimension one subalgebra of \mathfrak{r} and is contained in \mathfrak{s}). On the other hand its real rank is at most one (as the real rank of \mathfrak{s} is). Hence it must be equal \mathfrak{c} . It follows that \mathfrak{c} is contained in \mathfrak{s} . Combining this with the fact that $\mathrm{rk}_{\mathbb{R}}(\mathfrak{s}) = 1$, we get that Shas no non-trivial algebraic morphism into \mathbb{R}^* . This is a contradiction because we already considered the non-trivial map $S \to \mathrm{GL}(V)$.

We conclude that \mathfrak{r} is a minimal parabolic, and that A is a regular element in \mathfrak{a} . In particular we get that the weight space decomposition of \mathfrak{g} as an \mathfrak{a}' modules coincides with its root space decomposition with respect to \mathfrak{a} . Since \mathfrak{d} is an \mathfrak{a}' -complement of $\mathfrak{r} = \mathfrak{p}_A$, we conclude that it is an \mathfrak{a} complement as well, and that it consists of the sum of all positive roots (regarding the positivity given by A). Since \mathfrak{d} consists of a single \mathfrak{a}' -weight, we conclude that the set of positive roots in the root system of \mathfrak{g} consists of a single root. It follows that \mathfrak{g} is a rank one simple algebra with a reduced root system. That is $\mathfrak{g} = \mathfrak{so}(n, 1)$ for some n.

It follows that G is locally isomorphic to $SO(n, 1)^o$. The stabilizer of a point in X, H, has the Lie-algebra \mathfrak{h} which is a codimension one subalgebra of the parabolic algebra \mathfrak{r} . Denoting by P the associated parabolic group, we get that H is a codimension one subgroup of P, and that X is a fiber bundle over $S^{n-1} \simeq G/P$ with one-dimensional fibers. The induced conformal structure on S^{n-1} must be the standard one - the only $SO(n, 1)^o$ conformally invariant structure.

5. Corollaries and applications

Let G_1, G_2 be connected Lie groups and $G_1 \to G_2$ a surjection with a finite central kernel K. Observe that every G_1 homogenous space X gives rise to a G_2 homogenous space, namely X/K. Furthermore, observe that if G_1 preserves a conformal structure t on X, t descends canonically to a conformal structure \bar{t} on X/K which is being conformally preserved by G_2 . The property of being preessential is an infinitesimal one, thus the G_1 action on (X, t) posses it if and only if so does the G_2 action on $(X/K, \bar{t})$. Similarly, every G_2 homogenous pre-essential conformal space is clearly a G_1 homogenous pre-essential conformal space, just by inflating the action. These simple observations make it natural to make the following definition.

Definition 5.1. Let G be a connected Lie-group with a finite center. For every G-homogeneous manifold (X, t), on which the G action is conformal, and every $x \in X$, we consider the map $\mathfrak{g} \to \mathfrak{g}/\text{Lie}(\text{Stab}(x)) \simeq T_x X$. We define the subspace \mathfrak{r}_x of \mathfrak{g} , which is the radical of the form induced by t_x on \mathfrak{g} . Denote by $V_{\mathfrak{g}}$ the subset of the full Grassmannian, $\text{Gr}(\mathfrak{g})$ obtained when we vary over all possibilities of pre-essential sub-Lorentzian G-manifolds (X, t) and all points $x \in X$.

Note that by the remarks above the subset $V_{\mathfrak{g}} \subset \operatorname{Gr}(\mathfrak{g})$ depends indeed only on \mathfrak{g} rather then G, so the notation is justified. The following Lemma is a corollary of Theorem 2.5, and of its proof.

Lemma 5.2. Let G be a connected almost simple Lie-group with a finite center. The set $V_{\mathfrak{g}}$, if not empty, is a single compact G-orbit in $\operatorname{Gr}(\mathfrak{g})$.

Obviously, if the group G does not appear in the list given in Theorem 2.5, then $V_{\mathfrak{g}}$ is empty. For the groups that do appear, we get from the theorem and from its proof that indeed, $V_{\mathfrak{g}}$ is a single orbit. The Lie-algebras in $V_{\mathfrak{g}}$ are seen to have cocompact normalizers, and the compactness assertion follows.

Let (X, t) be a Lorentzian manifold, and assume that G acts on it conformally (but not necessarily transitively). For every point $x \in X$, define the *orbit manifold of* x, $O_x = G/Stab(x)$. There is a natural injection map (though generally not an imbedding), $O_x \to X$, given by $gStab(x) \mapsto gx$. Using this map, we pull back the Lorentzian structure t from X, and obtain a bilinear structure, denoted t^* , on O_x . G acts conformally on (O_x, t^*) . (O_x, t^*) is an homogeneous sub-Lorentzian manifold.

Definition 5.3. We say that x is a *pre-essential point* if (O_x, t^*) is a preessential manifold. The subset of X consisting of all pre-essential points is called the pre-essential part of X.

We define a map $r : X \to \operatorname{Gr}(\mathfrak{g})$ by mapping a point $x \in X$ to the radical, \mathfrak{r}_x , of the form induced on \mathfrak{g} , by a pull back of t_x via the map $\mathfrak{g} \to \mathfrak{g}/\operatorname{Lie}(\operatorname{Stab}(x)) \to T_x X$. This is the same form (and the same radical) as the form (and the radical) which is induced on \mathfrak{g} via the map $\mathfrak{g} \to T_x O_x$. By definition, the pre-essential part of X is mapped into $V_{\mathfrak{g}} \subset \operatorname{Gr}(\mathfrak{g})$. This gives

Lemma 5.4. The map $r: X \to Gr(\mathfrak{g})$ maps the pre-essential part of X into $V_{\mathfrak{g}}$.

The next lemma is less obvious.

Lemma 5.5. Let G be a connected almost simple Lie-group with a finite center. Assume that G is not locally isomorphic to $SL_2(\mathbb{R})$. Assume that G acts conformally on a Lorentzian manifold (X,t). Assume that there is no G-fixed point in X. Then $r^{-1}(V_g)$ is a closed subset of X.

Proof. In case $V_{\mathfrak{g}}$ is empty, there is nothing to prove, hence we assume that G is one that appears in the list given in Theorem 2.5.

The integer valued function $\dim(r(x))$ is easily seen to be upper semicontinuous on X, hence the pre-image under r of the subset of r(X) consisting of maximal dimension spaces is closed in X. We will show that the spaces in $V_{\mathfrak{g}}$ are of maximal dimension inside r(X). This will finish the proof, because, by Lemma 5.2, $V_{\mathfrak{g}}$ is compact, hence it consists of a closed subset of the closed subset of r(X) consisting of maximal dimension spaces.

By Lemma 3.4, r(X) consists of sub-algebras of \mathfrak{g} , hence it is enough to show that $V_{\mathfrak{g}}$ consists of maximal dimensional sub-algebras inside r(X). This is what we proceed to show.

The first thing to show is that r(X) contains only proper sub-algebras. We claim that this is indeed the case. G is a simple Lie-group not locally isomorphic to $SL_2(\mathbb{R})$, hence it does not have a codimension one closed sub-group (see, for example, [2, Lemma 3.4 and its proof]). Therefore there are no (locally) one-dimensional orbits in X. There are no zero dimensional orbits in X (as G is connected any such an orbit is a fixed point). It follows that every G-orbit in X is at least (locally) two-dimensional. A Lorentzian form cannot vanish when restricted to a two-dimensional subspace, and the claim follows.

In case $\mathfrak{g} \simeq \mathfrak{so}(n,2)$ or $\mathfrak{so}(n,1)$, the sub-algebras in $V_{\mathfrak{g}}$ are maximum dimensional proper parabolic sub-algebras, hence maximum dimensional proper sub-algebras (see for example the proof of [2, Lemma 3.4]). Therefore we can and

will assume from now on that $\mathfrak{g} \simeq \mathfrak{su}(n, 1)$. In this case \mathfrak{r} has codimension one in a proper parabolic sub-algebra, \mathfrak{p} . The parabolic sub-algebras are maximum dimensional algebras so we will be done if we show that r(X) does not contain any parabolic sub-algebra.

We are left to show that, for G locally isomorphic to SU(n, 1), there is no sub-Lorentzian G-homogeneous manifold Y with a parabolic radical, \mathfrak{p} . We deal separately with the case that Y is degenerate and the case it is not.

Assume first that Y is non-degenerate. Then $\mathfrak{p} = \mathfrak{r} < \mathfrak{s}$. Let \mathfrak{a} be a maximal (one dimensional) \mathbb{R} -split torus in \mathfrak{p} , and fix an \mathfrak{a} -module decomposition $\mathfrak{g} = \mathfrak{r} \oplus \mathfrak{d}$. Clearly, $\mathfrak{d} = \mathfrak{n}^+ = \mathfrak{g}_{\xi} \oplus \mathfrak{g}_{2\xi}$ is the sum of all positive root spaces. Set $\tilde{\mathfrak{a}}$ to be a maximal torus in $\mathfrak{co}(\mathfrak{d})$. If \mathfrak{d} is Riemannian than \mathfrak{d} consists of a single $\tilde{\mathfrak{a}}$ -weight space, hence a single \mathfrak{a} -weight space, which is a contradiction. Assume then that \mathfrak{d} is Lorentzian. As an $\tilde{\mathfrak{a}}$ -module, $\mathfrak{d} = \mathfrak{d}_{\alpha} \oplus \mathfrak{d}_{\beta} \oplus \mathfrak{d}_{\gamma}$ where $\dim(\mathfrak{d}_{\beta}) = \dim(\mathfrak{d}_{\gamma}) = 1$ and $\beta + \gamma = 2\alpha$. It follows that $\dim(\mathfrak{g}_{\xi}) = 1$, which contradicts the fact that $\dim(\mathfrak{g}_{\xi}) = 2n - 2$ is even.

Assume now that Y is degenerate. Then the form on $\mathfrak{n}^+ = \mathfrak{g}_{\xi} \oplus \mathfrak{g}_{2\xi} \simeq \mathfrak{g}/\mathfrak{r}$ must be Riemannian. It follows that S contains no split semisimple elements (such an element must act faithfully on $\mathfrak{g}/\mathfrak{r}$ by [2, Lemma 3.3]). Hence $\mathfrak{h} = \mathfrak{s} \cap \mathfrak{r} = \mathfrak{s} \cap \mathfrak{p}$ is a codimension one algebraic sub-algebra of \mathfrak{p} which contains no split semisimple elements. We conclude that \mathfrak{h} contains the unipotent radical of \mathfrak{p} , \mathfrak{n}^- . Pick elements $X_{-\xi} \in \mathfrak{g}_{-\xi}$ and $X_{2\xi} \in \mathfrak{g}_{2\xi}$ such that $0 \neq X_{\xi} = [X_{-\xi}, X_{2\xi}] \in \mathfrak{g}_{\xi}$. By Lemma 3.3, $X_{-\xi}$ must act orthogonally on $\mathfrak{g}/\mathfrak{r}$. On the other hand

$$\langle [X_{-\xi}, X_{2\xi}], X_{\xi} \rangle + \langle X_{2\xi}, [X_{-\xi}, X_{\xi}] \rangle = \langle X_{\xi}, X_{\xi} \rangle \neq 0$$

This is a contradiction.

The Lemmas above will be used in [1] in order to prove

Theorem 5.6. Let G be a connected almost simple Lie-group with finite center which is not locally isomorphic to $SL_2(\mathbb{R})$. Let X be a connected compact Lorentzian manifold. Assume G acts conformally on X, with no fixed points. Then one of the following holds:

- There exist an open and dense G-invariant set $U \subset X$ such that the G-action on U is not essential.
- X is commensurable to $C^{n,1}$ for some $n \ge 2$, and G acts transitively on X.

References

- [1] U. Bader "Conformal actions on compact Lorentzian manifolds," Pre-print, 2001.
- [2] Bader, U., and A. Nevo, Conformal actions of simple Lie groups on compact pseudo-Riemannian manifolds, Journal of Differential Geometry, 60 (2002), 355–387.
- [3] Borel, A., "Linear Algebraic Groups," Springer-Verlag, 1991.

- [4] Helgason, S., Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, 1978.
- [5] Zimmer, R. J., "Ergodic Theory and Semisimple Groups," Birkhäuser, 1984.

Uri Bader Faculty of Mathematics The Technion Haifa, 32000 ISRAEL uri.bader@gmail.com

Received January 21, 2010 and in final form June 2, 2010