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Conformal Actions on Homogeneous Lorentzian Manifolds

Uri Bader∗

Communicated by G. A. Margulis

Abstract. A conformal group action on a pseudo-Riemannian manifold is
essential if the action is not an isometric action with respect to a conformally
equivalent metric. We classify all essential actions of simple Lie groups on
Riemannian, Lorentzian and sub-Lorentzian manifolds.
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1. Introduction

The purpose of the following paper is to find all Lorentzian manifold, endowed with
a transitive simple Lie-group of conformal transformations which acts essentially.

We have in mind an application, which we are going to publish in sequel
paper, [1]. Towards that purpose we establish here a little more. In fact we classify
all possible sub-Lorentzian manifolds endowed with a transitive simple Lie-group
of conformal transformations which acts pre-essentially. Exact definitions of these
terms will be given in the next section. The main theorem will also be formulated
there. Section 3 will be devoted to introducing some notations, and stating some
preliminary Lemmas. Section 4, which is the heart of this manuscript, is a case
by case classification. In section 5, we state some corollaries which are application
oriented, and are going to be used in [1].

Acknowledgment: I wish to express my gratitude to the anonymous
referee who found and corrected an enormous number of mistakes in an older
version of this manuscript.

2. Definitions and statement of results

Let G be a Lie-group. Let (X, t) be a manifold with a bilinear structure (see [2]).
We assume that G acts conformally on X .

Definition 2.1. We say that G acts essentially on (X, t) if there is no confor-
mally equivalent bilinear structure s , such that G acts isometrically on (X, s).
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When the action of G on X is transitive, there is an infinitesimal criterion
for essentiality. Pick a point x ∈ X . Consider the action of Stab(x) on the vector
space TxX . It is conformal with respect to tx . If it is orthogonal, then the G
action on (X, t) is not essential (see [2, Lemma 2.6]). We wish to weaken the
definition of essentiality. Let g be the Lie algebra of G . Consider the form v ,
induced on g by tx , via the map g → g/Lie(Stab(x)) ' TxX . Denote by COG(v)
the conformal group of v in G (that is, the pre-image of CO(v) < GL(g) under
the adjoint map of G).

Definition 2.2. We call (X, t) a G-pre-essential space if X is a G-homogeneous
space and COG(v) does not act orthogonally on (g, v).

If G acts essentially on the homogeneous space (X, t), then (X, t) must
be a pre-essential G-space (because Stab(x) < COG(v)). It will turn out to be
that when G is an almost-simple Lie-group, a partial converse is also true. That
is, every Riemannian or Lorentzian space, which is pre-essential with respect to a
transitive, conformal action of some almost simple Lie-group, is in fact essential.
This will follow from a classification of such spaces. In fact we classify a slightly
wider class of spaces.

Definition 2.3. Let (V, B) a vector space endowed with a symmetric bilinear
form. (V, B) is called sub-Lorentzian if one of the following holds:

Lorentzian case: B is of signature (dim(V )− 1, 1).

Riemannian case: B is positive definite.

Degenerate case: B is semi-positive definite, and has one dimensional radical.

Definition 2.4. (X, t) is called a sub-Lorentzian pre-essential G-space if it is
G-pre-essential, and for some x ∈ X , (TxX, tx) is sub-Lorentzian.

It is well known that the standard sphere Sn is a Riemannian SO(n+1, 1)-
essential (and pre-essential) space. Recall the definition of Cn,1 from [2]. This is
an example of a Lorentzian SO(n+1, 2)-essential (and pre-essential) space. If n is
odd then it is also SU(n+1

2
, 1) essential space, via the natural map SU(n+1

2
, 1) →

SO(n + 1, 2).

Theorem 2.5. Let G be a connected almost simple Lie-group with a finite
center. Assume G is not locally isomorphic to SL2(R). Let X be a sub-Lorentzian
G-pre-essential space. Then we have

• If X is Riemannian then G is locally isomorphic to SO(n, 1)o for some
n > 2, and X ' Sn−1 . G acts on X by Möbius transformations.

• If X is Lorentzian then either G is locally isomorphic to SO(n, 2)o and X is
a finite cover of the standard model space Cn−1,1 or G is locally isomorphic
to SU(1

2
n, 1) and X is commensurable to Cn−1,1 - that is, G and SU(n, 1)
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have a common finite cover group which acts on a common finite cover of X
and Cn−1,1 , covering the actions of G and of SU(n, 1).

• If X is degenerate then G is locally isomorphic to SO(n, 1)o , and X is a
fiber bundle over Sn−1 with one dimensional fibers.

3. Preliminaries and notations

In the following we are using some basic algebraic group theory, in particular, the
relations between algebraic groups and Lie group theory. A standard reference for
algebraic group theory is [3]. Some preliminaries concerning real algebraic groups
and the relation with Lie theory could be found in [5, Chapter 3]. Abusing the
notation (in a way that already became standard), we refer to the Lie-group H
as an “algebraic group” not only if H is isomorphic as a Lie-group to a group
G(R), the group of real points of a honest algebraic group G which is defined
over R , but also if Ho , the connected component of the identity, is of finite index
in H and it admits a Lie-group homomorphism with a finite kernel onto G(R)o ,
the (topological) connected component of the identity in G(R). A Lie group
morphism between the algebraic groups H, H ′ is called algebraic if there exists
a honest algebraic group morphism, defined over R , between the corresponding
algebraic groups G,G′ such that the obvious commutative diagram is satisfied.

Recall that a semisimple Lie-group with a finite center is algebraic, and any
Lie-group morphism between semisimple Lie-groups with finite centers is algebraic.
A parabolic subgroup of a semisimple group with a finite center is algebraic. The
intersection of two algebraic subgroups of an algebraic group is algebraic. We will
constantly use the notion of R-split rank, denoted rkR , which is defined for every
algebraic group. Recall that, given an injective algebraic morphism, G → H , we
must have rkR(G) ≤ rkR(H).

A sub-Lie-algebra of the Lie-algebra of an algebraic group is called alge-
braic, if it is the Lie algebra of an algebraic subgroup. Similarly, a sub-Lie-
algebra is called compact/unipotent/torus, if it is the Lie algebra of a com-
pact/unipotent/torus subgroup. Given an algebraic sub-algebra h , which is the
Lie-algebra of an algebraic subgroup H , we will often abuse the notation using
the term rkR(h) instead of rkR(H).

Fix an almost simple Lie-group G . Let (X, t) be a G-pre-essential manifold.
Assume the form t does not vanish identically. Fixing once and for all a point
x ∈ X , we will denote in the sequel

H = StabG(x), h = Lie(H).

tx is considered as a symmetric bilinear form defined on g/h . Pulling this form
to g by the map g → g/h we obtain a bilinear form v on g , that is an element of
Sym2(g). By our non-vanishing assumption on t , this element is non-zero, hence
projects to the G-space P+

(Sym2(g)), the space of symmetric bilinear forms on
g modulo multiplication by positive scalars. We denote the resulting element by
v̄ ∈ P+

(Sym2(g)). We denote

S = StabG(v̄), s = Lie(S), r = rad(v̄).
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S is an algebraic group. Observe that H < S , and that h < s ∩ r . Consider the
line V = Rv < Sym2(g) which sits above v̄ . There is a natural algebraic morphism
S → GL(V ). By the definition of a pre-essential space, this map is not trivial. In
particular we see that S has a real character, hence its real rank is non-zero. Let
a′ be a maximal R-split torus of s . Let 2α be the corresponding weight. Keep in
mind that rkR(g) ≥ rkR(s) ≥ 1.

As an a′ -module, g splits into a direct sum g = r⊕ d , where d ' g/r . The
following is an immediate corollary of [2, Lemma 3.3].

Lemma 3.1. d is a faithful a′ -module.

d itself splits into weight-spaces dλ , and in particular we have dα < d

(dα might be 0). Observe that d carries a natural bilinear form - induced from
the form v on g , as r is radical - and that a′ imbeds in co(d). By choosing a
maximal R-split torus ã′ < co(d) containing (the image of) a′ we obtain finer
weight spaces, to be denoted dλ̃ . We will indeed use the suggestive notation,
denoting the restriction of λ̃ to a′ by λ , thus dλ̃ < dλ (note that given a weight
λ of a′ there is no “canonical” lift λ̃ - it might be that for non-equal weights of
ã′ , λ̃, µ̃ we have λ = µ).

Lemma 3.2. Consider the bilinear form induced by v on d ' g/r. If the
signature is denoted by (p, q) then

rkR(S) ≤ min{p, q}+ 1.

Proof. By Lemma 3.1, g/r is a faithful a′ -module. We get

rkR(S) = dim(a′) ≤ dim(ã′) = rkR(CO(g/r)) = min{p, q}+ 1.

a′ is contained in a maximal torus of g which we will denote by a (do not
confuse a with ã′ - both are maximal tori containing a′ , but in different ambient
algebras). Denote the root system of g associated to a by Σ. Let A ∈ a′ < a

be an element such that α(A) > 0. We define the parabolic associated to A , pA ,
written as a sum of root-spaces in the following form

pA = g0 ⊕
⊕

ξ∈Σ, ξ(A)≤0

gξ = mA ⊕ aA ⊕ n−A

(the right hand side is the Langlands decomposition of pA ). Denote its direct
complement by n+

A or just nA . Observe that dα < gα < nA (notice that gα is not
a root-space, but a weight-space for a′ ).

The following are useful Lemmas.

Lemma 3.3. Assume u < s is an algebraic subalgebra which has no split
semisimple element (i.e, it is the Lie algebra associated to an algebraic subgroup
of S which has no split semisimple element). Then u acts orthogonally on g/r.

Proof. This follows immediately from the fact that, denoting by U an algebraic
group with Lie(U) = u , the maps U → CO(g/r) ' O(g/r) × R∗

+ → R∗
+ are
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algebraic, hence the image of U in CO(g/r) must be contained in the kernel of
CO(g/r) → R∗

+ , namely O(g/r).

Lemma 3.4. Let (X, t) be a sub-Lorentzian G-homogeneous manifold (not
necessarily pre-essential). Then r is a sub-algebra of g.

Proof. If r = h then this is trivial. Assume not. Then h is a codimension one
sub-algebra of r which normalizes it (because r = rad(v), and v is h-invariant).
Fix an element w of r− h . For i = 1, 2, let αiw + yi be two elements of r , where
αi ∈ R and yi ∈ h . Then

[α1w + y1, α2w + y2] = [w, α1y2 − α2y1] + [y1, y2]

The two terms in the right hand side are in r , because h normalizes r . The Lemma
follows.

4. The classification

In this section G is assumed to be an almost simple Lie-group with a finite center,
not locally isomorphic to SL2(R). (X, t) is assumed to be a sub-Lorentzian pre-
essential G-manifold. The division into subsections will correspond to the various
cases of the form t .

In the classification that follows we will use in an essential way the fact
that a simple real Lie-algebra is determined uniquely by the type of its real root
system, together with the multiplicities of the long and the short roots (see [4, p.
535, Ex. 9]). Whenever this datum is given, one can use table VI in [4] in order
to actually determine the Lie-algebra. We will do it over and over with out any
further comment.

4.1. Riemannian case.

Here r = h , and the induced form on d ' g/r is positive definite. a′ is
the Lie-algebra of the group of homotheties of g/r , hence d = dα , and hence
d < nA . It follows that r > pA , hence pA < s . By Lemma 3.2, rkR(s) ≤ 1, hence
rkR(g) = rkR(pA) ≤ 1, and we get rkR(g) = 1. It follows that r = pA and d = nA .

By the assumption that the form is Riemannian, d consists of a single ã′

weight space, hence a single a′ weight space. As d = nA = n and a = a′ (because
the rank is 1), n consists of a single root space, and we deduce that the root
system is reduced. From the classification, g = so(n, 1). As so(n − 1) ' m < p

acts irreducibly on Rn−1 ' n , the Riemannian form on n is uniquely determined
(up to a scalar multiple). It follows that G is locally isomorphic to SO(n, 1)o (for
some n > 2, as G is not locally isomorphic to SL2(R)). We deduce that X is a
finite cover of Sn−1 . As the latter is simply connected, X coincides with Sn−1 .

4.2. Lorentzian case. Here r = h , and the induced form on d ' g/r is
Lorentzian. In this case, where co(d) ' so(p, 1)⊕R and d ' Rp,1 , the weight-space
decomposition of the maximal torus ã′ < co(d) is well known: it has three weights
α̃, β̃ and γ̃ , where β̃ + γ̃ = 2α̃ and dim(dβ̃) = dim(dγ̃) = 1. 2α̃ is the conformal
weight, thus its restriction to a′ is 2α , as the notation suggests. Thus, as an ( ã′ -
module, hence also as an) a′ -module, d splits into a direct sum d = dα̃ ⊕ dβ̃ ⊕ dγ̃ .
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Notice that β and γ might equal α (for these are restrictions to a′ ), and that dα

might vanish (if p = 1), but anyway α 6= 0 (by our assumption of essentiality).
We will always assume in the sequel that β(A) ≤ γ(A) (upon interchanging the
role of β̃ and γ̃ if needed).

We split the discussion into three cases (recall that, by Lemma 3.2 rkR(s) ≤
2):

1) rkR(s) = 2: In that case, a′ = ã′ . By picking the element A ∈ a′ in the kernel
of γ̃−α̃ (but satisfying α̃(A) > 0) we can assume that α(A) = β(A) = γ(A).
As before we get d < nA , hence r > pA . We then have rkR(g) = rkR(pA) ≤
rkR(s) ≤ rkR(g), hence rkR(g) = rkR(s) = 2.

The question of finding p conformally invariant Lorentzian form on g/p for
rank two groups was solved in [2], and the only solution is g = so(n, 2). It
follows that G is locally isomorphic to SO(n, 2)o , and X is a finite cover of
Cn−1,1 .

2) rkR(s) = 1, rkR(g) = 1: In that case, a′ = a . If α = β = γ we get, as in the
discussion in the Riemannian case, that g = so(n, 1) and r = p , which lead
to a contradiction (because the unique p conformally invariant form on g/p
is Riemannian).

We get that a′ has more than one weight in d < g . a′ being a maximal
torus in the rank 1 algebra g , we deduce that the root system of g is
not reduced: it has two positive roots ξ, 2ξ , given a choice of positivity.
Choosing the positivity so that these positive roots are positive on A , and
using β(A) ≤ γ(A) and β + γ = 2α , we obtain the only possibility: β = 0,
γ = 2ξ and α = ξ . It follows, in particular, that r⊕d0 contains the parabolic
pA .

We next show that a < r . Otherwise, there exists some X2ξ ∈ dγ < g2ξ

with 〈A, X2ξ〉 6= 0 (A projects to d0 = dβ modulo r , which is orthogonal to
dβ⊕dα ). By Jacobson Morozov Theorem (and the rank 1 assumption on g),
there exists X−2ξ ∈ g−2ξ satisfying [X−2ξ, X2ξ] = A . Now, X−2ξ ∈ g−2ξ <
pA < r⊕d0 < r⊕g0 projects trivially to g0 . Hence X−2ξ ∈ r = h < s . Being
unipotent, by Lemma 3.3, it acts orthogonally on d . We get

〈[X−2ξ, X2ξ], X2ξ〉 = −〈X2ξ, [X−2ξ, X2ξ]〉,

and conclude 〈A, X2ξ〉 = 0 - a contradiction.

Writing pA = a⊕mA⊕ n−A , we conclude that mA projects modulo r onto d0

(as g0 = a⊕mA does, and a is in the kernel). Thus, r∩mA is of codimension
one subalgebra (Lemma 3.4) in mA . From the classification, g , being a rank
one simple algebra with a non-reduced root system, is isomorphic to either
su(n, 1), sp(n, 1) or f4,−20 . From all of the above cases, the only one in which
the algebra m in the Langlands decomposition of a parabolic subalgebra has
a codimension one subalgebra is su(n, 1) for which m = su(n − 1) ⊕ u(1).
Since su(n−1) has no codimension one subalgebra as well, we conclude that
it (or rather, the corresponding isomorphic subalgebra in mA which from
now on we identify with su(n− 1)) is contained in r .
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Thus, g ' su(n, 1), mA ' su(n − 1) ⊕ u(1) and we have the following
inclusions of subalgebras:

n−A ⊕ a⊕ su(n− 1) < r � g ' su(n, 1).

We claim that pA is the only subalgebra q < g which satisfies

n−A ⊕ a⊕ su(n− 1) � q � g ' su(n, 1).

Indeed, it is known that a proper maximal dimensional subalgebra is parabolic,
and n−A⊕a⊕su(n−1) is of codimension one in pA , so every such subalgebra
q must be parabolic. A parabolic q that contains a contains also its central-
izer, m , thus q > n−A⊕a⊕m = pA , and by the rank one assumption, q = pA .
From the fact that r 6= pA , we finally obtain that r = n−A ⊕ a⊕ su(n− 1).

As the a′ -module d was chosen arbitrarily as a direct complement of r , we
may (and will) change it to be

d = u(1)⊕ n+
A = u(1)⊕ gξ ⊕ g2ξ

We proceed to show that there is a unique r conformally invariant Lorentzian
form on d . Indeed, by Lemma 3.3, the action of su(n−1) on d is orthogonal,
hence preserves the Riemannian form on gξ . As the action of su(n − 1)
on gξ is a conjugate of the standard su(n − 1) action on R2n−2 , the form
on gξ must be a conjugate of the standard inner product on R2n−2 , up
to homothety, as every form on R2n−2 which is invariant with respect to
the standard su(n − 1) action is a scalar multiple of the standard inner
product (this follows from the irreducibility of the action). The (1, 1)-form
on u(1)⊕ g2ξ is also determined, up to homothety, by the fact that the lines
u(1) and g2ξ are isotropic. We are left to show that the ratio between the
two homothety constants is determined as well. This follows from the fact
that[g−ξ, g2ξ] = gξ . Indeed, fixing elements X−ξ ∈ g−ξ and X2ξ ∈ g2ξ such
that 0 6= Xξ = [X−ξ, X2ξ] ∈ gξ , we know by Lemma 3.3 that X−ξ acts
orthogonally, hence

0 6= 〈Xξ, Xξ〉 = 〈[X−ξ, X2ξ], Xξ〉 = −〈X2ξ, [X−ξ, Xξ]〉.

Letting X0 ∈ u(1) be the projection modulo r of [X−ξ, Xξ] , we get that the
number 〈X0, X2ξ〉 (which completely determines the form on u(1) ⊕ g2ξ ) is
determined by the form on gξ .

Now, there exists a familiar Lorentzian action of SU(n, 1), obtained by
imbedding SU(n, 1) in SO(2n, 2) and letting it act on the model space
C2n−1,1 (which can easily checked to be pre-essential). We have seen above
that, assuming rkR(g) = rkR(s) = 1, G has to be locally isomorphic to
SU(n, 1), and X is completely determined (locally). It follows that the
action of G on X is commensurable to this standard action of SU(n, 1): G
has a finite cover which is also a finite cover of SU(n, 1) and X has a finite
cover which is also a finite cover of C2n−1,1 .
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3) rkR(s) = 1, rkR(g) ≥ 2: We will show that there are no more examples of pre-
essential spaces.

In this case a′ � a . As a′ = a ∩ s , we get that a is not contained in s , and
in particular a ≮ r = h < s . We conclude that a projects non-trivially to
d0 < d . In particular d0 6= 0. We know that d = dβ ⊕ dα⊕ dγ , and that α, γ
are positive weights of a′ (by our assumptions 2α(A) > 0 and β + γ = 2α ,
γ(A) ≥ β(A)). Also we know that dβ is one dimensional. We conclude that
β = 0 (hence γ = 2α) and that d0 is one dimensional. Since the kernel of
the projection of a to d0 is at most one-dimensional (being contained in a′ ,
by the rank one assumption on s), we conclude that a′ < r , dim(a) = 2,
and in particular rkR(g) = 2.

Next we show that the parabolic subalgebra pA is a minimal parabolic. This
is well known to be the case if and only if the subalgebra mA contains no
copy of sl(2, R). Assume, by negation, the existence of a subalgebra c < mA ,
c ' sl(2, R)). Observe that by its very definition, pA < r + a = r ⊕ d0 ,
hence the codimension of pA ∩ r in pA is at most one, and we get that
the codimension of c ∩ r in c is at most one as well. It follows that c ∩ r

contains an R-split semisimple element. Observe that a′ < aA intersects mA

trivially. We conclude that the algebra a′ ⊕ (mA ∩ r) < r < s contains a two
dimensional R-split torus, contradicting our assumption rkR(s) = 1.

Thus, A < a is a regular element, as pA is a minimal parabolic. Therefore,
every A-submodule of g is automatically an a submodule. In particular, we
get that a normalizes r . We conclude that r + a = r ⊕ d0 is a subalgebra,
to be denoted p0 . From pA < r + a we get that p0 is parabolic, and in
particular, algebraic.

We remark that r = s ∩ p0 . This is because r is of codimension one in
p0 , hence maximal among proper subspaces, and is contained in (the proper
subspace by rank consideration) s ∩ p0 . In particular r is algebraic.

We proceed to show that pA = p0 . As pA < p0 it is enough to show that
p0 is a minimal parabolic. As before, we will see that the semisimple part
of its Langlands decomposition does not contain a copy of sl(2, R). Let
p0 = m0⊕ a0⊕n−0 be the Langlands decomposition of p0 . Denote by m′

0 the
semisimple component of m0 (indeed, its commutator subalgebra). We need
to show that m′

0 contains no copy of sl(2, R). Denote the complementary
subalgebra of p0 by n0 = n+

0 . As an a′ module, n0 ' dα⊕d2α . Observe that
all the eigenvalues of A on n0 are positive - these are α(A) and 2α(A). m′

0 is
semisimple, hence its action on n0 is via sl(n0), hence a′ ∩m′

0 = ∅ (A spans
a′ ). It follows that there is no subalgebra c < m′

0 , c ' sl(2, R)). Indeed, as
before, for any such c , the codimension of c ∩ r is at most one, hence c ∩ r

contains an R-split semisimple element, which forms, together with a′ a two
dimensional R-split torus, contradicting our assumption rkR(s) = 1.

By now we have shown that pA = p0 is a minimal parabolic, and its
complement subalgebra nA has the two a′ weights, α and 2α , where the
2α weight space is one dimensional. We have enough information in order to
determine the root system. Denote the simple roots of Σ by ∆ = {σ, τ} . g is



Bader 477

simple, hence σ and τ are connected in the Dynkin diagram, and hence σ+τ
is a (positive) root too (recall that if the angle between two roots is acute
then their sum is also a root). We know that σ(A), τ(A) and (σ + τ)(A) are
all taking the values α(A) or 2α(A). It follows that σ(A) = τ(A) = α(A).

We claim that that the set of positive roots, Σ+ , is exactly {σ, τ, σ + τ} .
Assume, for negation, there exists a root ξ ∈ Σ+ − {σ, τ, σ + τ} . Recall
that ξ is a linear combination of σ and τ with integer coefficients. The
sum of these coefficients must be 2 (since ξ(A) = 2α(A)), hence we must
have ξ = 2σ (with out loss of generality). But then ξ + τ is also a root and
(ξ + τ)(A) = 3α(A), a contradiction.

It follows that Σ is of type A3 . As gσ+τ is one dimensional (having the
a′ weight 2α), all roots-spaces are one dimensional (all the roots are of the
same length), and hence g is the split form - sl(3, R).

Fix non zero elements X ∈ g−τ , Y ∈ gτ+σ , and set Z = [X, Y ] . Z is a
generator of gσ . [X, Z] is in gσ−τ = {0} , hence [X, Z] = 0. gσ is in the α
a′ weight space, hence the form on it is Riemannian. It follows that

〈[X, Y ], Z〉+ 〈Y, [X, Z]〉 = 〈Z,Z〉 6= 0.

We see that the action of X is not orthogonal, contradicting Lemma 3.3, as
X is a unipotent element of r < s .

4.3. The degenerate case.

Here we assume that h is of codimension one in r , and that the form on
g/r is positive definite. By Lemma 3.4, r is a proper subalgebra of g .

By Lemma 3.2, rkR(s) = 1. Recall that a′ denotes a maximal split torus in
s and A is an element that spans a′ . We have the decomposition of g as an a′ -
module, g = r⊕d . The form v restricted to d is positive definite, hence a′ acts by
homotheties on d . It follows that d is contained in the weight space corresponding
to the weight α of a′ . We assume α(A) > 0. It follows that r > pA , hence r is a
(proper) parabolic sub-algebra of g .

We claim that r = pA , and that this is a minimal parabolic in g . It
is enough to show that r is a minimal parabolic. That is, its semisimple part
contains no copy of sl(2, R). Let r = mr⊕ar⊕nr be the Langlands decomposition
of r . Assume mr contains a copy of sl(2, R). Denote this copy by c . Consider
s∩(c⊕ar). Its codimension inside c⊕ar is at most one (because h is a codimension
one subalgebra of r and is contained in s). On the other hand its real rank is at
most one (as the real rank of s is). Hence it must be equal c . It follows that c

is contained in s . Combining this with the fact that rkR(s) = 1, we get that S
has no non-trivial algebraic morphism into R∗ . This is a contradiction because we
already considered the non-trivial map S → GL(V ).

We conclude that r is a minimal parabolic, and that A is a regular element
in a . In particular we get that the weight space decomposition of g as an a′ -
modules coincides with its root space decomposition with respect to a . Since d

is an a′ -complement of r = pA , we conclude that it is an a complement as well,
and that it consists of the sum of all positive roots (regarding the positivity given
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by A). Since d consists of a single a′ -weight, we conclude that the set of positive
roots in the root system of g consists of a single root. It follows that g is a rank
one simple algebra with a reduced root system. That is g = so(n, 1) for some n .

It follows that G is locally isomorphic to SO(n, 1)o . The stabilizer of a
point in X , H , has the Lie-algebra h which is a codimension one subalgebra
of the parabolic algebra r . Denoting by P the associated parabolic group, we
get that H is a codimension one subgroup of P , and that X is a fiber bundle
over Sn−1 ' G/P with one-dimensional fibers. The induced conformal structure
on Sn−1 must be the standard one - the only SO(n, 1)o conformally invariant
structure.

5. Corollaries and applications

Let G1, G2 be connected Lie groups and G1 → G2 a surjection with a finite
central kernel K . Observe that every G1 homogenous space X gives rise to a
G2 homogenous space, namely X/K . Furthermore, observe that if G1 preserves
a conformal structure t on X , t descends canonically to a conformal structure t̄
on X/K which is being conformally preserved by G2 . The property of being pre-
essential is an infinitesimal one, thus the G1 action on (X, t) posses it if and only if
so does the G2 action on (X/K, t̄). Similarly, every G2 homogenous pre-essential
conformal space is clearly a G1 homogenous pre-essential conformal space, just
by inflating the action. These simple observations make it natural to make the
following definition.

Definition 5.1. Let G be a connected Lie-group with a finite center. For every
G-homogeneous manifold (X, t), on which the G action is conformal, and every
x ∈ X , we consider the map g → g/Lie(Stab(x)) ' TxX . We define the subspace
rx of g , which is the radical of the form induced by tx on g . Denote by Vg the
subset of the full Grassmannian, Gr(g) obtained when we vary over all possibilities
of pre-essential sub-Lorentzian G-manifolds (X, t) and all points x ∈ X .

Note that by the remarks above the subset Vg ⊂ Gr(g) depends indeed
only on g rather then G , so the notation is justified. The following Lemma is a
corollary of Theorem 2.5, and of its proof.

Lemma 5.2. Let G be a connected almost simple Lie-group with a finite center.
The set Vg , if not empty, is a single compact G-orbit in Gr(g).

Obviously, if the group G does not appear in the list given in Theorem 2.5,
then Vg is empty. For the groups that do appear, we get from the theorem and
from its proof that indeed, Vg is a single orbit. The Lie-algebras in Vg are seen to
have cocompact normalizers, and the compactness assertion follows.

Let (X, t) be a Lorentzian manifold, and assume that G acts on it con-
formally (but not necessarily transitively). For every point x ∈ X , define the
orbit manifold of x , Ox = G/Stab(x). There is a natural injection map (though
generally not an imbedding), Ox → X , given by gStab(x) 7→ gx . Using this map,
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we pull back the Lorentzian structure t from X , and obtain a bilinear structure,
denoted t∗ , on Ox . G acts conformally on (Ox, t

∗). (Ox, t
∗) is an homogeneous

sub-Lorentzian manifold.

Definition 5.3. We say that x is a pre-essential point if (Ox, t
∗) is a pre-

essential manifold. The subset of X consisting of all pre-essential points is called
the pre-essential part of X .

We define a map r : X → Gr(g) by mapping a point x ∈ X to the
radical, rx , of the form induced on g , by a pull back of tx via the map g →
g/Lie(Stab(x)) → TxX . This is the same form (and the same radical) as the form
(and the radical) which is induced on g via the map g → TxOx . By definition,
the pre-essential part of X is mapped into Vg ⊂ Gr(g). This gives

Lemma 5.4. The map r : X → Gr(g) maps the pre-essential part of X into
Vg .

The next lemma is less obvious.

Lemma 5.5. Let G be a connected almost simple Lie-group with a finite center.
Assume that G is not locally isomorphic to SL2(R). Assume that G acts confor-
mally on a Lorentzian manifold (X, t). Assume that there is no G-fixed point in
X . Then r−1(Vg) is a closed subset of X .

Proof. In case Vg is empty, there is nothing to prove, hence we assume that
G is one that appears in the list given in Theorem 2.5.

The integer valued function dim(r(x)) is easily seen to be upper semi-
continuous on X , hence the pre-image under r of the subset of r(X) consisting
of maximal dimension spaces is closed in X . We will show that the spaces in Vg

are of maximal dimension inside r(X). This will finish the proof, because, by
Lemma 5.2, Vg is compact, hence it consists of a closed subset of the closed subset
of r(X) consisting of maximal dimension spaces.

By Lemma 3.4, r(X) consists of sub-algebras of g , hence it is enough to
show that Vg consists of maximal dimensional sub-algebras inside r(X). This is
what we proceed to show.

The first thing to show is that r(X) contains only proper sub-algebras. We
claim that this is indeed the case. G is a simple Lie-group not locally isomorphic
to SL2(R), hence it does not have a codimension one closed sub-group (see, for
example, [2, Lemma 3.4 and its proof]). Therefore there are no (locally) one-
dimensional orbits in X . There are no zero dimensional orbits in X (as G is
connected any such an orbit is a fixed point). It follows that every G-orbit in
X is at least (locally) two-dimensional. A Lorentzian form cannot vanish when
restricted to a two-dimensional subspace, and the claim follows.

In case g ' so(n, 2) or so(n, 1), the sub-algebras in Vg are maximum
dimensional proper parabolic sub-algebras, hence maximum dimensional proper
sub-algebras (see for example the proof of [2, Lemma 3.4]). Therefore we can and
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will assume from now on that g ' su(n, 1). In this case r has codimension one
in a proper parabolic sub-algebra, p . The parabolic sub-algebras are maximum
dimensional algebras so we will be done if we show that r(X) does not contain
any parabolic sub-algebra.

We are left to show that, for G locally isomorphic to SU(n, 1), there is no
sub-Lorentzian G-homogeneous manifold Y with a parabolic radical, p . We deal
separately with the case that Y is degenerate and the case it is not.

Assume first that Y is non-degenerate. Then p = r < s . Let a be a
maximal (one dimensional) R-split torus in p , and fix an a-module decomposition
g = r⊕d . Clearly, d = n+ = gξ⊕g2ξ is the sum of all positive root spaces. Set ã to
be a maximal torus in co(d). If d is Riemannian than d consists of a single ã-weight
space, hence a single a-weight space, which is a contradiction. Assume then that
d is Lorentzian. As an ã-module, d = dα ⊕ dβ ⊕ dγ where dim(dβ) = dim(dγ) = 1
and β + γ = 2α . It follows that dim(gξ) = 1, which contradicts the fact that
dim(gξ) = 2n− 2 is even.

Assume now that Y is degenerate. Then the form on n+ = gξ ⊕ g2ξ ' g/r
must be Riemannian. It follows that S contains no split semisimple elements (such
an element must act faithfully on g/r by [2, Lemma 3.3]) . Hence h = s∩ r = s∩p

is a codimension one algebraic sub-algebra of p which contains no split semisimple
elements. We conclude that h contains the unipotent radical of p , n− . Pick
elements X−ξ ∈ g−ξ and X2ξ ∈ g2ξ such that 0 6= Xξ = [X−ξ, X2ξ] ∈ gξ . By
Lemma 3.3, X−ξ must act orthogonally on g/r . On the other hand

〈[X−ξ, X2ξ], Xξ〉+ 〈X2ξ, [X−ξ, Xξ]〉 = 〈Xξ, Xξ〉 6= 0

This is a contradiction.

The Lemmas above will be used in [1] in order to prove

Theorem 5.6. Let G be a connected almost simple Lie-group with finite cen-
ter which is not locally isomorphic to SL2(R). Let X be a connected compact
Lorentzian manifold. Assume G acts conformally on X , with no fixed points.
Then one of the following holds:

• There exist an open and dense G-invariant set U ⊂ X such that the G-
action on U is not essential.

• X is commensurable to Cn,1 for some n ≥ 2, and G acts transitively on X .
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