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Abstract. We define and investigate a geometric object, called an associa-
tive geometry, corresponding to an associative algebra (and, more generally, to
an associative pair). Associative geometries combine aspects of Lie groups and of
generalized projective geometries, where the former correspond to the Lie prod-
uct of an associative algebra and the latter to its Jordan product. A further
development of the theory encompassing involutive associative algebras will be
given in Part II of this work.
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Introduction

What is the geometric object corresponding to an associative algebra? The ques-
tion may come as a bit of a surprise: the philosophy of Noncommutative Geometry
teaches us that, as soon as an algebra becomes noncommutative, we should stop
looking for associated point-spaces, such as manifolds or varieties. Nevertheless, we
raise this question, but aim at something different than Noncommutative Geome-
try: we do not try to generalize the relation between, say, commutative associative
algebras and algebraic varieties, but rather look for an analog of the one between
Lie algebras and Lie groups. Namely, every associative algebra A gives rise to
a Lie algebra A− with commutator bracket [x, y] = xy − yx , and thus can be
seen as a “Lie algebra with some additional structure”. Since the geometric object
corresponding to a Lie algebra should be a Lie group (the unit group A× , in this
case), the object corresponding to the associative algebra, called an “associative
geometry”, should be some kind of “Lie group with additional structure”. To get
an idea of what this additional structure might be, consider the decomposition

xy =
xy + yx

2
+

xy − yx

2
=: x • y +

1

2
[x, y]
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of the associative product into its symmetric and skew-symmetric parts. The
symmetric part is a Jordan algebra, and the additional structure will be related
to the geometric object corresponding to the Jordan part. As shown in [Be02],
the “geometric Jordan object” is a generalized projective geometry. Therefore, we
expect an associative geometry to be some sort of mixture of projective geometry
and Lie groups. Another hint is given by the notion of homotopy in associative
algebras: an associative product xy really gives rise to a family of associative
products

x ·a y := xay

for any fixed element a , called the a-homotopes. Therefore we should rather expect
to deal with a whole family of Lie groups, instead of looking just at one group
corresponding to the choice a = 1.

Grassmannians. The following example gives a good idea of the kind of geome-
tries we have in mind. Let W be a vector space or module over a commutative
field or ring K , and for a subspace E ⊂ W , let CE denote the set of all subspaces
of W complementary to E . It is known that CE is, in a natural way, an affine
space over K . We prove that a similar statement is true for arbitrary intersec-
tions CE ∩ CF (Theorem 1.2): they are either empty, or they carry a natural
“affine” group structure. By this we mean that, after fixing an arbitrary element
Y ∈ CE ∩CF , there is a natural (in general noncommutative) group structure on
CE ∩ CF with unit element Y . The construction of the group law is very simple:
for X, Z ∈ CE ∩ CF , we let X · Z := (PE

X − PZ
F )(Y ), where, for any complemen-

tary pair (U, V ), PU
V is the projector onto V with kernel U . Since X · Z indeed

depends on X,E, Y, F, Z , we write it also in quintary form

Γ(X,E, Y, F, Z) := (PE
X − PZ

F )(Y ). (0.1)

The reader is invited to prove the group axioms by direct calculations. The proofs
are elementary, however, the associativity of the product, for example, is not
obvious at a first glance.

Some special cases, however, are relatively clear. If E = F , and if we
then identify a subspace U with the projection PE

U , then it is straightforward to
show that the expression Γ(X, E, Y, E, Z) in CE is equivalent to the expression
PE

X−PE
Y +PE

Z in the space of projectors with kernel E , and we recover the classical
affine space structure on CE (see Theorem 1.5). On the other hand, if E and F
happen to be mutually complementary, then any common complement of E and
F may be identified with the graph of a bijective linear map E → F , and hence
CE ∩ CF is identified with the set Iso(E, F ) of linear isomorphisms between E
and F . Fixing an origin Y in this set fixes an identification of E and F , and thus
identifies CE ∩ CF with the general linear group GLK(E).

Summing up, the collection of groups CE ∩CF , where (E, F ) runs through
Gras(W ) × Gras(W ), the direct product of the Grassmannian of W with itself,
can be seen as some kind of interpolation, or deformation between general linear
groups and vector groups, encoded in Γ. The quintary map Γ has remarkable
properties that will lead us to the axiomatic definition of associative geometries.
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Torsors and semitorsors. To eliminate the dependence of the group structures
CE∩CF on the choice of unit element Y , we now recall the “affine” or “base point
free” version of the concept of group. There are several equivalent versions, going
under different names such as heap, groud, flock, herd, principal homogeneous space,
abstract coset, pregroup or others. We use what seems to be the most currently
fashionable term, namely torsor. The idea is quite simple (see Appendix A for
details): if, for a given group G with unit element e , we want to “forget the unit
element”, we consider G with the ternary product

G×G×G → G; (x, y, z) 7→ (xyz) := xy−1z.

As is easily checked, this map has the following properties: for all x, y, z, u, v ∈ G ,

(xy(zuv)) = ((xyz)uv) , (G1)

(xxy) = y = (yxx) . (G2)

Conversely, given a set G with a ternary composition having these properties, for
any element x ∈ G we get a group law on G with unit x by letting a ·x b := (axb)
(the inverse of a is then (xax)) and such that (abc) = ab−1c in this group. (This
observation is stated explicitly by Certaine in [Cer43], based on earlier work Prüfer,
Baer, and others.) Thus the affine concept of the group G is a set G with a ternary
map satisfying (G1) and (G2); this is precisely the structure we call a torsor.

One advantage of this formulation of the torsor concept, compared to other,
equivalent ones mentioned above, is that it admits two natural and important
extensions. On the one hand, a direct check shows that in any torsor the relation

(xy(zuv)) = (x(uzy)v) = ((xyz)uv) , (G3)

called the para-associative law, holds (note the reversal of arguments in the middle
term). Just as groups are generalized by semigroups, torsors are generalized by
semitorsors which are simply sets with a ternary map satisfying (G3). It is already
known that this concept has important applications in geometry and algebra. The
idea can be traced back at least as far work of V.V. Vagner, e.g. [Va66],.

On the other hand, restriction to the diagonal in a torsor gives rise to an
interesting product m(x, y) := (xyx). The map σx : y 7→ m(x, y) is just inversion
in the group (G, x). If G is a Lie torsor (defined in the obvious way), then (G, m)
is a symmetric space in the sense of Loos [Lo69].

Grassmannian semitorsors. One of the remarkable properties of the quintary
map Γ defined above is that it admits an “algebraic continuation” from the subset
D(Γ) ⊂ X 5 of 5-tuples from the Grassmannian X = Gras(W ) where it was
initially defined to all of X 5 . The definition given above requires that the pairs
(E, X) and (F, Z) are complementary. On the other hand, fixing an arbitrary
complementary pair (E, F ), there is another natural ternary product: with respect
to the decomposition W = E ⊕F , subspaces X,Y, Z, . . . of W can be considered
as linear relations between E and F , and can be composed as such: ZY −1X is
again a linear relation between E and F . Since ZY −1X depends on E and on
F , we get another map

Γ(X, E, Y, F, Z) := XY −1Z.
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Looking more closely at the definition of this map, one realizes that there is
a natural extension of its domain for all pairs (E, F ), and that on D(Γ) this
new definition of Γ coincides with the earlier one given by (0.1) (Theorem 2.3).
Moreover, for any fixed pair (E, F ), the ternary product

(XY Z) := Γ(X,E, Y, F, Z)

turns the Grassmannian X into a semitorsor. The list of remarkable properties of
Γ does not end here – we also have symmetry properties with respect to the Klein
4-group acting on the variables (X, E, F, Z), certain interesting diagonal values
relating the map Γ to lattice theoretic properties of the Grassmannian (Theorem
2.4) as well as self-distributivity of the product, reflecting the fact that all partial
maps of Γ are structural, i.e., compatible with the whole structure (Theorem
2.11). Together, these properties can be used to give an axiomatic definition of an
associative geometry (Chapter 3).

Correspondence with associative algebras and pairs. Taking the Lie func-
tor for Lie groups as model, we wish to define a multilinear tangent object attached
to an associative geometry at a given base point. A base point in X is a fixed
complementary (we say also transversal) pair (o+, o−). The pair of abelian groups
(A+, A−) := (Co− , Co+

) then plays the rôle of a pair of “tangent spaces”, and the
rôle of the Lie bracket is taken by the following pair of maps:

f± : A± × A∓ × A± → A±; (x, y, z) 7→ Γ(x, o+, y, o−, z).

One proves that f± are trilinear (Theorem 3.4). Since the maps f± come
from a semitorsor, they form an associative pair, i.e., they satisfy the para-
associative law (see Appendix B). Conversely, one can construct, for every as-
sociative pair, an associative geometry having the given pair as tangent ob-
ject (Theorem 3.5). The prototype of an associative pair are operator spaces,
(A+, A−) = (Hom(E, F ), Hom(F, E)), with trilinear products f+(X, Y, Z) =
XY Z , f−(X, Y, Z) = ZY X . They correspond precisely to Grassmannian ge-
ometries X = Gras(E ⊕ F ) with base point (o+, o−) = (E, F ).

Associative unital algebras are associative pairs of the form (A, A); in the
example just mentioned, this corresponds to the special case E = F . In this
example, the unit element e of A corresponds to the diagonal ∆ ⊂ E ⊕ E ,
and the subspaces (E, ∆, F ) are mutually complementary. On the geometric
level, this translates to the existence of a transversal triple (o+, e, o−). Thus the
correspondence between associative geometries and associative pairs contains as
a special case the one between associative geometries with transversal triples and
unital associative algebras (Theorem 3.7).

Further topics. Since associative algebras play an important rôle in modern
mathematics, the present work is related to a great variety of topics and leads
to many new problems located at the interface of geometry and algebra. We
mention some of them in the final chapter of this work, without attempting to be
exhaustive. In particular, in part II of this work ([BeKi09]) we will extend the
theory to involutive associative algebras (topic (2) mentioned in Chapter 4).
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Notation. Throughout this work, K denotes a commutative unital ring and B an
associative unital K-algebra, and we will consider right B-modules V, W, . . . . We
think of B as “base ring”, and the letter A will be reserved for other associative K-
algebras such as EndB(W ). For a first reading, one may assume that B = K ; only
in Theorem 3.7 the possibility to work over non-commutative base rings becomes
crucial.

When viewing submodules as elements of a Grassmannian, we will fre-
quently use lower case letters to denote them, since this matches our later notation
for abstract associative geometries. However, we will also sometimes switch back
to the upper case notation we have already used whenever it adds clarity.

1. Grassmannian torsors

The Grassmannian of a right B-module W is the set X = Gras(W ) = GrasB(W )
of all B-submodules of W . If x ∈ X and a ∈ X are complementary (W = x⊕a),
we will write x>a and call the pair (x, a) transversal. We write Ca := a> := {x ∈
X |x>a} for the set of all complements of a and

Cab := a> ∩ b>

for the set of common complements of a, b ∈ X . We think of a> and Cab (which
may or may not be empty) as “open chart domains” in X . The following discussion
makes this more precise.

Connected components. We define an equivalence relation in X : x ∼ y if
there is a finite sequence of “charts joining x and y”, i.e.: ∃a0, a1, . . . , ak such
that a0 = x , ak = y and

∀i = 0, . . . , k − 1 : Cai,ai+1
6= ∅.

The equivalence classes of this relation are called connected components of X . We
say that x ∈ X is isolated if its connected component is a singleton. If B = K
and K is a field, then connected components are never reduced to a point (unless
x = 0 or x = W ). For instance, the connected components of Gras(Kn) are
the Grassmannians Grasp(Kn) of subspaces of a fixed dimension p (indeed, two
subspaces of the same dimension p in Kn always admit a common complement,
hence sequences of length 1 always suffice in the above condition.

Base points and pair geometries. A base pair or base point in X is a fixed
transversal pair, often denoted by (o+, o−). If (o+, o−) is a base point, then in
general o+ and o− belong to different connected components, which we denote by
X+ and X− . For instance, in the Grassmann geometry Gras(Kn) over a field K ,
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if o+ is of dimension p , then o− has to be of dimension q = n−p , and hence they
belong to different components unless p = q = n

2
.

More generally, we may consider certain subgeometries of X , namely pairs
(X+,X−) of sets X± ⊂ X such that, for every x ∈ X± , the set x> is a nonempty
subset of X∓ . We refer to (X+,X−) as a pair geometry.

For instance, if W = B , then X is the space of right ideals in B . Fix an
idempotent e ∈ B and let o+ := eB , o− = (1 − e)B and X± the set of all right
ideals in B that are isomorphic to o± and have a complement isomorphic to o∓ .
Then (X+,X−) is a pair geometry.

Transversal triples and spaces of the first kind. We say that X is of the
first kind if there exists a triple (a, b, c) of mutually transversal elements, and of the
second kind else. Clearly, a, b, c then all belong to the same connected component
of X ; taking (a, c) as base point (o+, o−), we thus have X+ = X− . Note that
W = a ⊕ c with a ∼= b ∼= c , so W is “of even dimension”. For instance, the
Grassmann geometry Gras(Kn) over a field K is of the first kind if and only if n
is even, and the preceding example of a pair geometry of right ideals is of the first
kind if and only if o+ and o− are isomorphic as B-modules. In other words, B is
a direct sum of two copies of some other algebra, and X+ = X− is the projective
line over this algebra, cf. [BeNe05].

Basic operators and the product map Γ. If x and a are two complementary
B-submodules, let P a

x : W → W be the projector onto x with kernel a . Since a
and x are B-modules, this map is B-linear. The relations

P a
x ◦ P a

z = P a
x , P a

x ◦ P b
x = P b

x , P z
b ◦ P a

z = 0

will be constantly used in the sequel. For a B-linear map f : W → W , we denote
by [f ] := f mod K× be its projective class with respect to invertible scalars from
K . By 1 we denote the (class of) the identity operator on W . We define the
following operators : if a>x and z>b , define the middle multiplication operator
(motivation for this terminology will be given below)

Mxabz := [P a
x − P z

b ],

and if a>x and y>b , define the left multiplication operator

Lxayb := [1− P x
a P b

y ]

and if a>y and z>b , define the right multiplication operator

Raybz := Lzbya = [1− P z
b P a

y ].

For a scalar s ∈ K and a transversal pair (x, a), the dilation operator is defined
by

δ(s)
xa := [sP x

a + P a
x ] = [1− (1− s)P x

a ] = [s1 + (1− s)P a
x ].

Note that the dilation operator for the scalar −1 is also a middle multiplication
operator:

δ(−1)
xa = [−P x

a + P a
x ] = Mxaax,
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and it is induced by a reflection with respect to a subspace. Also, δ
(1)
xa = 1 and

δ
(0)
xa = [P a

x ] .

Proposition 1.1.

i) (Symmetry) Mxabz is invariant under permutations of indices by the Klein
4-group:

Mxabz = Maxzb = Mbzxa = Mzbax.

ii) (Fundamental Relation) Whenever u, x>a and v, z>b,

RaubzLxavb = MxabzMuabv = LxavbRaubz.

iii) (Diagonal values) If x ∈ Cab ,

Lxaxb = 1 = Raxbx,

and, for all u ∈ Cab and z>b,

Muabz(u) = z = Raubz(u).

iv) (Compatibility) If x>a, y>b, z>b and Cab is not empty, then

Lxayb(z) = Mxabz(y),

and if x>a, z>b, y>a and Cab is not empty, then

Mxabz(y) = Raybz(x).

v) (Invertibility) Let (x, a, y, b, z) ∈ X 5 such that x, y, z ∈ Cab . Then the
operators

Lxayb, Mxabz, Raybz

are invertible, with inverse operators, respectively,

Lyaxb, Mzabx, Razby.

Proof. (i):
Mxabz = [P a

x − P z
b ] = [P z

b − P a
x ] = Mbzxa.

Since this is the only place where we really use that [f ] = [−f ] , for simplicity of
notation, we henceforth omit the brackets [ ].

Mzbax = P b
z − P x

a = (1− P z
b )− (1− P a

x ) = Mxabz

(ii): Using in the second line that P x
a P b

vP z
b P a

u = 0:

LxavbRaubz = (1− P x
a P b

v )(1− P z
b P a

u )

= 1− P x
a P b

v − P z
b P a

u

= 1− (1− P a
x )(1− P v

b )− P z
b P a

u

= P a
x + P v

b − P a
x P v

b − P z
b P a

u
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= (P a
x − P z

b )(P a
u − P v

b )
= MxabzMuabv.

The relation RaubzLxavb = MxabzMuabv now follows from (i).

(iii): Lxaxb = 1 = Raxbx is clear. Fix an element u ∈ Cab . Then, for all
z>b ,

Muabz(u) = Mzbau(u) = (P b
z − P u

a )(u) = P b
z (u) = z

since both u and z are complements of b . Similarly,

Raubz(u) = (1− P z
b P a

u )(u) = (1− P z
b )(u) = P b

z (u) = z.

(iv): By (ii), MxabzMuaby = LxaybRaubz . Apply this operator to u ∈ Cab

and use that, by (iii), Muaby(u) = y and Raubz(u) = z . One gets

Mxabz(y) = MxabzMuaby(u) = LxaybRaubz(u) = Lxayb(z).

Via the symmetry relation (i), the second equality can also be written Mzbax(y) =
Lzbya(x) and hence is equivalent to the first one.

(v): Since Lxaxb = 1 = Raxbx , the fundamental relation (ii) implies
MxabzMzaby = Lxayb and

MxabzMzabx = Lxaxb = 1,

hence Mxabz is invertible with inverse Mzabx . The other relations are proved
similarly.

Remark 1.2. We will prove in Chapter 2 by different methods that the as-
sumption Cab 6= ∅ in (iv) is unnecessary.

Definition 1.3. We define a map Γ : D(Γ) → X on the following domain of
definition: let

DL := {(x, a, y, b, z) ∈ X 5 | x>a and y>b}
DR := {(x, a, y, b, z) ∈ X 5 | y>a and z>b}
DM := {(x, a, y, b, z) ∈ X 5 | x>a, z>b and Cab 6= ∅}

D(Γ) := DL ∪DR ∪DM ,

and define Γ : D(Γ) → X by

Γ(x, a, y, b, z) :=


Lxayb(z) if (x, a, y, b, z) ∈ DL

Raybz(x) if (x, a, y, b, z) ∈ DR

Maxbz(y) if (x, a, y, b, z) ∈ DM .

This is well-defined: if (x, a, y, b, z) ∈ DL ∩ DR , then y ∈ Cab , hence Cab is not
empty and the preceding proposition implies that

Lxayb(z) = Mxabz(y) = Raybz(x).
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Similar remarks apply to the cases (x, a, y, b, z) ∈ DL ∩ DM or (x, a, y, b, z) ∈
DR ∩DM . The quintary map Γ explains our terminology and notation: Lxayb is
the left multiplication operator, acting on the last argument z , and similarly R
and M denote right and middle multiplication operators. ¿From the definition it
follows easily that the symmetry relation

Γ(x, a, y, b, z) = Γ(z, b, y, a, x)

holds for all (x, a, y, b, z) ∈ D(Γ). On the other hand, the relation

Γ(x, a, y, b, z) = Γ(a, x, y, z, b)

holds if (x, a, y, z, b) ∈ DM ; but at present it is somewhat complicated to show
that this relation is valid on all of D(Γ) (this will follow from the results of Chapter
2). As to the “diagonal values”, for x ∈ Cab we have

Γ(x, a, x, b, z) = z = Γ(z, b, x, a, x) .

If we assume just a>x and b>z , then we can only say in general that

Γ(x, a, x, b, z) = (1− P z
b P a

x )(x) = P b
z (x) ⊂ z .

If a, b>x and b>z , then, thanks to the symmetry relation Mxabz = Maxzb ,

Mxabz(a) = Γ(x, a, a, b, z) = Γ(a, x, a, z, b) = b . (1.1)

Definition 1.4. Fix s ∈ K . Let

D(Πs) := {(x, a, z) ∈ X 3 | x>a or z>a}

and define a ternary map Πs : D(Πs) → X by

Πs(x, a, z) :=

{
δ
(s)
xa (z) if x>a

δ
(1−s)
za (x) if z>a.

As above, this map is well-defined. The symmetry relation

Πs(x, a, y) = Π1−s(y, a, x)

follows easily from the definition. Note that, if s is invertible in K and x>a , then

the dilation operator δ
(s)
xa is invertible with inverse δ

(s−1)
xa .

Grassmannian torsors and their actions. Recall from the introduction and
Appendix A the definition and elementary properties of torsors.

Theorem 1.5. The Grassmannian geometry (X ; Γ, Πr) defined in the preceding
subsection has the following properties:
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i) For a, b ∈ X fixed, Cab with product

(xyz) := Γ(x, a, y, b, z)

is a torsor (which will be denoted by Uab ). In particular, for a triple
(a, y, b) with y ∈ Cab , Cab is a group with unit y and multiplication xz =
Γ(x, a, y, b, z).

ii) The map Γ is symmetric under the permutation (15)(24) (reversal of argu-
ments):

Γ(x, a, y, b, z) = Γ(z, b, y, a, x)

In other words, Uab is the opposite torsor of Uba (same set with reversed
product). In particular, the torsor Ua := Uaa is commutative.

iii) The commutative torsor Ua is the underlying additive torsor of an affine
space: for any a ∈ X , Ua is an affine space over K, with additive structure
given by

x +y z = Γ(x, a, y, a, z),

(sum of x and z with respect to the origin y), and action of scalars given by

sy + (1− s)x = Πs(x, y)

(multiplication of y by s with respect to the origin x).

Proof. (i) Let us show first that Cab is stable under the ternary map (xyz).
Let x, y, z ∈ Cab and consider the bijective linear map g := Mxabz . We show that
g(y) ∈ Cab . By equation (1.1), we have the “diagonal values” Mxabz(a) = b and
Mxabz(b) = a . Thus, if y is complementary to a and b , g(y) is complementary
both to g(a) = b and to g(b) = a , which means that g(y) ∈ Cab .

The associativity follows immediately from the “fundamental relation”
(Proposition 1.1(ii)):

(xv(yuz)) = LxavbRaubz(y) = RaubzLxavb(y) = ((xvy)uz),

and the idempotent laws from

(xxy) = Lxaxb(y) = 1(y) = y, (yxx) = Raxbx(y) = 1(y) = y.

Thus Cab is a torsor.

(ii) This has already been shown in the preceding section.

(iii) The set Ca is the space of complements of a . It is well-known that this
is an affine space over K . Let us recall how this affine structure is defined (see,
e.g., [Be04]): elements v ∈ Ca are in one-to-one correspondence with projectors of
the form P a

v . Then, for u, v, w ∈ Ua , the structure map (u, v, w) 7→ u +v w in the
affine space Ca is given by associating to (u, v, w) the point corresponding to the
projector P a

u − P a
v + P a

w , and the structure map (v, w) 7→ r ·v w = (1 − r)v + rw
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by associating to (v, w) the point corresponding to the projector rP a
u + (1− r)P a

v .
Now write y = P a

y (W ); then we have

Γ(x, a, y, a, z) = (P a
x − P z

a )(y)

= (P a
x − 1 + P a

z )P a
y (W )

= (P a
x − P a

y + P a
z )(W ),

and
Πs(x, a, y) = ((1− s)P a

x + s1)(z) = ((1− s)P a
x + sP a

z )(W ),

proving that (iii) describes the usual affine structure of Ca .

Homomorphisms. We think of the maps Γ : D(Γ) → X and Πr : D(Πr) → X
as quintary, resp. ternary “product maps” defined on (parts of) direct products
X 5 , resp. X 3 . Thus we have basic categorical notions just as for groups, rings,
modules etc.: homomorphisms are maps g : X → Y preserving transversality
(x>y implies g(x)>g(y)) and such that, for all 5-tuples in D(Γ), resp. triples in
D(Πr),

g (Γ(u, c, v, d, w)) = Γ (g(u), g(c), g(v), g(d), g(w)) ,

g (Πr(u, c, v)) = Πr (g(u), g(c), g(v)) .

Essentially, this means that all restrictions of g ,

Uab → Ug(a),g(b), Ua → Ug(a),

are usual homomorphisms (of torsors, resp. of affine spaces). We may summarize
this by saying that g is “locally linear” and “compatible with all local group
structures”.

Theorem 1.6. Assume x, y, z ∈ Uab . Then the operators

Mxabz : X → X , Lxayb : X → X , Raybz : X → X

are automorphisms of the geometry (X , Γ, Πr), and the groups (Uab, y) act on X
by automorphisms both from the left and from the right via

(Uab, y)×X → X , (x, z) 7→ Lxayb(z) = Γ(x, a, y, b, z),

respectively

X × (Uab, y) → X , (x, z) 7→ Raybz(x) = Γ(x, a, y, b, z).

For fixed (a, y, b), the left and right actions commute.

Proof. The construction of the product map Γ is “natural” in the sense that
all elements of GLB(W ) (acting from the left on W , commuting with the right B-
module structure) act by automorphisms of (X , Γ), just by ordinary push-forward

of sets. This follows immediately from the relation g◦P a
x = P

g(a)
g(x) ◦g . In particular,
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the invertible linear operators Mxabz , Lxayb and Raybz induce automorphisms of
(X , Γ).

Now fix y ∈ Uab and consider it as the unit in the group (Uab, y). The claim
on the left action amounts to the identities Lyayb = id (which we already know)
and, for all x, x′ ∈ Uab and all z ∈ X ,

Γ(x, a, y, b, Γ(x′, a, y, b, z)) = Γ(Γ(x, a, y, b, x′), a, y, b, z).

First, note that, if z is “sufficiently nice”, i.e., such that the fundamental relation
(Proposition 1.1(ii)) applies, then this holds indeed. We will show in Chapter 2
that the identity in question holds very generally, and this will prove our claim.
Therefore we leave it as a (slighly lengthy) exercise to the interested reader to
prove the claim in the present framework. The claims concerning the right action
are proved in the same way, and the fact that both actions commute is precisely
the content of the fundamental relation (Proposition 1.1(ii))

Inner automorphisms. We call automorphisms of the geometry defined by the
preceding theorem inner automorphisms, and the group generated by them the
inner automorphism group. Note that middle multiplications Mxabz are honest
automorphisms of the geometry (X , Γ), although they are anti -automorphisms of
the torsor Uab ; this is due to the fact that they exchange a and b . On the other
hand, Lxayb and Raybz are automorphisms of the whole geometry and of Uab .

Note also that the action of the groups Uab is of course very far from being
regular on its orbits, except on Uab itself. For instance, a and b are fixed points
of these actions, since Γ(x, a, y, b, b) = b and Γ(x, a, y, b, a) = a .

Finally, the statements of the preceding two theorems amount to certain
algebraic identities for the multiplication map Γ. This will be taken up in Chapter
2, where we will not have to worry about domains of definition.

Affine picture of the torsor Uab . It is useful to have “explicit formulas” for
our map Γ. Such formulas can be obtained by introducing “coordinates” on X
in the following way (see [Be04]). First of all, choose a base point (o+, o−) and
consider the pair geometry (X+,X−), where X± is the space of all submodules
isomorphic to o± and having a complement isomorphic to o∓ . We identify X+

with injections x : o+ → W of B right-modules, modulo equivalence under the
action of the group G := GL(o+) (x ∼= x ◦ g , where g acts on o+ on the left),
and X− with B-linear surjections a : W → o+ (modulo equivalence a ∼= g ◦ a for
g ∈ G). Equivalence classes are denoted by [x] , resp. [a] .

Proposition 1.7. The following formulae hold for x, y, z ∈ X+ , a, b ∈ X− .

i) if x>a and z>b (middle multiplication), then

Γ
(

[x], [a], [y], [b], [z]
)

=
[
x(ax)−1ay − y + z(bz)−1by

]
, (1.2)

ii) if a>x and b>y (left multiplication), then

Γ
(

[x], [a], [y], [b], [z]
)

=
[
x(ax)−1ay(by)−1(bz)− y(by)−1(bz) + z

]
, (1.3)
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iii) if a>y and b>z (right multiplication), then

Γ
(

[x], [a], [y], [b], [z]
)

=
[
x− y(ay)−1ax + z(bz)−1za(ay)−1ax

]
. (1.4)

Proof. The right hand side of (1.2) is a well-defined element of X , as is seen
be replacing x by x ◦ g , resp. y by y ◦ g , z by z ◦ g and a by g ◦ a , b by g ◦ b .
Note that [x] and [a] are transversal if and only if ax : o+ → o+ is invertible.
Now, the operator

x(ax)−1a : W → o+ → W

has kernel a and image x and is idempotent, therefore it is P a
x . Similarly, we

see that z(bz)−1b is P b
z , and hence the right hand side is induced by the operator

P a
x − 1 +P b

z = Mxabz . Similarly, we see that the right hand side of (1.3) is induced
by the linear operator

P a
x P b

y − P b
y + 1 = (P a

x − 1)P b
y + 1 = 1− P x

a P b
y = Laxby

and the one of (1.4) by 1− P a
y + P b

z P a
y = 1 + (P b

z − 1)P a
y = 1− P z

b P a
y = Rzbya.

As usual in projective geometry, the projective formulas from the preceding
result may be affinely re-written: if y>b , we may affinize by taking ([y], [b]) as base
point (o+, o−): we write W = o− ⊕ o+ ; then injections x : o+ → W , z : o+ → W
that are transversal to the first factor can be identified with column vectors (by
normalizing the second component to be the identity operator on o+ )

x =

(
X
1

)
, z =

(
Z
1

)
(columns with X, Z ∈ Hom(o+, o−)). In other terms, x and z are graphs of linear
operators X, Z : o+ → o− . Surjections a : W → o+ that are transversal to
the second factor correspond to row vectors (A, 1) (row with A ∈ Hom(o−, o+)).
Note, however, that the kernel of (A, 1) is determined by the condition Au+v = 0,
i.e., v = −Au , and hence a is the graph of −A : o− → o+ . Therefore we write
a = (−A, 1). The base point y = o+ is the column (0, 1)t , and the base point
b = o− is the row (0, 1). Since ax = (−A, 1)(X, 1)t = 1 − AX , a and x are
transversal iff 1 − AX : o+ → o+ is an invertible operator (in Jordan theoretic
language: the pair (X, A) is quasi-invertible, cf. [Lo75]). Using this, any of the
three formulas from the preceding proposition leads to the “affine picture”:

Γ(x, a, y, b, z) =

[(
X
1

)
(1− AX)−1 −

(
0
1

)
+

(
Z
1

)]
=

[(
−ZAX + X + Z

1

)]
.

Finally, identifying x with X , y with Y and so on, we may write

Γ(X, A,O+, O−, Z) = X − ZAX + Z .

This formula is interesting in many respects: it is affine in all three variables, and
the product ZAX from the associative pair

(
Hom(o+, o−), Hom(o−, o+)

)
shows

up. We will give conceptual explanations of these facts later on. Also, it is an
easy exercise to check directly that (X, Z) 7→ X−ZAX +Z defines an associative
product on Hom(o+, o−) and induces a group structure on the set of elements X
such that 1− AX is invertible.
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Other “rational” formulas. More generally, having fixed (o+, o−), we may
write a, b as row-, and x, y, z as column vectors, and then we get the general
formula

Γ(X, A, Y,B, Z) =[(
X
1

)
(1− AX)−1(1− AY )−

(
Y
1

)
+

(
Z
1

)
(1−BZ)−1(1−BY )

]
,

which is (the class of) a vector with second component (“denominator”)

D := (1− AX)−1(1− AY )− 1 + (1−BZ)−1(1−BY ),

and first component (“numerator”)

N := X(1− AX)−1(1− AY )− Y + Z(1−BZ)−1(1−BY ),

so that the affine formula is Γ(X, A, Y,B, Z) = ND−1 . Besides the above choice
(Y = O+ , B = O− ), another reasonable choice is just B = O− , leading to

Γ(X, A, Y,O−, Z) = X − (Y − Z)(1− AY )−1(1− AX) .

Similarly, for Y = O+ we get formulas that, in case A = B , correspond to well-
known Jordan theoretic formulas for the quasi-inverse. Such formulas show that,
if we work in finite dimension over a field, Γ is a rational map in the sense of
algebraic geometry, and if we work in a topological setting over topological fields
or rings, then Γ will have smoothness properties similar to the ones described in
[BeNe05].

Case of a geometry of the first kind. Assume there is a transversal triple,
say, (o+, e, o−). We may assume that e is the diagonal in W = o− ⊕ o+ . Take,
in the formulas given above, a = 0 = (0, 1), b = ∞ = (1, 0), y = (1, 1)t ,
ax = (0, 1)(X, 1)t = 1, bz = (1, 0)(Z, 1)t = Z , ay = 1, by = 1, so we get

Γ(X, 0, e,∞, Z) =

[(
X
1

)
−

(
1
1

)
+

(
Z
1

)
Z−1

]
=

[(
X

Z−1

)]
=

[(
XZ

1

)]
,

and hence the affine picture is the algebra EndB(o+) with its usual product.
Taking a = ∞ , b = 0 gives the opposite of the usual product. Replacing e
by y = {(v, Y v) | Y : o+ → o−} (graph of an invertible linear map Y ), we get the
affine picture

Γ(X, 0, Y,∞, Z) =

[(
XY −1Z

1

)]
.

Affinization: the transversal case. If a and b are arbitrary, then in general
the torsor Uab will be empty. Therefore we look at the pair (Ua, Ub).

Theorem 1.8. For all a, b ∈ X , we have

Γ(Ua, a, Ub, b, Ua) ⊂ Ua, Γ(Ub, a, Ua, b, Ub) ⊂ Ub .
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In other words, the maps

Ua × Ub × Ua → Ua; (x, y, z) 7→ (xyz)+ := Lxayb(z) = Γ(x, a, y, b, z) ,

Ub × Ua × Ub → Ub; (x, y, z) 7→ (xyz)− := Raybz(x) = Γ(x, a, y, b, z)

are well-defined. If, moreover, a>b, then both maps are trilinear, and they form
an associative pair, i.e., they satisfy the para-associative law (cf. Appendix B)

(xy(uvw)±)± = ((xyu)±vw)± = (x(vuy)∓w)±.

Proof. Assume that x>a and y>b . By a direct calculation, we will show
that Lxayb(Ua) ⊂ Ua . Let us write Lxayb in matrix form with respect to the
decomposition W = a⊕ x . The projectors P x

a and P b
y can be written

P x
a =

(
1 0
0 0

)
, P b

y =

(
α β
γ δ

)
whith α ∈ End(a), β ∈ Hom(x, a), etc. Thus

Lxayb = 1−
(

1 0
0 0

) (
α β
γ δ

)
=

(
1− α −β

0 1

)
.

Let z ∈ Ua ; it can be written as the graph {(Zv, v)| v ∈ x} of a linear operator
Z : x → a . Since

Lxayb

(
Zv
v

)
=

(
1− α −β

0 1

) (
Zv
v

)
=

(
(1− α)Zv − βv

v

)
,

Lxayb(z) is the graph of the linear operator (1 − α)Z − β : x → a , and hence
is again transversal to a , so ( )+ is well-defined. By symmetry, it follows that
( )− is well-defined. Moreover, the calculation shows that z 7→ (xyz)+ is affine
(we will see later that this map is actually affine with respect to all three variables,
see Corollary 2.14).

Now assume that a>b , and write Lxayb in matrix form with respect to the
decomposition W = a⊕ b . The projectors P a

x and P b
y can be written

P a
x =

(
0 X
0 1

)
, P b

y =

(
1 0
Y 0

)
where X ∈ Hom(b, a) and Y ∈ Hom(a, b). We get

Lxayb = 1−
(

1−
(

0 X
0 1

)) (
1 0
Y 0

)
= 1−

(
1−XY 0

0 0

)
=

(
XY 0

0 1

)
and, writing z ∈ Ua as a graph {(Zv, v)|v ∈ b} , we get

Lxayb

(
Zv
v

)
=

(
XY 0

0 1

) (
Zv
v

)
=

(
XY Zv

v

)
,

hence Lxayb(z) is the graph of XY Z : b → a . Thus, with V + = Ua
∼= Hom(b, a),

V − = Ub
∼= Hom(a, b), the first ternary map is given by

V + × V − × V + → V +, (X, Y, Z) 7→ XY Z.
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Similarly, one shows that the second ternary map is given by

V − × V + × V − → V −, (X, Y, Z) 7→ ZY X.

This pair of maps is the prototype of an associative pair (see Appendix B).

At this stage, the appearance of the trilinear expression ZY X , resp. ZAX ,
both in the affine pictures of the map from the preceding theorem and in the remark
following Proposition 1.7, related by the identity

X − (X − ZAX + Z) + Z = ZAX, (1.5)

looks like a pure coincidence. A conceptual explanation will be given in Chapter
3 (Lemma 3.5).

2. Grassmannian semitorsors

In this chapter we extend the definition of the product map Γ onto all of X 5 , and
we show that the most important algebraic identities extend also. We use notation
and general notions explained in the first section of the preceding chapter.

Composition of relations. Recall that, if A, B, C, . . . are any sets, we can
compose relations : for subsets x ⊂ A×B , y ⊂ B × C ,

y ◦ x := yx := {(u, w) ∈ A× C | ∃v ∈ B : (u, v) ∈ x, (v, w) ∈ y} .

Composition is associative: both (z ◦ y) ◦ x and z ◦ (y ◦ x) are equal to

z ◦ y ◦ x = {(u, w) ∈ A×D | ∃(v1, v2) ∈ y : (u, v1) ∈ x, (v2, w) ∈ z} . (2.1)

If x and y are graphs of maps X , resp. Y (v = Xu , w = Y v ) then y ◦ x is the
graph of Y X (w = Y v = Y Xu). The reverse relation of x is

x−1 := {(w, v) ∈ B × A | (v, w) ∈ x}.

We have (yx)−1 = x−1y−1 , and if x is the graph of a bijective map, then x−1

is the graph of its inverse map. For x, y, z ⊂ A × B , we get another relation
between A and B by zy−1x . Obviously, this ternary composition satisfies the
para-associative law, and hence relations between A and B form a semitorsor.
Letting W := A×B , we have the explicit formula

zy−1x =

{
ω = (α′, β′) ∈ W

∣∣∣ ∃η = (α′′, β′′) ∈ y :
(α′, β′′) ∈ x, (α′′, β′) ∈ z

}
=

{
ω ∈ W

∣∣∣ ∃α′, α′′ ∈ A,∃β′, β′′ ∈ B, ∃η ∈ y, ∃ξ ∈ x, ∃ζ ∈ z :
ω = (α′, β′), η = (α′′, β′′), ξ = (α′, β′′), ζ = (α′′, β′)

}
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Composition of linear relations. Now assume that A, B, C, . . . are linear
spaces over B (i.e., right modules) and that all relations are linear relations (i.e.,
submodules of A⊕B , etc.). Then zy−1x is again a linear relation. Identifying A
with the first and B with the second factor in W := A ⊕ B , the description of
zy−1x given above can be rewritten, by introducing the new variables α := α′−α′′ ,
β := β′ − β′′ ,

zy−1x =

{
ω ∈ W

∣∣∣ ∃α′, α′′ ∈ a,∃β′, β′′ ∈ b, ∃η ∈ y, ∃ξ ∈ x, ∃ζ ∈ z :
ω = α′ + β′, η = α′′ + β′′, ξ = α′ + β′′, ζ = α′′ + β′

}
=

{
ω ∈ W

∣∣∣ ∃α′, α ∈ a,∃β′, β ∈ b, ∃η ∈ y, ∃ξ ∈ x, ∃ζ ∈ z :
ω = α′ + β′, η = ω − α− β, ξ = ω − β, ζ = ω − α

}
.

In order to stress that the product xy−1z depends also on A and B , we will
henceforth use lowercase letters a and b and write W = a⊕ b .

Lemma 2.1. Assume W = a⊕ b and let x, y, z ∈ GrasB(W ). Then

zy−1x =

{
ω ∈ W

∣∣∣ ∃ξ ∈ x, ∃α ∈ a,∃η ∈ y, ∃β ∈ b, ∃ζ ∈ z :
ω = ζ + α = α + η + β = ξ + β

}
.

Proof. Since W = a ⊕ b , the first condition (∃α′ ∈ a, β′ ∈ b : ω = α′ + β′ )
in the preceding description is always satisfied and can hence be omitted in the
description of zy−1x . Replacing α by −α and β by −β , the claim follows.

The extended product map. Motivated by the considerations from the pre-
ceding section, we now define the product map Γ : X 5 → X for all 5-tuples of
the Grassmannian X = GrasB(W ) by

Γ(x, a, y, b, z) :=

{
ω ∈ W

∣∣∣ ∃ξ ∈ x, ∃α ∈ a,∃η ∈ y, ∃β ∈ b, ∃ζ ∈ z :
ω = ζ + α = α + η + β = ξ + β

}
.

We will show, among other things, that this notation is in keeping with the one
introduced in the preceding chapter. Firstly, however, we collect various equivalent
formulas for Γ. The three conditions

ω = η + α + β
ω = β + ξ
ω = α + ζ

(2.2)

can be re-written in various ways. For instance, subtracting the last two equations
from the first one we get the equivalent conditions

ω = −η + ξ + ζ, ω = β + ξ, ω = α + ζ (2.3)

and hence, replacing η by −η , we get

Γ(x, a, y, b, z) =

{
ω ∈ W

∣∣∣ ∃ξ ∈ x, ∃α ∈ a,∃η ∈ y, ∃β ∈ b, ∃ζ ∈ z :
ω = ζ + α = ξ + η + ζ = ξ + β

}
.
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Next, letting α′ = −α and β′ = −β , conditions (2.2) are equivalent to

η = ω + α′ + β′, ζ = ω + α′, ξ = ω + β′, (2.4)

and hence we get

Γ(x, a, y, b, z) =

{
ω ∈ W

∣∣∣ ∃ξ ∈ x, ∃α ∈ a,∃η ∈ y, ∃β ∈ b, ∃ζ ∈ z :
η = ω + α + β, ζ = ω + α, ξ = ω + β

}
=

{
ω ∈ W

∣∣∣ ∃β ∈ b, ∃α ∈ a : ω + α ∈ z, ω + α + β ∈ y, ω + β ∈ x
}

.

The following lemma now follows by straightforward changes of variables:

Lemma 2.2. For all x, a, y, b, z ∈ X ,

Γ(x, a, y, b, z) =
{

ω ∈ W
∣∣∣ ∃ξ ∈ x, ∃ζ ∈ z : ζ + ω ∈ a, ζ + ω + ξ ∈ y, ω + ξ ∈ b

}
=

{
ω ∈ W

∣∣∣ ∃ξ ∈ x, ∃α ∈ a : ω − α ∈ z, ξ − α ∈ y, ω − ξ ∈ b
}

=
{

ω ∈ W
∣∣∣ ∃β ∈ b, ∃ζ ∈ z : ζ − ω ∈ a, ζ − β ∈ y, ω − β ∈ x

}
=

{
ω ∈ W

∣∣∣ ∃η ∈ y, ∃β ∈ b : ω − η − β ∈ a, β + η ∈ z, ω − β ∈ x
}

=
{

ω ∈ W
∣∣∣ ∃η ∈ y, ∃ζ ∈ z : ω + ζ ∈ a, ζ + η ∈ b, ω + ζ + η ∈ x

}
We refer to the descriptions of the lemma as the “(x, z)-”, “(x, a)-description”,
and so on. The (a, b)-description is particularly useful for the proof of the theorem
below. One may note that the only pairs of variables that cannot be used for such
a description are (a, z) and (x, b), and that the signs in the terms appearing in
these descriptions can be chosen positive if the pair is “homogeneous” (a subpair
of (x, y, z) or of (a, b)), whereas for “mixed” pairs we cannot get rid of signs.

Theorem 2.3. The map Γ : X 5 → X extends the product map defined in the
preceding chapter, and has the following properties:

(1 ) It is symmetric under the Klein 4-group:

Γ(x, a, y, b, z) = Γ(z, b, y, a, x) , (a)

Γ(x, a, y, b, z) = Γ(a, x, y, z, b) . (b)

(2 ) For any pair (a, b) ∈ X 2 , the product (xyz) := Γ(x, a, y, b, z) on X 3 satisfies
the properties of a semitorsor, that is,

Γ
(
x, a, u, b, Γ(y, a, v, b, z)

)
= Γ

(
x, a, Γ(v, a, y, b, u), b, z

)
= Γ

(
Γ(x, a, u, b, y), a, v, b, z

)
.

We will write Xab for X equipped with this semitorsor structure. Then the
semitorsor Xba is the opposite semitorsor of Xab ; in particular, Xaa is a
commutative semitorsor, for any a.
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Proof. (1) The symmetry relation (a) is obvious from the definition of Γ. Ex-
changing x and a amounts in the (x, a)-description to exchanging simultaneously
z and b , hence the symmetry relation (b) follows.

For (2), we use the (a, b)-description: on the one hand,

Γ
(
x, a, u, b, Γ(y, a, v, b, z)

)
=

=

{
ω ∈ W

∣∣∣ ∃α ∈ a,∃β ∈ b :
ω + α ∈ Γ(y, a, v, b, z), ω + α + β ∈ u, ω + β ∈ x

}

=

ω ∈ W
∣∣∣ ∃α ∈ a,∃β ∈ b, ∃α′ ∈ a,∃β′ ∈ b :

ω + α + β ∈ u, ω + β ∈ x, ω + α + α′ ∈ z,
ω + α + α′ + β′ ∈ v, ω + α + β′ ∈ y


On the other hand,

Γ
(
x, a, Γ(u, b, y, a, v), b, z

)
=

=

{
ω ∈ W

∣∣∣ ∃α′′ ∈ a,∃β′′ ∈ b :
ω + α′′ ∈ z, ω + α′′ + β′′ ∈ Γ(u, b, y, a, v), ω + β′′ ∈ x

}

=

ω ∈ W
∣∣∣ ∃α′′ ∈ a,∃β′′ ∈ b, ∃α′′′ ∈ a,∃β′′′ ∈ b :

ω + α′′ ∈ z, ω + β′′ ∈ x, ω + α′′ + β′′ + α′′′ ∈ u,
ω + α′′ + β′′ + β′′′ ∈ v, ω + α′′ + β′′ + α′′′ + β′′′ ∈ y


Via the change of variables α′′ = α + α′ , α′′′ = α′ , β′′ = β , β′′′ = β , we see that
these two subspaces of W are the same. The remaining equality is equivalent to
the one just proved via the symmetry relation (a).

Next, we show that the new map Γ coincides with the old one on D(Γ). Let
us assume that (x, a, y, b, z) ∈ DL , so x>a and y>b . We use the (y, b)-description
and let ζ := η + β , whence η = P b

y ζ and β = P y
b ζ . We get

Γ(x, a, y, b, z) =
{

ω ∈ W
∣∣∣ ∃η ∈ y, ∃β ∈ b : ω − η − β ∈ a, β + η ∈ z, ω − β ∈ x

}
=

{
ω ∈ W

∣∣∣ ∃ζ ∈ z : ω − P y
b (ζ) ∈ x, ω − ζ ∈ a

}
=

{
ω ∈ W

∣∣∣ ∃ζ ∈ z : P a
x (ω − ζ) = 0, P a

x (ω − P y
b (ζ)) = ω − P y

b (ζ)
}

=
{

ω ∈ W
∣∣∣ ∃ζ ∈ z : P a

x ζ = P a
x ω, ω = P y

b ζ + P a
x ω − P a

x P y
b ζ

}
=

{
ω ∈ W

∣∣∣ ∃ζ ∈ z : ω = (P y
b + P a

x − P a
x P y

b )ζ
}

and a straightforward calculation shows that

P y
b + P a

x − P a
x P y

b = 1− P x
a P b

y = Lxayb

so that Γ(x, a, y, b, z) = Lxayb(z). This proves that the old and new definitions of
Γ coincide on DL , and hence also on DR by the symmetry relation. Now we show
that the new map Γ coincides with the old one on DM : assume a>x and b>z
and use the (x, z)-description; let η := ζ−ω + ξ and observe that P a

x η = P a
x ξ = ξ
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(since ζ−ω ∈ a), and similarly P b
z η = ζ , whence ω = ζ− η + ξ = (P b

z − 1 + P a
x )η ,

and thus

Γ(x, a, y, b, z) =
{

ω ∈ W
∣∣∣ ∃ξ ∈ x, ∃ζ ∈ z : ζ − ω ∈ a, ζ − ω + ξ ∈ y, ω − ξ ∈ b

}
=

{
ω ∈ W

∣∣∣ ∃η ∈ y : ω = (P b
z − 1 + P a

x )η
}

,

that is, ω = −Mxabzη , and hence Γ(x, a, y, b, z) = Mxabz(y).

Diagonal values. We call diagonal values the values taken by Γ on the subset of
X 5 where at least two of the five variables x, a, y, b, z take the same value. There
are two different kinds of behavior on such diagonals: for the diagonal a = b (or,
equivalently, x = z ), we still have a rich algebraic theory which is equivalent to
the Jordan part of our associative products; this topic is left for subsequent work
(cf. Chapter 4). The three remaining diagonals (x = y , resp. a = z , resp. b = z )
have an entirely different behavior: the algebraic operation Γ restricts in these
cases to lattice theoretic operations, that is, can be expressed by intersections and
sums of subspaces. We will use the lattice theoretic notation x ∧ y = x ∩ y and
x∨ y = x + y . It is remarkable that two important aspects of projective geometry
(the lattice theoretic and the Jordan theoretic) arise as a sort of “contraction” of
the full map Γ, or, put differently, that they have a common “deformation”, given
by Γ.

Theorem 2.4. The map Γ : X 5 → X takes the following diagonal values:

(1 ) values on the “diagonal x = y”: for all (x, a, b, z) ∈ X 4 ,

Γ(x, a, x, b, z) = (z ∨ (x ∧ a)) ∧ (b ∨ x).

In particular, we get the following “subdiagonal values”: for all x, a, y, b, z ,

(i) subdiagonal x = y = z : Γ(x, a, x, b, x) = x (law (xxx) = x in Xab ),

(ii) subdiagonal x = y = a: Γ(x, x, x, b, z) = (z ∨ x) ∧ (b ∨ x)

(iii) subdiagonal x = y = a and b = z : Γ(x, x, x, z, z) = z ∨ x

(iv) subdiagonal x = y = b: Γ(x, a, x, x, z) = (z ∨ (x ∧ a)) ∧ x.

(v) subdiagonal x = y = b and a = z : Γ(x, a, x, x, a) = a ∧ x

(vi) subdiagonal x = y , a = z : Γ(x, a, x, b, a) = a ∧ (b ∨ x)

(vii) subdiagonal x = y , a = b: Γ(x, a, x, a, z) = (z ∨ (x ∧ a)) ∧ (x ∨ a)

(viii) subdiagonal x = y , z = b: Γ(x, a, x, z, z) = z ∨ (x ∧ a)

(2 ) diagonal a = z : for all (x, a, y, b) ∈ X 4 ,

Γ(x, a, y, b, a) = a ∧ (b ∨ (x ∧ (y ∨ a)))

In particular, on the subdiagonal x = z = b, we have, for all x, a, y ∈ X ,

Γ(x, a, y, x, a) = a ∧ x.
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(3 ) diagonal b = z : for all (x, a, y, b) ∈ X 4 ,

Γ(x, a, y, b, b) = b ∨ (a ∧ (x ∨ (y ∧ b)))

In particular, on the subdiagonal b = z , x = a, we have, for all a, y, b ∈ X ,

Γ(a, a, y, b, b) = b ∨ a,

and on a = b = az : for all x, a, y , Γ(x, a, y, a, a) = a.

Proof. In the following proof, in order to avoid unnecessary repetitions, it is
always understood that α ∈ a , ξ ∈ x , β ∈ b , η ∈ y , ζ ∈ z . In all three items, the
determination of the “subdiagonal values” is a straightforward consequence, using
the absorption laws u ∨ (u ∧ v) = u , u ∧ (u ∨ v) = u .

Now we prove (1) (diagonal x = y ). Let ω ∈ Γ(x, a, x, b, z), then ω = ξ+β ,
hence ω ∈ (x ∨ b), and ω = η + ξ + ζ with v := ω − ζ = η + ξ ∈ x (since x = y ).
On the other hand, v = ω − ζ = α ∈ a , whence ω = v + ζ with v ∈ (x ∧ a),
proving one inclusion.

Conversely, let ω ∈ (z ∨ (x ∧ a)) ∧ (b ∨ x). Then ω = β + ξ = α + ζ with
α ∈ (x ∧ a). Let η := ξ − α . Then η ∈ x , and ω = ξ + β = η + α + β , hence
ω ∈ Γ(x, a, x, b, z).

Next we prove (2) (diagonal a = z ). Let ω ∈ Γ(x, a, y, b, a), then ω = ζ +α
with ζ, α ∈ z = a , whence ω ∈ a . Moreover, ω = ξ + β = η + α + β , with
η + α = ξ ∈ x and η + α ∈ y ∨ a , whence ω ∈ b ∨ (x ∧ (y ∨ a)).

Conversely, let ω ∈ a∧ (b∨ (x∧ (y ∨ a))). Then ω ∈ b∨ (x∧ (y ∨ a)), that
is, ω = β + (η + α) with ξ := η + α ∈ x . Letting ζ := ω−α ∈ a (here we use that
ω ∈ a), we have ω = ζ + α , proving that ω ∈ Γ(x, a, y, b, a).

The proof for (3) (diagonal z = b) is “dual” to the preceding one and will
be left to the reader.

Remark 2.5. By arguments of the same kind as above, one can show that the
diagonal value for x = y (part (1)) admits also another, kind of “dual”, expression:

Γ(x, a, x, b, z) = (z ∧ (x ∨ b)) ∨ (a ∧ x). (2.5)

The equality of these two expressions is equivalent to the modular law

Γ(x, a, x, x, z) = (z ∧ x) ∨ (a ∧ x) = ((z ∧ x) ∨ a) ∧ x. (2.6)

It is known [PR09] that any (finitely based) variety of lattices can be axiomatized
by a single quaternary operation q(·, ·, ·, ·) given in terms of the lattice operations
by q(x, b, z, a) = (z ∧ (x∨ b))∨ (a∧ x). That is, one may start with a quarternary
operation q satisfying certain identities (which we omit), define x∨y = q(y, x, x, y)
and x ∧ y = q(y, y, x, x), and the resulting structure will be a lattice. From
the preceding paragraph, we see that in our setting, q(x, b, z, a) = Γ(x, a, x, b, z).
Thus the quaternary approach to lattices emerges from the present theory in a
completely natural way.

Corollary 2.6. (1 ) If b ∨ x = W and a ∧ x = 0, then Γ(x, a, x, b, z) = z .
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(2 ) If a ∨ y = W and b ∨ x = W , then Γ(x, a, y, b, a) = a.

(3 ) If x ∧ a = 0 and y ∧ b = 0, then Γ(x, a, y, b, b) = b.

Proof. Straightforward consequences of the theorem, again using the absorp-
tion laws.

Structural transformations and self-distributivity. Homomorphisms be-
tween sets with quintary product maps Γ, Γ′ are defined in the usual way, and
may serve to define the category of Grassmannian geometries with their product
maps Γ. We call this the “usual” category. There is another and often more useful
way to turn them into a category which we call “structural”:

Definition 2.7. Let W, W ′ be two right B-modules and (X , Γ), (X ′, Γ′) their
Grassmannian geometries. A structural or adjoint pair of transformations between
X and X ′ is a pair of maps f : X → X ′ , g : X ′ → X such that, for all
x, a, y, b, z ∈ X , x′, a′, y′, b′, z′ ∈ X ′ ,

f
(
Γ(x, g(a′), y, g(b′), z)

)
= Γ′(f(x), a′, f(y), b′, f(z)),

g
(
Γ′(x′, f(a), y′, f(b), z′)

)
= Γ(g(x′), a, g(y′), b, g(z′)) .

In other words, for fixed a, b , resp. a′, b′ , the restrictions

f : Xg(a′),g(b′) → X ′
a′,b′ , g : X ′

f(a),f(b) → Xa,b

are homomorphisms of semitorsors. We will sometimes write (f, f t) for a structural
pair (although g need not be uniquely determined by f ).

It is easily checked that the composition of structural pairs gives again a
structural pair, and Grassmannian geometries with structural pairs as morphisms
form a category. Isomorphisms, and, in particular, the automorphism group of
(X , Γ), are essentially the same in the usual and in the structural categories,
but the endomorphism semigroups may be very different. Roughly speaking,
Grassmannian geometries tend to be “simple objects” in the usual category (hence
morphisms tend to be either trivial or injective), whereas they are far from being
simple in the structural category, so there are many morphisms. One way of
constructing such morphisms is via ordinary B-linear maps f : W → W ′ , which
induce maps between the corresponding Grassmannians X = Gras(W ) and X ′ =
Gras(W ′):

f∗ : X → X ′; x 7→ f(x), f ∗ : X ′ → X ; y 7→ f−1(y).

Note that, in general, these maps do not restrict to maps between connected
components (for instance, f∗ and f ∗ do not restrict to everywhere defined maps
between projective spaces PW and PW ′ if f is not injective). We will show that
(f∗, f

∗) is an adjoint pair, as a special case of the following result:
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Theorem 2.8. Given a linear relation r ⊂ W ⊕W ′ , let

r∗ : X → X ′; x 7→ r(x) := {ω′ ∈ W ′ | ∃ξ ∈ x : (ξ, ω′) ∈ r} ,

r∗ : X ′ → X ; y 7→ r−1(y) := {ω ∈ W | ∃η ∈ y : (ω, η) ∈ r} .

Then (r∗, r
∗) is a structural pair of transformations between X and X ′ .

Proof. Using the (a, b)-description, on the one hand,

r∗Γ(x, r∗a′, y, r∗b′, z) =

=
{

ω′ ∈ W ′
∣∣∣ ∃ω ∈ Γ(x, r∗a′, y, r∗b′, z) : (ω, ω′) ∈ r

}
=

{
ω′ ∈ W ′

∣∣∣ ∃ω ∈ W, ∃α ∈ r∗a′,∃β ∈ r∗b′ :
(ω, ω′) ∈ r, ω + α ∈ z, ω + β ∈ x, ω + α + β ∈ y

}

=

ω′ ∈ W ′
∣∣∣ ∃ω ∈ W, ∃α′ ∈ a′,∃α ∈ W, ∃β′ ∈ b′,∃β ∈ W :

(ω, ω′) ∈ r, (α, α′) ∈ r, (β, β′) ∈ r,
ω + α ∈ z, ω + β ∈ x, ω + α + β ∈ y

 ,

and on the other hand,

Γ(r∗x, a′, r∗y, b′, r∗z) =

=

{
ω′ ∈ W ′

∣∣∣ ∃α′′ ∈ a′,∃β′′ ∈ b′ :
ω′ + α′′ ∈ r∗z, ω′ + β′′ ∈ r∗x, ω′ + α′′ + β′′ ∈ r∗y

}
=

{
ω′ ∈ W ′

∣∣∣ ∃α′′ ∈ a′,∃β′′ ∈ b′,∃ζ ∈ z, ∃ξ ∈ x, ∃η ∈ y :
(ζ, ω′ + α′′) ∈ r, (ξ, ω′ + β′′) ∈ r, (η, ω′ + α′′ + β′′) ∈ r

}
.

The subspaces of W determined by these two conditions are the same, as is seen
by the change of variables

ζ = ω + α, ξ = ω + β, η = ω + α + β, α′′ = α′, β′′ = β′

in one direction, and

ω = η − ζ − ξ, α′′ = α′, β′′ = β′, α = ζ − ω = η − ξ, β = ξ − ω = η − ζ

in the other, and using that r is a linear subspace.

Remark 2.9. The proof shows that the same result would hold if we had
formulated the structurality property with respect to another “admissible” pair of
variables instead of (a, b), for instance (y, b) or (x, z), by using the corresponding
description. However, we prefer to distinguish the pair formed by the second and
fourth variable in order to have the interpretation of structural transformations in
terms of torsor homomorphisms, for fixed (a, b).

Remark 2.10. The construction from the theorem is functorial. In particular,
the semigroup of linear relations on W ×W (to be more precise: a quotient with
respect to scalars) acts by structural pairs on X .
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Theorem 2.11. We define operators of left-, middle- and right multiplication
on X by

Lxayb(z) := Raybz(x) := Mxabz(y) := Γ(x, a, y, b, z).

Then, for all x, a, y, b, z ∈ X , the pairs

(Lxayb, Lyaxb), (Mxabz, Mzabx), (Raybz, Razby)

are structural transformations of the Grassmannian geometry X .

Proof. Let lx,a,y,b ⊂ W ⊕W be the linear relation defined by

lx,a,y,b := {(ζ, ω) ∈ W ⊕W | ∃ξ ∈ x : ω + ζ ∈ a, ω + ζ + ξ ∈ y, ω + ξ ∈ b}.

Then it follows immediately by using the (x, z)-description that

(lx,a,y,b)∗(z) = {ω ∈ W | ∃ζ ∈ z : (ζ, ω) ∈ lx,a,y,b} = Γ(x, a, y, b, z) = Lxayb(z).

On the other hand,

(lx,a,y,b)
∗(z) = {ω ∈ W | ∃ζ ∈ z : (ω, ζ) ∈ lx,a,y,b}

=
{

ω ∈ W
∣∣∣ ∃ζ ∈ z, ∃ξ ∈ x : ω + ζ ∈ a, ω + ζ + ξ ∈ y, ζ + ξ ∈ b

}
= Γ(y, a, x, b, z) = Lyaxb(z) ,

where the third equality follows by using the (y, z)-description with permuted
variables. This proves that (Lxayb, Lyaxb) is a structural pair; the claim for right
multiplications is just an equivalent version of this, and the claim for middle
multiplications is proved in the same way as above.

Remark 2.12. We have proved that, in terms of inverses of linear relations,

(lx,a,y,b)
−1 = ly,a,x,b. (2.7)

If x>a and y>b , then lxaby is the graph of the linear operator Lxayb ∈ End(W );
for x, y ∈ Uab , this operator is invertible and the preceding formula holds in the
sense of an operator equation.

Corollary 2.13. The multiplication map satisfies the following “self-distributi-
vity” identities:

Γ
(
x, a, Γ

(
u, Γ(a, z, c, x, b), v, Γ(a, z, d, x, b), w

)
, b, z

)
=

Γ
(

Γ(x, a, u, b, z), c, Γ(x, a, v, b, z), d, Γ(x, a, w, b, z)
)

Γ
(
x, a, y, b, Γ

(
u, Γ(y, a, x, b, c), v, Γ(y, a, x, b, d), w

))
=

Γ
(

Γ(x, a, y, b, u), c, Γ(x, a, y, b, v), d, Γ(x, a, y, b, w)
)
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Proof. The first identity follows by applying the adjoint pair (f, f t) =
(Mxabz, Mzabx) to Γ(u, c, v, d, w) (and using the symmetry property), and simi-
larly the second by using the pair (f, f t) = (Lxayb, Lyaxb ).

Corollary 2.14. For all a, b ∈ X , the maps ( )+ : Ua × Ub × Ua → Ua and
( )− : Ub ×Ua ×Ub → Ub defined in Theorem 1.8 are tri-affine (i.e., affine in all
three variables) and satisfy the para-associative law

(xy(uvw)±)± = ((xyu)±vw)± = (x(vuy)∓w)±.

Proof. Let us show that Mxabz induces an affine map Ub → Ua , y 7→ (xyz)+ ,
for fixed x, z ∈ Ua . We know already that this map is well-defined (Theorem 1.8).
Since (f, g) = (Mxabz, Mzabx) is structural, the map f : Ug(a) → Ua is affine, where
(according to Corollary 2.6, (1)),

g(a) = Mzabx(a) = Γ(z, a, a, b, x) = Γ(a, z, a, x, b) = b.

By the same kind of argument, using Corollary 2.6, (2) and (3), wee see that the
other partial maps are affine. The corresponding statements for ( )− follow
by symmetry, and the para-associative law follows by restriction of the para-
associative law in the semitorsor Xab .

Remark 2.15. For a = b , we get the additive torsor Ua , and if Uab 6= ∅ , then
we get a sort of “triaffine extension” of the torsor Uab . If a>b , then we have base
points a in Ub and b in Ua , and obtain a trilinear product (Theorem 1.8).

The extended dilation map. Next we (re-)define, for r ∈ K , the dilation map
Πr : X × X × X → X by the following equivalent expressions

Πr(x, a, z) :=
{

ω ∈ W
∣∣∣ ∃α ∈ a,∃ζ ∈ z, ∃ξ ∈ x : ω − rα = ξ = ζ − α

}
=

{
ω ∈ W

∣∣∣ ∃α ∈ a,∃ζ ∈ z, ∃ξ ∈ x : ω + (1− r)α = ζ = α + ξ
}

=
{

ω ∈ W
∣∣∣ ∃α ∈ a,∃ζ ∈ z, ∃ξ ∈ x : ω = (1− r)ξ + rζ, ζ − ξ = α

}
We refer to the last expression as the “(x, z)-description”, and we define partial
maps X → X by

λr
xa(z) := ρr

az(x) := µr
xz(a) := Πr(x, a, z)

(where λ reminds us of “left”, ρ “right” and µ “middle”).

Theorem 2.16. The map Πr : X 3 → X extends the ternary map defined in the
preceding chapter (and denoted by the same symbol there), and it has the following
properties:

(1 ) Symmetry: µr
xz = µ1−r

zx , that is, λr
xa = ρ1−r

ax or

Πr(x, a, z) = Π1−r(z, a, x).
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(2 ) Multiplicativity: if x>a and r, s ∈ K,

Πr(x, a, Πs(x, a, y)) = Πrs(x, a, y),

(3 ) Diagonal values:

Πr(x, a, x) = x, Π0(x, a, z) = Π1(z, a, x) = x ∧ (z ∨ a) = Γ(a, x, x, a, z).

(4 ) Structurality: if r(1− r) ∈ K× , then, for all x, a, z ∈ X , the pairs

(λr
xa, λ

r
ax), (µr

xz, µ
r
zx)

are structural transformations of (X , Γ).

Proof. The symmetry relation (1) follows directly from the (x, z)-description.

Next we show that Πr coincides with the dilation map from the preceding
chapter. Assume first that x>a . We show that Πr(x, a, z) = (rP x

a + P a
x )(z):

(rP x
a + P a

x )(z) =
{

e ∈ W
∣∣∣ ∃ζ ∈ z : e = rP x

a (ζ) + P a
x (ζ)

}
=

{
e ∈ W

∣∣∣ ∃α ∈ a,∃ζ ∈ z, ∃ξ ∈ x : e−rα=ζ−α=ξ
}

=Πr(x, a, z)

writing ζ = P x
a (ζ) + P a

x (ζ) = α + ξ . For z>a , the claim follows now from the
symmetry relation (1).

(3) With ω = (1 − r)ξ + rζ , it follows for x = z that Πr(x, a, x) ⊂ x .
Conversely, we get x ⊂ Πr(x, a, x) by letting α = 0 and ζ = ξ , given ξ ∈ x . The
other relations are proved similarly.

(2) Under the assumption x>a , the claim amounts to the operator identity

(rP x
a + P a

x )(sP x
a + P a

x ) = (rsP x
a + P a

x )

which is easily checked.

(4) Fix x, a ∈ X , r ∈ K and define the linear subspace r ⊂ W ⊕W by

r := rxa :=
{

(ζ, ω) ∈ W ⊕W | ∃α ∈ a,∃ξ ∈ x : ω = ζ − (1− r)α, ζ − α = x
}

Then

r∗(z) = {ω ∈ W | ∃ζ ∈ z : (ζ, ω) ∈ r} = Πr(x, a, z).

On the other hand, by a straightforward change of variables (which is bijective
since r is assumed to be invertible), one checks that

r∗(z) = {ω ∈ W | ∃ζ ∈ z : (ω, ζ) ∈ r} = Πr(a, x, z).

Hence (λr
xa, λ

r
ax) = (r∗, r

∗) is structural. The calculation for the middle multipli-
cations is similar.
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Remark 2.17. (1) If r is invertible, then Πr(a, x, z) = Πr−1(x, a, z). Combin-
ing with part (1) of the theorem, we see that Π has the same behaviour under
permutations as the classical cross-ratio.

(2) If x>a and r ∈ K an arbitrary scalar, we still have structurality in (4).
The situation is less clear if x, a, r are all arbitrary.

(3) One can define structurality with respect to Πr in the same way as for
Γ, by conditions of the form

f
(
Πr(x, g(a′), z

)
= Π′

r(f(x), a′, f(z)), g
(
Π′

r(x
′, f(a), z′

)
= Πr(g(x′), a, g(z′)).

Then partial maps of Γ are structural for Πr , and partial maps of Πs are structural
for Πr (this property has been used in [Be02] to characterize generalized projective
geometries). The proofs are similar to the ones given above.

3. Associative geometries

In this chapter we give an axiomatic definition of associative geometry, and we
show that, at a base point, the corresponding “tangent object” is an associative
pair. Conversely, given an associative pair, one can reconstruct an associative
geometry. The question whether these constructions can be refined to give a
suitable equivalence of categories will be left for future work.

Definition 3.1. An associative geometry over a commutative unital ring K is
given by a set X which carries the following structures: X is a complete lattice
(with join denoted by x∨ y and meet denoted by x∧ y ), and maps (where s ∈ K)

Γ : X 5 → X , Πs : X 3 → X ,

such that the following holds. We use the notation

Lxaby(z) := Mxabz(y) := Raybz(x) := Γ(x, a, y, b, z)

for the partial maps of Γ, and call x and y transversal, denoted by x>y , if
x ∧ y = 0 and x ∨ y = 1, and we let

Ca := a> := {x ∈ X | x>a}, Cab := Ca ∩ Cb

for sets of elements transversal to a , resp. to a and b .

( 1) The semitorsor property: for all x, y, z, u, v, a, b ∈ X :

Γ(Γ(x, a, y, b, z), a, u, b, v) = Γ(x, a, Γ(u, a, z, b, y), b, v) = Γ(x, a, y, b, Γ(z, a, u, b, v)).

In other words, for fixed a, b , the product (xyz) := Γ(x, a, y, b, z) turns X
into a semitorsor, which will be denoted by Xab .

( 2) Invariance of Γ under the Klein 4-group in (x, a, b, z): for all x, a, y, b, z ∈ X ,

( i) Γ(x, a, y, b, z) = Γ(z, b, y, a, x)
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( ii) Γ(x, a, y, b, z) = Γ(a, x, y, z, b)

In particular, Xba is the opposite semitorsor of Xab .

( 3) Structurality of partial maps: for all x, a, y, b, z ∈ X , the pairs

(Lxayb, Lyaxb), (Mxabz, Mzabx), (Raybz, Razby)

are structural transformations (see definition below).

( 4) Diagonal values:

( i) for all a, b, y ∈ X , Γ(a, a, y, b, b) = a ∨ b ,

( ii) for all a, b, y ∈ X , Γ(a, b, y, a, b) = a ∧ b ,

( iii) if x ∈ Cab , then Γ(x, a, x, b, z) = z = Γ(z, b, x, a, x),

( iv) if a>x and y>b , then Γ(x, a, y, b, b) = b ,

( v) if a>y and b>x , then Γ(x, a, y, b, a) = a .

( 5) The affine space property: for all a ∈ X and r ∈ K , Ca is stable under
the dilation map Πr , and Ca becomes an affine space with additive torsor
structure

x− y + x = Γ(x, a, y, a, z)

and scalar action given for x, y ∈ Ca by

r ·x y = (1− r)x + ry = Πr(x, a, y).

( 6) The semitorsored pairs: for all a, b ∈ X ,

Γ(Ua, a, Ub, b, Ua) ⊂ Ua, Γ(Ub, a, Ua, b, Ub) ⊂ Ub.

Definition 3.2. The opposite geometry of an associative geometry (X ,>, Γ, Π),
denoted by X op , is X with the same dilation map Π, the opposite quintary product
map

Γop(x, a, y, b, z) := Γ(z, a, y, b, x) ,

(which by (4) induces the dual lattice structure) and transversality relation >
determined by the lattice structure. A base point in X is a fixed transversal pair
(o+, o−), and the dual base point in X is then (o−, o+).

Definition 3.3. Homomorphisms of associative geometries are maps φ : X →
Y such that

φ
(
Γ(x, a, y, b, z)

)
= Γ(φx, φa, φy, φb, φz)

φ
(
Πr(x, a, y)) = Πr(φx, φa, φy)

)
It is clear that associative geometries over K with their homomorphisms form a
category. Antihomomorphisms are homomorphisms into the opposite geometry.
Note that, by (4), homomorphisms are in particular lattice homomorphisms, and
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antihomomorphisms are in particular lattice antihomomorphisms. Involutions are
antiautomorphims of order two; they play an important rôle which will be discussed
in subsequent work ( [BeKi09]). For a fixed base point (o+, o−), we define the
structure group as the group of automorphisms of X that preserve (o+, o−).

An adjoint or structural pair of transformations is a pair g : X → Y ,
h : Y → X such that

g
(
Γ(x, h(u), y, h(v), z)

)
= Γ(g(x), u, g(y), v, g(z))

g
(
Πr(x, h(u), y

)
= Πr(g(x), u, g(y))

and vice versa. Clearly, this also defines a category.

Consequences. We are going to derive some easy consequences of the axioms.
Let us rewrite the semitorsor property in operator form:

RaubvLxayb = MxabvMuaby = LxaybRaubv

LxaybLzaub = Lx,a,Lybza(u),b = LLxayb(z),a,y,b

MΓ(x,a,y,b,z),a,b,v = MxabvLybza = LxaybMzabv

Assume that x, y ∈ Uab and z ∈ X . Then, according to (4), Lxaxb = idX = Lybyb ,
whence LxabbLyaxb = Lx,a,Lybyb(x),b = Lxaxb = idX , and Lxayb : X → X is invertible
with inverse

(Lxayb)
−1 = Lyaxb.

By (2), this is equivalent to (Raybx)−1 = Raxby , and in the same way one shows
that Mxaby is invertible with inverse

(Mxaby)−1 = Mxbay.

It follows that Lxayb , Raybx and Mxaby are automorphisms of the geometry. In
particular, Mxaay and Mxabx are of automorphisms of order two.

Proposition 3.4. For all a, b ∈ X , Cab is stable under the ternary map
(x, y, z) 7→ Γ(x, a, y, b, z), which turns it into a torsor denoted by Uab . For any
y ∈ Uab , the group (Uab, y) acts on X from the left and from the right by the
formulas given in Theorem 1.3, and both actions commute.

Proof. As remarked above, Lxayb is an automorphism of the geometry. It
stabilizes a and b and hence also Ca and Cb . Thus Cab is stable under the
ternary map, and the para-associative law and the idempotent law hold by (1)
and (4) (iii). The remaining statements follow easily from (1).

In part II ([BeKi09]) we will also describe the “Lie algebra” of Uab , thus
giving a relatively simple description of the group structure of Uab . – Next we give
the promised conceptual interpretation of Equation (1.5).

Lemma 3.5. For all z ∈ Ub , x ∈ Uab , and all y ∈ X ,

Γ
(
x, b, Γ(x, a, y, b, z), b, z

)
= Γ(z, b, a, y, x).
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Proof. Using that Rxaxb = idX for a, b ∈ Ux , we have, for all x, z ∈ Ub ,

Γ
(
x, b, Γ(x, a, y, b, z), b, z

)
= MxbbzMxabz(y)
= MbzxbMbzxa(y)
= LbzaxRzbxb(y)
= Lbzax(y) = Γ(b, z, a, x, y) = Γ(z, b, a, y, x).

Since the operator Mxbbz is invertible with inverse Mzbbx , we have, equivalently,

Γ(x, a, y, b, z) = Γ(z, b, Γ(z, b, a, y, x), b, x).

If a and b are transversal, we may rewrite the lemma in the form (1.5): with
b = o− , y = o+ : for all x, z ∈ V + ,

Γ(z, o−, a, o+, x) = Γ(x, o−, Γ(x, a, o+, o−, z), o−, z) = x− Γ(x, a, o+, o−, z) + z.

We will see in the following result that Γ(z, o−, a, o+, x) is trilinear in (z, a, x),
and hence Γ(x, a, o+, o−, z) is tri-affine in (x, a, z), and both expressions can be
considered as geometric interpretations of the associative pair attached to (o+, o−)
(see §0.4). More generally, the lemma implies the following analog of Axiom (6):
for all b, y ∈ X (transversal or not), the map

Ub × Uy × Ub → Ub, (x, a, z) 7→ Γ(x, a, y, b, z)

is well-defined and affine in all three variables.

From geometries to associative pairs. See Appendix B for the notion of
associative pair.

Theorem 3.6. Let (X ,>, Γ, Πr) be an associative geometry over K.

i) Assume X admits a transversal pair, which we take as base point (o+, o−).
Then, letting A+ := Uo− and A− := Uo+ , the pair of linear spaces (A+, A−)
with origins o+ , resp. o− , becomes an associative pair when equipped with

〈xbz〉+ := Γ(x, o−, b, o+, z), 〈ayc〉− := Γ(a, o−, y, o+, c).

This construction is functorial (in the “usual” category).

ii) Assume X admits a transversal triple (a, b, c). Then, letting B := Uc , the
K-module B with origin o+ := a becomes an associative unital algebra with
unit u := b and product map

A× A → A, (x, z) 7→ xz := Γ(x, a, u, c, z).

This construction is functorial (in the “usual” category) .
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Proof. (i) By the “semi-torsored pair axiom” (6), the maps A±×A∓×A± → A±

are well-defined. By restriction from Xo+,o− , they satisfy the para-associative law.
They are tri-affine: the proof is exactly the same as the one of Corollary 2.14.
Thus it only remains to be shown that they are trilinear, with respect to the
origins o± ∈ A± . Let x, z ∈ A+ and b ∈ A− . Then

〈xbo+〉+ = Γ(x, o−, b, o+, o+) = o+, 〈o+bz〉+ = Γ(o+, o−, b, o+, z) = o+

〈xo−z〉+ = Γ(x, o−, o−, o+, z) = Γ(o−, x, o−, z, o+) = o+.

by the Diagonal Value Axiom (4). If φ : X → Y is a base-point preserving
homomorphism, then restriction of φ yields, by definition of a homomorphism, a
pair of K-linear maps A± → (A′)± , which commutes with the product maps Γ, Γ′

and hence is a homomorphism of associative pairs.

(ii) With notation from (i), we have xz = 〈xuz〉+ , and hence the product
is well-defined, bilinear and associative A × A → A . We only have to show that
u is a unit element: but this is immediate from xu = Γ(x, a, u, b, u) = x =
Γ(u, a, u, b, x) = ux .

Example 3.7. For any B-module W , the Grassmannian geometry X is an as-
sociative geometry, by the results of Chapter 2. For a decomposition W = o+⊕o− ,
the corresponding associative pair is (A+, A−) = (HomB(o+, o−), HomB(o−, o+)),
by Theorem 1.7. In case W is a topological module over a topological ring K ,
we may also work with subgeometries of the whole Grassmannian, such as Grass-
mannians of closed subspaces with closed complement. For K = R or C , if W is,
e.g., a Banach space, the associated associative pair is a pair of spaces of bounded
linear operators.

Remark 3.8. There is a natural definition of structural transformations of
associative pairs. They are induced by structural pairs (f, g) satisfying f(o+) =
o+ , g(o−) = o− and f(A+) ⊂ A+ , g(A−) ⊂ A− . With respect to such pairs, the
construction obtained from the theory is still functorial.

From associative pairs to geometries.

Theorem 3.9. i) For every associative pair (A+, A−) there exists an asso-
ciative geometry X with base point (o+, o−) having (A+, A−) as associated
pair.

ii) For every unital associative algebra (A, 1) there exists an associative geometry
X with transversal triple (o+, ∆, o−) having (A, 1) as associated algebra.

Proof. (ii) Let W = A⊕A , o+ the first and o− the second factor and ∆ the
diagonal. Then (o+, ∆, o−) is a transversal triple in the Grassmannian geometry
X = GrasA(W ), and its associated algebra is A ∼= HomA(A, A) (see the preceding
example, with o+ ∼= o− ∼= A). Note that the connected component of o+ can be
interpreted as the projective line over A , cf. [BeNe05], [Be08].
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(i) Consider any algebra imbedding (Â, e) of the pair (A+, A−), for instance,
its standard imbedding (see Appendix B). Let e denote the idempotent giving the
grading of Â and set f = 1−e . Then Â = A00⊕A01⊕A10⊕A11 where A00 = fÂf ,
A01 = A− = fÂe , A10 = A+ = eÂf and A11 = eÂe . Let X = GrasÂ(Â) be the

Grassmannian of all right ideals in Â . As base point in X we choose

o+ := eÂ = A11 ⊕ A10, o− := fÂ = A00 ⊕ A01 .

The associative pair corresponding to (X ; o+, o−) is (see example at the end of the
last section)

(HomÂ(o−, o+), HomÂ(o+, o−)).

But this pair is naturally isomorphic to (A+, A−). Indeed,

HomÂ(eÂ, fÂ) → A01 = fÂe, f 7→ f(e)

is K-linear, well-defined (since f(e)e = f(ee) = f(e), f being right Â-linear) and
has as inverse mapping c 7→ (x 7→ cx), hence is a K-isomorphism. Identifying
both pairs of K-modules in this way, a direct check shows that the triple products
also coincide, thus establishing the desired isomorphism of associative pairs.

Remark 3.10. It is of course also possible to see (ii) as a special case of (i).
In this case we may work with the algebra imbedding of (A, A) into the matrix
algebra Â = M(2, 2; A), cf. Appendix B.

Remark 3.11 (Functoriality). Is the construction from the preceding theorem
functorial, or can it be modified such that it becomes functorial? In the present
form, the construction depends on the chosen algebra imbedding and hence is
not functorial (even if we always chose the standard imbedding the construction
would not become functoriel, see [Pe04]). However, motivated by corresponding
results from Jordan theory ([Be02]), we conjecture that the geometry generated by
the connected component depends functorially on the associative pair, thus leading
to an equivalence of categories between associative pairs and certain associative
geometries with base point (whose algebraic properties reflect “connectedness and
simple connectedness”).

4. Further topics

(1) Jordan geometries revisited. The present work sheds new light on ge-
ometries associated to Jordan algebraic structures : in the same way as associative
pairs give rise to Jordan pairs by restricting to the diagonal (Q(x)y = 〈xyx〉 ; see
Appendix B), associative geometries give rise to “Jordan geometries”. The new
feature is that we get two diagonal restrictions Γ(x, a, y, b, x) and Γ(x, a, y, a, z)
which are equivalent. They can be used to give a new axiomatic foundation of
“Jordan geometries”. Unlike the theory developed in [Be02], this new founda-
tion will be valid also in case of characteristic 2 and hence corresponds to general
quadratic Jordan pairs. In this theory, the torsors from the associative theory will
be replaced by symmetric spaces (the diagonal (xyx)).
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(2) Involutions, Jordan-Lie algebras, classical groups. ¿From a Lie theo-
retic point of view, the present work deals with classical groups of type An (the
“general linear” family). The other classical series (orthogonal, unitary and sym-
plectic families) can be dealt with by adding an involution to an associative geom-
etry. This will be discussed in detail in [BeKi09]. ¿From a more algebraic point
of view, this amounts to looking at Jordan-Lie or Lie-Jordan algebras instead of
associative pairs (and hence is closely related to (1)), and asking for the geomet-
ric counterpart. In [Be08], it is advocated that this might also be interesting in
relation with foundational issues of quantum mechanics.

(3) Tensor Products. In the associative and in the Jordan-Lie categories, tensor
products exist (cf. [Be08] for historical remarks on this subject in relation with
foundations of Quantum Mechanics). What is the geometric interpretation of this
remarkable fact?

(4) Alternative Geometries. The geometric object corresponding to alternative
pairs (see [Lo75]) should be a collection of Moufang loops, interacting among each
other in a similar way as the torsors Uab do in an associative geometry.

(5) Classical projective geometry revisted. The torsors Uab show already
up in ordinary projective spaces, and their alternative analogs will show up in
octonion projective planes. It should be interesting to review classical approaches
from this point of view.

(6) Invariant Theory. The problem of classifying the torsors Uab in a given
geometry X is very close to classifying orbits in X ×X under the automorphism
group. Invariants of torsors (“rank”) give rise to invariants of pairs. Similarly,
invariants of groups (Uab, y) give rise to invariants of triples (“rank and signature”),
and invariants (conjugacy class) of projective endomorphisms Lxayb to invarinats
of quadrupels (“cross-ratio”).

(7) Structure theory: ideals and intrinsic subspaces. We ask to translate
features of the structure theory of associative pairs and algebras to the level of
associative geometries: what are the geometric notions corresponding to left-,
right- and inner ideals? See [BeL08] for the Jordan case.

(8) Positivity and convexity: case of C∗ -algebras. C∗ -algebras and related
triple systems (“ternary rings of operators”, see [BM04]) are distinguished among
general ones by properties involving “positivity” and “convexity”. What is their
geometric counterpart on the level of associative geometries? Note that these
properties really belong to the involution ∗ , so these questions can be seen to fall
in the realm of topic (2).

5. Appendix: torsors and semitorsors

Definition. A torsor (G, (·, ·, ·)) is a set G together with a ternary operation
G3 → G; (x, y, z) 7→ (xyz) satisfying the identities (G1) and (G2) discussed in the
Introduction.

An early term for this notion, due to Prüfer, was Schar. This was translated
by Suschkewitsch into Russian as grud. This was later somewhat unfortunately
translated into English as “heap”. Other terms that have been used are “flock”
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and “herd”. B. Schein, in various publications (e.g., [Sch62]) and in private
communication, suggested adapting the Russian term directly into English as
“groud” (this rhymes with “rude”, not “crowd”). In earlier drafts of this paper,
we followed his suggestion. However, we found that in talks on this subject, the
general audience reaction to the term was negative, and the referee noted that it
is hard to pronounce in an English sentence. The other terms noted above are
not appropriate, either. In the follow-up [BeKi09] to this paper, we wish to write
of “classical” objects just as we speak of classical groups, and “classical heap” or
“classical herd”, for instance, do not seem suitable.

In the end, we decided to go with torsor. This term is usually used in
a geometric sense to mean principal homogeneous space, and is now generally
accepted, largely due to the popularizing efforts of Baez [Ba09]. Using the same
term for the equivalent algebraic notion seemed to us a quite reasonable step. For
more on the history of the concept, as well as of what we call semitorsors defined
below, we refer the reader to the work of Schein, e.g., [Sch62].

In a torsor (G, (·, ·, ·), introduce left-, right- and middle multiplications by

(xyz) =: `x,y(z) =: ry,z(x) =: mx,z(y) .

Then the axioms of a torsor can be rephrased as follows:

`x,y ◦ ru,v = ru,v ◦ `x,y (G1’)

`x,x = rx,x = id (G2’)

or, in yet another way,

`x,y ◦ `z,u = ``x,y(z),u (G1”)

`x,y(y) = ry,x(y) = x . (G2”)

Taking y = z in (G1”), and using (G2”), we get what one might call “Chasle’s
relation” for left translations

`x,y ◦ `y,u = `x,u

which for u = x shows that the inverse of `x,y is `y,x . Similarly, we have a Chasle’s
relation for right translations, and the inverse of rx,y is ry,x . Unusual, compared
to group theory, is the rôle of the middle multiplications. Namely, fixing for the
moment a unit e , we have

(x(uyw)z) = x(uy−1w)−1z = xw−1yu−1z = ((xwy)uz) = (xw(yuz))

(the para-associative law, cf. relation (G3), Introduction), i.e.,

mx,z ◦mu,w = `x,w ◦ ru,z = ru,z ◦ `x,w. (G3’)

Taking x = w , resp. u = z , we see that all left and right multiplications can be
expressed via middle multiplications:

ru,z = mx,z ◦mu,x, `x,w = mx,z ◦mz,w.
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Taking u = z , resp. x = w , we see that mx,z ◦mz,x = id, hence middle multipli-
cations are invertible. In particular m2

x,x = id, which reflects the fact that mx,x is
inversion in the group (G, x). Also, (G3’) implies that

mx,e ◦mx,e = rx,e ◦ `x,e = `x,e ◦ (re,x)−1,

which means that conjugation by x in the group with unit e is equal to (mx,e)
2 .

Since a torsor can be viewed as an equational class in the sense of universal
algebra (G, (·, ·, ·)), all of the usual notions apply. For instance, a homomor-
phism of torsors is a map φ : G → H such that φ

(
(xyz)

)
= (φ(x)φ(y)φ(z)),

and an anti-homomorphism of torsors is a homomorphism to the opposite torsor
(same set with product (x, y, z) 7→ (zyx)). Homomorphisms enjoy similar prop-
erties as usual affine maps. It is easily proved that left and right multiplications
are automorphisms (called inner), whereas middle multiplications are inner anti-
automorphisms. Other notions, such as subtorsors, products, congruences and
quotients follow standard patterns.
Definition. A semitorsor (G, (·, ·, ·)) is a set G with a ternary operation G3 →
G; (x, y, z) 7→ (xyz) satisfying the para-associative law (G3) from the Introduction.

The basic example is the symmetric semitorsor on sets A and B , the set of
all relations between A and B with (rst) = r ◦ s−1 ◦ t , where ◦ is the composition
of relations.

Clearly, fixing the middle element in a semitorsor gives rise to a semigroup;
but, in contrast to the case of groups, not all semigroups are obtained in this way.
For more on semitorsors, see, e.g. [Sch62] and the references therein.

6. Appendix: Associative pairs

Definition. An associative pair (over K) is a pair (A+, A−) of K-modules to-
gether with two trilinear maps

〈·, ·, ·〉± : A± × A∓ × A∓ → A±

such that
〈xy〈zuv〉±〉± = 〈〈xyz〉±uv〉± = 〈x〈uzy〉∓v〉±.

Note that we follow here the convention of Loos [Lo75]. Other authors (e.g.
[CGM89]) use a modified identity, replacing the last term by 〈x〈yzu〉∓v〉± . But
both versions are equivalent: it suffices to replace 〈 〉− by the trilinear map
(x, y, z) 7→ 〈z, y, x〉− . We prefer the definition given by Loos since it takes
the same form as the para-associative law in a semitorsor. We should mention,
however, that for associative triple systems, i.e., K-modules A with a trilinear map
A3 → A , (x, y, z) 7→ 〈xyz〉 these two versions of the defining identity have to be
distinguished, leading to two different kinds of associative triple systems (“ternary
rings”, cf. [Li71], and associative triple systems [Lo72]; all this is best discussed in
the context of associative pairs, resp. geometries, with involution, see topic (2) in
Chapter 4 and [BeKi09].) In any case, for fixed a ∈ A− , A+ with

x ·a y := 〈xay〉

is an associative algebra, called the a-homotope and denoted by A+
a .
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Examples of associative pairs.

(1) Every associative algebra A gives rise to an associative pair A+ = A− = A
via 〈xyz〉+ = xyz , 〈xyz〉− = zyx .

(2) For K-modules E and F , let A+ = Hom(E, F ), A− = Hom(F, E),

〈XY Z〉+ = X ◦ Y ◦ Z 〈XY Z〉− = Z ◦ Y ◦X.

(3) Let Â be an associative algebra with unit 1 and idempotent e and f := 1−e .
Let

Â = fÂf ⊕ fÂe⊕ eÂe⊕ eÂf = A00 ⊕ A01 ⊕ A11 ⊕ A10

with Aij = {x ∈ Â | ex = ix, xe = jx} the associated Peirce decomposition.
Then

(A+, A−) := (A01, A10), 〈xyz〉+ := xyz, 〈xyz〉− := zyx

is an associative pair.

The standard imbedding. It is not difficult to show that every associative pair
arises from an associative algebra Â with idempotent e in the way just described
(see [Lo75], Notes to Chapter II). We call this an algebra imbedding for (A+, A−).
There are several such imbeddings (see [Pe04] for a comparison of some of them).
Among these is a minimal choice called the standard imbedding of the associative
pair. For instance, in Example (2) we may take Â = End(E ⊕ F ) with e the
projector onto E along F (but this choice will in general not be minimal). In
Example (1), take Â := EndA(A ⊕ A) = M(2, 2; A) and e the projector onto the
first factor.

The associated Jordan pair. Formally, associative pairs give rise to Jordan
pairs in exactly the same way as torsors give rise to symmetric spaces: the Jordan
pair is (V +, V −) := (A+, A−) with the quadratic map Q±(x)y := 〈xyx〉± and its
polarized version

T±(x, y, z) := Q±(x + z)y −Q±(x)y −Q±(z)y = 〈xyz〉± + 〈zyx〉±.

Associative pairs with invertible elements. We call x ∈ A± invertible if

Q(x) : A∓ → A±, y 7→ 〈xyx〉

is an invertible operator. As shown in [Lo75], associative pairs with invertible
elements correspond to unital associative algebras: namely, x is invertible if and
only if the algebra Ax has a unit (which is then x−1 := Q(x)−1x).
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