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Abstract. For all classical groups (and for their analogs in infinite dimension
or over general base fields or rings) we construct certain contractions, called
homotopes. The construction is geometric, using as ingredient involutions of
associative geometries. We prove that, under suitable assumptions, the groups
and their homotopes have a canonical semigroup completion.
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Introduction: The classical groups revisited

The purpose of this work is to explain two remarkable features of classical groups:

(1) every classical group is a member of a “continuous” family interpolating be-
tween the group and its “flat” Lie algebra; put differently, there is a geometric
construction of “contractions” (in this context also called homotopes),

(2) every classical group and all of its homotopes admit a canonical completion
to a semigroup; the underlying (compact) space of all of these “semigroup
hulls” is the same for all homotopes.

In fact, these results hold much more generally. The key property of classical
groups is that they are closely related to associative algebras : either they are
(quotients of) unit groups of such algebras, or they are (quotients of) ∗-unitary
groups

U(A, ∗) := {u ∈ A|uu∗ = 1} (0.1)

for some involutive associative algebra (A, ∗). This way of characterizing classical
groups suggests to consider as “classical” also all other groups given by these
constructions, including infinite-dimensional groups and groups over general base
fields or rings K , obtained from general involutive associative K-algebras (A, ∗).
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On an algebraic, or “infinitesimal”, level, features (1) and (2) are supported
by simple observations on associative algebras: as to (1), associative algebras
really are families of products (x, y) 7→ xay (the homotopes, see below), and
as to (2), it is obvious that an associative algebra forms a semigroup and not a
group with respect to multiplication. Our task is, then, to “globalize” these simple
observations, and at the same time to put them into the form of a geometric theory:
we have to free them from choices of base points (such as 0 and the unit 1 in an
associative algebra). Just as in classical geometry, this means to proceed from a
“linear” to a “projective” formulation, with an “affine” formulation as intermediate
step. For classical groups of the “general linear type” (An ), this has already been
achieved in Part I of this work ([BeKi09]). In the present article we look at the
remaining families (Bn , Cn , Dn ) and their generalizations. They correspond to
associative algebras with involution, so that the geometric theory of involutions
will be a central topic of this work. Let us start by describing the “infinitesimal”
situation (i.e., the Lie algebra level), before explaining how to “globalize” it.

Homotopes of classical Lie algebras. The concept of homotopy is at the
base of Part I of this work: an associative algebra A should be seen rather as a
family of associative algebras (A, (x, y) 7→ xay), parametrized by a ∈ A . This
gives rise to a family of Lie brackets [x, y]a = xay − yax also called homotopes,
interpolating between the “usual” Lie bracket (a = 1) and the trivial one (a = 0).
In particular, taking for A the matrix space M(n, n; K) with Lie bracket [X, Y ]A
for A ∈ M(n, n; K) we get a Lie algebra which will be denoted by gln(A; K).

For abstract Lie algebras, there is no such construction; however, there is a
variant that can be applied to all classical Lie algebras: let us add an involution
∗ (antiautomorphism of order 2) as a new structural feature to our associative
algebra A , and write

A = Herm(A, ∗)⊕ Aherm(A, ∗) = {x ∈ A|x∗ = x} ⊕ {x ∈ A|x∗ = −x}

for the eigenspace decomposition. If we fix a ∈ Herm(A, ∗), then ∗ : A → A is an
antiautomorphism of the homotopic bracket [·, ·]a , and therefore (Aherm(A, ∗), [·, ·]a),
a ∈ Herm(A, ∗), is a family of Lie algebra structures on Aherm(A, ∗), again called
homotopes. Remarkably, the construction works also in the other direction: if we
fix a ∈ Aherm(A, ∗), then A → A , x 7→ x∗ is an automorphism of the homo-
tope bracket [·, ·]a , and hence (Herm(A, ∗), [·, ·]a), a ∈ Aherm(A, ∗), is a family
of “homotopic” Lie algebra structures on Herm(A, ∗). For instance, taking for A
the matrix algebra M(n, n; K) with involution X∗ := X t (transposed matrix; in
this case we write Sym(n; K) and Asym(n; K) for the eigenspaces), we get con-
tractions of the orthogonal Lie algebras, denoted by on(A; K) := Asym(n; K) with
bracket [X, Y ]A for symmetric matrices A . For A = 1, we get the usual Lie al-
gebra o(n); for A = Ip,q (diagonal matrix of signature (p, q) with p + q = n) we
get the pseudo-orthogonal algebras o(p, q), but for p + q < n we get a new kind
of Lie algebras: they are not Lie algebras defined by a form since the Lie algebra
of a degenerate form has bigger dimension than the one of a non-degenerate form,
whereas our contractions preserve dimension. Likewise, for skew-symmetric A ,
we get homotopes of “symplectic type” spn/2(A; K) := Sym(n; K) with bracket
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[X, Y ]A . If n is even and A invertible, then this algebra is isomorphic to the
usual symplectic algebra sp(n, K), and if A is not invertible, we get “degenerate”
homotopes; as in the orthogonal case, these algebras are not Lie algebras defined
by a degenerate skewsymmetric form. If n is odd, then the family contains only
“degenerate members”, which we call half-symplectic.

Summing up, looking at homotope Lie brackets on Aherm(A, ∗) not only
serves to imbed the usual Lie bracket into a family, but also to restore a remarkable
formal duality between Aherm(A) and Herm(A) which usually gets lost. An
algebraic setting that takes account of this duality from the outset is the one of an
associative pair (see Appendix A and [BeKi09]). For instance, the square matrix
algebras gln(A; K) are generalized by the rectangular matrix algebras glp,q(A; K) :=
M(p, q; K) with bracket [X,Y ]A where A now belongs to the “opposite” matrix
space M(q, p; K). In the pair setting, a map φ is an involution if and only if so
is −φ , and hence Herm(φ) and Aherm(φ) simply interchange their rôles if we
replace φ by −φ . It is only the consideration of unit or invertible elements that
may break this symmetry: they may exist in one space but not in the other.

The following table summarizes the definition of classical Lie algebras and
their homotopes. In the general linear cases, K may be any ring (in particular,
the quaternions H are admitted); in the orthogonal and symplectic families K
has to be a commutative ring, and for the unitary families we use an involution
of K : if K = C , we use usual complex conjugation, and for K = H we use the
following conventions: if nothing else is specified, we use the “usual” conjugation
λ 7→ λ (minus one on the imaginary part imH and one on the center R ⊂ H). If

we consider H with its “split” involution λ 7→ λ̃ := jλj−1 , then we write H̃ . For
instance, Herm(n; H̃) is the space of quaternionic matrices such that X̃ = X t , and

un(1; H̃) is the Lie algebra often denoted by so∗(2n). In all cases, the Lie bracket
is [X, Y ]A = XAY − Y AX . Note finally that the trace map does not behave
well with respect to our contractions, and therefore we do not define homotopes
of special linear or special unitary algebras.

family name label and space parameter space Lie bracket
general linear (square) gln(A; K) := M(n, n; K) A ∈ M(n, n; K) [X, Y ]A
general linear (rectan.) glp,q(A; K) := M(p, q; K) A ∈ M(q, p; K) [X, Y ]A
orthogonal on(A; K) := Asym(n; K) A ∈ Sym(n; K) [X, Y ]A
[half-] symplectic spn/2(A; K) := Sym(n; K) A ∈ Asym(n; K) [X,Y ]A
C-unitary un(A; C) := Aherm(n; C) A ∈ Herm(n; C) [X,Y ]A
H-unitary un(A; H) := Aherm(n; H) A ∈ Herm(n; H) [X,Y ]A
H-unitary split un(A; H̃) := Aherm(n; H̃) A ∈ Herm(n; H̃) [X,Y ]A

The expert reader will certainly have remarked that everything we have said so
far holds, mutatis mutandis, for “Lie” replaced by “Jordan”: Herm(A, ∗) is a
Jordan algebra, and in the Jordan pair setting the rôles of Herm(A) and Aherm(A)
become more symmetric. Indeed, a conceptual and axiomatic theory will use the
Jordan- and Lie-aspects of an associative product in a crucial way – see remarks
in Chapter 6 and in [Be08c]. In order to keep this paper accessible for a wide
readership, no use of Jordan theory will be made in this work.
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Homotopes of classical groups. Now let us explain the main ideas serving to
“globalize” the Lie algebra situation just described. First of all, for the classical Lie
algebras introduced above it is easy to define explicitly a corresponding algebraic
group: in the setting of an abstract unital algebra A with Lie bracket [x, y]a =
xay − yax , one defines the set

G(A, a) := {x ∈ A| 1− xa ∈ A×}

and checks that
x ·a y := x + y − xay

is a group law on G(A, a) with neutral element 0 and inverse of x given by

ja(x) := −(1− xa)−1x.

It is easily seen (cf. Lemma 1.5) that the Lie algebra of this group is given by the
bracket [x, y]a . Next, observe that an involution ∗ of A induces an isomorphism
from G(A, a) onto the opposite group of G(A, a∗). Therefore, if a is Hermitian,
∗ induces a group antiautomorphism of order 2, and we can define the a-unitary
group as usual to be the subgroup of elements g ∈ G(A, a) such that g∗ = ja(g). If
a is skew-Hermitian, the a-symplectic group is defined similarly by the condition
−g∗ = ja(g). Specializing to the classical matrix algebras, we get the following list
of classical groups:

label underlying set parameter space product
GLn(A; K) := {X ∈ M(n, n; K)|1− AX invertible} A ∈ M(n, n; K) X ·A Y
GLp,q(A; K) := {X ∈ M(p, q; K)|1− AX invertible} A ∈ M(q, p; K) X ·A Y
On(A; K) := {X ∈ GLn(A, K)|X + X t = X tAX} A ∈ Sym(n; K) X ·A Y
Spn/2(A; K) := {X ∈ GLn(A, K)|X −X t = X tAX} A ∈ Asym(n; K) X ·A Y

Un(A; C) := {X ∈ GLn(A, K)|X + X
t

= X
t
AX} A ∈ Herm(n; C) X ·A Y

Un(A; H) := {X ∈ GLn(A, H)|X + X
t

= X
t
AX} A ∈ Herm(n; H) X ·A Y

On(A; H̃) := {X ∈ GLn(A, H)|X + X̃ t = X̃ tAX} A ∈ Herm(n; H̃) X ·A Y

Finally, one may observe that this realization of classical groups has the advantage
of leading to a natural “semigroup hull”: e.g., if At = A , a direct computation
shows that the set Ôn(A; K) := {X ∈ M(n, n; K)|X t + X = X tAX} is stable
under the product ·A , which turns it into a semigroup with unit element 0, and
similarly in all other cases.

“Projective” theory of classical torsors. The definition of the classical
groups given above is useful for calculating their Lie algebras and for starting
to analyze their group structure (and their topological structure if K is a topolog-
ical field or ring), but also has several drawbacks: firstly, note that the product
X ·A Y is affine in both variables, and hence our groups are realized as subgroups
of the affine group of the matrix space M(n, n; K). The corresponding linear rep-
resentation in a space of dimension n2 +1 is not very natural, and one may wish to
realize these groups in more natural linear representations. Secondly, whereas the
general linear groups are, for all A , realized as (Zariski-dense) parts of a common
ambient space (M(n, n; K), resp. M(p, q; K)), this is not the case for the other
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classical groups: the underlying set depends on A , and hence the realization is not
adapted to the point of view of deformations or contractions. Finally, and related
to the preceding item, one has the impression that the “semigroup hull” Ôn(A; K)
depends on the realization, and that it should rather be part of some maximal
semigroup hull intrinsically associated to the group On(A; K) .

In the present work, we will give another realization of the classical groups
(and, much more generally, of the groups attached to abstract involutive algebras)
having none of these drawbacks: it is a sort of projective realization, as opposed
to the affine picture just given. In a first step, we get rid of base points in
groups by considering them as torsors, that is, we work with the ternary product
(xyz) := xy−1z of a group. By classical torsor we simply mean a classical group
from the preceding table equipped with this ternary law, i.e., by forgetting their
base points. For the general linear family, we have seen in Part I of this work that
there is a common realization of all groups GLp,q(A, K) inside the Grassmannian
X := Gras(Kp+q) in such a way that they are realized as subgroups of the
projective group PGL(p+ q, K). The parameter space is again the complete space
X , and “space” and “parameter” variables are incorporated into a single object
(called an associative geometry, given by a pentary product map Γ : X 5 → X )
having surprising properties. In the present work we show that, for the other
families, there is a more refined construction, relying on the existence of involutions
(antiautomorphisms of order 2) of associative geometries. For the classical groups,
these involutions are orthocomplementation maps, so that the fixed point spaces
are varieties of Lagrangian subspaces. We will realize all orthogonal groups as
(Zariski dense) subsets of the Lagrangian variety of a quadratic form of signature
(n, n), and the [half-] symplectic groups in the Lagrangian variety of a symplectic
form on K2n . The underlying Lagrangian variety plays the rôle of a “projective
completion” of these groups (also called “projective compactification” if K = R
or K = C since it is compact in these cases), and in particular we will show
that the group law extends to a semigroup law on the projective completion, thus
defining the intrinsic and maximal (compact) semigroup hull for all classical groups
and their homotopes. As in the general linear case, this achieves a realization in
which all “deformations” or “contractions” are globally defined on the space level.
In contrast to the general linear case, the parameter space now is different from
the underlying Lagrangian variety of the group spaces: it is another Lagrangian
variety which we call the dual Lagrangian. This duality reflects the duality between
Herm(A, ∗) and Aherm(A, ∗) mentioned above.

Contents. The contents of this paper is as follows: in Chapter 1 we recall basic
facts on the “general linear construction”; in Chapter 2 we define and construct
involutions of associative geometries: in Theorem 2.4 we prove that orthocomple-
mentation maps of non-degenerate forms are involutions; in Chapter 3 we describe
the “projective” construction of torsors and groups associated to (restricted) invo-
lutions of associative geometries (Lemma 3.2), their tangent objects with respect
to various choices of base points (Theorems 3.9 and 3.9) as well as the link with
the “affine” realization given above (Theorem 3.5). In Chapter 4 we present the
classification of homotopes of classical groups (over K = R or C , the case of gen-
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eral base fields or rings being at least as complicated as the problem of classifying
involutive associative algebras, see [KMRS98]). In Chapter 5 we describe the semi-
group completion of classical groups (Theorem 5.7); the main difficulty here is to
prove that non-degenerate forms induce involutions of geometries in a “strong”
sense. This requires some investigation of the linear algebra of linear relations,
complementing those from Chapter 2 of Part I of this work, and which may be of
interest in its own right. Finally, in Chapter 6 we give some brief comments on a
possible axiomatic approach, involving both the Jordan- and the Lie side of the
whole structure, and Appendix A contains the relevant definitions on involutions
of associative pairs.

Related work. Finally, let us add some words on related literature. It seems to
be folklore in symplectic geometry that the group law of Sp(m, R) extends to the
whole Lagrangian variety if we interpret it via composition of linear relations : the
composition of two Lagrangian linear relations is again Lagrangian (see appendix
on “linear symplectic reduction” in [CDW87] or Theorem 21.2.14 in [Hö85]). In
a case-by-case way, Y. Neretin ([Ner96]) has given similar constructions for other
families of complex or real Lagrangrian varieties (“categories B , C , D”, see loc.
cit., p. 85 ff and loc. cit. Appendix A for their real analogs). It would be very
interesting to investigate further the relationship between our work and Neretin’s,
in particular in view of applications in harmonic analysis and quantization. Note
that Neretin in loc. cit. p. 59 uses a modified composition law of linear relations in
order to obtain a jointly continuous operation; since we do not consider topologies
here, we leave the [important] topic of joint continuity for later work.

Notation. Throughout this work, K denotes a commutative unital ring and B an
associative unital K-algebra, and we will consider right B-modules V, W, . . . . We
think of B as “base ring”, and the letter A will be reserved for other associative
K-algebras such as EndB(W ).

If V = a⊕ b is a direct sum decomposition of a vector space or module, we
denote by P a

b : V → V the projection with kernel a and image b .

1. The general linear family

Groups and torsors living in Grassmannians. We are going to recall the
basic construction from Part I ([BeKi09]) which realizes groups like GLn(A, K)
inside a Grassmannian manifold. Let W be a right B-module and X = Gras(W )
be the Grassmannian of all right B -submodules of W . A pair (x, a) ∈ X 2 is called
transversal (denoted by a>x or x>a) if W = x⊕ a . The set of all complements
of a is denoted by Ca , so that

Cab := Ca ∩ Cb

is the set of common complements of a and b . One of the main results of [BeKi09]
says that the set Cab carries two canonical torsor-structures. More precisely, we
define, for (x, a, b, z) ∈ X 4 such that a>x , b>z , the endomorphism of W

Mxabz := P a
x − P z

b = P a
x − 1 + P b

z . (1.1)
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By a direct calculation (see [BeKi09], Prop. 1.1), one sees that

Mxabz = Mzbax, Mxabz = −Maxzb, (1.2)

and, if x, z ∈ Uab , then Mxabz is invertible with inverse

(Mxabz)−1 = Mzabx = Mxbaz. (1.3)

Recall (see, e.g., [BeKi09]) that a torsor is the base point-free version of a group (a
set G with a ternary map G3 → G , (xyz) 7→ (xyz) such that (xyy) = x = (yyx)
and (xy(zuv)) = ((xyz)uv)). Then ([BeKi09], Th. 1.2):

Theorem 1.1. i) For a, b ∈ X fixed, Cab with product

(xyz) := Γ(x, a, y, b, z) := Mxabz(y)

is a torsor (which will be denoted by Uab ). In particular, for all y ∈ Cab , the
set Cab is a group with unit y and multiplication xz = Γ(x, a, y, b, z).

ii) Uab is the opposite torsor of Uba (same set with reversed product):

Γ(x, a, y, b, z) = Γ(z, b, y, a, x)

In particular, the torsor Ua := Uaa is commutative.

iii) The commutative torsor Ua is the underlying additive torsor of an affine
space: Ua is an affine space over K, with additive structure given by

x +y z = Γ(x, a, y, a, z),

(sum of x and z with respect to the origin y), and action of scalars given by

Πs(x, a, y) := sy + (1− s)x = (sP x
a + P a

x )(y)

(multiplication of y by s with respect to the origin x).

Definition 1.2. (The restricted multiplication map) We call restricted
multiplication map the map Γ : D5 → X , defined on the set of admissible 5-tuples

D5 := {(x, a, y, b, z) ∈ X 5|x, y, z ∈ Cab},

by the formula from part i) of the preceding theorem.

Definition 1.3. (Base points and tangent spaces) A base point in X is a
fixed transversal pair, usually denoted by (o+, o−). The tangent space at (o+, o−)
is the pair

(A+, A−) := (Co− , Co+).

Note that (A+, A−) is a pair of K-modules (with origin o± in A± ), isomorphic to(
HomB(o+, o−), HomB(o−, o+)

)
. (1.4)

This tangent space carries the structure of an associative pair given by trilinear
products (see [BeKi09], Th. 1.5)

A± × A∓ × A± → A±, (u, v, w) 7→ 〈u, v, w〉± := Γ(u, o+, v, o−, w). (1.5)
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Definition 1.4. (Transversal triples) A transversal triple is a triple of mutu-
ally transverse elements. If we fix such a triple, we usually denote it by (o+, e, o−).
In this case, A := Co− carries the structure of an associative algebra with origin
o := o+ and unit e , called the tangent algebra at o+ corresponding to the base
triple (o+, e, o−), with product

A× A → A, (u, v) 7→ Γ(u, o+, e, o−, v). (1.6)

In a dual way, Co+ is turned into an algebra with origin o− . Both algebras are
canonically isomorphic via the inversion map j = Meo+o−e .

Lie algebra and structure of the torsors Uab . We explain the link between
the torsors Uab and the groups GLp,q(A; B) defined in the Introduction, as well as
the computation of their “Lie algebra”.

Lemma 1.5. Choose an origin o+ in Uab and an element o−>o+ . Then the
Lie algebra (in a sense to be explained in the following proof) of the group (Uab, o

+)
is the “tangent space” A+ = HomB(o+, o−) with Lie bracket

[X, Y ] = X(a− b)Y − Y (a− b)X

(note that o+ ∈ Uab means that a, b ∈ Co+ = A− , so that a − b ∈ A− ). In
particular, choosing o− = b, we get the Lie algebra of UA0 :

[X, Y ] = XAY − Y AX.

Proof. The Lie algebra can be defined in a purely algebraic way, without
using ordinary differential calculus, as follows. Let TK := K[ε] := K[X]/(X2),
ε2 = 0 be the ring of dual numbers over K and TTK := T (TK) := (K[ε1])[ε2]
be the “second order tangent ring”. Then (X , Γ) admits scalar extensions from
K to TK and to TTK , and the commutator in the second scalar extension of the
group Uab gives rise to the Lie bracket in the way described in [Be08], Chapter
V. This construction is intrinsic and does not depend on “charts”. Therefore we
may choose o− := b in order to simplify calculations (the first formula from the
claim then follows from the second one). Then Uab = Ca ∩ Co− = Ca ∩ A+ , and
according to [BeKi09], Proposition 1.7 we have the following “affine picture” of
the group (Uab, o): if, under the isomorphism (1.4), a corresponds to the element
A ∈ A− = HomB(o−, o+), then Uab corresponds to the set

UA0 = {X ∈ HomB(o+, o−)| 1− AX is invertible in EndB(o+)} (1.7)

with group law given by the product Z ·A X defined in the Introduction:

X · Z = X + Z − ZAX. (1.8)

Since Formulas (1.7) and (1.8) are algebraic, we may now determine expli-
citly the tangent group of U0A via scalar extension by dual numbers: the operator

1− (A + εA′)(X + εX ′) = 1− AX + ε(A′X + AX ′)
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is invertible iff so is 1−AX , hence the tangent bundle T (U0A) is U0A×εHomB(o+, o−),
with semidirect product group structure

(X, εX ′) · (Z, εZ ′) =
(
X + Z − ZAX, ε(X ′ + Z ′ + Z ′AX + ZAX ′)

)
. (1.9)

Repeating the construction, we obtain the second tangent bundle TT (U0A) by
scalar extension from K to the ring TTK . As explained in [Be08], the Lie bracket
[X, Y ] arises from the commutator in the second tangent group via

ε1ε2[X, Y ] = (ε1X)(ε2Y )(ε1X)−1(ε2Y )−1.

A direct calculation, based on (1.9), yields

(ε1X)(ε2Y ) = ε1X + ε2Y + ε1ε2Y AX,

which, after a short calculation using that (ε1X)−1 = ε1(−X), (ε1Y )−1 = ε1(−Y ),
implies the claim.

As is easily seen from the explicit formulas given above by choosing for A
special (idempotent) elements (cf. [Be08b]), the groups Uab and their Lie algebra
have a double fibered structure. These and related features for symmetric spaces
will be investigated in [BeBi].

2. Construction of involutions

Definition of (restricted) involutions. Whenever in a category we have for
each object X a canonical notion of an “opposite object” X op , there is a natural
notion of involution. This is the case for groups, torsors or associative geometries.

Definition 2.1. A restricted involution of the Grassmannian geometry X =
Gras(W ) is a bijection f : X → X of order two and such that

(1) f preserves transversality: for all a, x ∈ X : a>x iff f(a)>f(x),

(2) f is an isomorphism onto the opposite restricted product map: for all 5-tuples
(x, a, y, b, z) such that x, y, z ∈ Uab ,

f
(
Γ(x, a, y, b, z)

)
= Γ(fx, fb, fy, fa, fz) = Γ(fz, fa, fy, fb, fx).

(3) f induces affine maps on affine parts: for all 3-tuples (x, a, y) such that
x, y>a , and r ∈ K ,

f
(
Πr(x, a, y)) = Πr

(
fx, fa, fy

)
.

In other words, by (1), f induces well-defined restrictions Uab → Uf(a),f(b) and
Ua → Uf(a) , which induce, by (2), anti-isomorphisms of torsors Uab → Uf(a),f(b) ,
and by (3), isomorphisms of affine spaces Ua → Uf(a) .

The fixed point space Y := X τ of an involution τ will be called the
Lagrangian type geometry of (X , τ) (if it is not empty).

In general, nothing guarantees existence of restricted involutions. Before
turning to the general theory (next chapter), we will show that under certain
conditions one can construct them by using bilinear or sesquilinear forms. In these
cases, Y will be indeed realized as a geometry of Lagrangian subspaces.
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Non-degenerate forms and adjoinable pairs. We assume that our B-module
W admits a non-degenerate sesquilinear form

β : W ×W → B.

By sesquilinearity we mean β(vr, w) = rβ(v, w), β(v, wr) = β(v, w)r for v, w ∈
W , r ∈ B , where

B → B, z 7→ z

is some fixed involution (antiautomorphism of order 2) of B , and non-degeneracy
means that β(v, W ) = 0 or β(W, v) = 0 implies v = 0. Of course, for B = K
and z = z we get bilinear forms. Moreover, we assume that β is Hermitian or
skew-Hermitian:

∀v, w ∈ W : β(v, w) = β(w, v), resp. ∀v, w ∈ W : β(v, w) = −β(w, v).

As usual, the orthogonal complement of a subset S ⊂ W will be denoted by
S⊥ . The orthogonal complement of a right submodule is again a right submodule,
but, unfortunately, it is in general not true that the orthocomplementation map
⊥: X → X satisfies the properties of a (restricted) involution: in general, it does
not even preserve transversality, nor is it of order two.

Definition 2.2. A pair (x, a) ∈ X × X is called adjoinable if W = x ⊕ a and
W = x⊥ ⊕ a⊥ .

Lemma 2.3. A pair (x, a) ∈ X × X is adjoinable if and only if the projection
P := P a

x is adjoinable; i.e., there exists a linear operator P ∗ : W → W such that

∀v, w ∈ W : β(v, Pw) = β(P ∗v, w). (2.1)

Moreover, in this case we have (x⊥)⊥ = x and (a⊥)⊥ = a.

Proof. Assume P ∗ exists. If two operators f, g are adjoinable, then we have
(gf)∗ = f ∗g∗ , and hence P ∗ is again idempotent. Moreover, the kernel of P ∗ is
ker P ∗ = (imP )⊥ = x⊥ . Now, P is adjoinable if and only if so is Q := 1 − P ,
whence imP ∗ = ker Q∗ = a⊥ , and thus W = x⊥ ⊕ a⊥ . Moreover, this shows that

(P a
x )∗ = P x⊥

a⊥ . (2.2)

Reversing these arguments, we see that, if (x, a) is adjoinable, equation (2.2)
defines an operator P ∗ , and a direct check shows that then (2.1) holds. Moreover,
from (P ∗)∗ = P the relations (x⊥)⊥ = x and (a⊥)⊥ = a follow.

The lemma shows that, in the general case, we should not work with the full
Grassmannian, but only with its adjoinable elements. For simplicity, let us first
look at a case where the Grassmannian is well-behaved, namely the case W = Bn :

Theorem 2.4. (Construction of involutions: case of Bn) Let W = Bn and
X be the Grassmannian of all right submodules that admit some complementary
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right submodule, and let β be a non-degenerate Hermitian or skew-Hermitian form
on B. Then the orthocomplementation map

⊥β: X → X , x 7→ x⊥

is a restricted involution of X .

Proof. For W = Bn , every non-degenerate sesquilinear form is given by

β(x, y) =
n∑

i,j=1

xibijyj

with some invertible matrix B = (bij). By assumption, B is Hermitian or skew-
Hermitian. As can be checked by a direct matrix calculation, in this case every
linear operator X : W → W is adjoinable, with adjoint given by the adjoint
matrix X∗ of (Xij):

X∗ = B−1X
t
B

where X t is the transposed matrix of X . In particular, if x is an arbitrary
complemented right-submodule of Bn with complement a , then P := P a

x is
adjoinable. Thus every transversal pair (x, a) is adjoinable, and moreover

x⊥ = im(P )⊥ = ker(P ∗).

We have thus shown that the orthocomplementation map is of order two and
preserves transversalilty. In order to prove the crucial property

Γ(z⊥, a⊥, y⊥, b⊥, x⊥) =
(
Γ(x, a, y, b, z)

)⊥
(2.3)

we observe that, for all x ∈ Gras(W ) and all linear maps F : W → W

(Fx)⊥ = (F ∗)−1(x⊥) (2.4)

(inverse image), and if F is bijective, (F ∗)−1 = (F−1)∗ (inverse map). We
apply this to the bijective map F = Mxabz (for x, z ∈ Cab ) whose inverse is
F−1 = Mzabx = Mxbaz and whose adjoint can be computed using (2.2): for
x, z ∈ Cab , the operator Mxabz has an adjoint given by

(Mxabz)∗ = (P a
x − P z

b )∗ = Ma⊥x⊥z⊥b⊥ = −Mx⊥a⊥b⊥z⊥ . (2.5)

Now let a, b ∈ X and x, y, z ∈ Cab . Then, with F = Mxabz ,(
Γ(x, a, y, b, z)

)⊥
=

(
F (y)

)⊥
= (F ∗)−1y⊥

= M−1
x⊥a⊥b⊥z⊥

(y⊥) = Mx⊥b⊥a⊥z⊥(y⊥) = Γ(x⊥, b⊥, y⊥, a⊥, z⊥) .

This proves (2.3). Finally, property (3) of an involution can be proved in the same
way as (2.3) (and this property is already known since it depends only on the
underlying Jordan structure, see, e.g., [Be04]).

The cases n = 1 and n = 2 of the preceding result deserve special interest.
For n = 1, we work with the form β(u, v) = u v , and we consider the Grassmannian
of complemented right ideals in B with involution ker e 7→ im e (where e ∈ B is
an idempotent, ker e = (1− e)B , ime = eB). The case n = 2 enters in the proof
of Theorem 3.10 (next chapter).



264 Bertram, Kinyon

The adjoinable Grassmannian. As we will see in Theorem 3.10, the case
n = 2 is already suitable to treat all seemingly more general cases. Returning
thus to the case of a general B-module W with a non-degenerate Hermitian or
skew-Hermitian form β , we may proceed as follows: let

A := {f ∈ EndB(W )| ∃f ∗ ∈ EndB(W ) : ∀v, w ∈ W : β(v, fw) = β(f ∗v, w)}

the set of all adjointable linear operators. Then A is a subalgebra of EndB(W ),
and ∗ is an involution on A . Now define the adjoinable Grassmannian of β to be

Xβ := {im P |P ∈ A, P 2 = P},

the set of all submodules x admitting a complement a such that the projection
P := P a

x is adjointable. (In general, not all submodules have this property –
consider e.g. a dense proper subspace x in a Hilbert space.) Let X̃ := {PA|P ∈
A, P 2 = P} be the Grassmannian of all complemented right modules in A . Then
the map

X̃ → Xβ, PA 7→ imP

is well-defined, bijective and compatible with the structure maps Γ. We use it
to push down τ to an involution of Xβ , so that we can carry out all preceding
constructions on the adjoinable Grassmannian.

3. Groups and torsors associated to involutions

We assume, for all of this chapter, that τ : X → X is a restricted involution of
the Grassmannian geometry X = GrasB(W ) and write Y for its fixed point space.
There are two different ways to construct groups and torsors associated to (X , τ).
Here is the first construction, which simply mimics the usual definition of unitary
and orthogonal groups:

Definition 3.1. Fix three points a, o, b ∈ Y such that o ∈ Uab , considered as
origin in the group (Uab, o), and let x−1 := Moabo(x) be inversion in this group.
Then τ induces an antiautomorphism of this group:

τ(xy) = τΓ(x, a, o, b, y) = Γ(τ(y), τ(a), τ(o), τ(b), τ(x))
= Γ(τ(y), a, o, b, τ(x)) = τ(y)τ(x),

and hence
U(τ ; a, o, b) := {x ∈ Uab| τ(x) = x−1}

is a subgroup, called the τ -unitary group (located at (a, o, b)).

This group is not a subset of the Lagrangien geometry Y , but rather is
“tangent” to the “antifixed space of τ ”: indeed, the differential of inversion at
o is the negative of the identity, and hence the tangent space of U(τ ; a, o, b) at
the identity should be the minus one eigenspace of τ . This will be made precise
below (Theorem 3.5). Next, we describe a second construction of groups having
the advantage that it directly leads to torsors living in the Lagrangian geometry:
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Lemma 3.2. Let τ : X → X be a restricted involution of the Grassmannian
geometry X = GrasB(W ) and denote by Y := X τ its Lagrangian type geometry.
Then

i) for any a ∈ X , τ induces a torsor-automorphism of the torsor Ua,τ(a) . In
particular, the fixed point set

G(τ ; a) := (Ua,τ(a))
τ = Ua,τ(a) ∩ Y

is a subtorsor of Ua,τ(a) .

ii) As a set, G(τ, a) = Ua ∩ Y .

iii) G(τ, τ(a)) is the opposite torsor of G(τ, a). If a ∈ Y , then the torsor G(τ, a)
is abelian, and it is the underlying additive torsor of an affine space over K.

Proof. (i) Note first that x ∈ Ca,τ(a) if and only if τ(x) ∈ Cτ(a),τ2(a) = Ca,τ(a)

since τ preserves transversality and is of order 2. Next we show that τ preserves
the torsor law (xyz)a = Γ(x, a, y, τ(a), z) of Ua,τ(a) :

τ(((xyz)a) = τ(Γ(x, a, y, τ(a), z)) = Γ(τz, τa, τy, a, τx)
= Γ(τx, a, τy, τa, τz) = (τx τy τz)a.

Clearly, the fixed point space Ua,τ(a) ∩ Y is then a subtorsor.

(ii) If x ∈ Y , i.e., τ(x) = x , then x>a is equivalent to x>τ(a), whence

Y ∩ Ua = Y ∩ Ua ∩ Uτ(a) = Y ∩ Ua,τ(a).

(iii) Ua,τ(a) is the opposite torsor of Uτ(a),a . If a = τ(a), then the arguments
given above show that τ is an automorphism of order 2 of the affine space Ua and
hence its fixed point space is an affine subspace.

In order to compare both constructions, we have to to study the behaviour
of involutions with respect to basepoints.

3.1. Basepoints, and the dual involution. Let us fix a base point (o+, o−)
in X . Recall from [BeKi09], Th. 1.3, that the middle multiplication operator
Mo+o−o−o+ is an automorphism of Γ. By (1.3), it is invertible and equal to its own
inverse. Moreover,

Mo+o−o−o+(o±) = Γ(o+, o−, o±, o−, o+) = o±.

Thus Mo+o−o−o+ is a base point preserving automorphism of the Grassmannian
geometry. Its effect on the additive groups A± is simply inversion, that is, multi-
plication by the scalar −1.

Definition 3.3. A (restricted) involution τ of X is called

• base point preserving if τ(o+) = o+ and τ(o−) = o− , and

• base point exchanging if τ(o+) = o− and τ(o−) = o+ .
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Lemma 3.4. Assume τ is a base point preserving or base point exchanging
involution of X . Then τ commutes with the automorphism Mo+o−o−o+ , and

τ ′ := Mo+o−o−o+ ◦ τ = τ ◦Mo+o−o−o+

is again of the same type (base point preserving, resp. exchanging involution) as
τ .

We call τ ′ the dual involution (denoted by −τ in a context where (o+, o−) is
fixed).

Proof. Thanks to the symmetry relation Mxabz = Maxzb we get in either case

τ ◦Mo+o−o−o+ ◦ τ = Mτo+,τo−,τo−,τo+ = Mo+o−o−o+ .

Therefore τ ′ is again of order 2, and it is an antiautomorphism having the same
effect on o± as τ since Mo+o−o−o+ is base point preserving.

Recall from [BeKi09] that, with respect to a fixed base point (o+, o−) and
a ∈ A− ,

t̃a := Mo+ao−o+ ◦Mo+o−o−o+ = Mao+o+o− ◦Mo−o+o+o− = Lao+o−o+

is the (left) translation operator defined by a in the abelian group Uo+
∼= A− . It

acts rationally on A+ by the so-called quasi inverse map.

Theorem 3.5. Assume τ is a base point preserving involution of X and let
a ∈ Y ∩ Uo− = (A+)τ . Then the groups G(−τ ; a) and U(τ ; 2a, o+, o−) are
isomorphic (the multiple 2a = a + a taken in A+ ). An isomorphism is induced by
t̃a .

Proof. Having fixed the base point, we use the notation −id := Mo+o−o−o+ .
We have to show that the group Ua,−a with its automorphism τ ′ is conjugate to
the group U2a,o− with its automorphism i2aτ where i2a := Mo+2a o−o+ is inversion
in the group (U2a,o− , o+). First of all,

t̃a(a) = a + a = 2a, t̃a(−a) = a + (−a) = o−

(sums in (A−, o−)), hence t̃a induces a torsor isomorphism from Ua,−a onto U2a,o−

preserving the base point o+ . Next, observe that

i2a ◦ (−id) = Mo+2ao−o+ ◦Mo+o−o−o+ = t̃2a

whence, using that τ ′ ◦ t̃a = t̃τ ′a ◦ τ ′ = t̃−a ◦ τ ′ ,

t̃−a ◦ i2aτ ◦ t̃a = t̃−a ◦ t̃2a ◦ (−id) ◦ τ ◦ t̃a = t̃−a ◦ t̃2aτ
′ ◦ t̃a = t̃−at̃2at̃−a ◦ τ ′ = τ ′

where the last equality follows from the relation t̃bt̃c = t̃b+c .
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In the affine chart A+ , t̃a acts as a birational map, transforming the affine
realization U(τ ; 2a, o+, o−) to a rational realization that is Zariski-dense in (A+)−τ .
If 2 is invertible in K , all τ -unitary groups U(τ ; b, o, c) have such a realization
G(τ ′; a) (just choose the base point (o+, o−) = (o, c) and let a := b/2). If 2 is not
invertible in K , such a realization is not always possible.

Concerning involutions of associative pairs and associative triple systems,
to be used in the following result, see Appendix A.

Theorem 3.6. Assume τ is a restricted involution of the Grassmannian ge-
ometry X , and let (A+, A−) be the associative pair corresponding to a base point
(o+, o−).

i) If τ : X → X is base-point preserving, then by restriction τ induces K-linear
maps τ± : A± → A± which form a type preserving involution of (A+, A−).

ii) If τ : X → X is base-point exchanging, then by restriction τ induces K-
linear maps τ± : A± → A∓ which form a type exchanging involution of
(A+, A−). In this case A := A+ becomes an associative triple system of the
second kind when equipped with the product

〈xyz〉 := Γ(x, o+, τ(y), o−, z).

iii) Assume τ : X → X is base-point preserving, and let a ∈ Y ′ such that
o+>a (i.e., a ∈ A− and τ(a) = −a). Then the Lie algebra of the group
(G(τ ; a), o+) is the space (A+)τ+

with Lie bracket

[x, z]a = 2(〈xaz〉 − 〈zax〉).

Proof. (i), (ii): All claims are simple applications of the functoriality of
associating an associative pair to an associative geometry with base pair, [BeKi09],
Theorem 3.5. For convenience, let us just spell out the computation proving the
property of an associative triple system in part ii):

〈u〈xyz〉w〉 = Γ
(
u, o+, τ

(
Γ(x, o+, τ(y), o−, z)

)
, o−, w

)
= Γ

(
u, o+, Γ(τz, τo+, y, τo−, τx), o−, w

)
= Γ

(
u, o+, Γ(τz, o−, y, o+, τx), o−, w

)
= Γ

(
Γ(u, o+, τz, o−, y), o+, τx, o−, w

)
= 〈〈uzy〉xw〉

(If we had used a base point preserving automorphism instead of an involution,
a similar calculation shows that we would get an associative triple system of the
first kind, see Appendix A.)

(iii): Using Lemma 1.5, with b = τ(a) = −a (since the effect of τ on A− is
multiplication by −1), we get the Lie bracket [x, z] = 〈x(2a)z〉 − 〈z(2a)x〉 .

Putting the preceding two results together, we obtain an explicit descrip-
tion of the groups G(−τ ; b/2) ∼= U(τ ; b, o+, o−) in terms of the associative pair
(A+, A−):

U(τ ; b, o+, o−) = {x ∈ A+| 1− xb invertible, τ(x) = jb(x)}
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with jb(x) = −(1 − xb)−1x , so that the condition −τ(x) = jb(x) is equivalent to
x + τ(x) = 〈xbτ(x)〉 . This formulation is valid for an arbitrary associative pair
with base-point preserving involution. In practice, all known examples arise for
associative pairs corresponding to unital associative algebras, to be discussed next.

Base triples, unitary groups, and Cayley transform. Next let us assume
that W admits a transversal triple (o+, e, o−). Then W = o+ ⊕ o− , and saying
that e is transversal to o+ and o− amounts saying that e is the graph of a linear
isomorphism o+ → o− . We may consider this isomorphism as an identification, so
that e becomes the diagonal ∆+ in W = o+ ⊕ o− = o+ ⊕ o+ . Then the element

−e := Mo+o−o−o+(e)

becomes the antidiagonal ∆− in o+ ⊕ o+ . In this situation, we may let the
group GL(2, K) act by block-matrices on W = o+ ⊕ o+ in the usual way. Let
G ⊂ GL(2, K) by the group generated by(

1 1
0 1

)
,

(
λ 0
0 1

)
,

(
0 1
1 0

)
with λ ∈ K× . The first matrix describes left translation by e ,

Leo−o+o− := 1− P e
o−P o−

o+ ,

the second multiplication by the scalar λ ,

δλ
o+o− = λP o+

o− + P o−

o+ ,

and the third describes a map j whose effect on the associative algebra A is
inversion:

j := Meo+o−e = Mo+eeo− .

All of these operators are (inner) automorphisms of the geometry (X , Γ). ¿From
(1.1) it follows that j is an automorphism of order 2, but this time it exchanges
the points o+ and o− :

Meo+o−e(o
+) = Γ(e, o+, o+, o−, e) = Γ(o+, e, o+, e, o−) = o−.

Moreover, j(e) = Meo+o−e(e) = Γ(e, o+, e, o−, e) = e .

Definition 3.7. If (o+, e, o−) is a transversal triple, we call τ a

• unital base point preserving involution if τ(o+) = o+ , τ(o−) = o− , τ(e) = e ,

• unital base point exchanging involution if τ(o+) = o− , τ(o+) = o− , τ(e) = e .

Note that, if τ is of one of these two types, then the dual involution τ ′ no longer
preserves e . Indeed, Mo+o−o−o+(e) = −e is the antidiagonal, which is different
from the diagonal (if W has no 2-torsion). Thus the rôles of τ and τ ′ are no
longer completely symmetric in the unital case.
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Lemma 3.8. Assume τ is a unital base point preserving involution of X . Then
τ commutes with the automorphism j = Meo+o−e , and

τ̃ := jτ = τj

is a unital base-point exchanging involution. Moreover, if 2 is invertible in K,
there exists an automorphism ρ : X → X (“the real Cayley transform”) such that

ρ ◦ τ ◦ ρ−1 = τ, ρ ◦ τ̃ ◦ ρ−1 = τ ′.

Proof. As in the proof of Lemma 3.4, we see that

τjτ = τMeo+o−eτ = Meo+o−e = j,

hence jτ is of order two, and it exchanges base points and is again an involution.

The automorphism ρ is constructed as follows: let ρ ∈ G be given by the
matrix

R :=

(
1 −1
1 1

)
=

(
1 1
0 1

) (
−2 0
0 1

) (
0 1
1 0

) (
1 1
0 1

)
.

Then ρ commutes with τ : indeed, τ commutes with all generators of the group
G mentioned above (since these operators are partial maps of Γ involving only
the τ -fixed elements o+, o−, e,−e and hence commute with τ ), hence τ commutes
with R . Since R sends the 4-tuple (o−, e, o+,−e) to (e, o+,−e, o−), it follows that

ρjρ = ρMeo+o−eρ = Mo+(−e)eo+ = Mo+o−o−o+

(the last equality follows since Mo+(−a)ao+ = M(−a)o+o+a = Mo−o+o+o− is the map
x 7→ (−a)− x + a = −x for all a ∈ V − ). Together, this implies

ρ ◦ τ̃ ◦ ρ−1 = ρ ◦ τj ◦ ρ−1 = τρ ◦ j ◦ ρ−1 = τ ◦Mo+o−o−o+ = τ ′.

(Note that R is not uniquely determined by the property from the lemma, but the
given form corresponds of course to the well-known “real” version of the Cayley
transform which enjoys further nice properties.)

Theorem 3.9. Assume τ is a unital base-point preserving involution of the
Grassmannian geometry (X ; o+, e, o−), and let A = Co− be the corresponding
unital associative algebra with origin o+ and A− = Co+ the one with origin o− ,
let τ ′ the dual involution of τ , τ̃ = jτ , Y := X τ and Y ′ := X τ ′ . Let a ∈ X such
that o+>a, i.e., a ∈ A− .

i) By restriction, τ induces an involutive antiautomorphism of A. This defines
a functor from the category of unital involutive associative geometries to the
category of involutive associative algebras.

ii) If a ∈ Y ′ , then the Lie algebra of the group G(τ ; a) is the space Herm(A, τ) =
Aτ with Lie bracket [x, z]a = 2(〈xaz〉 − 〈zax〉). Identifying A and A−

via the canonical isomorphism j , a is identified with the element j(a) ∈
Aherm(A, τ) and the Lie bracket is expressed in terms of A as

[x, z]a = 2(xaz − zax).
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iii) If a ∈ Y , then the Lie algebra of the group G(τ ′; a) is the space Aherm(A, τ) =
Aτ ′ with Lie bracket [x, z]a = 2(〈xaz〉 − 〈zax〉). With similar identifications
as above, this can be rewritten as [x, z]a = 2(xaz − zax).

If, moreover, a is invertible in A, then the group G(τ ′; a) is isomorphic to
the unitary group U(Aa, ∗) = {x ∈ A|xax∗ = 1} of the involutive algebra
(Aa, τ) with product x ·a y = xay and involution τ .

Proof. (i) We show that τ induces an algebra involution:

τ(xz) = τΓ
(
x, o+, e, o−, z

)
= Γ

(
τz, o+, e, o−, τx

)
= (τz)(τx)

Functoriality follows from [BeKi09], Theorem 3.4.

(ii) The fixed point space of τ in A is, by definition, Herm(A, ∗), and by
Lemma 3.2, τ is an automorphism of Uaτ(a) . The formula from the Lie bracket
follows from Theorem 3.6. Finally, in order to relate the associative pair to the
algebra formulation, recall from [BeKi09] that, for all a ∈ A− and x, z ∈ A+ ,

〈xay〉+ = x · j(a) · z,

where on the right hand side products are taken in the algebra A . Since the K-
linear isomorphism j : A+ → A− commutes with τ , the formulas from the claim
follow.

(iii) The statement on the Lie algebra is proved in the same way as (ii),
with signs changed. Now let a be invertible. Assume first a = 1. Note that
the condition xx∗ = 1 is equivalent to x = (x∗)−1 = jτ(x), and hence U(A, ∗)
is precisely the fixed point set of τ̃ in A . Its group structure is induced from
A× = Uo+o− . Now, the setting (A×, τ̃) = (Uo+o− , jτ) is conjugate, via the Cayley
transform ρ , to the setting (Ue,−e, τ

′) = (Ue,τ ′(e), τ
′), showing that the Cayley

transform ρ induces the desired isomorphism. In these arguments, the fixed
element e ∈ (Y ∩ Uo+o−) may be replaced by any other element a of this set;
this simply amounts to replacing A by its isotope algebra Aa .

Theorem 3.10. Consider the following classes of objects:

IG associative geometries with base triple and base triple preserving involutions,

IA involutive unital associative algebras.

There are maps F : IG → IA and G : IA → IG such that G ◦ F is the identity.

Proof. The map F is defined by part (i) of the preceding theorem. We
define the map G : given an involutive associative algebra (A, ∗), let X̂ be the
Grassmannian of complemented right A-submodules in A2 . We define on A2 the
skew-Hermitian (“symplectic”) form

β(x, y) = x1y2 − x2y1.

and consider the involution τ given by the orthocomplementation map with respect
to this form. Let o+ = A⊕ 0 (first factor), o− = 0⊕A (second factor) and e = ∆
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(diagonal in A2 ). Then (o+, e, o−) is a transversal triple, preserved by τ . This
defines G . The associative algebra Co− associated to these data is the algebra A
we started with (cf. [BeKi09], Theorem 3.5). It remains to prove that restriction of
τ to Co− = A gives back the involution ∗ we started with. Let a ∈ A and identify
it with the graph {(v, av)| v ∈ A} . Then the graph of the adjoint operator a∗ is
the orthogonal complement of this graph with respect to β , whence τ(a) = a∗ .

We have seen above that F is a functor; for G , this is less clear – cf. remarks
in [BeKi09], end of Section 3. We will not pursue here further the discussion of
functoriality, nor will we state an analog of the theorem for the non-unital case.
Constructions are similar in that case, but are more complicated (since one has to
use some algebra-imbedding of an associative pair, see [BeKi09]), and practically
less relevant than the unital case.

4. The classical torsors

Putting together the results from the preceding two chapters, the “projective” de-
scription of the classical groups (Table given in the Introduction) is now straight-
forward: we just have to restate Theorems 3.5 and 3.9 for involutions given by
orthocomplementation (Theorem 2.4). In the following, we list the results, first
for the case of bilinear forms, then for sesquilinear forms.

Orthogonal and (half-) symplectic groups. We specialize Theorem 3.9 to
the case B = K , W = K2n = Kn ⊕ Kn . Let (o+, e, o−) be the canonical base
triple (Kn ⊕ 0, ∆, 0 ⊕ Kn) and β the standard symplectic form on K2n . By
Theorem 2.4, we have the three (restricted) involutions τ , τ ′ , τ̃ : they are the
orthocomplementation maps with respect to the three forms given by the matrices

Ωn :=

(
0 1n

−1n 0

)
, Fn :=

(
0 1n

1n 0

)
, In,n :=

(
1n 0
0 −1n

)
. (4.1)

Note that o+ , o− and ∆ are maximal isotropic for β , hence τ is a unital base
point preserving involution. The involutive algebra corresponding to the unital
base point preserving involution τ is A = M(n, n; K) with involution X∗ = X t

(usual transpose). The fixed point spaces of the three involutions are the classical
Lagrangian varieties corresponding to the three forms, and the tangent space of Y
at o+ is Sym(n, K) and the one of Y ′ at o+ is Asym(n, K). Note that Sym(n, K)
is imbedded in Y , and Asym(n, K) in Y ′ , the subsets of elements of Y (resp. of
Y ′ ) that are transversal to o− . Therefore the elements a parametrizing the torsors
G(τ ; a) (resp. G(τ ′; a)) will be chosen in these subsets. From Theorem 3.5 we get:

Proposition 4.1. For a = A ∈ Sym(n, K), the group G(τ ; a) with origin o+

is isomorphic to the group On(2A, K), and for a = A ∈ Asym(n, K), the group
G(τ ′; a) with origin o+ is isomorphic to the group Spn/2(2A; K). If 2 is invertible
in K, then these groups are isomorphic to On(A, K), resp. Spn/2(A; K).

Having established the link of the projective torsors G(τ ; a) with the affine
realization of the classical torsors from the Introduction, it is now relatively easy
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to classify them (in finite dimension over K = C or R ; the case of general base
fields is much more difficult, and for general base rings and arbitrary dimension,
classification results can only be expected under rather special assumptions).

Proposition 4.2. A complete classification of the homotopes of complex or real
orthogonal, resp. (half-)symplectic groups is given as follows:

1. (half-)symplectic case: for K = R, C, all homotopes are isomorphic to one
of the groups Spm(Ωr; K) for r = 1, . . . ,m (with n = 2m or n = 2m + 1),
where Ωr denotes the normal form of a skew-symmetric matrix of rank 2r ,

2. orthogonal case: for K = C, all homotopes are isomorphic to one of the
groups On(1r; C) for r = 1, . . . , n, where 1r denotes the n × n-diagonal
matrix of rank r having first r diagonal elements equal to one,

for K = R, all homotopes are isomorphic to one of the groups On(Ir,s; R),
where Ir,s denotes the n×n-diagonal matrix of rank r+s (r ≤ s, r+s ≤ n)
having first r diagonal elements equal to one and s diagonal elements equal
to minus one.

Proof. One can prove the classification from a “projective” point of view:
clearly, if a and b belong to the same Aut(X , τ)-orbit in X , then G(τ ; a) and
G(τ ; b) are isomorphic, and it is enough to consider orbits of subspaces a ⊂ W such
that a and τ(a) have same dimension n (otherwise Ua,τ(a) is empty). Classifying
such orbits is done by elementary linear algebra using Witt’s theorem: a and b
are conjugate iff the restriction of the given forms to a , resp. b are isomorphic.
In particular, the totally isotropic subspaces form one orbit (the Lagrangian Y ).
The list of orbits then gives rise to the given list of homotopes.

Alternatively, an “affine” version of these arguments goes as follows: using
the explicit description of the classical groups given in the Introduction, one notices
that, e.g., On(A; K) and On(gAgt; K) are isomorphic for all g ∈ GL(n; K); hence
it suffices to to consider the classification of GL(n; K)-orbits in Sym(n; K). This
leads to the same result (note, however, that different orbits may give rise to
isomorphic groups: e.g., On(λA; K) and On(A; K) are isomorphic whenever the
scalar λ is invertible, be it a square or not in K). Similarly for the symplectic
case.

Unitary groups. The following classification of real classical torsors associated
to involutive algebras of Hermitian type is established in the same way as above:

Proposition 4.3. Homotopes of complex and quaternionic unitary groups are
classified as follows (see Introduction for the notation H̃):

A = M(n, n; H), τ(X) := X
t

a) Aτ = Herm(n, H) Un(i1r; H̃) (r ≤ n) homotopes of O∗(2n)
b) Aτ ′ = Aherm(n, H) Un(Ir,s, H) (r ≤ s, r + s ≤ n) homotopes of Sp(p, q)
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A = M(n, n; C), τ(X) := X
t

a) Aτ = Herm(n, C) Un(iIr,s; C) (r ≤ s, r + s ≤ n) homotopes of U(p, q)
b) Aτ ′ = iHerm(n, C) Un(Ir,s; C) (r ≤ s, r + s ≤ n) homotopes of U(p, q)

Over more general base fields or rings the classification of non-degenerate
torsors is essentially equivalent to the classification of involutions of associative
algebras – see [KMRS98] for this vast topic.

Hilbert Grassmannian. A fairly straightforward infinite dimensional general-
ization of the preceding situation is the following: W = H ⊕ H , where H is a
Hilbert space W over B = C or R , and β corresponding to the matrix

B = ΩH =

(
0 1H

−1H 0

)
or B =

(
0 1H

1H 0

)
.

In this case we may work with the Grassmannian of all closed subspaces of W ,
and it easily seen that all arguments from the proof of Theorem 2.4 go through,
showing that the orthocomplementation map of β defines an involution of this
geometry. We get infinite dimensional analogs of the classical groups, imbedded,
together with their homotopes, in Hilbert-Lagrangian manifolds. Variants of these
constructions can be applied to restricted Grassmannians and restricted unitary
groups in the sense of [PS86].

5. Semitorsors

In this chapter we extend our theory from restricted involutions to “globally de-
fined” involutions. Roughly speaking, the restricted product map Γ and the cor-
responding restricted involutions deal with connected geometries (the “restricted”
theory developed so far is, in spite of its algebraic flavor, analoguous to the cor-
respondence between Lie algebras and connected Lie groups), whereas the global
product map Γ and its global involutions rather correspond to replacing connected
Lie groups by algebraic groups.

Semigroup completion of general linear groups. Let W be a right B-
module and X its Grassmannian. In [BeKi09] we have shown that the torsors
Uab ⊂ X admit a “semitorsor completion”: the ternary law (xyz) from Uab extends
to the whole of X , given by the formula

Γ(x, a, y, b, z) :=

{
ω ∈ W

∣∣∣ ∃ξ ∈ x, ∃α ∈ a,∃η ∈ y, ∃β ∈ b, ∃ζ ∈ z :
ω = ζ + α = ζ + η + ξ = ξ + β

}
. (5.1)

This formula defines a quintary “product map” Γ : X 5 → X having the follow-
ing remarkable properties: for any fixed pair (a, b), the partial map (xyz) :=
Γ(x, a, y, b, z) satisfies the para-associative law

(xy(zuv)) = (x(uzy)v) = ((xyz)uv), (5.2)

and it is invariant under the Klein 4-group acting on (x, a, b, z):

Γ(x, a, y, b, z) = Γ(a, x, y, z, b) = Γ(z, b, y, a, x). (5.3)
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We say that, for a, b fixed, X with (xyz) = Γ(x, a, y, b, z) is a semitorsor, denoted
by Xab (for fixed y , it is in particular a semigroup), and Xba is its opposite
semitorsor. For simplicity, we are not going to consider here the globally defined
dilation maps Πr from [BeKi09]; in other words, for the moment we look at X as
an associative geometry defined over Z (in fact, one has to be very careful with
the globally defined maps Πr as soon as r or 1 − r is not invertible; in order to
keep this work in reasonable bounds we postpone a more detailed discussion of
these problems).

Definition 5.1. An involution of the Grassmannian geometry X = Gras(W )
is a bijection τ : X → X of order 2 such that, for all x, a, y, b, z ∈ X , without any
restriction by transversality conditions,

τ(Γ(x, a, y, b, z) = Γ(τ(z), τ(a), τ(y), τ(b), τ(x)) .

The following lemma is proved exactly as Lemma 3.2:

Lemma 5.2. Let τ : X → X be an involution of the Grassmannian geometry
X = GrasB(W ), let Y = X τ and a ∈ X . Then τ induces a semitorsor-
automorphism of Xa,τ(a) . In particular, the fixed point set Y is a subsemitorsor of
Xa,τ(a) . If a ∈ Y , then the semitorsor Xa,τ(a) ∩ Y is abelian.

Since the globally defined product map Γ encodes the lattice structure of
Gras(W ), an involution τ induces an involution of the underlying lattice ([BeKi09],
Theorem 2.4 and Section 3.1). Hence the condition that τ is a lattice involution is
necessary, and thus orthocomplementation maps are the natural candidates. Our
tool for proving that they indeed define involutions is the notion of generalized
projection, which might be of independent interest for the theory of linear relations.

Generalized projections. Linear operators f ∈ EndB(W ) are generalized by
linear relations in W , i.e., submodules F ⊂ W ⊕W . Following standard termi-
nology (see, e.g., [Ner96], [Cr98]), domain, image, kernel and indefiniteness of F
are the subspaces defined by

domF := pr1F, imF := pr2F, ker F := F ∩ (W × 0), indefF := F ∩ (0×W )

with pri : F → W the two projections. For any a, b ∈ X , define the linear relation
P a

x ⊂ W ⊕W , called a generalized projection, by

P a
x :=

{
(ζ, ω)|ω ∈ x, ω − ζ ∈ a

}
. (5.4)

Note that

imP a
x = x, ker P a

x = a, indefP a
x = a ∧ x, domP a

x = x ∨ a,

and that, if a>x , then P a
x is the graph of the projection denoted previously by

P a
x , so there should be no confusion with preceding notation. We denote the space

of generalized projections by

P := {P a
x |x, a ∈ X} ⊂ Gras(W ⊕W ).
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The map
X × X → P , (a, x) 7→ P a

x

is a bijection with inverse P 7→ (ker P, imP ). Transversal pairs (x, a) correspond
to “true” operators (single valued and everywhere defined).

Lemma 5.3. The linear relation P a
x is idempotent: P a

x ◦ P a
x = P a

x .

Proof. By definition of composition,

P a
x ◦ P a

x = {(u, w)|∃v ∈ W : v ∈ x, u− v ∈ a, w ∈ x, v − w ∈ a}.

Since w ∈ x and w − u = (w − v) + (v − u) ∈ a , we have P a
x ◦ P a

x ⊂ P a
x . For

the other inclusion, let (u′, w′) ∈ P a
x , so w′ ∈ x , w′ − u′ ∈ a . Let u := u′ ,

w := v := w′ ; then v, w ∈ x and u − v = u′ − w′ ∈ a , v − w = 0 ∈ a , whence
(u′, w′) ∈ P a

x ◦ P a
x .

Lemma 5.4. The set P of generalized projections is stable under “conjugation”
by linear relations in the following sense: for all linear relations F ⊂ W ⊕W and
all c, z ∈ X , we have

F ◦ P c
z ◦ F−1 = P

F (c)
F (z) .

Proof. By definition of composition and inverse,

F ◦ P c
z ◦ F−1 = {(α, δ)| ∃β, γ ∈ W : (α, β) ∈ F−1, (β, γ) ∈ P c

z , (γ, δ) ∈ F}
= {(α, δ)| ∃β ∈ W, γ ∈ z : (β, α) ∈ F, (γ, δ) ∈ F, γ − β ∈ c}

These conditions imply that δ ∈ Fz and (β, α) − (γ, δ) ∈ F ; since (β − γ) ∈ c ,

this implies also (α− δ) ∈ Fc . It follows that (α, δ) ∈ P
F (c)
F (z) .

Conversely, let (α, δ) ∈ P
F (c)
F (z) , i.e., δ ∈ F (z), α − δ ∈ F (c), so there exists

γ ∈ z with (γ, δ) ∈ F and η ∈ c with (η, α− δ) ∈ F . Let β := γ−η , so γ−β ∈ c
and

(β, α) = (γ, δ)− (η, δ − α) ∈ F,

whence (α, δ) ∈ F ◦ P c
z ◦ F−1 .

For the next statements, recall ([Ar61], [Cr98]) the following general defini-
tions concerning linear relations. For a linear relation F ⊂ W ⊕ W and z ∈ X ,
the image of z under F is

Fz := F (z) := {δ ∈ W | ∃γ ∈ z : (γ, δ) ∈ F} = pr2(pr1)
−1(z),

and the difference of linear relations F, G ⊂ Gras(W ⊕W ), is

F −G := {(ξ, ω)|∃α, β ∈ W : (ξ, α) ∈ F, (ξ, β) ∈ G, ω = α− β}

Remark: This difference can also be written in our language in terms of the
associative geometry (Gras(W ⊕W ), Γ̂), with its usual base points o+, o− , as

F −G := Γ̂(F, o−, G, o−, o+),

the difference of F and G in the linear space (Co− , o+).
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Lemma 5.5. For all a, x ∈ X , 1− P a
x = P x

a .

Proof. ω = u − ω′ with ω′ ∈ x , ω′ − u ∈ a is equivalent to ω ∈ a with
ω − u ∈ x .

Theorem 5.6. Let Γ be the multiplication map of the Grassmann geometry X .

(1) For all (x, a, y, b, z) ∈ X 5 ,

Γ(x, a, y, b, z) = (1− P x
a P b

y )(z) = (P a
x − P z

b )(y).

In other words, the left multiplication operator Lxayb in the geometry (X , Γ)
is induced by the linear relation 1 − P x

a P b
y , and the middle multiplication

operator Mxabz is induced by the linear relation P a
x − P z

b . Thus we can
(and will) define, extending the operator notation from Chapter 1, the linear
relations

Lxayb := 1− P x
a P b

y , Mxabz := P a
x − P z

b .

(2) For all (x, a, z) ∈ X 3 ,

P a
x (z) = Lxaax(z) = Γ(x, a, a, x, z) = x ∧ (a ∨ z).

(3) For all a, b, x, y ∈ X , using Notation from part (1),

L−1
xayb(z) = Lyaxb(z), M−1

xabz(y) = Mzabx(y).

In particular

(P a
x )−1(z) = L−1

xaax(x) = Laaxx(z) = Γ(a, a, x, x, z) = a ∨ (x ∧ z).

Proof. (1) Note that, under certain transversality conditions ensuring that the
linear relations in question are indeed graphs of linear operators, the claim has
already been proved in [BeKi09]. Let us prove it now in the general situation.

P x
a ◦ P b

y = {(ζ, ω)|∃η ∈ y : ζ − η ∈ b, ω − η ∈ x, ω ∈ a},
1− P x

a P b
y = {(ζ, ω′)|∃ω ∈ W : (ζ, ω) ∈ P x

a P b
y , ω′ = ζ − ω}

= {(ζ, ω′)|∃ω ∈ W, ∃η ∈ y : ζ − η ∈ b, ω − η ∈ x, ω ∈ a, ω′ = ζ − ω}

whence

(1− P x
a P b

y )(z) = {ω′ ∈ W |∃ζ ∈ z, ∃α ∈ a,∃η ∈ y : ζ − η ∈ b, α− η ∈ x, ω′ = ζ − α}
= {ω′ ∈ W |∃α ∈ a,∃η ∈ y : ω′ + α− η ∈ b, α− η ∈ x, ω′ + α ∈ z}

According to the “(a, y)-description” from [BeKi09], this set is indeed equal to
Γ(x, a, y, b, z). Similarly,

P a
x − P z

b = {(η, ω)|∃u, v : (η, u) ∈ P a
x , (η, v) ∈ P z

b , ω = u− v}
= {(η, ω)|∃u ∈ x, ∃v ∈ b : u− η ∈ a, v − η ∈ z, ω = u− v}
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so that

(P a
x − P z

b )(y) = {ω|∃u ∈ x, ∃v ∈ b, ∃η ∈ y : u− η ∈ a, v − η ∈ z, ω = u− v}
= {ω|∃β ∈ b, ∃η ∈ y : β + ω − η ∈ a, β − η ∈ z, β + ω ∈ x}

Again, by the (y, b)-description, this equals Γ(x, a, y, b, z).

(2) Using Lemmas 5.3 and 5.5, Γ(x, a, a, x, z) = (1 − P x
a P x

a )(z) = (1 −
P x

a )(z) = P a
x (z), proving the first equality. The second equality is proved in

[BeKi09], Theorem 2.4 (vi).

(3) This is a restatement of Theorem 2.5 from [BeKi09].

Orthocomplementation maps and adjoints.

Theorem 5.7. Assume β is a non-degenerate Hermitian or skew-Hermitian
form on the right B-module W , and let X = Gras(W ).

(1) For all x, a, y, b, z ∈ X , we have the inclusion

Γ(x⊥, b⊥, y⊥, a⊥, z⊥) ⊂
(
Γ(x, a, y, b, z)

)⊥
.

(2) Assume that B is a skew-field and W = Bn . Then equality holds in (5.7),
and the orthocomplementation map is an involution of X .

Proof. We define the adjoint relation of a linear relation F ⊂ W ⊕W by

F ∗ := {(v′, w′)|∀(v, w) ∈ F : β(v′, w) = β(w′, v)} ⊂ W ⊕W.

This is the orthocomplement of F with respect to the “symplectic form” Ω on
V ⊕ V associated to β ,

Ω((u, v), (u′, v′)) = β(u, v′)− β(v, u′)

(see [Ar61], [Cr98], Ch. III). Note that ∗ and inversion commute.

Lemma 5.8. For all F ∈ Gras(W ⊕W ) and all z ∈ Gras(W ), we have

(Fz)⊥ ⊃ (F ∗)−1z⊥.

Proof. Assume v ∈ (F ∗)−1z> . This means there is u ∈ W with (v, u) ∈ F ∗

and β(u, z) = 0. Hence, for all (ζ, ζ ′) ∈ F with ζ ∈ z , we have 0 = β(u, ζ) =
β(v, ζ ′). Thus, whenever ζ ′ ∈ F (z), we have β(v, ζ ′) = 0, that is, v ∈ (Fz)⊥ .

Lemma 5.9. For any non-degenerate form β , we have

(P a
x )∗ ⊃ P x⊥

a⊥

and
(P x

a P b
y )∗ ⊃ (P b

y )∗(P x
a )∗ ⊃ P y⊥

b⊥
P a⊥

x⊥

with equality in all cases under the assumptions of part (2) of the theorem.
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Proof. By definition of the adjoint,

(P a
x )∗ = {(v′, w′)|∀(v, w) ∈ P a

x : β(v′, w) = β(w′, v)}
= {(v′, w′)|w ∈ x, v − w ∈ a ⇒ β(v′, w) = β(w′, v)}

Now assume (v′, w′) ∈ P x⊥

a⊥ , that is, w′ ⊥ a , w′− v′ ⊥ x . Then, for all w ∈ x and
v with v − w ∈ a :

β(v′, w) = β(v′−w′, w) +β(w′, w) = β(w′, w) = β(w′, w− v) +β(w′, v) = β(w′, v),

whence (v′, w′) ∈ (P a
x )∗ , proving the first inclusion. The inclusion

(G ◦ F )∗ ⊃ F ∗ ◦G∗ (5.5)

holds for all linear relations F, G , see [Ar61], Lemma 3.5, where it is also proved
that equality always holds in the case of finite dimension over a field.

In order to finish the proof, it only remains to show that (P a
x )∗ = P x⊥

a⊥ under
the assumptions of part (2) of the theorem. In view of the inclusion just proved, it
es enough to prove that both subspaces in question have the same dimension over
B . First of all, for every linear relation F , since pr2|F induces an exact sequence
0 → ker F → F → imF → 0,

dim F = dim(ker F ) + dim(imF )

hence
dim P a

x = dim(a) + dim(x), dim P x⊥

a⊥ = dim(a⊥) + dim(x⊥).

Since (P a
x )∗ is the orthogonal complement of P a

x with respect to a non-degenerate
form on W ⊕W ,

dim(P a
x )∗ = dim(W ⊕W )−dim P a

x = dim W −dim x+ dim W −dim a = dim P x⊥

a⊥ ,

proving the claim.

Lemma 5.10. For all linear linear relations F ⊂ W ⊕W :

(1 + F )∗ = 1 + F ∗, (1− F )∗ = 1− F ∗.

Proof. One checks easily that the following two linear isomorphisms of W⊕W

A(v, w) = (v, v + w), D(v, w) = (v, v − w)

preserve the form Ω, and hence they are compatible with orthocomplements with
respect to Ω. The claim follows by observing that 1 +F = A.F and 1−F = D.F
(where the dot denotes the canonical push-forward action of GL(W⊕W ) on linear
subspaces).

¿From the preceding two lemmas it follows that

(Lxayb)
∗ = (1− P x

a P b
y )∗ = 1− (P x

a P b
y )∗

⊃ 1− (P b
y )∗(P x

a )∗
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⊃ 1− P a⊥

x⊥ P y⊥

b⊥
= Ly⊥b⊥x⊥a⊥ . (5.6)

with equality under the assumptions of part (2). Now we prove part (1):

Γ(a, x, b, y, z)> = (Lxaybz)⊥ = ((1− P x
a P b

y )z)⊥

⊃ ((1− P x
a P b

y )∗)−1z⊥

⊃ (Ly⊥b⊥x⊥a⊥)−1z⊥

= Lx⊥b⊥y⊥a⊥z⊥ = Γ(x⊥, b⊥, y⊥, a⊥, z⊥)

Next assume that B is a skew-field and W = Bn . Then the second inclusion
becomes an equality, but we do not know whether the inclusion from Lemma 5.8
always becomes an equality. Therefore we will invoke Lemma 5.4: Choose an
auxiliary element c ∈ X . Then, using the fact that equality holds in (5.5), along
with Lemma 5.4 and (Lxayb)

∗ = Ly⊥b⊥x⊥a⊥ , we get, on the one hand,

(L−1
xayb)

∗(P c
z )∗(Lxayb)

∗ = (LxaybP
c
z L−1

xayb)
∗

= (P
(Γ(x,a,y,b,c))
(Γ(x,a,y,b,z)) )∗

= P
(Γ(x,a,y,b,z))⊥

(Γ(x,a,c,b,z))⊥

and on the other hand,

(L−1
xayb)

∗(P c
z )∗(Lxayb)

∗ = (L∗xayb)
−1(P c

z )∗(Lxayb)
∗

= L−1
y⊥b⊥x⊥a⊥

P z⊥

c⊥ Ly⊥b⊥x⊥a⊥

= Lx⊥b⊥y⊥a⊥P z⊥

c⊥ L−1
x⊥b⊥y⊥a⊥

= P
Γ(x⊥,b⊥,y⊥,a⊥,z⊥)

Γ(x⊥,b⊥,y⊥,a⊥,c⊥)
.

Comparing images and kernels of these projections yields the desired equality.

With Lemma 5.2, the theorem implies

Corollary 5.11. All classical groups over fields or skew-fields, and all of their
homotopes G(τ ; a), admit a canonical semigroup completion Xa,τa ∩Y (which is a
compactification if K = R or C).

Remark 5.12. The classification of classical semitorsors Xa,τa is only slightly
more complicated than the one of the torsors G(τa) from Chapter 4: it suffices to
classify all orbits of Aut(X ) in X × X , resp. all Aut(Y)-orbits in X . However,
the internal structure of the semitorsors may be very complicated! In other words,
the classification of semigroups is much more difficult than the one of semitorsors
(a semitorsor contains many semigroups).

Finally, we conjecture that part (2) of Theorem 5.7 still holds in the context
of Hilbert Lagrangians, providing semitorsor-completions of infinite-dimensional
classical groups and their homotopes. This conjecture is supported by the fact that
the orthocomplementation map of a Hilbert Grassmannian is a lattice involution.
However, our proof uses finite-dimensionality at several places, and thus does not
generalize directly to this setting.



280 Bertram, Kinyon

6. Towards an axiomatic theory

In a way similar to the intrinsic-axiomatic description of associative geometries
from Chapter 3 of Part I, we would like to describe axiomatically the Lagrangian
geometries Y with their torsor and semitorsor structures – so far they are only
defined by construction and not by intrinsic properties. What are these properties?
Certainly, on the one hand, the various group and torsor structures seem to be the
most salient feature. But, on the other hand, there is an underlying “projective”
structure playing an important rôle – therefore Lagrangian geometries should be
the geometric counterparts of “Jordan-Lie” and “Lie-Jordan algebras”, see item
(2) in Chapter 4 of Part I. We intend to take up this topic in future work.

7. Appendix : Associative pairs and their involutions

Recall (e.g., from [BeKi09], Appendix B, or [Lo75]) that an associative pair (over
K) is a pair (A+, A−) of K-modules together with two trilinear maps

〈·, ·, ·〉± : A± × A∓ × A∓ → A±

such that
〈xy〈zuv〉±〉± = 〈〈xyz〉±uv〉± = 〈x〈uzy〉∓v〉±.

Definition 7.1. A type preserving involution of (A+, A−) is a pair of K-linear
mappings (τ+ : A+ → A+, τ− : A− → A−) such that τ± are of order 2 and

τ±〈uvw〉± = 〈τ±w, τ∓v, τ±u〉±.

A type exchanging involution of (A+, A−) is a pair (τ+ : A+ → A−, τ− : A− → A+)
of K-linear mappings such that τ+ is the inverse of τ− and

τ±〈uvw〉± = 〈τ∓w, τ±v, τ∓u〉±.

In other words, a type preserving involution is an isomorphism onto the opposite
pair of (A+, A−), and a type exchanging involution is an isomorphism onto the
dual of the opposite pair, where the opposite pair is obtained by reversing orders
in products, and the dual pair is obtained by exchanging the rôles of A+ and A− .

Clearly, for any involution τ = (τ+, τ−), the pair τ ′ := (−τ+,−τ−) is again
an involution (type preserving, resp. exchanging iff so is τ ); we call it the dual
involution. For a type preserving involution, the pairs of 1-eigenspaces or of −1-
eigenspaces in general do not form associative pairs (but they are Jordan pairs,
see [Lo75]). For type exchanging involutions, there is an equivalent description
in terms of triple systems : recall that an associative triple system of the second
kind is a K-module A together with a trilinear map A3 → A , (x, y, z) 7→ 〈xyz〉
satisfying the preceding identity obtained by omitting superscripts (see [Lo72]),
and an associative triple system of the first kind, or ternary ring, is a K-module
A together with a trilinear map A3 → A , (x, y, z) 7→ 〈xyz〉 satisfying the identity

〈xy〈zuv〉〉 = 〈〈xyz〉uv〉 = 〈x〈yzu〉v〉
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(see [Li71]). It is easily checked that, if (τ+, τ−) is a type exchanging involution,
the space A := A+ with

〈x, y, z〉 := 〈x, τ+y, z〉+

becomes an associative triple system of the second kind. Conversely, from an
associative triple system of the second kind we may reconstruct an associative pair
with type exchanging involution: A+ := A =: A− , 〈x, τ+y, z〉± := 〈x, y, z〉 , τ±

given by the identity map of A± → A∓ .

In the same way, automorphisms of order two from (A+, A−) onto the
opposite pair (A−, A+) correspond to associative triple systems of the first kind.

Examples. 1. Every associative algebra A with 〈xyz〉 = xyz is an associative
triple system of the first kind. It is equivalent to the associative pair (A, A) with
the exchange automorphism (which is not an involution, in our terminology).

2. The space of rectangular matrices M(p, q; K) with

〈XY Z〉 = XY tZ

forms an associative triple system of the second kind. It is equivalent to the asso-
ciative pair (A+, A−) = (M(p, q; K), M(q, p; K)) with type exchanging involution
X 7→ X t .

3. For any involutive algebra (A, ∗), the map (x, y) 7→ (x∗, y∗) is a type
preserving involution of the associative pair (A, A).

Remark. We do not have an example of an associative pair with a type preserving
involution which is not obtained via Example 3 above. In finite dimension over a
field the existence of such examples seems rather unlikely, but there might exist
infinite dimensional examples which are “very close”, but not isomorphic, to pairs
of the type (A, A), and admit a type-preserving involution.
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