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1. Introduction

Surely the finite dimensional irreducible representations of complex simple Lie algebras
are one of the most fascinating and studied subjects in the theory of representations.
Their beautiful and complicate structure still presents unknown aspects worth to be
studied (see [1] and [4] for recent examples). This paper concerns with one of these,
namely the restriction of such representations to some subalgebras. More precisely we
shall show that any finite dimensional irreducible representation of a complex simple
Lie algebra of type A remains indecomposable if restricted to some abelian subalgebras
(Theorem 3.9). Such abelian subalgebra a can be constructed as follows. Let g be
the complex simple Lie algebra An , h ⊂ g its Cartan subalgebra and ∆ = ∆(g, h)
the corresponding set of roots. Further for any α ∈ ∆ let Xα be a basis of gα =
{X ∈ g| [H, X] = α(H)X ∀H ∈ h} , Π = {α1, . . . , αn} a set of simple roots in ∆ and
set Yαi = X−αi , then a is the abelian subalgebra of g spanned by the vectors {Yα2i+1}

(i = 0, . . . ,
[

n
2

]
) and {Xα2 j} ( j = 1, . . . ,

[
n
2

]
), where [x] denotes the integer part of x .

Theorem 3.9 is almost trivial for the Lie algebra A1 , while for the Lie algebra A2

was proved by Douglas and Premat in [5], and for the remaining simple Lie algebras of
rank two B2 and G2 by Premat in [13]. These two papers have played an inspiring role
in our work. As far as we know Theorem 3.9 is still unknown for An with n ≥ 3.

The paper is organized as follows. In section 2 we recall some known facts
about the simple Lie algebras of type A and their finite dimensional modules, and
describe the abelian Lie algebra a . This section also devoted to present basis of the
finite dimensional irreducible An –modules found by Littelmann in [10]. In section 3 we
find a minimal set of generators for the restriction to the abelian subalgebra an of the
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finite dimensional representations of the Lie algebra An , and prove the main result of
this paper: the indecomposableness of such restricted representations.

The author wishes to thank Alejandra Premat for sending her preprint [13],
which plays a crucial role in the present work, and Veronica Magenes for discussions
about the case concerning the Lie algebra sl(4,C). The author is also grateful to the
referee for carefully reading the paper, the welcomed suggestions and for pointing out
the reference [11].

2. Irreducible finite dimensional sl(n + 1,C)–modules

In this section we recall some basic facts on sl(n + 1,C) and its irreducible finite
dimensional representations, and describe the basis of such representations constructed
by Littelmann in [10]. It is worth to mention that a similar basis for such modules was
alraedy considered by Sai-Ping Li, R.V.Moody, M.Nocolescu, J.Patera in [11]. Good
references on the structure and representation theory of the complex simple Lie groups
and Lie algebras are, for instance, the books [6, 7].

Let g = sl(n + 1,C) be the simple Lie algebra of all (n + 1) × (n + 1) complex
matrices of zero trace, let h be its Cartan subalgebra given by all diagonal matrices in
sl(n + 1,C), h∗ its complex dual, and ∆ = ∆(sl(n + 1,C), h) ⊂ h∗ the corresponding
set of roots. Let g = n+ ⊕ h ⊕ n− be its decomposition into the direct sum of strictly
upper triangular, diagonal, and strictly lower triangular matrices, and ∆ = ∆+∪−∆+ the
decomposition of the set of root such that

n
+ =

∑
β∈∆+

gβ, n
− =

∑
β∈−∆+

gβ

where gβ = {X ∈ g| [H, X] = β(H)X ∀H ∈ h} . We denote by Π = {α1, . . . , αn} the
corresponding set of simple roots and accordingly we fix a Chevalley basis of g: Xβ ∈ gβ
and Yβ ∈ g−β for β ∈ ∆+ , and Hα ∈ h for α simple, in such a way that [Xα,Yα] = Hα .
The Weyl group of sl(n + 1,C) is denoted by W , as subgroup of GL(h∗) it is generated
by the hyperplane reflections sα : λ 7→ λ − λ(Hα)α for any λ ∈ h∗ and α ∈ ∆ .

Denote by U(g), U(n+), U(n−) the universal enveloping algebras of g , n+ , n−

respectively. (More in general U(a) will denote the universal enveloping algebra of a
given subalgebra a of g .) Following Littelmann [10] we use the following abbrevia-
tions:

Y (k)
β :=

Yk
β

k!
X(k)
β :=

Xk
β

k!

(
Hα
k

)
:=

Hα(Hα − 1) · · · (Hα − k + 1)
k!

.

Fix an ordering {γ1, . . . , γN} of the positive roots (N = n(n + 1)/2). For (n) ∈ NN we
set:

X(N) := X(n1)
γ1
· · · X(nN )

γN
, Y (N) := Y (n1)

γ1
· · · Y (nN )

γN
.

Fix an ordering {α1, . . . , αn} of the simple roots. For (k) ∈ Nn we set:

H(k) :=
(
Hα1

k1

)
. . .

(
Hαn

kn

)
;

(we shall sometime write Xi,Yi,Hi respectively for Xαi ,Yαi ,Hαi , for a simple root αi ).
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Recall that the monomials Y (m)H(k)X(n) form a Poincaré–Birkhoff–Witt basis of
the universal enveloping algebra U(g), and the monomials X(n) and Y (m) form a P–B–W
basis of U+ = U(n+) respectively U− = U(n−).

An element of h∗ is called a weight. The set P = {λ ∈ h∗| λ(hα) ∈ Z, ∀α ∈ ∆}
is said the set of integral weights of g . A weight λ of P is said dominant if λ(Hα) ≥ 0
for any simple root α . The complex finite dimensional irreducible representations of
sl(n+1,C) are parameterized by the dominant integral weights. We denote by V(λ) the
finite dimensional irreducible sl(n + 1,C)–module corresponding to the integral domi-
nant weight λ . A element µ of h∗ is said a weight of an irreducible finite dimensional
module V(λ) if the weight space Vµ = {v ∈ V(λ)| Hv = µ(H)v ∀H ∈ h} is different from
zero. Denote by P(λ) the set of all weights of V(λ) then V(λ) may be decomposed as
the direct sum of its weight spaces:

V(λ) =
⊕
µ∈P(λ)

Vµ. (2.1)

Let Π = ΠY ∪ ΠX a decomposition of the set of simple roots Π such that the n–
dimensional subalgebra spanned by the elements {Xα,Yβ}α∈ΠX ,β∈ΠY is an abelian subal-
gebra. If α1 = ε1 − ε2, . . . , αn = εn − εn+1 is the usual ordering of the simple roots of
sl(n + 1,C), where εi : h → C denotes the projection of a diagonal matrix onto its
i–th entry, then it easy to see that this decomposition of the set of simple roots Π can
be achieved in two ways: either ΠY = {α2i+1}i=0,...,[ n

2 ] and ΠX = {α2i}i=1,...,[ n
2 ] , where [x]

denote the integer part of x or the converse case. Since the two choices are equivalent,
let us for the sake of concreteness choose in this paper the first one and give the

Definition 2.1. Let an be the abelian subalgebra of sl(n+1,C) spanned by the simple
root–vectors {Xα2i ,Yα2 j+1} , 1 ≤ i ≤

[
n
2

]
, 0 ≤ j ≤

[
n
2

]
.

The aim of this paper is to show how any irreducible sl(n + 1,C)–module V(λ)
restricted to the abelian subalgebra an remains indecomposable.

Further since any of such abelian algebra an may be imbedded in a solvable Lie
algebra endowed with a non singular ad–invariant bilinear form [12] [3] which is still
a subalgebra of sl(n + 1,C), this result provides a way to construct a fairly wide class
of indecomposable (and therefore not trivial) finite dimensional modules of solvable
quadratic Lie algebras [2]. In order to achieve such result we need to consider the basis
of the irreducible sl(n + 1,C)–modules discovered by Littelmann in [10] (but see also
[9] [8]). First we introduce the following concepts

Definition 2.2. A monomial in the Yαi is called semi-standard if it is of the form:

Y (a) = Y (a1
1)

1

(
Y (a2

2)
2 Y (a2

1)
1

) (
· · ·

) (
Y (ai

i)
i Y

(ai
i−1)

i−1 · · · Y
(ai

1)
1

) (
· · ·

) (
Y (an

n)
n · · · Y

(an
2)

2 Y
(an

1)
1

)
where a = (a1

1, a
2
2, a

2
1, . . . , a

n
n, . . . , a

n
1) ∈ Nn . The tuple a and the monomial Y (a) are

called standard if:

a ∈ S = {(a) ∈ Nn| a2
2 ≥ a2

1, a
3
3 ≥ a3

2 ≥ a3
1, . . . , a

i
i ≥ ai

i−1 ≥ · · · ≥ ai
1, . . . a

n
n ≥ ai

n−1 ≥ · · · ≥ an
1}.

Then we can formulate the following important result due to Littelman.



396 C

Theorem 2.3. [10] For a dominant weight λ of g , let V(λ) be the corresponding
irreducible finite dimensional g–module of highest weight λ and uλ ∈ V(λ) be a highest
weight vector.
Denote by λ j

i the weight of(
Y

(a j
i )

i · · · Y
(a j

1)
1

) (
· · ·

) (
Y (an

n)
n · · · Y

(an
2)

2 Y
(an

1)
1

)
uλ

and set
λn

0 := λ , and λ j−1
0 := λ j

j for 1 ≤ j ≤ n. Then the elements of V(λ)

Y (a)uλ = Y (a1
1)

1

(
Y (a2

2)
2 Y (a2

1)
1

) (
· · ·

) (
Y (ai

i)
i Y

ai
(i−1)

i−1 · · · Y
(ai

1)
1

) (
· · ·

) (
Y (an

n)
n · · · Y

an
2

2 Y
an

1
1

)
uλ

with a ∈ S such that

λn
0(H1) ≥ an

1 λ
n
1(H2) ≥ an

2 λ
n
2(H3) ≥ an

3 . . . λ
n
i−1(Hi) ≥ an

i . . . λn
n−1(Hn) ≥ an

n

. . . . . . . . . . . . . . . . . .

λ
j
0(H1) ≥ a j

1 . . . . . . . . . λ
j
j−1(H j) ≥ a j

j

. . . . . . . . . . . .

λ2
0(H1) ≥ a2

1 λ
2
1(H2) ≥ a2

2

λ1
0(H1) ≥ a1

1

form a basis Lλ of V(λ) .

Remark 2.4. Let λi i = 1, . . . n be the elements of h∗ defined by the relations
Λi(α j) = δi j where δi j is the usual Kronecker delta. Then if we write the dominant
weight λ in the form: λ =

∑m
i=1 miλi (with mi ∈ N , i = 1, . . . n), the conditions (2.3)

become:

0 ≤ ai
1 ≤ m1 − 2

∑n
j=i+1 a j

1 +
∑n

j=i+1 a j
2 i = 1, . . . , n

ai
k−1 ≤ ai

k ≤ mk − 2
∑n

j=i+1 a j
k +

∑n
j=i a j

k−1 +
∑n

j=i+1 ai
k+1 i = 1, . . . , n − k + 1 2 ≤ k ≤ n − 1

an
n−1 ≤ an

n ≤ mn + an
n−1.

Finally observe that we can not find for any complex simple Lie algebra sl(n +
1,C) a subalgebra of dimension strictly less then n such that any irreducible finite
dimensional sl(n + 1,C)–module remanins indecomposable if restricted to it.
Let us indeed consider the first non trivial case, namely the Lie algebra sl(3,C). In
this case it is easy to show that there is no an one dimensional subalgebra such that the
restriction on it of any irreducible finite dimensional representation of sl(3,C) remains
indecomposable. Let X be indeed a basis for such algebra. Then X must act as a
single Jordan block in any irreducible finite dimensional representation of sl(3,C). In
particular if π : sl(3,C)→ End(C3) is the irreducible representation with V(λ) = V(λ1)
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(so that dimC(V(λ)) = 3) then, since the trace of π(X) is zero, it must exist a ξ ∈
Aut(C3) such that

ξπ(X)ξ−1 =


0 0 0

1 0 0

0 1 0


or eq. ξπ(X)ξ−1 =


0 1 0

0 0 1

0 0 0


.

I.e., X can be take equal to Y1 + Y2 (or eq. to X1 + X2 ). But the restriction to these
one-dimensional subalgebras of the module V(λ) = V(λ1 + λ2) is not indecomposable
because on it in both cases X5 = 0 while dim(V(λ)) = 8.

3. V(λ) as indecomposable an–module

Let us fix a dominant integral weight λ of sl(n + 1,C). We shall show in this section
that the sl(n + 1,C)–module V(λ) viewed as an –modules is indecomposable.

We first need to find a (minimal) set of generators for the an –modules V(λ).

Definition 3.1. Let V be a an –module, a subset of elements {v1, . . . vm} in V is said
to be a set of generators of V if V = U(an){v1, . . . vm} . The set is called a minimal set of
generators if fewer than m vectors will not generate V . In the case of the an –modules
V(λ) a set of generators W is a set of homogeneous generators if any element in W is a
sl(n + 1,C)–weight vector.

Theorem 3.2. Let Gλ be the subset of Lλ = {a ∈ S| Y (a)uλ ∈ Lλ} given by: Gλ =
g ∈ Lλ

a2 j
2 j = λ

2 j
2 j−1(H2 j) j = 1, . . .

[
n
2

]
a2 j+1

2 j , 0⇒ a2 j
2 j−1 , 0 j = 1, . . .

[
n−1

2

]
a2 j+1

1 = 0 j = 0, . . .
[

n−1
2

]
λ

2 j+1
2i−1 (H2i) , 0 and λ2 j+1

0 (H1) = 0, λ2 j+1
2r−1(H2r) = a2 j+1

2r , 1 ≤ r < i

⇒ a2 j
2i−1 = λ

2 j
2i−2(H2i−1) i = 1, . . . 2 j − 1 j = 1, . . . ,

[
n+1

2

]


then the corresponding subset Gλ = {Y (a)uλ| a ∈ Gλ} of the Littelmann basis Lλ is a set
of homogeneous an –generators of V(λ) .

Proof. Set L0
λ = {a ∈ Lλ| a1

1 = 0} . Since X1 belongs to an , we have of course only
to prove that acting with an we may construct the subset L0

λ = {Y
(a)uλ|a ∈ L0

λ} of Lλ .
We divide the proof in four steps.
1. First, if we define L1

λ =
a ∈ L0

λ

a2h+1
1 = 0, a2h+1

2h , 0⇒ a2h
2h−1 , 0 h = 1, . . .

[
n−1

2

]
λ

2 j+1
2i−1 (H2i) , 0 and λ2 j+1

0 (H1) = 0, λ2 j+1
2r−1(H2r) = a2 j+1

2r , 1 ≤ r < i

⇒ a2 j
2i−1 = λ

2 j
2i−2(H2i−1) i = 1, . . . 2 j − 1 j = 1, . . . ,

[
n+1

2

]
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and set L1
λ = {Y

(a)| a ∈ L1
λ} , then L1

λ ⊂ U(an)(Gλ).
Let us consider indeed for any 1 ≤ j ≤

[
n
2

]
the subsets L1

2 j of L1
λ given by:

L
1
2 j =

Y (a)uλ ∈ L1
λ| ∃ Y (aG)uλ ∈ G

(aG)h
2l+1 = ah

2l+1, l = 0, . . . ,
[

n−1
2

]
, 2l + 1 ≤ h ≤ n

(aG)h
2k = ah

2k, k = j, . . . ,
[

n
2

]
2l ≤ h ≤ n,


and the corresponding filtration of L1

λ :

Gλ = L
1
2 ⊂ · · · ⊂ L

1
2 j · · · ⊂ L

1
2[ n

2 ] ⊂ L
1
2[ n

2 ]+2 = L
1
λ.

Obviously it suffices to show that L1
2 j ⊂ U(an)(L1

2 j−2) for any 1 ≤ j ≤
[

n
2

]
. We shall do

it (for a fixed index j) by induction over the partial ordering “≤ j ” of L0
λ (and of L0

λ as
well) given by the relations

a ≤ j b⇔ ai
2 j − ai

2 j+1 ≤ bi
2 j − bi

2 j+1 i = 2 j + 1, . . . , n.

With respect to this ordering the minimal elements in L1
2 j are those Y (a)uλ with

ai
2 j − ai

2 j+1 = −λ
i
2 j(H2 j+1), 2 j + 1 ≤ i ≤ n . For any of this element there exists a

positive integer number k (namely k = a2 j
2 j − λ

2 j
2 j+1(H2 j)) such that the element Y (g(a))uλ

with g(a)2 j
2 j = a2 j

2 j + k and g(a)i
l = ai

l if (i, l) , (2 j, 2 j) belongs to Gλ and ( using the
sl(2,C)–representation theory and [10])

Xk
2 j · Y

(g(a))uλ=c2 j
k (a)Y (a)uλ=

k−1∏
i=1

n−2 j∑
h=1

a2 j+h
2 j+1−2

n−2 j∑
h=1

a2 j+h
2 j +

n−2 j∑
h=0

a2 j+h
2 j−1 − a2 j

2 j + k + i

 Y (a)uλ

hence, since in our Hypothesis the coefficients c2 j
k (a) are always different from zero, any

minimal element of L1
2 j belongs to U(an)(L1

2 j−2). Suppose now by induction hypothesis
that we have constructed any elements Y (b)uλ ∈ L1

2 j for any b < j a . Since there exists a

tuple aL1
2 j−2

such that (aL1
2 j−2

)i
l = ai

l , if (i, l) , (2 j, 2 j) and Y
(a
L1

2 j−2
)
uλ ∈ L1

2 j−2 , we have

Xk
2 j · Y

(a
L1

2 j−2
)
uλ = c2 j

k (aL1
2 j−2

)Y (a)uλ +
∑
b< ja

cbY (b)uλ

which shows (again being c2 j
k (aL1

2 j−2
) , 0) that also Y (a)uλ belongs to U(an)(L1

2 j−2).

2. Define now L2
λ =

a ∈ L0
λ

a2h+1
1 = 0, h = 1, . . .

[
n−1

2

]
λ

2 j+1
2i−1 (H2i) , 0 and λ2 j+1

0 (H1) = 0, λ2 j+1
2r−1(H2r) = a2 j+1

2r , 1 ≤ r < i

⇒ a2 j
2i−1 = λ

2 j
2i−2(H2i−1) i = 1, . . . 2 j − 1 j = 1, . . . ,

[
n+1

2

]


and set L2
λ =

{
Y (a)uλ| a ∈ L2

λ

}
) then L2

λ ⊂ U(an)(L1
λ).

For any 1 ≤ s ≤
[

n−1
2

]
let L2

s be the set

L
2
s =

{
Y (a)uλ ∈ L2

λ| a
2k+1
2k , 0⇒ a2k

2k−1 , 0 k = s, . . .
[
n − 1

2

]}



C 399

and consider the corresponding filtration of L2
λ :

L
1
λ = L

2
1 ⊂ · · · ⊂ L

2
s ⊂ · · · ⊂ L

2
[ n−1

2 ] ⊂ L
2
[ n−1

2 ]+1
= L2

λ.

Again it will suffice to show that L2
s ⊂ U(an)(L1

s−1) for any 2 ≤ s ≤
[

n−1
2

]
+ 1. We

shall still do it by induction. Indeed consider first an element in L2
s of the form Y (a)uλ =(

Y (a2
2)

2 · · ·

) (
· · ·

) (
Y

(a2s
2s)

2s Y
(a2s

2s−2)
2s−2 · · ·

) (
Y

(a2s+1
2s+1)

2s+1 Y2s · · ·

) (
· · ·

)
uλ then the element Y (b(a))uλ with

the tuple b(a) given by the relations b(a)2s
2s = a2s

2s + 1, b(a)2s+1
2s+1 = a2s+1

2s+1 − 1, b(a)2s+1
2s = 0

and b(a)i
j = ai

j otherwise, belongs to L2
s−1 . Further from the relation [10]

Y2s+1 · Y (b(a))uλ

= p(1, a2s
2s + 1, a2s+1

2s+1, 0)
(
· · ·

) (
Y

(a2s
2s+1)

2s Y
(a2s

2s−2)
2s−2 · · ·

) (
Y

(a2s+1
2s+1)

2s+1 Y
(a2s+1

2s+2)
2s−1 · · ·

) (
Y

(a2s+2
2s+2)

2s+2 · · ·

) (
· · ·

)
uλ

+p(1, a2s
2s + 1, a2s+1

2s+1, 1)
(
· · ·

) (
Y

(a2s
2s)

2s Y
(a2s

2s−2)
2s−2 · · ·

) (
Y

(a2s+1
2s+1)

2s+1 Y2s · · ·

) (
Y

(a2s+2
2s+2)

2s+2 · · ·

) (
· · ·

)
uλ,

where

p(a, b, c, d) =
(
a + c − b

a − d

)
a, b, c, d ∈ N d ≤ b

and to have binomial coefficients also available for negative integers, following Littel-
mann we used the definition:(

a
b

)
= lim

t→0

Γ(a + 1 + t)
Γ(b − a + 1 + t)Γ(b + 1 + t)

;

it follows that Y (a)uλ belongs to U(an)
(
L2

s−1

)
because p(1, a2s

2s + 1, a2s+1
2s+1, 1) = 1 (but

also see [10] remark 7) and both Y (b(a))uλ and(
· · ·

) (
Y

(a2s
2s)

2s · · ·

) (
Y

(a2s+1
2s+1)

2s+1 Y
(a2s+1

2s+2)
2s−1 · · ·

) (
Y

(a2s+2
2s+2)

2s+2 · · ·

) (
· · ·

)
uλ are in U(an)

(
L2

s−1

)
.

Let us now consider an element in L2
s of the type(

Y (a2
2)

2 · · ·

) (
· · ·

) (
Y

(a2s
2s)

2s Y
(a2s

2s−2)
2s−2 · · ·

) (
Y

(a2s+1
2s+1)

2s+1 Yk+1
2s · · ·

) (
Y

(a2s+2
2s+2)

2s+2

) (
· · ·

)
uλ , since by induction

Hypothesis Y (b)uλ , with b2s
2s = a2s

2s+1, b2s+1
2s+1 = a2s+1

2s+1−1, b2s+1
2s = k and bi

j = ai
j otherwise,

belongs to U(an)
(
L2

s−1

)
from Y2s+1 · Y (b)uλ

= p(1, a2s
2s + 1, a2s+1

2s+1, 0)
(
· · ·

) (
Y

(a2s
2s+1)

2s · · ·

) (
Y

(a2s+1
2s+1)

2s+1 Y
(a2s+1

2s+2)
2s−1 Yk

2s · · ·

) (
Y

(a2s+2
2s+2)

2s+2 · · ·

) (
· · ·

)
uλ

+p(1, a2s
2s + 1, a2s+1

2s+1, 1)
(
· · ·

) (
Y

(a2s
2s)

2s Y
(a2s

2s−2)
2s−2 · · ·

) (
Y

(a2s+1
2s+1)

2s+1 Yk+1
2s · · ·

) (
Y

(a2s+2
2s+2)

2s+2 · · ·

) (
· · ·

)
uλ

it follows that also(
Y (a2

2)
2 · · ·

) (
· · ·

) (
Y

(a2s
2s)

2s Y
(a2s

2s−2)
2s−2 · · ·

) (
Y

(a2s+1
2s+1)

2s+1 Yk+1
2s · · ·

) (
Y

(a2i+2
2i+2)

2s+2

) (
· · ·

)
uλ

belongs to U(an)
(
L2

s−1

)
.

3. Let us now define L3
λ as: L0

s =a ∈ L0

λ
2 j+1
2i−1 (H2i) , 0 and λ2 j+1

0 (H1) = 0, λ2 j+1
2r−1(H2r) = a2 j+1

2r , 1 ≤ r < i

⇒ a2 j
2i−1 = λ

2 j
2i−2(H2i−1) i = 1, . . . 2 j − 1 j = 1, . . . ,

[
n+1

2

]




400 C

and set L3
λ = {Y

(a)uλ| a ∈ L3
λ} then L3

λ ⊂ U(an)(L2
λ).

Defining for any 1 ≤ s ≤
[

n−1
2

]
the sets

L
3
s = {Y

(a)uλ ∈ L3
λ| a

2 j+1
1 = 0 j = s, . . .

[
n − 1

2

]
}

we have the filtration of L3 :

L
2
λ = L

3
1 ⊂ · · · ⊂ L

3
s ⊂ · · · ⊂ L

3
[ n−1

2 ] ⊂ L
3
[ n−1

2 ]+1
= L3

λ.

Once again it suffices to prove that L3
s ⊂ U(an)(L3

s−1) for any fixed s . We proceed by
induction. Let us first consider an element of L3

s of the type

Y (a)uλ =
(
Y (a2

2)
2 · · ·

) (
· · ·

) (
Y

(a2s
2s)

2s · · · Y
(a2s

1 )
1

) (
Y

(a2s+1
2s+1)

2s+1 . . . Y
(a2s+1

2 )
2 Y1

) (
· · ·

)
uλ then the element

Y (b(a))uλ with b(a)2s
2s−l = a2s

2s−l + 1, 0 ≤ l ≤ 2s− 1 , b(a)2s+1
2s−l = a2s+1

2s−l − 1, −1 ≤ l ≤ 2s− 1,
b(a)h

l = ah
l otherwise, belongs to L3

s−1 , and we have

Y2s+1 · Y (b(a))uλ = p(1, a2s
2s + 1, a2s+1

2s+1 − 1, 0)
(
· · ·

) (
Y

(a2s
2s+1)

2s · · ·

) (
Y

(a2s+1
2s+1)

2s+1 Y
(a2s+1

2s −1)
2s · · ·

) (
· · ·

)
uλ

+p(1, a2s
2s + 1, a2s+1

2s+1 − 1, 1)
(
· · ·

) (
Y

(a2s
2s)

2s Y
(a2s+1

2s+1)
2s+1 Y2sY

(a2s
2s−1+1)

2s−1 · · ·

) (
Y

(a2s+1
2s −1)

2s · · ·

) (
· · ·

)
uλ

= . . .

=
∑h

k=1 ps
k(a)

(
· · ·

) (∏k−2
l=0 Y

(a2s
2s−l)

2s−l

) (∏2s−1
l=k−1 Y

(a2s
2s−l+1)

2s−l

) (∏k−1
l=0 Y

(a2s+1
2s+1−l)

2s+1−l

) (∏2s−1
l=k Y

(a2s+1
2s+1−l−1)

2s+1−l

) (
· · ·

)
uλ

+qs
h(a)

(
· · ·

) (∏h−1
l=0 Y

(a2s
2s−l)

2s−l

) (∏h−1
l=0 Y

(a2s+1
2s+1−l)

2s+1−l

) (
Y2s−h+1Y

(a2s
2s−h+1)

2s−h Y
(a2s+1

2s−h+1−1)
2s−h+1

)
(∏2s−1

l=h+1 Y
(a2s

2s−l+1)
2s−l

) (∏2s−1
l=h+1 Y

(a2s+1
2s+1−l−1)

2s+1−l

) (
· · ·

)
uλ = . . .

=
∑2s

k=1 ps
k(a) (· · · )

(∏k−2
l=0 Y

(a2s
2s−l)

2s−l

) (∏2s−1
l=k−1 Y

(a2s
2s−l+1)

2s−l

) (∏k−1
l=0 Y

(a2s+1
2s+1−l)

2s+1−l

) (∏2s−1
l=k Y

(a2s+1
2s+1−l−1)

2s+1−l

) (
· · ·

)
uλ

+qs
2s(a)Y (a)uλ

where

ps
k(a) = p(1, a2s

2s+1−k + 1, a2s+1
2s−k+2 − 1, 0)

∏k−1
l=1 p(1, a2s

2s+1−l + 1, a2s+1
2s−l+2 − 1, 1)

qs
k(a) =

∏k
l=1 p(1, a2s

2s+1−l + 1, a2s+1
2s−l+2 − 1, 1),

which show that Y (a)uλ ∈ U(an)(L3
s−1) because qs

2s(a) , 0 and all other elements belong
to U(an)(L3

s−1). If we now consider an element Y (a)uλ of the type

Y (a)uλ =
(
Y (a2

2)
2 · · ·

) (
· · ·

) (
Y

(a2s
2s)

2s · · · . . . Y
(a2s

1 )
1

) (
Y

(a2s+1
2s+1)

2s+1 . . . Y
(a2s+1

2 )
2 Yk

1

) (
· · ·

)
uλ then by induc-

tion Hypothesis the element Y (b(a))uλ with b(a)2s
2s−l = a2s

2s−l + 1, 0 ≤ l ≤ 2s − 1 ,
b(a)2s+1

2s−l = a2s+1
2s−l − 1, −1 ≤ l ≤ 2s − 1, b(a)h

l = ah
l otherwise, belongs to L3

s−1 , and with
the same computations done before we have

Y2s+1 · Y (b(a))uλ

=
∑2s

j=1 ps
j(a)

(
· · ·

) (
Π

j−2
l=0 Y

(a2s
2s−l)

2s−l

) (∏2s−1
l= j−1 Y

(a2s
2s−l+1)

2s−l

) (∏ j−1
l=0 Y

(a2s+1
2s+1−l)

2s+1−l

) (∏2s−1
l= j Y

(a2s+1
2s+1−l−1)

2s+1−l

) (
· · ·

)
uλ

+qs
2s(a)Y (a)uλ,
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which implies (by induction) Y (a)uλ ∈ U(an)(L3
s−1).

4. Finally we can show that L0
λ ⊂ U(an)(L3

λ). The computations are similar to those
done in the previous step. We define indeed for any 1 ≤ s ≤

[
n−1

2

]
the sets L0

s =Y (a)uλ ∈ L0
λ

λ
2 j+1
2i−1 (H2i) , 0 and λ2 j+1

0 (H1) = 0, λ2 j+1
2r−1(H2r) = a2 j+1

2r , 1 ≤ r < i

⇒ a2 j
2i+1 = λ

2 j
2i (H2i+1), i = 1, . . . 2 j − 1, j = s, . . . ,

[
n+1

2

]


and consider the corresponding filtration of L0
λ

L
3
λ = L

0
1 ⊂ · · · ⊂ L

0
s ⊂ · · · ⊂ L

0
[ n+1

2 ] ⊂ L
0
[ n+1

2 ]+1
= L0

λ.

Again, we need only to prove (always by induction) that L0
s ⊂ U(an)(L0

s−1) for any
1 ≤ s ≤

[
n−1

2

]
.

For a fixed i , 1 ≤ i ≤ 2 j − 1, let Y (a)uλ ∈ L0
s be of the type

Y (a)uλ =
(
Y (a2

2)
2 · · ·

) (
· · ·

) (
Y

(a2s
2s)

2s · · · Y
(a2s

1 )
1

) (
Y

(a2s+1
2s+1)

2s+1 · · · Y
(λ2s+1

2i−2 (H2i−1)+a2s
2i−1+1)

2i · · ·

) (
· · ·

)
uλ

then the element Y (b(a))uλ with b(a)2s
2s−l = a2s

2s−l + 1, 0 ≤ l ≤ 2s − 2i , b(a)2s+1
2s+1−l =

a2s+1
2s+1−l − 1, 0 ≤ l ≤ 2s− 2i+ 1, b(a)h

l = ah
l otherwise, belongs to L0

s−1 and we have with
the same computations of the previous step and the results of [10]:

Y2s+1 · Y (b(a))uλ

=
∑2s−2i+1

k=1 ps
k(a)

(
· · ·

) (
Πk−2

l=0 Y
(a2s

2s−l)
2s−l

) (
Π2s−1

l=k−1Y
(a2s

2s−l+1)
2s−l

) (
Πk−1

l=0 Y
(a2s+1

2s+1−l)
2s+1−l

) (
Π2s−1

l=k Y
(a2s+1

2s+1−l−1)
2s+1−l

) (
· · ·

)
uλ

+ps
2s−2i+2(a)Y (a)uλ

+
∑s

k=s−i+2 ps
2k−1(a)

(
· · ·

) (
Π2k−3

l=0 Y
(a2s

2s−l)
2s−l

) (
Π2s−1

l=2k−1Y
(a2s

2s−l+1)
2s−l

) (
Π2k−2

l=0 Y
(a2s+1

2s+1−l)
2s+1−l

)
(
Π2s−1

l=2k−1Y
(a2s+1

2s+1−l−1)
2s+1−l

) (
· · ·

)
uλ

which implies that Y (a)uλ belongs to U(an)(L0
s−1). Now suppose by induction Hypoth-

esis that we have already constructed all the elements of L0
s with a2s+1

2i = λ2s+1
2i−2 (H2i−1) +

a2s
2i−1 + k . Then for any element Y (a)uλ ∈ L0

s of the type

Y (a)uλ =
(
Y (a2

2)
2 · · ·

) (
· · ·

) (
Y

(a2s
2s)

2s · · · Y
(a2s

1 )
1

) (
Y

(a2s+1
2s+1)

2s+1 · · · Y
(λ2s+1

2i−2 (H2i−1)+a2s−1
2i−1+k+1)

2i · · ·

) (
· · ·

)
uλ

the element Y (b(a))uλ with b(a)2s
2s−l = a2s

2s−l + 1, 0 ≤ l ≤ 2s − 2i , b(a)2s+1
2s+1−l = a2s+1

2s+1−l − 1,
0 ≤ l ≤ 2s − 2i + 1, b(a)h

l = ah
l otherwise, belongs to L0

s−1 and we have

Y2s+1 · Y (b(a))uλ

=
∑2s−2i+1

k=1 ps
k(a)

(
· · ·

) (
Πk−2

l=0 Y
(a2s

2s−l)
2s−l

) (
Π2s−1

l=k−1Y
(a2s

2s−l+1)
2s−l

) (
Πk

l=0Y
(a2s+1

2s+1−l)
2s+1−l

) (
Π2s−1

l=k+1Y
(a2s+1

2s+1−l−1)
2s+1−l

) (
· · ·

)
uλ

+ps
2s−2i+2(a)Y (a)uλ

+
∑s

k=s−i+2 ps
2k−1(a)

(
· · ·

) (
Π2k−3

l=0 Y
(a2s

2s−l)
2s−l

) (
Π2s−1

l=2k−1Y
(a2s

2s−l+1)
2s−l

) (
Π2k−2

l=0 Y
(a2s+1

2s+1−l)
2s+1−l

)
(
Π2s−1

l=2k−1Y
(a2s+1

2s+1−l−1)
2s+1−l

) (
· · ·

)
uλ
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which once again implies that Y (b(a))uλ ∈ U(an)(L0
s−1). This closes the proof of the

Theorem.

In the first non trivial case beyond that treated by Douglas and Premat [5] namely
the restriction of irreducible finite dimensional sl(4,C)–module V(λ), λ = nΛ1+mΛ2+

pΛ3 to the abelian three dimensional Lie algebra spanned by the element Y1, X2,Y3 the
set of generators Gλ is:

Gλ =
{
Ym− j+i+h

2 Y i
1Y j+h

3 Y j
2uλ 0 ≤ j ≤ m 0 ≤ h ≤ p 0 ≤ i ≤ j + n j , 0⇒ i , 0

}
if λ = nΛ1 + mΛ2 + pΛ3 with n > 0 and:
Gλ =

{
Ym+h

2 Y1Y1+h
3 Y2uλ,Ym+h

2 Yh
3 Y2uλ 0 ≤ h ≤ p

}
if λ = mΛ2 + pΛ3 .

Although we do not need this fact in order to prove that the an –module V(λ) are
indecomposable, let us first show that the set of generators G is a minimal set of
generators. We begin with

Lemma 3.3. No proper subset G′λ of Gλ (G′λ ( Gλ ) generates Gλ .

Proof. It suffices to show that any expression of the form∑
g∈Gλ

Pg(X2 j,Y2 j+1)Y (ag)uλ Pg(X2 j,Y2 j+1)Y (ag)uλ , 0 ∀g ∈ Gλ (3.1)

where Pg(X2 j,Y2 j+1) are non trivial polynomials in the operators X2 j , j = 1, · · · ,
[

n
2

]
,

Y2i+1 , i = 1, . . .
[

n−1
2

]
, does not belong to the linear span 〈Gλ〉 of Gλ .

Let us denote by V(λ)− the linear span of all element of the Littelmann basis with
(ak)

2 j
2 j < λ

2 j
2 j−1(H2 j), since for every element of Gλ yields a2 j

2 j = λ
2 j
2 j−1(H2 j), we have

V(λ)− ∩ 〈Gλ〉 = {0} .
Now from the proof of Theorem 3.2 point 1. for any element Y (a)uλ in Lλ and any
operator X2 j , we have X2 jY (a)uλ =

∑
k ckY (ak)uλ ∈ V(λ)− . Therefore it remains only to

consider those combinations of the type (3.1) where there exists at least a monomial
which contains only operators of odd index. For any such monomial P if V(λ)+ is
a subspace of V(λ) such that V(λ) = V(λ)+ ⊕ (V(λ)− ⊕ 〈Gλ〉), then from the proof
of Theorem 3.2 points 3. and 4, it follows that for any g ∈ Gλ Pg = vP

g + wP
g with

vP
g ∈ V(λ)+ , wP

g ∈ (V(λ)− ⊕ 〈Gλ〉) and vP
g , 0, moreover if g′ , g , g, g′ ∈ Gλ , or

P , Q then vP
g is linear independent from vQ

g′ . But then for any expression of type (3.1)
where there exist at least a monomial which is a product of only the operators Y2 j+1

(i = 1, . . .
[

n−1
2

]
) we have∑

g∈G

Pg(X2 j,Y2 j+1)Y (ag)uλ < (V(λ)− ⊕ 〈Gλ〉)

Theorem 3.4. The set Gλ is a minimal set of an –generators.

Proof. Let {w1, . . .wk} be another set of generators, then for all 1 ≤ l ≤ k , choosing
any ordering Gλ = {1, . . . , #(Gλ)} (where #(S ) denotes the number of elements in the
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set S ) of the set Gλ , we have:

wl =
∑
g∈Gλ

algY (ag)uλ +
∑
g∈Gλ

Plg(X2 j,Y2 j+1)Y (ag)uλ

where alg ∈ C and Plg(X2 j,Y2 j+1) are polynomials in the operators X2 j , j = 1, · · · ,
[

n
2

]
,

Y2i+1 , i = 1, . . .
[

n−1
2

]
without constant term. Since the set {w1, . . .wk} generates V(Λ)

we may obtain acting on it the elements of Gλ . Let T = {wr| arg , 0 for some g ∈ Gλ }
and T = { j | 1 ≤ j ≤ k | wr ∈ S } . Let g ∈ Gλ . Then

Y (ag)uλ =
∑
l∈T

bgl

∑
g′∈Gλ

alg′Y (ag′ )uλ

 + ∑
g′∈Gλ

P′tg′(X2 j,Y2 j+1)Y (ag′ )uλ

with polynomials P′tg′ in the variables X2 j , j = 1, · · · ,
[

n
2

]
, Y2i+1 , i = 1, . . . ,

[
n−1

2

]
with-

out constant term. From the proof of Lemma 3.3 it follows that the sum∑
g′∈Gλ P′tg′(X2 j,Y2 j+1)Y (ag′ )uλ can not be equal to any combination of elements of Gλ .

Hence Y (ag)uλ =
∑
l∈T

bgl

∑
g′∈Gλ

alg′Y (ag′ )uλ

 .
This implies that if we put B =

(
bgi

)
g∈Gλ
i∈T

and A =
(
aig

)
i∈T

g∈Gλ
then BA is the identity

matrix. Hence k ≥ #(T ) ≥ rank(B) ≥ #(Gλ), so Gλ is a minimal set of generators. The
argument of this proof is due to Premat [13].

Corollary 3.5. Let W = {w1, . . .wk} be a set (non necessarily minimal) of an –
generators, then there exist a injective map φW : Gλ → W , such that for every Y (ag)uλ ∈
Gλ :

Y (ag)uλ 7→ wY (ag)uλ = φW(Y (ag)uλ) = agY (ag)uλ +
∑

g′∈Gλ

Pgg′(X2 j,Y2 j+1)Y (ag′ )uλ (3.2)

for some ag ∈ C , ag , 0 , where Pgg′ are polynomials in the variables X2 j , j =
1, · · · ,

[
n
2

]
, Y2i+1 , i = 1, . . .

[
n−1

2

]
, and the polynomial Pgg has no constant term.

Proof. In the proof of Theorem 3.4 we have shown that the elements of W can be
written in the form

wl =
∑
g∈Gλ

algY (ag)uλ +
∑

g′∈Gλ

Plg(X2 j,Y2 j+1)Y (ag′ )uλ

where A = (alt) l=1,...,#(W)
t=1,...,#(Gλ)

is a matrix of rank at least #(Gλ) (recall that #(W) ≤ #(Gλ)).

This implies that for any g ∈ {1, . . . #(Gλ)} we can construct a map φ : {1, . . . #(Gλ)} →
{1, . . . #(Gλ)} such that for any g ∈ {1, . . . #(Gλ)} , aφ(g),g is different from zero and g , g′

implies φ(g) , φ(g′). Then the map Gλ → W

Y (ag)uλ 7→ φW(Y (ag)uλ) = wφ(g) = aφ(g)gY (ag)uλ +
∑

g′∈Gλ
g,g′

aφ(g)g′Y (ag′ )uλ

+
∑

g′∈Gλ Pφ(g)g′(X2 j,Y2 j+1)(Y (ag′ )uλ)

is the wanted map.
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Proposition 3.6. Any set W = {w1, . . .wk} of homogeneous an –generators contains
an element wg such that:

wg = agg ag , 0 ∈ C.

where g is the element of the set of an –generators Gλ given by

g = Y

λ2[ n
2 ]

2[ n
2 ]−1

(
H[ n

2 ]
)

2[ n
2 ] · · · Y

(λ2 j
2 j−1(H2 j))

2 j · · · Y (λ2
1(H2))

2 uλ.

Proof. The sl(n + 1,C)–weight µg of the element g is µg = λ −
∑[ n

2 ]
i=1 λ

2i
2i−1(H2i)α2i

since
µg = sα

2[ n
2 ] · · · sα2(λ)

we have dim(Vµg) = 1, but then the claim follows from Corollary 3.5 and the first part
of this proposition.

Observe that we do not need the fact that Gλ is a minimal set of generators in
order to prove Proposition 3.6. The simple fact that G is a set of generators implies

Lemma 3.7. Let W = {w1, . . .wk} be a set (non necessarily minimal) of an –generators
then there exists a wk in W such that

wk = a g +
∑

g∈Gλ,g,g

Plg(X2 j,Y2 j+1)Y (ag)uλ

with a complex number different from zero.

Proof. Since:

g < X2 j(V(λ)) j = 1, · · · ,
[n
2

]
g < Y2 j+1(V(λ)) i = 1, . . .

[
n − 1

2

]
,

the set W is a set of generators of V(λ) only if it contains an element w of the form

w = a g +
∑

g∈Gλ,g,g

Plg(X2 j,Y2 j+1)Y (ag)uλ

with a complex number different from zero.

Using Lemma 3.7 is obviously possible to prove directly Proposition 3.6.
Let sn = h o an be the subalgebra of sl(n,C) given by the semidirect product of

the Cartan subalgebra h and the subalgebra an . The sl(n + 1,C)–module (an –module)
V(λ) is also a sn –module, on which the subalgebra h acts diagonally. Obviously any
set of generators of the an –module V(λ) is also a set of generators of the sn –module
V(λ). Moreover for what said above any sn –submodule of V(λ) is a sl(n+1,C)–weight
module, i.e., it can decomposed as a direct sum of sl(n + 1,C)–weight spaces. From
these facts it follows the

Proposition 3.8. If the sn –module V(λ) decomposes in a direct sum of two subsmod-
ules: V(λ) = U ⊕ T , then g belongs either to U or to T .
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Proof. Let WU = {w1, . . .w j} and WT = {w j+1, . . .wh} be respectively a set of
generators of U and of W . Since U and T are sl(n + 1,C)–weight modules we
may suppose that both WU and WT are made by homogeneous elements, and therefore
W = WU ∪WT = {w1, . . .w j,w j+1, . . .wh} is a set of homogeneous generators of V(λ).
Then form proposition 3.6 it follows that there exists an index l , 1 ≤ l ≤ h such that
g = cgwl . Hence g belongs either to U or to T .

Theorem 3.9. The an –module V(λ) is indecomposable.

Proof. Let us first show that the sn –module V(λ) is indecomposable. Let us suppose
that V(λ) is the direct sum V(λ) = U ⊕ T of two sn –modules U and T and let
WU = {w1, . . .wi} (res. WT = {wi+1, . . .wh}) be a set of homogeneous generators of
U (res. of T ). We know from Proposition 3.8 that either g belongs to U or to T . Say
g ∈ U , then we shall show that V(λ) = U .

We say that an element Y (a)uλ of the Littelmann basis is of level l if l is the
minimal nonnegative integer such that Y (a)uλ = Pl · · · P1uλ and any monomial P j 1 ≤
j ≤ l is a product of elements Yi of index either odd or even.

It is immediate to see that all the elements of the Littelmann basis of length 1
and 0 are in U(a)(g) and therefore in U . Let now us suppose by induction that any
element in Gλ of level less or equal l is in U . We need to show that any element in Gλ
of level l + 1 also belongs to U . First, since any element Y (a)uλ in Gλ is of the type

Y (a)uλ = Y
a2h

2h
2h

(
· · ·

)
uλ with a2h

2h , 0, 0 ≤ h ≤
[

n
2

]
, Gλ decomposes as

Gλ =
⋃

1≤ j1≤···≤ js≤[ n
2 ]Gλ, j1,..., js

Gλ, j1,..., js =

g ∈ Gλ
g = Y (a)uλ = Y

a2 j1
2 j1

2 j1
(· · · )Y

a2 js
2 js

2 js
Y

ar
2k+1

2k1
uλ

with a2 ji
2 ji
> 0 i = 1, . . . s ar

2k+1 , 0, k < js, r > 2 js.


Therefore it is enough to show that for any fixed set { j1, . . . js} (1 ≤ j1 ≤ · · · ≤ js ≤

[
n
2

]
)

the elements of length l + 1 in Gλ, j1,..., js belong to U . We shall do it by induction over
the orderings {≤ j1 , . . . ,≤ js} defined in the proof of Theorem 3.2. If g ∈ Gλ is minimal
with respect all the ordering {≤ j1 , . . . ,≤ js} then

X
a2 j1

2 j1
2 j1

(
· · ·

)
X

a2 js
2 js

2 js
g = c2 j1,...,2 js

2 j1,...,2 js
Y (a)uλ = c2 j1,...,2 js

2 j1,...,2 js
Y

ar
2k+1

2k+1

(
· · ·

)
uλ

with c2 j1,...,2 js
2 j1,...,2 js

, 0, ar
2k+1 , 0 and Y (a)uλ = Y

ar
2k+1

2k+1

(
· · ·

)
uλ element of L of level l . Since

X
a2 j1

2 j1
2 j1

(
· · ·

)
X

a2 js
2 js

2 js
g has been obtained from an element of the set Gλ of level l + 1 by

erasing the operators Y2 jh , 1 ≤ h ≤ s , and it is of the type Y
ar

2k+1
2k+1

(
· · ·

)
uλ with ar

2k+1 > 0,

0 ≤ k ≤
[

n−1
2

]
, by the very definition of the set Gλ it can be generated by an element

of Gλ of level l − 1 and it is therefore by induction hypothesis a non trivial element in
U . We can now decompose g as g = gU + gT with gU =

∑i
k=1 Pk(X2s,Y2s+1)wk ∈ U and

gT =
∑h

k=i+1 Pi(X2s,Y2s+1)wk ∈ T and since all the elements wk are homogeneous, gU
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and gT are of the same sl(n + 1,C)–weight of g . Now

X
a2 j1

2 j1
2 j1

(
· · ·

)
X

a2 js
2 js

2 js
gT = X

a2 j1
2 j1

2 j1

(
· · ·

)
X

a2 js
2 js

2 js
g− X

a2 j1
2 j1

2 j1

(
· · ·

)
X

a2 js
2 js

2 js
gU ∈ U =⇒ X

a2 j1
2 j1

2 j1

(
· · ·

)
X

a2 js
2 js

2 js
gT = 0.

But the fact that gU and gT has the same sl(n + 1,C)–weight of g implies that they
have also the same weight of g with respect any subalgebra g2 jr spanned by the vector
H2 jr , X2 jr ,Y2 jr 1 ≤ r ≤ s and equivalent to the complex simple Lie algebra sl(2,C).
Since H2 jr g = −a2 jr

2 jr
g with a2 jr

2 jr
> 0 for 1 ≤ r ≤ s the theory of the sl(2,C)–finite

dimensional modules implies that for 1 ≤ r ≤ s , X
a2 jr

2 jr
2 jr

gT = 0 if and only if gT = 0.
Hence g = gU ∈ U . Now, since for any element g̃ in Gλ, j1,..., js which is not a minimal
element for at least one of the ordering ≤ js (1 ≤ r ≤ s ) we have

X
a2 j1

2 j1
2 j1

(
· · ·

)
X

a2 js
2 js

2 js
g̃ = c̃2 j1,...,2 js

2 j1,...,2 js
Y

ar
2k+1

2k+1

(
· · ·

)
uλ +

∑
(b)< jr (a)
s=1,...r

c̃(b)Y (b)uλ

by induction over the orderings ≤ js (1 ≤ r ≤ s ) we have that X
a2 j1

2 j1
2 j1

(
· · ·

)
X

a2 js
2 js

2 js
g̃ ∈ U .

Then from the same argument used above g̃ ∈ U . We have therefore proved that any
element of Gλ of length l + 1 belong to U , if any element of Gλ of length l does.
Therefore by induction the set of generators Gλ belongs to U . Since Gλ generates V(λ)
under the action of an , we have V(λ) = U also as an –module. Hence the an –module
V(λ) is indecomposable for any integer dominant weight λ .
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