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1. Introduction

In this paper, we analyze degenerate principal series for p-adic F4 . More precisely,
let F be a p-adic field with charF 6= 2. We let G be the F -points of a split
simply connected p-adic group of type F4 . For degenerate principal series, we
take a maximal proper parabolic subgroup P = MU and a one-dimensional
representation χ of M , extended trivially to P . The induced representation
IndG

P (χ) is then a degenerate principal series. In this paper, we determine when
IndG

P (χ) is reducible, and when reducible, determine the number of irreducible
subrepresentations and quotients which occur, as well as showing they are distinct.
We note that for p-adic F4 , the reducibility points for the case where χ is
unramified with real infinitesimal character were known by [8], but done using
different methods.

An understanding of degenerate principal series is helpful in understanding
the representation theory of a group, as well as having applications to automorphic
forms (e.g., via the associated Eisenstein series). The reducibility points and
composition series of degenerate principal series are already known for p-adic
general linear groups ([21]), symplectic and orthogonal groups ([11],[3]), and the
exceptional group of type G2 ([14]).

Our analysis uses Jacquet module methods. The systematic use of Jacquet
modules to study induced representations has its roots in the work of Tadić
([18],[16],[20]), which in turn have their roots in the work of Zelevinsky ([21],[22]).
We remark that the situation at hand is more difficult in one important respect:
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unlike the case of classical or general linear groups, the structure of F4 does
not allow for a convenient explicit realization, so we must work via root data.
The approach used is therefore more general, and could be applied to other
exceptional groups. In practical terms, to deal with larger exceptional groups,
it seems likely that either a greater use of computer calculations or a shift in
emphasis to Jacquet modules with respect to maximal parabolic subgroups would
be needed to efficiently carry out the analysis.

We close by briefly describing how this paper is laid out. The next section
reviews the structure of F4 , as well as recalling some results on Jacquet modules
which are needed later. The third section contains the main result on reducibility
of degenerate principal series for F4 (Theorem 3.1). The fourth and fifth sections
contain the proof of this result; the fourth section covers the regular case, while
the fifth section covers the non-regular case. We note that the nonregular cases are
subtler and done on a case-by-case basis. In the last section, we give some results
on the structure of composition series for reducible degenerate principal series. In
particular, Theorem 6.1 gives the number of irreducible subrepresentations and
quotients for the reducible degenerate principal series. We close with an appendix
giving double-coset representatives used in the Jacquet module arguments.

Some of the material from this paper is based on the first author’s thesis
([7]), and he would like to thank Allen Moy for his guidance. The second author
would like to thank Salman Abdulali and Mahdi Asgari for answering questions
which arose during this work. Finally, the authors would like to thank the referees
for comments and corrections which were helpful in the revision of this paper.

2. Preliminaries and Methodology

We begin this section with a discussion of F4 . We then review results needed to
do the Jacquet module arguments in this paper.

Let F be a p-adic field with charF 6= 2, $ a uniformizer. Let G be the
F -points of a split group of type F4 defined over F . Fix a minimal parabolic
subgroup B = AUmin for G . We denote the simple roots by ∆ = {α1, α2, α3, α4}
where α1 and α2 are the short roots while α3 and α4 are the long roots. Since G
is simply connected, every element h ∈ A can be written uniquely as

h(t1, t2, t3, t4) = α∨1 (t1)α
∨
2 (t2)α

∨
3 (t3)α

∨
4 (t4)

where α∨i is the coroot associated with αi . Note that this allows us to write a
character of A in the form χ = χ1 ⊗ χ2 ⊗ χ3 ⊗ χ4 , where χi is a character of F×

and

χ(h(t1, t2, t3, t4)) = χ1(t1)χ2(t2)χ3(t3)χ4(t4).

Let W denote the Weyl group for G . To describe the action of W on
characters, it suffices to describe the action of simple reflections. For αi ∈ ∆, let
si denote the corresponding simple reflection. The action of the simple reflections
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on characters is summarized below:

s1(χ1 ⊗ χ2 ⊗ χ3 ⊗ χ4) = χ−1
1 ⊗ χ1χ2 ⊗ χ3 ⊗ χ4

s2(χ1 ⊗ χ2 ⊗ χ3 ⊗ χ4) = χ1χ2 ⊗ χ−1
2 ⊗ χ2χ3 ⊗ χ4

s3(χ1 ⊗ χ2 ⊗ χ3 ⊗ χ4) = χ1 ⊗ χ2χ
2
3 ⊗ χ−1

3 ⊗ χ3χ4

s4(χ1 ⊗ χ2 ⊗ χ3 ⊗ χ4) = χ1 ⊗ χ2 ⊗ χ3χ4 ⊗ χ−1
4 .

Note that we often write a character χ of F× in the form χ = νsχ0 , where
ν = | · | , s ∈ R and χ0 unitary.

To each Θ ⊂ ∆, we associate the standard parabolic subgroup PΘ =
MΘUΘ = 〈B, si | αi ∈ Θ〉 (identifying si with a representative in G). We let MΘ

denote the Levi factor of PΘ . There are four maximal standard Levi subgroups
in G . For each i = 1, 2, 3, 4, we define Pi = MiUi = P∆−{αi} . We note that the
following isomorphisms are used later (cf. [1]):

Mαi
∼= GL(2, F )× F× × F×

for i = 1, 2, 3, 4, and

M1
∼= GSpin(7, F ), M4

∼= GSp(6, F ).

We review results need for our Jacquet module arguments in a more general
setting. Let M,N be Levi factors of standard parabolic subgroups of G . We
let iGM and rG

M denote the functors for (normalized) parabolic induction and the
(normalized) Jacquet module, respectively (cf. [4]). Set

WMN = {w ∈ W | w(Φ+
M) ⊂ Φ+, w−1(Φ+

N) ⊂ Φ+} ,

where Φ+ denotes the set of positive roots. The following is a theorem of Bernstein-
Zelevinsky [4], Casselman [6]:

Theorem 2.1. Let Ω be an admissible representation of M . Then, rG
N ◦ iGM(Ω)

has a composition series with factors iNN ′ ◦ w ◦ rM
M ′(Ω), w ∈ WMN where M ′ =

M ∩ w−1(N), N ′ = w(M) ∩N .

Let s1, ..., sn be the simple reflections in W . Let B = AUmin be the minimal
parabolic, and Ni the Levi factor of P{si} . For π = iGM(Ω), we denote by BZN(π)
the collection of representations iNN ′◦w◦τ as τ runs over the components of rM

M ′(Ω)
and w runs over WMN . We use the following theorem to determine reducibility
points in regular cases. This theorem requires three hypotheses. First, we want
Ω to be irreducible. Second, we want rM

A (Ω) 6= 0. Third, we require a regularity
condition on Ω: if ψ is a character in rM

A (Ω), we require that ψ be regular with
respect to W . The following is Theorem 3.1.2 of [9]:

Theorem 2.2. Under the three conditions above, the following are equivalent :
1. π is irreducible
2. σ is irreducible for any i and σ ∈ BZNi

(π).
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Theorem 2.2 provides a criterion to determine the reducibility points in
regular cases.

We remark that in much of this paper, we work in the Grothendieck group
setting. In particular, we have write π = π1 + π2 if mult(ρ, π) = mult(ρ, π1) +
mult(ρ, π2) for any irreducible ρ , where mult(ρ, π) denotes the multiplicity of ρ
in π . Similarly, π ≤ π′ if mult(ρ, π) ≤ mult(ρ, π′) for every irreducible ρ . When
we mean an equivalence rather than just an equality in the Grothendieck group,
we write π ∼= π′ instead of π = π′ .

The Langlands classification is used to deal with some of the nonregular
cases; we take a moment to note some relevant facts ([5], [17], [13]). We note
that we use the subrepresentation version of the Langlands classification as it is
a bit more amenable to Jacquet module arguments (by Frobenius reciprocity, the
inducing representation appears in the corresponding Jacquet module). In this
setting, the Langlands subrepresentation is the unique irreducible subrepresenta-
tion of some iGM(expµ⊗ τ), with τ an irreducible tempered representation of M
and µ ∈ (a∗M)− (cf. [5], [17], [13] for notation). Note that if M = A , expµ ⊗ τ
has the form νx1χ1 ⊗ νx2χ2 ⊗ νx3χ3 ⊗ νx4χ4 , with xi < 0 and χi unitary for all
i . In our applications, we have either M = A and expµ ⊗ τ of this form, or
there is some I ⊂ {1, 2, 3, 4} such that xi = 0 for i ∈ I , M = M{αi | i∈I} and
expµ⊗ τ = iMA (νx1χ1⊗νx2χ2⊗νx3χ3⊗νx4χ4) (with the irreducibility of expµ⊗ τ
known).

3. Main Results

The following contains the main results on reducibility. The proof is done in
sections 4 (regular cases) and 5 (nonregular cases). We note that in the case of
real infinitesimal character–χ0 = 1 in the theorem below–this recovers the results
of [8] using a different approach.

Theorem 3.1. Let G be a split group of type F4 and Ω a character of the Levi
factor M of a maximal parabolic subgroup of G, which is defined by a character
χ of F× as described below. We write χ = νsχ0 , where ν = | · |, s ∈ R and χ0 is
a unitary character.
(1) Let M = M1 and Ω be defined by Ω(h(t1, t2, t3, t4)) = χ(t1). Then iGM(Ω) is
reducible if and only if s = ±11/2,±5/2,±1/2 with χ0 = 1, or s = ±1/2, χ0

with of order two.
(2) Let M = M2 and Ω be defined by Ω(h(t1, t2, t3, t4)) = χ(t2). Then iGM(Ω) is
reducible if and only if s = ±7/2,±5/2,±3/2,±1/2 with χ0 = 1, s = ±3/2,±1/2
with χ0 of order two, or s = ±1/2 with χ0 of order three.
(3) Let M = M3 and Ω be defined by Ω(h(t1, t2, t3, t4)) = χ(t3). Then iGM(Ω) is re-
ducible if and only if s = ±5/2,±3/2,±1,±1/2 with χ0 = 1, s = ±3/2,±1,±1/2
with χ0 of order two, s = ±1/2 with χ0 of order three, or s = ±1/2, χ0 of order
four.
(4) Let M = M4 and Ω be defined by Ω(h(t1, t2, t3, t4)) = χ(t4). Then iGM(Ω) is
reducible if and only if s = ±4,±2,±1 with χ0 = 1, or s = ±2 with χ0 of order
two.
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4. Regular Cases

For each maximal standard Levi subgroup of G , we determine the regularity
conditions on rM

A (Ω) and the reducibility points of BZNi
(π) (i=1,2,3,4). We apply

Theorem 2.2 with this computation to find the reducibility points for the regular
cases.

We use the following result for G0 = GL(2, F ) in [21]: iG0
A0

(χ0) is re-
ducible if and if χ0/χ

s0
0 (diag(a, b)) = ν±1(a/b) where diag(a, b) ∈ A0 and s0

is a simple reflection in G0 . To use this result for GL(2, F ), we need to de-
scribe diag(p, q) inside GL(2, F ) of N1 , N2 , N3 , and N4 which are isomorphic to
GL(1, F )×GL(1, F )×GL(2, F ) [1]: diag(p, q) in N1 is expressed as h(p, pq, r, s);
diag(q, r) in N2 is expressed as h(p, q, qr/p, s); diag(r, s) in N3 is expressed as
h(p, q, r, rs/q2); and diag(r, s) in N4 is expressed as h(p, q, rs, s). Combining
these observations, we see that iNi

A (χ1 ⊗ χ2 ⊗ χ3 ⊗ χ4) is reducible if and only if
χi = ν±1 .

Lemma 4.1. Let χ be a character of F× .

1. Let Ω be a character of M1 defined by Ω(h(t1, t2, t3, t4)) = χ(t1). Then
rM1
A (Ω) is nonregular if and only if χ = ν±9/2,±7/2,±5/2,±3/2,±1/2 or χ2 = 1.

2. Let Ω be a character of M2 defined by Ω(h(t1, t2, t3, t4)) = χ(t2). Then
rM2
A (Ω) is nonregular if and only if χ = ν±5/2,±3/2,±1/2 , χ2 = ν±2,±1,0 , or
χ3 = ν±1/2.

3. Let Ω be a character of M3 defined by Ω(h(t1, t2, t3, t4)) = χ(t3). Then
rM3
A (Ω) is nonregular if and only if χ = ν±3/2,±1/2 , χ2 = ν±2,±1,0 , χ3 =
ν±1/2 , or χ4 = ν±1,0 .

4. Let Ω be a character of M4 defined by Ω(h(t1, t2, t3, t4)) = χ(t4). Then
rM4
A (Ω) is nonregular if and only if χ = ν±3,±2,±1,0 or χ2 = ν±3,±2,±1,0 .

Proof. We start with (1). Set ψ = rM1
A (Ω), so that ψ = ν9/2χ⊗ν−1⊗ν−1⊗ν−1 .

For w = s1 ,

w · ψ = ν−9/2χ−1 ⊗ ν7/2χ⊗ ν−1 ⊗ ν−1

(see section 2). Then, ψ = w · ψ implies that χ = ν−9/2 . Similar calculations
for the other elements of W check the regularity of ψ and give us the regularity
condition on rM

A (Ω).

For (2), we use ψ = ν−1 ⊗ ν5/2χ ⊗ ν−1 ⊗ ν−1 = rM2
A (Ω), and argue as

above. For (3), we have ψ = ν−1 ⊗ ν−1 ⊗ ν3/2χ ⊗ ν−1 = rM3
A (Ω). For (4), we use

ψ = ν−1 ⊗ ν−1 ⊗ ν−1 ⊗ ν3χ = rM4
A (Ω).

Lemma 4.2. Let χ be a character of F× .

1. Let Ω be a character of M1 defined by Ω(h(t1, t2, t3, t4)) = χ(t1). All the
BZ composition factors of rG

Ni
(π) (i=1,2,3,4) are irreducible except when

χ = ν±11/2,±9/2,±7/2,±5/2,±3/2,±1/2 or χ2 = ν±1 .
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2. Let Ω be a character of M2 defined by Ω(h(t1, t2, t3, t4)) = χ(t2). All the
BZ composition factors of rG

Ni
(π) (i=1,2,3,4) are irreducible except when

χ = ν±7/2,±5/2,±3/2,±1/2 , χ2 = ν±3,±2,±1,0 , or χ3 = ν±3/2,±1/2 .

3. Let Ω be a character of M3 defined by Ω(h(t1, t2, t3, t4)) = χ(t3). All the
BZ composition factors of rG

Ni
(π) (i=1,2,3,4) are irreducible except when

χ = ν±5/2,±3/2,±1/2 , χ2 = ν±3,±2,±1,0 , χ3 = ν±3/2,±1/2 , or χ4 = ν±2,±1,0 .

4. Let Ω be a character of M4 defined by Ω(h(t1, t2, t3, t4)) = χ(t4). All the
BZ composition factors of rG

Ni
(π) (i=1,2,3,4) are irreducible except when

χ = ν±4,±3,±2,±1,0 or χ2 = ν±4,±3,±2,±1,0 .

Proof. We start with (1). In case of N = N1 ,

WM1N1 = {1, s2s1, s3s2s1, s2s3s2s1, s4s3s2s1, s4s2s3s2s1, s3s4s2s3s2s1,
s2s3s4s2s3s2s1, s2s3s4s1s2s3s2s1, s3s2s3s4s1s2s3s2s1,
s4s3s2s3s4s1s2s3s2s1, s2s3s1s2s3s4s1s2s3s2s1, s4s2s3s1s2s3s4s1s2s3s2s1,
s3s4s2s3s1s2s3s4s1s2s3s2s1, s2s3s4s2s3s1s2s3s4s1s2s3s2s1}

(see the appendix). For w = s2s1 , s3s2s1 , s4s3s2s1 , s2s3s1s2s3s4s1s2s3s2s1 ,
s4s2s3s1s2s3s4s1s2s3s2s1 , s3s4s2s3s1s2s3s4s1s2s3s2s1 in WM1N , N ′ = N1 and
M ′ = w−1(N1) imply that iN1

N ′ ◦ w ◦ ψ is irreducible. In the remaining cases
of w ∈ WM1N1 , N ′ = M ′ = A and iN1

N ′ ◦ w ◦ ψ is irreducible except when
χ = ν±11/2,±7/2,±3/2,±1/2 or χ2 = ν±1 . For example, consider w = 1. Then
iN1
A ◦w ◦ψ = iN1

A (ν9/2χ⊗ ν−1 ⊗ ν−1 ⊗ ν−1) is reducible if and only if ν9/2χ = ν±1 ,
i.e., χ = ν−7/2,−11/2 . Similarly, we check the reducibility of the remaining BZ
composition factors of rG

Ni
(π), i=1,2,3,4.

Cases (2),(3), and (4) are similar.

Corollary 4.3. Let χ be a character of F× .

1. Let Ω be a character of M1 defined by Ω(h(t1, t2, t3, t4)) = χ(t1). Under
the regularity condition on rM1

A (Ω), π = iGM(Ω) is reducible if and only if
χ = ν±11/2 or χ = ν±1/2χ0 with χ0 of order two.

2. Let Ω be a character of M2 defined by Ω(h(t1, t2, t3, t4)) = χ(t2). Under
the regularity condition on rM2

A (Ω), π = iGM(Ω) is reducible if and only if
χ = ν±7/2 , χ = ν±3/2χ0 with χ0 of order two, or χ = ν±1/2χ0 with χ0 of
order three.

3. Let Ω be a character of M3 defined by Ω(h(t1, t2, t3, t4)) = χ(t3). Under
the regularity condition on rM3

A (Ω), π = iGM(Ω) is reducible if and only if
χ = ν±5/2 , χ = ν±3/2χ0 with χ0 of order two, χ = ν±1/2χ0 with χ0 of order
three, or χ = ν±1/2χ0 with χ0 of order four.

4. Let Ω be a character of M4 defined by Ω(h(t1, t2, t3, t4)) = χ(t4). Under
the regularity condition on rM4

A (Ω), π = iGM(Ω) is reducible if and only if
χ = ν±4 or χ = ν±1χ0 with χ0 of order two.

Proof. This follows from Theorem 2.2 and the two preceding lemmas.
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5. Nonregular cases

In this section, we use Jacquet module methods to determine reducibility in the
nonregular cases. We remark that in [7], this is done for those cases not having
real infinitesimal character–the case of real infinitesimal character being known
from [8]–using the Hecke algebra results of [15] to reduce the problem to simpler
groups. We take a different approach here to correct certain errors in [7], give a
more stylistically consistent approach, and drop certain restrictions on F required
by [15].

In the following lemma, we use the shorthand of [21] and [19] (and its
obvious extension to GSpin groups, cf. [2]) for induced representations. The
realizations of GSp(6, F ) and GSpin(7, F ) are the usual ones (e.g., [19],[2]). We
note that some of these results are not used until the next section.

Lemma 5.1. For GSp(2n, F ) we let trivn(χ) denote the one-dimensional sub-
representation of ν−n× ν−n+1× · · · × ν−1 oχ. Let χ0 denote a character of order
two. We have the following results on degenerate principal series for GSp(6, F ):

1. 1GL(1) o triv2(ν
−1) ∼= σ1 ⊕ σ2 with

rG
A(σ1) = 1⊗ ν−2 ⊗ ν−1 ⊗ ν−1 + ν−2 ⊗ 1⊗ ν−1 ⊗ ν−1 and

rG
A(σ2) = 1⊗ ν−2⊗ ν−1⊗ ν−1 + ν−2⊗ 1⊗ ν−1⊗ ν−1 + 2ν−2⊗ ν−1⊗ 1 ⊗ ν−1.

2. ν
1
2 ◦ detGL(2) o triv1(ν

−1) has a unique irreducible quotient σ1 and unique
irreducible subrepresentation σ2 . We have

rG
A(σ1) = 4ν−1 ⊗ ν−1 ⊗ 1⊗ 1 + 2ν−1 ⊗ 1⊗ ν−1 ⊗ 1 + ν−1 ⊗ 1⊗ ν ⊗ ν−1 and

rG
A(σ2) = ν−1⊗1⊗ν−1⊗1+2·1⊗ν−1⊗ν−1⊗1+1⊗ν⊗ν−1⊗ν−1+1⊗ν−1⊗ν⊗ν−1.

3. χ0 ◦ detGL(2) o triv1(ν
−1) is irreducible.

4. χ0 ◦ detGL(3) o ν−1 is irreducible.

5. 1GL(3) o ν2 ∼= σ1 ⊕ σ2 , with

rG
A(σ1) = ν−1 ⊗ 1⊗ ν ⊗ ν−2 + 2ν−1 ⊗ 1⊗ ν−1 ⊗ ν−1 + 4ν−1 ⊗ ν−1 ⊗ 1⊗ ν−1

and rG
A(σ2) = ν−1 ⊗ 1⊗ ν ⊗ ν−2.

For GSpin(2n+1, F ) we let trivn(χ) denote the one-dimensional subrepre-

sentation of ν
−n+1

2 χ×ν −n+3
2 χ×· · ·×ν− 1

2χoχ2 . Let χ0 denote a character of order
two. We have the following results on degenerate principal series for GSpin(7, F ):

1. ν−
3
2 ◦ detGL(2) o triv1(ν

− 3
2 ) is irreducible.

2. ν−1 ◦ detGL(3) o ν−2χ0 is irreducible.
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3. ν−1χ0 ◦ detGL(3) o ν−1 = σ1 + σ2 + σ3 .

We have rG
A(σ1) = 2ν−2χ0 ⊗ ν−1χ0 ⊗ ν−1χ0 ⊗ ν−1

+ν−2χ0 ⊗ ν−1χ0 ⊗ χ0 ⊗ ν−1 + ν−1χ0 ⊗ ν−2χ0 ⊗ ν−1χ0 ⊗ ν−1,

rG
A(σ2) = ν−2χ0⊗ν−1χ0⊗χ0⊗ν−1, and rG

A(σ3) = ν−1χ0⊗ν−2χ0⊗χ0⊗ν−1

+ν−1χ0 ⊗ χ0 ⊗ νχ0 ⊗ ν−1 + ν−1χ0 ⊗ χ0 ⊗ ν−2χ0 ⊗ ν−1.

Further, σ1 ⊕ σ2 appears as a subrepresentation and σ3 as the unique irre-
ducible quotient.

Proof. The arguments are like those used in [10]; the composition series
structure follows easily from the Jacquet modules and Frobenius reciprocity. Note
that the results on reducibility for GSp(4, F ) ∼= GSpin(5, F ) (resp., GL(3, F ))
needed to do these may be found in [16] (resp., [21]).

Remark 5.2. Consider the character χ1 ⊗ χ2 ⊗ χ3 ⊗ χ4 of A ⊂ F4 (which is
also the maximal split torus for M1 and M4 ). Now, we have M4 = Mα1,α2,α3

∼=
GSp(6, F ) and M1 = Mα2,α3,α4

∼= GSpin(7, F ). With the usual realizations
of GSp(6, F ) and GSpin(7, F ) (e.g., those used by Tadić and Asgari, resp.),
χ1 ⊗ χ2 ⊗ χ3 ⊗ χ4 may be identified with the following:

1. under M4
∼= GSp(6, F ), it is identified with λ1 ⊗ λ2 ⊗ λ3 ⊗ λ , where

λ1 = χ1χ2χ3, λ2 = χ2χ3, λ3 = χ3, λ = χ4.

Note that in this case, the simple roots α1, α2, α3 of M4 correspond to the
simple roots α′1, α

′
2, α

′
3 , resp., of (the usual realization of) GSp(6, F ). In the

opposite direction,

χ1 = λ1λ
−1
2 , χ2 = λ2λ

−1
3 , χ3 = λ3, χ4 = λ.

2. under M1
∼= GSpin(7, F ), it is identified with λ1 ⊗ λ2 ⊗ λ3 ⊗ λ , where

λ1 = χ1χ
2
2χ

3
3χ

2
4, λ2 = χ1χ

2
2χ

3
3χ4, λ3 = χ1χ

2
2χ

2
3χ4, λ = χ2

1χ
3
2χ

4
3χ

2
4.

Note that in this case, the simple roots α2, α3, α4 of M1 correspond to the
simple roots α′3, α

′
2, α

′
1 , resp., of (the usual realization of) GSpin(7, F ). In

the opposite direction,

χ1 = λ−1
1 λ−1

2 λ−1
3 λ2, χ2 = λ2

3λ
−1, χ3 = λ2λ

−1
3 , χ4 = λ1λ

−1
2 .

Proposition 5.3. With notation as in Theorem 3.1, the reducibility for iGM(Ω)
for nonregular cases (cf. Lemma 4.1) is as follows:

1. M = M1

We have reducibility for s = ±5/2,±1/2 with χ0 = 1. We have irreducibility
for s = ±9/2,±7/2,±3/2, 0 with χ0 = 1, and s = 0 with χ0 of order two.
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2. M = M2

We have reducibility for s = ±5/2,±3/2,±1/2 with χ0 = 1, and s = ±1/2
with χ0 of order two. We have irreducibility for s = ±1,±1/6, 0 with
χ0 = 1, and s = ±1, 0 with χ0 of order two, and s = ±1/6 with χ0 of
order three.

3. M = M3

We have reducibility for s = ±3/2,±1,±1/2 with χ0 = 1, and s = ±1,±1/2
with χ0 of order two. We have irreducibility for s = ±1/4,±1/6, 0 with
χ0 = 1; s = 0 with χ0 of order two; s = ±1/6 with χ0 of order three;
s = ±1/4, 0 with χ0 of order four.

4. M = M4

We have reducibility for s = ±2,±1 with χ0 = 1. We have irreducibility for
s = ±3,±3/2,±1/2, 0 with χ0 = 1, and s = ±3/2,±1,±1/2, 0 with χ0 of
order two.

Proof. By contragredience, it suffices to restrict our attention to s ≤ 0.

We first address the reducibility cases. The basic strategy for proving
reducibility is the same for each case. One finds an induced representation iGL(λ)
such that the following hold: (1) iGM(Ω) and iGL(λ) have an irreducible subquotient
π1 in common, and (2) rG

A(iGM(Ω)) is not contained in rG
A(iGL(λ)). This clearly

suffices; were iGM(Ω) irreducible, (1) would force iGM(Ω) ≤ iGL(λ), from which it
would follow that rG

A(iGM(Ω)) ≤ rG
A(iGL(λ)), contradicting (2).

Consider the case M = M3 , s = −1, and χ0 of order two. We note that
rG
A(iGM3

(Ω)) may be calculated using Theorem 2.1 and the results in the appendix.

Doing so, one sees that ν−1 ⊗ 1 ⊗ ν−
1
2χ0 ⊗ ν−

1
2χ0 ≤ rG

A(iGM3
(Ω)). Let π1 be an

irreducible subquotient of iGM4
(Ω) which contains 1⊗ ν−1 ⊗ ν−

1
2χ0 ⊗ ν−

1
2χ0 in its

Jacquet module. By central character considerations,

π ↪→ iGA(ν−1 ⊗ 1⊗ ν−
1
2χ0 ⊗ ν−

1
2χ0) ∼= iGMα2

(
i
Mα2
A (ν−1 ⊗ 1⊗ ν−

1
2χ0 ⊗ ν−

1
2χ0)

)
.

Now, i
Mα2
A (ν−1 ⊗ 1⊗ ν−

1
2χ0 ⊗ ν−

1
2χ0) is an irreducible representation of Mα2 and

satisfies the requirements for Langlands data in the subrepresentation setting of

the Langlands classification. In particular, L(i
Mα2
A (ν−1 ⊗ 1 ⊗ ν−

1
2χ0 ⊗ ν−

1
2χ0)) is

the unique irreducible subrepresentation of iGMα2
(i

Mα2
A (ν−1⊗ 1⊗ ν− 1

2χ0⊗ ν−
1
2χ0)),

hence π1 = L(i
Mα2
A (ν−1⊗ 1⊗ ν− 1

2χ0⊗ ν−
1
2χ0)). A similar argument shows that π1

also appears in iGM4
(λ), where λ is the character of M4 corresponding to Ω having

s = −1
2

and χ0 of order two. One can calculate rG
A(iGM4

(λ)) similarly to see that
it does not contain rG

A(iGM3
(Ω)) (or simply observe that this holds from cardinality

considerations). Thus iGM3
(Ω) is reducible.

The arguments in the other cases of nontrivial χ0 are similar; we just remark
on the necessary changes. For M = M2 , s = −1

2
with χ0 of order two, we compare

with iGM4
(λ), where λ = σ1 is the irreducible subquotient of ν−

1
2χ0 ◦ detGL(2) o
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triv1(χ0) given in Lemma 5.1, (7). We remark that by Remark 5.2,

rM4
A (λ) = ν−1 ⊗ νχ0 ⊗ ν−1 ⊗ χ0 + ν−1 ⊗ νχ⊗ ν−1 ⊗ 1 + χ0 ⊗ ν−1χ0 ⊗ χ0 ⊗ χ0

+χ0 ⊗ ν−1χ0 ⊗ χ0 ⊗ 1 + χ0 ⊗ ν−1 ⊗ χ0 ⊗ χ0 + χ0 ⊗ ν−1 ⊗ χ0 ⊗ 1,

which can then be used to calculate rG
A(iGM4

(λ)). We take

π1 = L(iM2
A (χ0 ⊗ ν−1 ⊗ χ0 ⊗ χ0))

for the common irreducible subquotient. In the case M = M3 , s = −1
2

with χ0 of
order two, we compare with iGM4

(λ), where λ = σ1 corresponds to the irreducible
subquotient of ν−1 ◦ detGL(3) o νχ0 given in Lemma 5.1 (6). Again, by Lemma 5.1
(6) and Remark 5.2, we have

rM4
A λ = 2ν−1 ⊗ ν−1 ⊗ 1⊗ νχ0 + ν−2 ⊗ ν ⊗ ν−1 ⊗ νχ0 + ν2 ⊗ ν−1 ⊗ ν−1 ⊗ νχ0.

We take π1 = L(iM2
A (1⊗ ν−1 ⊗ χ0 ⊗ 1)) as the common irreducible subquotient.

Reducibility in the case χ0 = 1 is similar but a bit easier as one can show
reducibility by comparing degenerate principal series from different parabolic sub-
groups. In this case, the degenerate principal series iG,M1(Ω1) for s = −5

2
,iG,M3(Ω3)

for s = −3
2
, and iG,M4(Ω4) with s = −2–using Ωi to indicate the character

is attached to Mi–have π1 = L(iMα3 ,A(ν−1 ⊗ 1 ⊗ ν−1 ⊗ ν−1)) as a common ir-
reducible subquotient, from which the reducibility of all three may be deduced.
Similarly, iG,M1(Ω1) for s = −1

2
,iG,M2(Ω2) for s = −3

2
, and iG,M4(Ω4) with s = −1

have π1 = L(iMα1,α3 ,A(1 ⊗ ν−1 ⊗ 1 ⊗ ν−1)) as a common irreducible subquotient,
from which the reducibility of all three of these may be deduced. The degener-
ate principal series iG,M2(Ω2) with s = −1

2
and iG,M3(Ω3) with s = −1

2
have

π1 = L(iM2,A(1⊗ν−1⊗1⊗1)) as a common irreducible subquotient, which can be
used to show the reducibility of both. Finally, π1 = L(iMα2 ,A(ν−1⊗1⊗ν−1⊗ν−1))

(resp., π1 = L(iMα2
(1⊗ ν−1⊗ ν− 1

2 ⊗ ν− 1
2 ))) appears in both iG,M1(Ω1) for s = −7

2

and iG,M2(Ω2) for s = −5
2

(resp., iG,M3(Ω3) for s = −1 and iG,M4(Ω4) for s = −1
2
).

This directly implies the reducibility of iG,M2(Ω2) for s = −5
2

and iG,M3(Ω3) for
s = −1 as their Jacquet modules contain more terms than those of iG,M1(Ω1) for
s = −7

2
and iG,M4(Ω4) for s = −1

2
(which are are irreducible–see below).

We now turn to showing irreducibility in remaining cases. The basic idea
is to start with an irreducible subquotient π1 of iGM(Ω) and show that rG

A(π1) =
rG
A(iGM(Ω)). This may be effected as follows: suppose we know rG

A(π1) ≥ χ1⊗χ2⊗
χ3 ⊗ χ4 . If, e.g., χ1 6= ν±1 , then i

Mα1
A (χ1 ⊗ χ2 ⊗ χ3 ⊗ χ4) is irreducible and is the

only irreducible representation of Mα1 containing χ1⊗χ2 ⊗χ3⊗χ4 in its Jacquet
module. Thus,

rG
Mα1

(π1) ≥ i
Mα1
A (χ1 ⊗ χ2 ⊗ χ3 ⊗ χ4)

⇓
rG
A(π1) ≥ χ1 ⊗ χ2 ⊗ χ3 ⊗ χ4 + χ−1

1 ⊗ χ1χ2 ⊗ χ3 ⊗ χ4.

In particular, if χ1 6= ν±1 , we have

χ1⊗χ2⊗χ3⊗χ4 ≤ rG
A(π1) ⇒ χ1⊗χ2⊗χ3⊗χ4 +χ−1

1 ⊗χ1χ2⊗χ3⊗χ4 ≤ rG
A(π1)

as well (suitably interpreted for multiplicities). Similar considerations apply if
χ2, χ3, χ4 are different than ν±1 .
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While the above observation is often enough to prove irreducibility (e.g.,
in the regular case), for the cases at hand, a bit more is needed. We claim the
following:

rG
A(π1) ≥ 1⊗ ν−1 ⊗ χ3 ⊗ χ4 ⇒ rG

A(π1) ≥ 2 · 1⊗ ν−1 ⊗ χ3 ⊗ χ4 + ν−1 ⊗ ν ⊗ ν−1χ3 ⊗ χ4

rG
A(π1) ≥ 1⊗ ν ⊗ χ3 ⊗ χ4 ⇒ rG

A(π1) ≥ 2 · 1⊗ ν ⊗ χ3 ⊗ χ4 + ν ⊗ ν−1 ⊗ νχ3 ⊗ χ4

rG
A(π1) ≥ χ1 ⊗ χ2 ⊗ ν−1 ⊗ 1 ⇒ rG

A(π1) ≥ 2 · χ1 ⊗ χ2 ⊗ ν−1 ⊗ 1 + χ1 ⊗ ν−2χ2 ⊗ ν ⊗ ν−1

rG
A(π1) ≥ χ1 ⊗ χ2 ⊗ ν ⊗ 1 ⇒ rG

A(π1) ≥ 2 · χ1 ⊗ χ2 ⊗ ν ⊗ 1 + χ1 ⊗ ν2χ2 ⊗ ν−1 ⊗ ν.

Using the isomorphisms Mα1,α2
∼= GL(3, F ) × F× and Mα3,α4

∼= F× × GL(3, F )
(which may be realized, e.g., by viewing Mα1,α2 inside M4 and using Remark 5.2),

the claims follow immediately from the fact that in GL(3, F ), one has ν−
1
2 ◦

detGL(2) × ν−1 (resp., ν
1
2 ◦ detGL(2)StGL(2) × ν−1 ) irreducible, and it is the only

irreducible representation containing ν−1 ⊗ ν−1 ⊗ 1 (resp., 1 ⊗ ν−1 ⊗ ν−1 ) in
its Jacquet module (see [21]). The same argument using the irreducibility of

ν−
1
2 ◦ detGL(2) × 1 (resp., ν

1
2 ◦ StGL(2) × 1) gives

rG
A(π1) ≥ ν−1 ⊗ 1⊗ χ3 ⊗ χ4 ⇒ rG

A(π1) ≥ 2 · ν−1 ⊗ 1⊗ χ3 ⊗ χ4 + ν ⊗ ν−1 ⊗ χ3 ⊗ χ4

rG
A(π1) ≥ ν ⊗ 1⊗ χ3 ⊗ χ4 ⇒ rG

A(π1) ≥ 2 · ν ⊗ 1⊗ χ3 ⊗ χ4 + ν−1 ⊗ ν ⊗ χ3 ⊗ χ4

rG
A(π1) ≥ χ1 ⊗ χ2 ⊗ 1⊗ ν−1 ⇒ rG

A(π1) ≥ 2 · χ1 ⊗ χ2 ⊗ 1⊗ ν−1 + χ1 ⊗ χ2 ⊗ ν−1 ⊗ ν

rG
A(π1) ≥ χ1 ⊗ χ2 ⊗ 1⊗ ν ⇒ rG

A(π1) ≥ 2 · χ1 ⊗ χ2 ⊗ 1⊗ ν + χ1 ⊗ χ2 ⊗ ν ⊗ ν−1.

Similarly, using Mα2,α3
∼= GSp(4, F ) and the irreducibility of ν−1 o triv1(χ) (see

[16])–which is then the only irreducible representation of GSp(4, F ) containing
ν−1 ⊗ ν−1 ⊗ χ in its Jacquet module–we see that

rG
A(π1) ≥ χ1 ⊗ 1⊗ ν−1 ⊗ χ4

⇓
rG
A(π1) ≥ 2χ1 ⊗ 1⊗ ν−1 ⊗ χ4 + χ1 ⊗ ν−2 ⊗ ν ⊗ ν−1χ4 + ν−2χ1 ⊗ ν2 ⊗ ν−1 ⊗ ν−1χ4.

We need one additional such fact for the case M = M4 , s = 0 with χ0 of order two.
In GSp(4, F ), let τ1 denote the unique irreducible subquotient common to both

1 o triv1(χ0) and ν−
1
2 ◦ detGL(2) o χ0 ; it is the unique irreducible representation

containing ν−1 ⊗ 1⊗ χ0 in its Jacquet module (see [16], noting that Sally-Tadić
have τ1 = L(ν, 1 o χ0) using the quotient version of the Langlands classification).
Note that the Jacquet module of τ2 consists of 1⊗ν−1⊗χ0 +2ν−1⊗1⊗χ0 . Under
Mα2,α3

∼= F× ×GSp(4, F ), this implies that

rG
A(π1) ≥ ν−1 ⊗ ν−1 ⊗ 1⊗ χ0

⇓
rG
A(π1) ≥ 2ν−1 ⊗ ν−1 ⊗ 1⊗ χ0 + ν−2 ⊗ ν ⊗ ν−1 ⊗ χ0.

Using the observations above, one can show irreducibility for the remaining
cases.
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6. Subrepresentations and Quotients

In this section, we determine the number of irreducible subrepresentations and
quotients for the reducible degenerate principal series from the previous sections.

Theorem 6.1. With notation as in Theorem 3.1, we consider the following
cases of reducibility of iGM(Ω):

1. M = M1

We consider (a) s = −11
2

and χ0 = 1, (b) s = −5
2

and χ0 = 1, (c) s = −1
2

and χ0 = 1, and (d) s = −1
2

and χ0 of order two.

2. M = M2

We consider (a) s = −7
2

and χ0 = 1, (b) s = −5
2

and χ0 = 1, (c) s = −3
2

and χ0 = 1, (d) s = −1
2

and χ0 = 1, (e) s = −3
2

and χ0 of order two, (f)
s = −1

2
and χ0 of order two, and (g) s = −1

2
and χ0 of order three.

3. M = M3

We consider (a) s = −5
2

and χ0 = 1, (b) s = −3
2

and χ0 = 1, (c) s = −1
and χ0 = 1, (d) s = −1

2
and χ0 = 1, (e) s = −3

2
and χ0 of order two, (f)

s = −1 and χ0 of order two, (g) s = −1
2

and χ0 of order two, (h) s = −1
2

and χ0 of order three, and (i) s = −1
2

and χ0 of order four.

4. M = M4

We consider (a) s = −4 and χ0 = 1, (b) s = −2 and χ0 = 1, (c) s = −1
and χ0 = 1, and (d) s = −2 and χ0 of order two.

In cases (1)(a),(c),(d); (2)(a),(b),(c),(e),(g); (3) all cases; and (4)(a),(b),(d),
iGM(Ω) has a unique irreducible quotient and a unique irreducible subrepresentation,
and they are inequivalent. In cases (1)(b),(2)(d),(2)(f) and (4)(c), iGM(Ω) has a
unique irreducible quotient and a subrepresentation of the form π1 ⊕ π2 , π1 6∼= π2 ,
with no other irreducible subrepresentations. Again, the irreducible quotient is
inequivalent to either irreducible subrepresentation.

The cases of s > 0 are contragredient to those above.

Proof. Cases (1)(a), (1)(d), (2)(a), (2)(e), (2)(g), (3)(a), (3)(e), (3)(h), (3)(i),
(4)(a), and (4)(d) are regular; the existence of unique irreducible subrepresenta-
tions and unique irreducible quotients follows directly from Frobenius reciprocity.
The fact that the irreducible subrepresentation and irreducible quotient are in-
equivalent is immediate from regularity.

We organize the remaining cases based on the nature of the result and style
of argument. We start with (1)(c). To show that there is a unique irreducible
subrepresentation, it suffices (by Frobenius reciprocity) to show that Ω appears
with multiplicity one in rG

M1
(iGM1

(Ω)). For this, it is enough to show that ν4⊗ν−1⊗
ν−1⊗ν−1 appears with multiplicity one in rG

A(iGM1
(Ω)). That this holds may easily

be seen by using the tables in the appendix and Theorem 2.1. To show these have
unique irreducible quotients, it suffices to show their contragredients have unique



Choi and Jantzen 797

irreducible subrepresentations. This is essentially the same argument, replacing s
by −s , i.e., using ν5⊗ ν−1⊗ν−1⊗ν−1 . The multiplicity one of ν5⊗ν−1⊗ν−1⊗ν−1

in the Jacquet module shows that the irreducible quotient is inequivalent to the
irreducible subrepresentation (or any other irreducible subquotient).

For (2)(b), we observe that since ν−1 ⊗ ν5 ⊗ ν−1 ⊗ ν−1 appears with
multiplicity one in rG

A(iGM2
(Ω)), there is a unique irreducible quotient which appears

with multiplicity one. On the other hand, ν−1 ⊗ 1 ⊗ ν−1 ⊗ ν−1 appears with
multiplicity two (one copy associated to w = 1, the other to w = s2 ). However,

since i
Mα2
A (ν−1 ⊗ 1 ⊗ ν−1 ⊗ ν−1) ≤ rG

Mα2
(iGM2

(Ω)) is irreducible, both copies are

associated to the same irreducible subquotient of iGM2
(Ω). Thus we have a unique

irreducible subrepresentation as well.

For (3)(b), the fact that there is a unique irreducible quotient, and that it
appears with multiplicity one, follows immediately from the fact that ν−1⊗ ν−1⊗
ν3 ⊗ ν−1 appears with multiplicity one in rG

A ◦ iGM3
(Ω). To see there is a unique

irreducible subrepresentation, observe that

iGM3
(Ω) ↪→ iGA(ν−1 ⊗ ν−1 ⊗ 1⊗ ν−1) ∼= iGMα3

◦ iMα3
A (ν−1 ⊗ ν−1 ⊗ 1⊗ ν−1).

Noting that i
Mα3
A (ν−1 ⊗ ν−1 ⊗ 1⊗ ν−1) is irreducible, we see that

i
Mα3
A (ν−1 ⊗ ν−1 ⊗ 1⊗ ν−1)

constitutes Langlands data. It then follows from the Langlands classification that

iGMα3
◦ iMα3

A (ν−1 ⊗ ν−1 ⊗ 1 ⊗ ν−1) has a unique irreducible subrepresentation, as
needed.

For (4)(b), the fact that there is a unique irreducible quotient, and that it
appears with multiplicity one, follows immediately from the fact that ν−1⊗ ν−1⊗
ν−1 ⊗ ν5 appears with multiplicity one in rG

A ◦ iGM4
(Ω). The fact that there is a

unique irreducible subrepresentation follows from the fact that ν−1⊗ν−1⊗ν−1⊗ν
appears with multiplicity one in rG

A(iGM4
(Ω)).

For (2)(c), the uniqueness of the irreducible quotient, as well as the fact
that it appears with multiplicity one, follows from the observation that ν−1⊗ν4⊗
ν−1 ⊗ ν−1 appears with multiplicity one in rG

A ◦ iGM2
(Ω). Now, let Ω′ = rM2

Mα1
(Ω),

so that r
Mα1
A (Ω′) = ν−1 ⊗ ν ⊗ ν−1 ⊗ ν−1 . Then,

Ω ↪→ iM2
Mα1

(Ω′)

⇓
iGM2

(Ω) ↪→ iGMα1
(Ω′) ∼= iGMα1,α2

◦ iMα1,α2
Mα1

(Ω′).

As a representation of Mα1,α2
∼= GL(3, F ) × F× (viewed as a standard Levi of

M4
∼= GSp(6, F ), e.g.), we have i

Mα1,α2
Mα1

(Ω′) ∼= (ν−
1
2 ◦ detGL(2) × ν−1) ⊗ ν−1–

irreducible by the results of Zelevinsky. Now,

r
Mα1,α2
A ◦ iMα1,α2

Mα1
(Ω′) = ν−1 ⊗ ν ⊗ ν−1 ⊗ ν−1 + 2 · 1⊗ ν−1 ⊗ 1⊗ ν−1.

Therefore, by central character considerations and Frobenius reciprocity,

i
Mα1,α2
Mα1

(Ω′) ↪→ iGA(1⊗ ν−1 ⊗ 1⊗ ν−1).
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Therefore,

iGM2
(Ω) ↪→ iGMα1,α2

◦ iMα1,α2
Mα1

(Ω′)

↪→ iGMα1,α2
◦ iMα1,α2

A (1⊗ ν−1 ⊗ 1⊗ ν−1)

∼= iGA(1⊗ ν−1 ⊗ 1⊗ ν−1)

∼= iGMα1,α3
◦ iMα1,α3

A (1⊗ ν−1 ⊗ 1⊗ ν−1).

The representation i
Mα1,α3
A (1 ⊗ ν−1 ⊗ 1 ⊗ ν−1) is an irreducible representation of

Mα1,α3 satisfying the requirements of Langlands data. In particular, iGMα1,α3
◦

i
Mα1,α3
A (1⊗ ν−1 ⊗ 1⊗ ν−1) has a unique irreducible subrepresentation (Langlands

subrepresentation) π1 . It then follows that this is the unique irreducible subrep-
resentation of iGM2

(Ω).

Cases (3)(c) and (3)(f) may be addressed simultaneously. Letting χ′0 be

either trivial or of order two, we see that ν−1 ⊗ ν−1 ⊗ ν
5
2χ′0 ⊗ ν−1 appears with

multiplicity one in rG
A ◦ iGM3

(Ω), from which the uniqueness and multiplicity one of
the irreducible quotient follows. To address the subrepresentation claim, we argue

as in 2(c). First, observe that by irreducibility, i
Mα3
A (ν−1 ⊗ ν−1 ⊗ ν

1
2χ′0 ⊗ ν−1) ∼=

i
Mα3
A (ν−1 ⊗ 1⊗ ν−

1
2χ′0 ⊗ ν−

1
2χ′0). Thus,

iGMΩ ↪→ iGA(ν−1 ⊗ ν−1 ⊗ ν
1
2χ′0 ⊗ ν−1) ∼= iGMα3

◦ iMα3
A (ν−1 ⊗ 1⊗ ν−

1
2χ′0 ⊗ ν−

1
2χ′0).

Since i
Mα3
A (ν−1⊗1⊗ν− 1

2χ′0⊗ν−
1
2χ′0) satisfies the requirements for Langlands data,

it follows from the Langlands classification that iGMα3
◦iMα3

A (ν−1⊗1⊗ν− 1
2χ′0⊗ν−

1
2χ′0

has a unique irreducible subrepresentation, hence so does iGM(Ω).

For (3)(d), the fact that there is a unique irreducible quotient, and that it
appears with multiplicity one, follows immediately from the fact that ν−1⊗ ν−1⊗
ν2 ⊗ ν−1 appears with multiplicity one in rG

A ◦ iGM3
(Ω). For the uniqueness of the

irreducible subrepresentation, observe that

iGM3
(Ω) ↪→ iGMα2,α4

(Ω′) ∼= iGM1
◦ iM1

Mα2,α4
(Ω′),

where Ω′ = rM3
Mα2,α4

(Ω) (so that Ω′ is a character of Mα2,α4 satisfying r
Mα2,α4
A (Ω′) =

ν−1⊗ν−1⊗ν⊗ν−1 ). Under the isomorphism M1
∼= GSpin(7, F ), iM1

Mα2,α4
(Ω′) cor-

responds to the degenerate principal series ν−
3
2 ◦ detGL(2) o triv1(ν

− 3
2 ); irreducible

by Lemma 5.1. Since 1 ⊗ ν−1 ⊗ 1 ⊗ 1 ≤ rM1
A ◦ iM1

Mα2,α4
(Ω′), central character con-

siderations tell us
iM1
Mα2,α4

(Ω′) ↪→ iM1
A (1⊗ ν−1 ⊗ 1⊗ 1).

Therefore,

iGM3
(Ω) ↪→ iGM1

◦ iM1
Mα2,α4

(Ω′) ↪→ iGM1
◦ iM1

A (1⊗ ν−1 ⊗ 1⊗ 1) ∼= iGA(1⊗ ν−1 ⊗ 1⊗ 1).

Now, iGA(1⊗ν−1⊗1⊗1) ∼= iGM2
◦iM2

A (1⊗ν−1⊗1⊗1), noting that iM2
A (1⊗ν−1⊗1⊗1)

is irreducible. Since iM2
A (1⊗ ν−1 ⊗ 1⊗ 1) constitutes Langlands data, we see that
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iGA(1⊗ ν−1 ⊗ 1⊗ 1) admits a unique irreducible subrepresentation, from which it
follows immediately that iGM3

(Ω) does as well.

For (3)(g), the fact that there is a unique irreducible quotient, and that it
appears with multiplicity one, follows immediately from the fact that ν−1⊗ ν−1⊗
ν2χ0 ⊗ ν−1 appears with multiplicity one in rG

A ◦ iGM3
(Ω). For the uniqueness of

the irreducible subrepresentation, observe that

iGM3
(Ω) ↪→ iGMα1,α2

(Ω′) ∼= iGM4
◦ iM4

Mα1,α2
(Ω′),

where Ω′ = rM3
Mα1,α2

(Ω) (so that Ω′ is a character of Mα1,α2 satisfying r
Mα1,α2
A (Ω′) =

ν−1 ⊗ ν−1 ⊗ νχ0 ⊗ ν−1 ). Now, under the isomorphism M4
∼= GSp(6, F ), θ =

iM4
Mα1,α2

(Ω′) corresponds to the degenerate principal series χ0 ◦ detGL(3) o ν−1 ,

hence is irreducible by Lemma 5.1. Now, 1 ⊗ ν−1 ⊗ χ0 ⊗ χ0 ≤ rM4
A (θ), so by

central character considerations, we have θ ↪→ iM4
A (1⊗ ν−1 ⊗ χ0 ⊗ χ0). Hence,

iGM3
(Ω) ↪→ iGM4

(θ) ↪→ iGA(1⊗ ν−1 ⊗ χ0 ⊗ χ0) ∼= iGM2
◦ iM2

A (1⊗ ν−1 ⊗ χ0 ⊗ χ0).

Since iM2
A (1⊗ν−1⊗χ0⊗χ0) satisfies the requirements of Langlands data, it follows

that iGM2
◦ iM2

A (1 ⊗ ν−1 ⊗ χ0 ⊗ χ0) has a unique irreducible subrepresentation, so
iGM3

(Ω) must as well.

In (1)(b), the fact that there is a unique irreducible quotient, and that
it appears with multiplicity one, follows immediately from the fact that ν7 ⊗
ν−1 ⊗ ν−1 ⊗ ν−1 appears with multiplicity one in rG

A ◦ iGM1
(Ω). For irreducible

subrepresentations, observe that ν2 ⊗ ν−1 ⊗ ν−1 ⊗ ν−1 appears in the Jacquet
module with multiplicity two (with the second copy associated to s1s2s3s2s1 ).
Therefore, the above argument then shows that there are at most two irreducible
subrepresentations. To see that there are two irreducible subrepresentations,
consider iM4

Mα2,α3
(Ω′), where Ω′ = rM1

Mα2,α3
(Ω) (a character of Mα2,α3 ). Recall that

M4
∼= GSp(6, F ) and Mα2,α3

∼= F× ×GSp(4, F ). In particular, iM4
Mα2,α3

(Ω′) is the

representation 1GL(1)otriv2(ν
−1) of GSp(6, F ). By Lemma 5.1, 1GL(1)otriv2(ν

−1)
decomposes as a direct sum of two inequivalent irreducible representations; write
iM4
Mα2,α3

(Ω) ∼= σ1 ⊕ σ2 . Then,

iGM1
(Ω) ↪→ iGMα2,α3

(Ω′) ∼= iGM4
(σ1 ⊕ σ2).

We argue that each iGM4
(σi) has an irreducible subrepresentation in common with

iGM1
(Ω), accounting for the two irreducible subrepresentations of iGM1

(Ω).

To this end, recall that rG
A(iGM1

(Ω)) contains ν2 ⊗ ν−1 ⊗ ν−1 ⊗ ν−1 with

multiplicity two. Now, observe that rM4
A (σ1) = ν2⊗ν−1⊗ν−1⊗ν−1+ν−2⊗ν⊗ν−1⊗

ν−1 and rM4
A (σ2) = ν2⊗ν−1⊗ν−1⊗ν−1+ν−2⊗ν⊗ν−1⊗ν−1+2ν−1⊗ν−1⊗1⊗ν−1 .

One can then directly check (using Theorem 2.1) that rG
A(iGM4

(σi)), i = 1, 2
each contains ν2 ⊗ ν−1 ⊗ ν−1 ⊗ ν−1 with multiplicity one. Let πi denote the
irreducible subrepresentation of iGM4

(σi) (noting that it is the unique irreducible
subrepresentation of iGM4

(σi) by Frobenius reciprocity). Without loss of generality,
we may let π1 be the one having rG

A(π1) ≥ 2ν−1 ⊗ ν−1 ⊗ 1 ⊗ ν−1 (and the
fact that this is true for only one of the πi shows that they are inequivalent).
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Note that by Jacquet module considerations, πi appears with multiplicity one in
iGM4

(σi) (and not in iGM4
(σ3−i)). It then follows that π1 and π2 must also appear

as subrepresentations of iGM1
(Ω)–consider the subspace (Vπ1 ⊕ Vπ2) ∩ ViGM1

(Ω) in

ViGMα2,α3
(Ω′) . The result follows.

For (2)(d), we observe that since ν−1 ⊗ ν3 ⊗ ν−1 ⊗ ν−1 appears with
multiplicity one in rG

A(iGM2
(Ω)), there is a unique irreducible quotient and it appears

with multiplicity one. To show there are two irreducible subrepresentations, first
let π1 be the representation with Langlands data iM2

A (1 ⊗ ν−1 ⊗ 1 ⊗ 1). Since
rG
A(π1) contains all 12 copies of 1 ⊗ ν−1 ⊗ 1 ⊗ 1, we see that rG

M1
(π1) contains

both copies of θ1 , where under the isomorphism M1
∼= GSpin(7, F ), θ1

∼= ν−
3
2 ◦

detGL(2) o triv1(ν
− 3

2 ) (irreducible by Lemma 5.1). Therefore, rG
A(π1) must contain

(at least) 8 of the 10 copies of ν−1⊗ ν⊗ ν−1⊗ 1 in rG
A ◦ iGM2

(Ω). In the notation of
Lemma 5.1 (2), rG

M4
(π1) ≥ 3σ1 +2σ2 (noting that the 3σ1 and 4σ2 in rG

M4
◦ iGM2

(Ω)
account for all 10 copies of ν−1⊗ ν ⊗ ν−1⊗ 1). In particular, this forces rG

A(π1) ≥
rM4
A (σ2) ≥ ν−1 ⊗ ν2 ⊗ ν−1 ⊗ ν−1 .

By central character considerations,

π1 ↪→ iGA(ν−1 ⊗ ν2 ⊗ ν−1 ⊗ ν−1)
⇓ (Lemma 5.5 [12])
π1 ↪→ iGM2

(λ)

for some irreducible λ ≤ iM2
A (ν−1 ⊗ ν2 ⊗ ν−1 ⊗ ν−1). Since rG

A ◦ iGM2
(Ω) ≥

12 · 1⊗ ν−1 ⊗ 1⊗ 1, and rG
A ◦ iGA(ν−1 ⊗ ν2 ⊗ ν−1 ⊗ ν−1) contains only 12 copies of

1⊗ ν−1 ⊗ 1⊗ 1, we see that λ = Ω, as needed.

Next, a comparison with the case s = −1
2

from M3 shows that rG
A(π1)

contains only 8 copies of ν−1 ⊗ ν ⊗ ν−1 ⊗ 1, while rG
A ◦ iGM2

(Ω) has a total of ten

copies. Since i
Mα4
A (ν−1 ⊗ ν ⊗ ν−1 ⊗ 1) is irreducible, the two remaining copies of

ν−1⊗ν⊗ν−1⊗1 are associated to the same irreducible subquotient of iGM2
(Ω); let

π2 denote this subquotient. In the notation of Lemma 5.1 (2), we have rG
M4

(π2)
contains two copies of σ2 . Now, let λ be the irreducible representation of Mα2

having rM2
A (λ) = ν−1⊗ν⊗ν−1⊗1. We have (e.g., from the Langlands classification

for M4
∼= GSp(6, F ) and induction in stages)

σ2 ↪→ iM4
Mα2

(λ)

⇓
iGM4

(σ2) ↪→ iGMα2
(λ) ∼= iGMα2,α4

◦ iMα2,α4
Mα2

(λ).

We note that i
Mα2,α4
Mα2

(λ) is irreducible. Further, we claim that i
Mα2,α4
Mα2

(λ) is the
Langlands data for π2 . In particular, by central character considerations, we have

π2 ↪→ iGA(ν−1 ⊗ ν ⊗ ν−1 ⊗ 1) ∼= iGMα2
◦ iMα2

A (ν−1 ⊗ ν ⊗ ν−1 ⊗ 1)

⇓ (Lemma 5.5 [12])
π2 ↪→ iGMα2

(λ) or π2 ↪→ iGMα2
(τ),

where rM2
A (τ) = 1⊗ν−1⊗1⊗1. However, iGMα2

(τ) ↪→ iGA(1⊗ν−1⊗1⊗ ν−1) contains

π1 as unique irreducible subrepresentation (by the Langlands classification). Thus,
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π2 ↪→ iGMα2
(λ), as claimed. Now, (from the Langlands classification for M4 , e.g.),

we have
σ2 ↪→ iM4

Mα2
(λ)

⇓ (induction in stages)

iGM4
(σ2) ↪→ iGMα2

(λ) ∼= iGMα2,α4
(i

Mα2,α4
Mα2

(λ)).

Since iGMα2,α4
(i

Mα2,α4
Mα2

(λ)) is the standard module containing π2 as unique irre-
ducible subrepresentation, we see that π2 is the unique irreducible subrepresenta-
tion of iGMα2

(λ), hence also the unique irreducible subrepresentation of iGM4
(σ2).

Next, let Ω′ denote the character of Mα1,α3 having r
Mα1,α3
A (Ω′) = ν−1 ⊗

ν2⊗ ν−1⊗ ν−1 . Note that under the isomorphism M4
∼= GSp(6, F ) (Remark 5.2),

we have iM4
Mα1,α3

(Ω′) ∼= ν
1
2 ◦ detGL(2) o triv1(ν

−1). By Lemma 5.1, this induced

representation has σ1 and σ2 as its irreducible subquotients. Since rM4
A (σ2) con-

tains a copy of ν−1 ⊗ ν2 ⊗ ν−1 ⊗ ν−1 (using Remark 5.2 to convert the results
in Lemma 5.1), but rM4

A (σ1) does not, we see that σ2 is the unique irreducible
subrepresentation of iM4

Mα1,α3
(Ω′). Therefore,

σ2 ↪→ iM4
Mα1,α3

(Ω′)

⇓ (induction in stages)

π2 ↪→ iGM4
(σ2) ↪→ iGM4

◦ iM4
Mα1,α3

(Ω′) ∼= iGM2
◦ iM2

Mα1,α3
(Ω′)

⇓ (Lemma 5.5 [12])
π2 ↪→ iGM2

(η)

for some irreducible η ≤ iM2
Mα1,α3

(Ω′). Now, observe that

iM2
Mα1,α3

(Ω′) = η1 + η2,

where η1 = Ω, so that rM2
A (η1) = ν−1 ⊗ ν2 ⊗ ν−1 ⊗ ν−1 , and η2 has rM2

A (η2) =
ν−1⊗ν2⊗ν−2⊗ν+ν−1⊗ν−2⊗ν2⊗ν−1 . Calculating WM2,A ·(ν−1⊗ν2⊗ν−2⊗ν+
ν−1⊗ν−2⊗ν2⊗ν−1), we see that rG

A ◦ iGM2
(η2) does not contain ν−1⊗ν⊗ν−1⊗1.

(In fact, iGM2
(Ω) accounts for 10 copies of ν−1 ⊗ ν ⊗ ν−1 ⊗ 1; the remaining two

copies from iGA(ν−1 ⊗ ν2 ⊗ ν−1 ⊗ ν−1) occur in iGM2
ζ , where ζ is the irreducible

representation of M2 having rM2
A (ζ) = ν ⊗ ν ⊗ ν−1 ⊗ ν−1 .) Therefore, we have

π2 ↪→ iGM2
(θ1) = iGM2

(Ω),

as needed. We remark that π1 and π2 are clearly inequivalent.

We now show that there are no other irreducible subrepresentations of
iGM2

(Ω). Now, suppose π is an irreducible subrepresentation. Then, in the notation
of Lemma 5.1,

π ↪→ iGM2
(Ω) ↪→ iGMα1,α3

(Ω′) ∼= iGM4
◦ iM4

Mα1,α3
(Ω′)

⇓ (Lemma 5.5 [12])
π ↪→ iGM4

(σ1) or iGM4
(σ2).

As noted above, iGM4
(σ2) has π2 as unique irreducible subrepresentation. Since

rM4
A (σ1) contains copies of 1⊗ ν−1 ⊗ 1⊗ 1, by central character considerations,

σ1 ↪→ iM4
A (1⊗ ν−1 ⊗ 1⊗ 1)

⇓
iGM1

(σ1) ↪→ iGM4
◦ iM4

A (1⊗ ν−1 ⊗ 1⊗ 1) ∼= iGM2
(iM2

A (1⊗ ν−1 ⊗ 1⊗ 1)),
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which (by the Langlands classification) has π1 as unique irreducible subrepresen-
tation. Therefore, the only possibilities are π ∼= π1 or π2 . Further, we note that
by Jacquet module considerations, π1 and π2 each appear only once in iGM2

(Ω), so
cannot appear more than once as subrepresentations.

In (2)(f), the fact that there is a unique irreducible quotient, and that
it appears with multiplicity one, follows immediately from the fact that ν−1 ⊗
ν3χ0 ⊗ ν−1 ⊗ ν−1 appears with multiplicity one in rG

A ◦ iGM2
(Ω). For irreducible

subrepresentations, observe that

iGM2
(Ω) ↪→ iGMα3,α4

(θ) ∼= iGM1
(iM1

Mα3,α4
(θ)),

where θ is the character of Mα3α4 having r
Mα3,α4
A (θ) = ν−1 ⊗ ν2χ0 ⊗ ν−1 ⊗ ν−1 .

Under M1
∼= GSpin(7, F ), iM1

Mα3,α4
(θ) corresponds to the degenerate principal

series ν−1 ◦ detGL(3) o ν−2χ0 (see Note 5.2). As this representation is irreducible
(see Lemma 5.1), we have ν−1◦detGL(3) oν−2χ0

∼= ν−1χ0◦detGL(3) oν−2χ0 (noting
that ν−1χ0 ◦ detGL(3) ⊗ ν−2χ0 = w′

0(ν
−1 ◦ detGL(3) ⊗ ν−2χ0), where w′

0 is the long

double-coset representative). This translates to iM1
Mα3,α4

(θ) ∼= iM1
Mα3,α4

(θ′), where θ′

is the character of Mα3,α4 having rMα3,α4 (θ′) = ν−1χ0⊗ν2χ0⊗ν−1⊗ν−1 . Therefore,

iGM2
(Ω) ↪→ iGM1

(iM1
Mα3,α4

(θ)) ∼= iGM1
(iM1

Mα3,α4
(θ′)) ∼= iGM2

(iM2Mα3,α4(θ
′)).

Since iM2
Mα3,α4

(θ′) is irreducible, we have iM2
Mα3,α4

(θ′) ∼= iM2
Mα3,α4

(θ′′), where θ′′ = s1θ
′

(so that r
Mα3,α4
A (θ′′) = νχ0 ⊗ ν ⊗ ν−1 ⊗ ν−1 ). Thus,

iGM2
(Ω) ↪→ iGM2

(iM2
Mα3,α4

(θ′)) ∼= iGM2
(iM2

Mα3,α4
(θ′′)) ∼= iGM1

(iM1
Mα3,α4

(θ′′)).

We note that under the isomorphism M1
∼= GSpin(7, F ) (see Note 5.2), we

have iM1
Mα3,α4

(θ′) corresponds to ν−1χ0 ◦ detGL(3) o ν−1 , hence has two irreducible

subrepresentations, which we also denote by σ1 and σ2 (see Lemma 5.1). Using
Note 5.2 to translate back to the M1 setting, we have rM1

A (σ1) = ν2χ0⊗ ν−1⊗ 1⊗
ν−1 +νχ0⊗ν⊗ν−1⊗ν−1 +ν2χ0⊗ν⊗ν−1⊗ν−1 and rG

A(σ2) = νχ0⊗ν⊗ν−1⊗ν−1 .
Since rG

A ◦ iGA(νχ0⊗ν⊗ν−1⊗ν−1) decomposes with multiplicity two–in particular,
contains νχ0 ⊗ ν ⊗ ν−1 ⊗ ν−1 with multiplicity two–we see that iGM2

(Ω) must
have nontrivial intersection with both iGM1

(σ1) and iGM1
(σ2). More precisely, if we

let π1 (resp., π2 ) denote the irreducible subquotient of iGM1
(σ1) (resp., iGM1

(σ2))
containing νχ0⊗ν⊗ν−1⊗ν−1 in its Jacquet module, we see that π1 and π2 appear
as subquotients of iGM2

(Ω). Note that π1 = L(iM2
A (χ0 ⊗ ν−1χ0 ⊗ χ0 ⊗ χ0)) appears

with multiplicity one in iGA(νχ0⊗ν⊗ν−1⊗ν−1), so π2 6∼= π1 and also appears with
multiplicity one in iGA(νχ0 ⊗ ν ⊗ ν−1 ⊗ ν−1). Since π1 (resp., π2 ) is the unique
irreducible subrepresentation of iGM1

(σ1) (resp., iGM1
(σ2))–an easy consequence of

Frobenius reciprocity–we have

πi ↪→ iGM1
(σi) ↪→ iGM1

◦ iM1
Mα3,α4

(θ′′).

Since iGM2
(Ω) ↪→ iGM1

◦ iM1
Mα3,α4

(θ′′), it then follows that π1 and π2 appear as

subrepresentations of iGM2
(Ω) (consider the subspace ViGM2

(Ω) ∩ (Vπ1 + Vπ2) inside

ViGMα3,α4
(θ′′) ).
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In (4)(c), the fact that there is a unique irreducible quotient, and that it ap-
pears with multiplicity one, follows immediately from the fact that ν−1⊗ν−1⊗ν−1⊗
ν4 appears with multiplicity one in rG

A◦iGM4
(Ω). For irreducible subrepresentations,

observe that ν−1⊗ν−1⊗ν−1⊗ν2 appears in the Jacquet module with multiplicity
two (with the second copy associated to s4s3s2s3s1s2s3s4 ). Therefore, the above
argument shows that there are at most two irreducible subrepresentations. We
now check that there are two irreducible subrepresentations. To this end, let Ω′

and Ω′′ be the characters of Mα1,α2 defined by r
Mα1,α2
A (Ω′) = ν−1⊗ ν−1⊗ ν−1⊗ ν2

and r
Mα1,α2
A (Ω′′) = ν−1⊗ ν−1⊗ ν⊗ ν−2 . Under the isomorphism M4

∼= GSp(6, F ),
iM4
Mα1,α2

(Ω′′) ∼= 1GL(3) o ν2 . By Lemma 5.1, write iM4
Mα1,α2

(Ω′) ∼= σ1 ⊕ σ2 . Since

iM3
Mα1,α2

(Ω′) ∼= iM3
Mα1,α2

(Ω′′) (by irreducibility), we have

iGM4
(Ω) ↪→ iGM4

(iM4
Mα1,α2

(Ω′))

∼= iGM3
(iM3

Mα1,α2
(Ω′))

∼= iGM3
(iM3

Mα1,α2
(Ω′′))

∼= iGM4
(iM4

Mα1,α2
(Ω′′))

∼= iGM4
(σ1 ⊕ σ2).

We argue that each iGM4
(σi) has an irreducible subrepresentation in common with

iGM4
(Ω), accounting for the two irreducible subrepresentations of iGM4

(Ω).

To this end, recall that rG
A(iGM4

(Ω)) contains ν−1 ⊗ ν−1 ⊗ ν ⊗ ν−2 with

multiplicity two. Now, observe that rM4
A (σ1) = ν−1 ⊗ ν−1 ⊗ ν ⊗ ν−2 + 2 · ν−1 ⊗

ν ⊗ ν−1 ⊗ ν−1 + 4 · 1 ⊗ ν−1 ⊗ 1 ⊗ ν−1 and rM4
A (σ2) = ν−1 ⊗ ν−1 ⊗ ν ⊗ ν−2 (use

Note 5.2). One can then directly check (using Theorem 2.1) that rG
A(iGM4

(σi)),
i = 1, 2 each contain ν−1⊗ν−1⊗ν−1⊗ν2 with multiplicity one. Let πi denote the
irreducible subrepresentation of iGM4

(σi) (noting that it is the unique irreducible
subrepresentation of iGM4

(σi) by Frobenius reciprocity). Without loss of generality,
we may let π1 be the one having rG

A(π1) ≥ 4 · 1 ⊗ ν−1 ⊗ 1 ⊗ ν−1 (and the
fact that this is true for only one of the πi shows that they are inequivalent).
Note that by Jacquet module considerations, πi appears with multiplicity one in
iGM4

(σi) (and not in iGM4
(σ3−i)). It then follows that π1 and π2 must also appear

as subrepresentations of iGM4
(Ω) (consider the subspace (Vπ1 + Vπ2) ∩ ViGM4

(Ω) in

ViGMα1,α2
(Ω′′) ). The proposition follows.

Remark 6.2. The proof shows a bit more–one also sees that the unique irre-
ducible quotient appears with multiplicity one in the induced representation.

A. Double-coset representatives

We give the double coset representatives from WMi,A below. For WMi,Mj , we first
note that WA,Mj = {w−1 |w ∈ WMj ,A} . We have WMi,Mj = WMi,A ∩WA,Mj . To



804 Choi and Jantzen

compare elements of WMi,A and WA,Mj , one may need to use the relations on
W : s1s2s1 = s2s1s2 , s2s3s2s3 = s3s2s3s2 , s3s4s3 = s4s3s4 , and sks` = s`sk if
|k − `| > 1. For WMi,Nj as in section 4, consider an element w ∈ WMi,A . There
are two possibilities: either (1) sjw 6∈ WMi,A , in which case w ∈ WMi,Nj , or (2)
sjw ∈ WMi,A , in which case only the shorter of w, sjw is in WMi,Nj . Again, the
relations on the generators may be needed to check this.

WM1,A = {id, 1, 21, 321, 2321, 4321, 12321, 42321, 142321, 342321, 1342321,
2342321, 12342321, 23412321, 123412321, 323412321, 1323412321,
4323412321, 14323412321, 23123412321, 423123412321,
3423123412321, 23423123412321, 123423123412321}

WM2,A = {id, 2, 12, 32, 432, 312, 232, 4312, 4232, 2312, 1232, 42312, 41232,
12312, 32312, 34232, 412312, 432312, 312312, 342312, 341232,
234232, 4312312, 4342312, 2312312, 3412312, 2342312, 2341232,
1234232, 42312312, 43412312, 42342312, 23412312, 12342312,
12341232, 32341232, 423412312, 412342312, 432341232,
342312312, 123412312, 323412312, 323432312, 312341232,
4123412312, 4323412312, 4312341232, 2342312312, 3234312312,
3123412312, 3123432312, 2312341232, 43234312312, 43123412312,
2312341232, 12342312312, 32342312312, 31234312312,
23123412312, 23123432312, 432342312312, 431234312312,
423123412312, 312342312312, 231234312312, 323123432312,
342312341232, 4312342312312, 4231234312312, 4323123432312,
2312342312312, 3231234312312, 3423123412312, 2342312341232,
42312342312312, 43231234312312, 32312342312312,
34231234312312, 23423123412312, 12342312341232,
432312342312312, 434231234312312, 342312342312312,
234231234312312, 123423123412312, 4342312342312312,
4234231234312312, 2342312342312312, 1234231234312312,
42342312342312312, 41234231234312312, 12342312342312312,
412342312342312312, 323432312342312312,
3123432312342312312, 23123432312342312312}
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WM3,A = {id, 3, 23, 43, 123, 323, 423, 1323, 1423, 4323, 3423, 14323, 13423,
23123, 34323, 23423, 134323, 123423, 323123, 423123, 234123,
234323, 1234123, 1234323, 4323123, 3423123, 2343123, 3234123,
3234323, 12343123, 13234123, 13234323, 34323123, 23423123,
32343123, 43234123, 123423123, 132343123, 143234123,
234323123, 323423123, 432343123, 231234123, 231234323,
1234323123, 1323423123, 1432343123, 3234323123, 4323423123,
2312343123, 4231234123, 3231234323, 13234323123, 14323423123,
12312343123, 43234323123, 32312343123, 42312343123,
34231234123, 43231234323, 143234323123, 132312343123,
142312343123, 231234323123, 432312343123, 342312343123,
234231234123, 1432312343123, 1342312343123, 1234231234123,
3231234323123, 4231234323123, 3432312343123, 2342312343123,
13432312343123, 12342312343123, 43231234323123,
34231234323123, 23423123423123, 23432312343123,
123423123423123, 123432312343123, 343231234323123,
234231234323123, 234323123423123, 1234231234323123,
1234323123423123, 2343231234323123, 3234323123423123,
12343231234323123, 13234323123423123, 32343231234323123,
132343231234323123, 231234323123423123,
2312343231234323123, 32312343231234323123}

WM4,A = {id, 4, 34, 234, 1234, 3234, 13234, 43234, 143234, 231234, 3231234,
4231234, 43231234, 34231234, 343231234, 234231234, 1234231234,
2343231234, 12343231234, 32343231234, 132343231234,
2312343231234, 32312343231234, 432312343231234}
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