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Abstract. The paper gives the complete characterization of all graded nilpo-
tent Lie algebras with infinite-dimensional Tanaka prolongation as extensions of
graded nilpotent Lie algebras of lower dimension by means of a commutative
ideal. We introduce a notion of weak characteristics of a vector distribution and
prove that if a bracket-generating distribution of constant type does not have
non-zero complex weak characteristics, then its symmetry algebra is necessarily
finite-dimensional. The paper also contains a number of illustrative algebraic and
geometric examples including the proof that any metabelian Lie algebra with a
2-dimensional center always has an infinite-dimensional Tanaka prolongation.
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1. Introduction

This paper is devoted to the study of non-integrable vector distributions with
infinite-dimensional symmetry algebras. The simplest examples of such distribu-
tions are contact distributions on odd-dimensional manifolds and, more generally,
contact systems on jet spaces Jk(Rn, Rm). The symmetry algebras of such distri-
butions are given by Lie–Backlund theorem and are isomorphic to either the Lie
algebra of all vector fields on J0(Rn, Rm) = Rn+m for m ≥ 2 or to the Lie algebra
of all contact vector fields on J1(Rn, R) for m = 1. In both cases the symmetry
algebras are infinite-dimensional.

We are interested in only so-called bracket-generating distributions, i.e., we
always assume that repetitive brackets of vector fields lying in D generate the
whole tangent bundle TM . If this is not the case, then D lies in a certain
proper completely integrable vector distribution D′ , and the geometry of D can
be essentially reduced to the restrictions of D to the fibers of D′ .

We shall also say that the distribution D is degenerate, if it possesses non-
zero Cauchy characteristics, i.e., vector fields X ∈ D such that [X, D] ⊂ D . It is
also clear that any degenerate distribution, even if it is bracket-generating, has an
infinite-dimensional symmetry algebra. For the proof and other basic properties
of vector distributions we refer to [2, Chapter 2].
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While it seems to be very difficult to provide the complete local description
of all vector distributions with infinite-dimensional symmetry algebra, it appears
that it is possible to give the complete description of the their symbol algebras.

Namely, let D be a bracket-generating vector distribution on a smooth
manifold M . Taking repetitive brackets of vector fields lying in D , we can define
a weak derived flag of D :

0 ⊂ D ⊂ D2 ⊂ · · · ⊂ Dµ = TM,

D0 = 0, D1 = D, Di+1 = [D, Di], i ≥ 2.

At each point p ∈ M we can defined the associated graded vector space

m(p) =
∑
i<0

m−i(p), m−i(p) = Di
p/D

i−1
p . (1)

Since [Di, Dj] ⊂ Di+j for all i, j ≥ 0, m(p) is naturally equipped with a structure
of a graded Lie algebra. Namely, if x ∈ m−i(p) and y ∈ m−j(p) are two homo-
geneous elements in m(p), and X ∈ Di , Y ∈ Dj are two vector fields such that
Xp + Di−1

p = x and Yp + Dj−1
p = y , then the value of [X, Y ] + Di+j−1

p depends
only on x and y , and, thus, defines a graded Lie algebra structure on m(p). It is
also clear from the definition, that m(p) is a nilpotent Lie algebra generated by
m−1(p).

This Lie algebra is called a symbol of the distribution D at a point p ∈ M ,
and it plays essential role in study of D and any geometric structures subordinate
to D . For example, if D is a contact structure on a smooth manifold of dimension
2n + 1, i.e., a non-degenerate codimension 1 distribution on M , then its symbol
is isomorphic to the (2n + 1)-dimensional Heisenberg Lie algebra at any point
p ∈ M .

The family of graded Lie algebras m(p) is a basic invariant of any bracket-
generating distribution, which includes not only the dimensions of the weak derived
series of D , but also a non-trivial algebraic information. In many cases the struc-
ture of these algebras has very important geometric consequences and allows to
associate various geometric structures with M . One of the most famous examples
is E. Cartan paper [3], where he associates a G2 -geometry with any non-degenerate
2-dimensional vector distribution on a 5-dimensional manifold.

We say that the distribution D has constant symbol m or is of type m if
its symbols m(p) are isomorphic to m for all points p ∈ M . For example, the
contact distribution and all contact systems on jet spaces are of constant type.

We shall use the term graded nilpotent Lie algebra or simply GNLA for
any negatively graded Lie algebra m =

∑µ
i=1 m−i generated by m−1 . We shall

call such Lie algebra non-degenerate, if m−1 does not include any non-zero central
elements. This has a clear geometric meaning. It is easy to see that the symbol
of a bracket-generating distribution D is non-degenerate if and only if D has no
non-zero Cauchy characteristics. The largest µ such that m−µ 6= 0 is called the
depth of m .

It appears that we can derive the exact bound for the dimension of the
symmetry algebra of D purely in terms of its symbol m . Namely, Tanaka [16] has



Doubrov and Radko 527

shown in his pioneer works on the geometry of filtered manifolds, that there is a
well-defined graded Lie algebra g(m) called Tanaka (or universal) prolongation of
m . It is characterized by the following conditions:

1. gi(m) = mi for all i < 0;

2. if [X, m] = 0 for certain X ∈ gi(m), i ≥ 0, then X = 0;

3. g(m) is the largest graded Lie algebra satisfying the above two conditions.

The Lie algebra g(m) has also a clear geometric meaning. Namely, let M be a
connected simply connected Lie group with the Lie algebra m . For example, we
can identify M with m and define the Lie group multiplication in M by means
of Campbell–Haussdorf series. Define the distribution D on M by assuming that
it is left invariant and that De = m−1 . Then g(m) can be naturally identified
with the graded Lie algebra associated with the filtered Lie algebra of all germs
of infinitesimal symmetries of D at the identity. In particular, if g(m) is finite
or infinite-dimensional, so is the symmetry algebra of the corresponding filtration.
Such distributions D are called standard distributions of type m .

One of the main results of Tanaka paper [16] can be reformulated as follows.

Tanaka theorem ([16]). If g(m) is finite-dimensional, then with each distribu-
tion D ⊂ TM of type m we can associate a canonical coframe on a certain bundle
P over M of dimension dim g(m). In particular, the symmetry algebra of the
distribution D is finite-dimensional, and its dimension is bounded by dim g(m).

Thus, if D is a holonomic distribution with infinite-dimensional symmetry
algebra, then the Tanaka prolongation of its symbol g(m) should also be infinite-
dimensional. The properties of Tanaka prolongation are also studied in [19, 20,
11, 17, 12].

The main result of this paper is Theorem 3.1, which gives the the complete
characterization of all GNLA with infinite-dimensional Tanaka prolongation as
extensions of graded nilpotent Lie algebras of lower dimension by means of a
commutative ideal. Along with this description we also introduce a notion of
weak characteristics of a vector distribution and prove that if a bracket-generating
distribution of constant type does not have non-zero complex weak characteristics,
then its symmetry algebra is necessarily finite-dimensional.

This article is closely related to a series of papers devoted to the geometry
of 2 and 3-dimensional distributions [1, 4, 5]. These papers show that under
very mild non-degeneracy conditions the symmetry algebra of a non-integrable
vector distribution becomes finite-dimensional. As we show in Theorem 3.4, the
set of all GNLA, whose Tanaka prolongation is infinite-dimensional, forms a closed
subvariety in the variety of all GNLA m with fixed dimensions of subspaces m−i ,
i > 0.

Finally, in the last section of the paper we present a number of illustrative
algebraic and geometric examples including the proof that any metabelian Lie
algebra with a 2-dimensional center always has an infinite-dimensional Tanaka
prolongation.



528 Doubrov and Radko

We would like to express our gratitude to Ian Anderson, Tohru Morimoto,
Ben Warhurst, Igor Zelenko for stimulating discussions on the topic of this paper.

2. Tanaka and Spencer criteria

Below we assume that all Lie algebras we consider are defined over an arbitrary
field k of characteristic 0. We try to be as generic as possible in our algebraic
considerations and we explicitly state, when we require the base field k to be
algebraically closed.

Let m be an arbitrary GNLA and let g(m) be its Tanaka prolongation.
We say that m is of finite (infinite) type, if g(m) is finite-dimensional (resp.,
infinite-dimensional). Note that this notion is stable with respect to the base field
extensions, since each subspace gi(m), i ≥ 0 of the Tanaka prolongation can be
computed by solving a system of linear equations. Namely, assuming that all
subspaces gi(m), i < k are already computed, the space gk(m) can be defined as
follows:

gk(m) = {φ : m →
∑
i<k

gi(m) | φ(m−i) ⊂ gk−i(m),

φ([x, y]) = [φ(x), y] + [x, φ(y)],∀x, y ∈ m}.

Tanaka criterium reduces the question whether Tanaka prolongation g(m)
of m is finite-dimensional or not to the same question for the standard prolongation
(as described, for example, in [15]) of a certain linear Lie algebra. Namely, let
Der0(m) be the Lie algebra of all degree-preserving derivations of m . Define the
subalgebra h0 ⊂ Der0(m) as follows:

h0 = {d ∈ Der0(m) | d(x) = 0 for all x ∈ m−i, i ≥ 2}.

We can naturally identify h0 with a subspace in End(m−1). Then Tanaka criterium
can be formulated as follows:

Tanaka criterium ([16]). Tanaka prolongation g(m) of m is finite-dimensional
if and only if so is the standard prolongation of h0 ⊂ End(m−1).

In its turn, Spencer criterium provides a computationally efficient method
of detecting whether the standard prolongation of a linear subspace A ⊂ End(V )
is finite-dimensional or not.

Spencer criterium ([7, 14]). The standard prolongation of a subspace A ⊂
End(V ) is finite-dimensional if and only if Ak̄ ⊂ End(V k̄) does not contain
endomorphisms of rank 1.

Here by k̄ we mean the algebraic closure of our base field k , and by Ak̄

the subspace in End(V k̄) obtained from A by field extension. A detailed and
self-contained proof of Spencer criterium can be found in [13].

We emphasize that this criterium if computationally efficient, as the set of
all rank 1 endomorphisms in A is described by a finite set of quadratic polynomials,
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and, for example, Gröbner basis technique provides an algorithm to determine
whether this set of polynomials has a non-zero common root.

In the next section we use both these criteria to prove that all fundamental
Lie algebras m of infinite type over an algebraically closed field possess a very
special algebraic structure.

3. Graded nilpotent Lie algebras of infinite type

Let g be an arbitrary finite-dimensional Lie algebra, and let V be an arbitrary
g-module. We recall that a Lie algebra ḡ is called an extension of g by means of
V , if ḡ can be included into the following exact sequence:

0 → V → ḡ → g → 0.

In other words, V is embedded into ḡ as a commutative ideal, the quotient
ḡ/V is identified with g and the natural action of g = ḡ/V on V coincides
with the predefined g-module structure on V . Two extensions ḡ1 and ḡ2 are
called equivalent, if there exists an isomorphism ḡ1 → ḡ2 identical on V and
g ≡ ḡ1/V ≡ ḡ2/V .

It is well-known that equivalence classes of such extensions are described by
the cohomology space H2(g, V ). Namely, if [α] is an element of H2(g, V ), where
α ∈ Z2(g, V ), then ḡ can be identified as a vector space with g× V with the Lie
bracket given by:

[(x1, v1), (x2, v2)] = ([x1, x2], x1.v2 − x2.v1 + α(x1, x2)), (2)

x1, x2 ∈ g , v1, v2 ∈ V .

Assume now that both the Lie algebra g and the g-module V are graded,
that is g =

∑
gi , V =

∑
Vj and gi.Vj ⊂ Vi+j . Then the cohomology space

H2(g, V ) is naturally turned into the graded vector space as well:

H2(g, V ) =
∑

H2
i (g, V ).

It is easy to see that the Lie algebra ḡ defined by (2) is also graded if and only
if [α] ∈ H2

0 (g, V ). Thus, we see that the graded extensions ḡ of the graded Lie
algebra g by means of the graded g-module V are in one to one correspondence
with the elements of the vector space H2

0 (g, V ).

We can introduce an additional group action on H2
0 (g, V ) as follows. Define

Aut0(g, V ) as a subgroup in Aut0(g)×GL0(V ) of the form:

Aut0(g, V ) = {(f, g) ∈ Aut0(g)×GL0(V ) |
g(x.v) = f(x).g(v), ∀x ∈ g, v ∈ V }.

This group naturally acts on H2
0 (g, V ):

(f, g).[α] = [g ◦ α ◦ f−1].

It is easy to see that elements of H2
0 (g, V ) lying in the same orbit of this action

correspond to the isomorphic Lie algebras.
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In this paper we shall consider special extensions of GNLA. Namely, let n

be an arbitrary (possibly degenerate) GNLA. Fix any subspace W ⊂ n−1 and
consider n−1/W as a graded commutative Lie algebra concentrated in degree −1.
Take any graded n−1/W -module V =

∑µ
i=1 V−i generated by V−1 (as a module).

Assuming that W.V = 0 and n−i.V = 0 for all i ≥ 2 we can consider V as an
n-module. We call any extension of the GNLA n by means of such n-module V a
special GNLA extension. Let [α] be the corresponding element of H2

0 (n, V ). It is
easy to see that such extension is non-degenerate if and only if the following two
conditions hold:

1. the condition n.v = 0 implies v = 0 for v ∈ V−1 ;

2. the cocycle α is non-degenerate on Z(n) ∩ n−1 .

We note that unlike the extensions of GNLA considered in the papers [11, 1], the
special extensions defined above are not central extensions of Lie algebras, as the
ideal V above does not in general belong to the center, and the action of n on V
is non-trivial.

The main result of the paper is:

Theorem 3.1. Let m be a non-degenerate GNLA over an algebraically closed
field. Then the following conditions are equivalent:

1. there exists such d ∈ Der0(m) that d(m−i) = 0 for i ≥ 2 and rank d = 1;

2. there exists such y ∈ m−1 that rank ad y = 1; in particular, in this case
[y, m−i] = 0 for all i ≥ 2;

3. m can be represented as a special extension of a certain (possibly degenerate)
GNLA n with dim m−1 = dim n−1 + 1 and dim V−i = 1 for all i = 1, . . . , µ
and µ ≥ 2;

4. m is of infinite type.

Proof. (1) ⇒ (2). Let h be a subalgebra in Der0(m) defined by condition
d(m−i) = 0 for any d ∈ h . Let d ∈ h and rank d = 1. Define W ⊂ m as
W = ker d . Choose non-zero x, y ∈ m−1 such that d(x) = y . Then we have
m = 〈x〉 ⊕W , and W ⊃ [m, m] . Next,

[y, W ] = [d(x), W ] = −[x, d(W )] = 0.

Since m is non-degenerate, this implies that rank ad y = 1 and [x, y] 6= 0. We also
have

[x, d(y)] = −[d(x), y] = −[y, y] = 0.

On the other hand,
[d(y), W ] = −[y, d(W )] = 0.

Hence, [d(y), m] = 0, and from non-degeneracy of m it follows that d(y) = 0. In
particular, d is nilpotent.
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(2) ⇒ (1). Let y ∈ m−1 such that rank ad y = 1. Let W = ker ad y .
Choose such x ∈ m−1 that [x, y] 6= 0. Such x always exists by non-degeneracy of
m . It is clear that m = 〈x〉 ⊕W and y ∈ W . It is also clear that W ⊃ [m, m] .
Define d ∈ h as d(x) = y and d(W ) = 0. It is easy to see that d is indeed a
differentiation of m .

(2) ⇒ (3). Again, let x, y be elements in m−1 such that rank ad y = 1,
[x, y] 6= 0, m = 〈x⊕〉W , W ⊃ [m, m] and [y, W ] = 0. Set y1 = y and define
yi+1 = [x, yi] for all i ≥ 2. Note that y2 6= 0. Let µ be the smallest integer such
that yµ 6= 0 and yµ+1 = 0. By induction we get:

[yi+1, W ] = [[x, yi], W ] = [x, [W, yi]] + [yi, [x, W ]] = 0.

Let V = 〈y1, . . . yµ〉 . It is clear that V ⊂ W , [V, W ] = 0 and [x, V ] ⊂ V . Hence,
V is a commutative ideal in m . Put n = m/V . It is easy to see that V is generated
by V−1 as an n-module and the action of [n, n] on V is trivial. Finally, it is evident
that n is also generated by n−1 as a graded Lie algebra. Thus, m is represented
as a special extension:

0 → V → m → n → 0. (3)

(3) ⇒ (2). Let m be a special extension (3) of n with dim V−i = 1,
i = 1, · · · , µ . Take y as a non-zero element in V−1 . Since [n, n] acts trivially on
V , we see that [y, m] ⊂ V−2 . Since V is generated by V−1 as an n-module, we see
that ad y 6= 0 and rank ad y = 1.

(4) ⇔ (1). This is exactly the combined Tanaka and Spencer criteria.

Remark 3.2. Only the last implication uses the fact that the base field is
algebraically closed. In case of arbitrary field of characteristic 0 the items (1),
(2) and (3) are still equivalent and imply that m has infinite type. A simple
counterexample for the implication (4) ⇒ (1) over R is given by the 3-dimensional
complex Heisenberg Lie algebra (with an obvious grading of depth 2) viewed as a
6-dimensional real Lie algebra.

Remark 3.3. Condition (2) of the Theorem appears already in [12] as a suffi-
cient condition for m to be of infinite type.

Item (3) of Theorem 3.1 gives an inductive algorithm for constructing all
GNLA of infinite type. Namely, to construct all GNLA m of infinite type and
dim m−1 = n + 1 one needs to:

• take an arbitrary GNLA n (of finite or infinite type) such that dim n−1 = n ;

• take an arbitrary subspace W ⊂ n−1 of codimension 1;

• fix any integer s ≥ 2 and construct a graded n−1/W -module V =
∑s

i=1 V−i ,
which is uniquely defined by the conditions dim V−i = 1, i = 1, . . . , s and
V−i−1 = (n−1/W ).V−i ;

• compute cohomology space H2
0 (n, V ), where V is treated as an n-module

with the trivial action of W ⊕ [n, n] ;
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• take any ω ∈ H2
0 (n, V ) and define m as an extension of n by means of V

corresponding to ω .

In coordinates this procedure can be reformulated as follows. Fix any
convector α ∈ n∗−1 and an element X ∈ n−1 such that α(X) = 1. Extend X
to the basis {X,Z1, . . . , Zr} of n consisting of homogeneous elements. Define m

as a Lie algebra with a basis {X, Y1, . . . , Ys, Z1, . . . , Zr} , s ≥ 2, where

[X, Yi] = Yi+1, i = 1, . . . , s− 1;

[Zj, Yi] = 0, i = 1, . . . , s, j = 1, . . . , r;

[Yi, Yj] = 0, i, j = 1, . . . , s;

[X,Zi]m = [X, Zi]n +
s∑

j=1

aj
iYj;

[Zi, Zj]m = [Zi, Zj]n +
s∑

k=1

bk
ijYk,

where the constants aj
i and bk

ij define a cocycle ∧2n → V of degree 0 (i.e.,
m is a graded Lie algebra) and are viewed modulo the changes of the basis
X 7→ X +

∑s
i=1 ciYs , Zi 7→ Zi +

∑s
j=1 dj

iYj . See the next section for the concrete
examples.

Theorem 3.1 provides also an easy way to prove that the set of all graded
Lie algebras of infinite type forms a closed algebraic subvariety in the variety of all
graded nilpotent Lie algebras. Namely, fix a sequence of integers k1, . . . , kµ and
denote by M(k1, . . . , kµ) a variety of all graded nilpotent Lie algebras m such that
dim m−i = ki for i = 1, . . . , µ and m−i = 0 for i > µ . It is easy to see that it is a
closed algebraic variety in the vector space of all skew-symmetric graded algebras
(without any conditions on multiplication).

The set of all fundamental graded Lie algebras in M(ki) is distinguished by
conditions [m−1, m−i] = m−i−1 for all i = 1, . . . , µ− 1. It is easy to see that these
conditions define an open subset (in Zarisski topology) in M(ki), which we shall
denote by MF (ki).

Define MF∞(ki) as the set of all fundamental Lie algebras of infinite type.

Theorem 3.4. MF∞(ki) is a closed subvariety in MF (ki).

Proof. The existence of an element y ∈ m−1 such that rank ad y = 1 (and,
hence, [y, m−i] = 0 for i ≥ 2 can be reformulated as an existence of a non-
zero solution of a certain system of quadratic equations (2 by 2 minors of the
matrix of ad y ), whose coefficients are structure constants of the Lie algebra m .
It is well-known [8, Theorem 3.12] that that the conditions when such non-zero
solution exists are given in terms of the algebraic equations on the coefficients of
this system.

Theorem 3.1 also has a number of immediate geometric applications. Namely,
let D be a bracket generating distribution with a constat symbol m . As usual,
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we assume that D has no Cauchy characteristics. This implies that m is non-
degenerate, i.e., does not have non-zero central elements lying in m−1 .

We say that a vector field Y ∈ D is a weak characteristic of D , if the
following conditions hold:

1. Y ∈ char(Di) for all i ≥ 2, or, in other words, [Y, (Di)] ⊂ (Di) for all i ≥ 2;

2. the subbundle D′ ⊂ D spanned by all X ∈ D such that [X, Y ] ⊂ D has
codimension 1 in D .

Similarly, we can define complex weak characteristics of a vector distribution D
as sections of the complexified subbundle DC of the complexified tangent bundle
T CM satisfying the conditions (1) and (2) above, where we replace powers Di by
their complexified versions.

Theorem 3.5. Assume that D is a bracket generating distribution with a con-
stant symbol m, that D has no Cauchy characteristics, and that dim sym(D) = ∞.
Then D contains non-trivial complex week characteristics.

Proof. This immediately follows from item (2) of Theorem 3.1 and the Tanaka
theorem [16] that bounds the dimension of sym(D) by the dimension of the Tanaka
prolongation of its symbol m .

Corollary 3.6. If D ∩ (∩i≥2 char(Di)) = 0, then the symmetry algebra of D is
finite-dimensional.

Proof. Assume that sym(D) is infinite-dimensional. Then it possesses complex
week characteristic Y . Clearly both Y and cY , c ∈ C , are also complex week
characteristics. Therefore, the complex subbundle spanned by Y and Y is stable
with respect to the complex conjugation. Hence, it also contains a real one-
dimensional subbundle spanned by a certain non-zero vector field X . While X
itself might no longer be a week characteristic, it still lies in D∩(∩i≥2 char(Di)).

Remark 3.7. We formulate Theorem 3.5 and its corollary only for the vector
distribution with constant symbol, since the Tanaka theorem on the bound of
dim sym(D) was stated only for this case. The recent paper of B. Kruglikov [9]
generalizes Tanaka theorem to the case of non-constant symbol. In particular,
this implies that Theorem 3.5 is also true for bracket-generating distributions with
non-constant symbol.

Note that unlike Cauchy characteristics, the set of all weak characteristics
does not form a subbundle of D . It defines a certain cone inside D , or more
precisely, a so-called cone structure π : C ⊂ PD , where for each p ∈ M the set
Cp is an algebraic variety in the projectivization PDp of the vector space Dp .
It is clear that this cone is naturally associated with the distribution D , and any
(local) equivalence map of two distributions maps the corresponding cones of weak
characteristics to each other. Let us give several illustrative examples of this cone
structure.
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Example 3.8. Let, as in Cartan’s paper [3], D be a non-degenerate 2-dimensional
distribution on a 5-dimensional manifold. Then it has a constant symbol m =
〈X1, . . . , X5〉 with m−1 = 〈X1, X2〉 and non-zero Lie brackets given by:

[X1, X2] = X3,

[X1, X3] = X4, [X2, X3] = X5.

It is easy to see that there are no non-zero weak characteristics in this case.
Thus, the cone structure is trivial in this case, and the symmetry algebra of D
is automatically finite-dimensional. Note that the Tanaka prolongation of m is
exactly the simple exceptional Lie algebra G2 appearing in [3].

Example 3.9. Let D be a contact distribution on a jet space Jk(V, W ), where
V and W are two finite-dimensional vector spaces. It is well-known (see, for
example, [18]) that D is a standard distribution of type m , where the GNLA m

is described as follows:

m =
k∑

i=0

(
Si(V ∗)⊗W

)
⊕ V.

Here both
∑k

i=0 Si(V ∗) ⊗ W and V are abelian subalgebras, and the bracket
between them is given by the canonical pairing Si(V ∗) × V → Si−1(V ∗), i =
1, . . . , k . The grading of m is defined by m−1 = Sk(V ∗) ⊗ W ⊕ V and m−i =
Sk+1−i(V ∗)⊗W for i = 2, . . . , k + 1.

Assume that k ≥ 2 or dim W ≥ 2. Then the set of all elements x ∈ m−1

such that rank ad x = 1 has the form αk ⊗ w ∈ Sk(V ∗) ⊗ W , where α ∈ V ∗ ,
w ∈ W . Thus, we see that it forms a non-trivial cone in Sk(V ∗) ⊗W , whenever
dim V ≥ 2. If k = 1 and dim W = 1, then the set of all such elements x coincides
with all m−1 .

Thus, we see that the cone of weak characteristics for the contact distri-
bution D is always non-trivial and, assuming k ≥ 2 or dim W ≥ 2, spans the
vertical subbundle of the canonical projection Jk(V, W ) → Jk−1(V, W ). This fact
is one of the core ideas of the proof of the well-known Lie–Backlund theorem on
the symmetries of the contact systems on jet spaces.

4. Examples

4.1. Symbols of 2-dimensional distributions of infinite type. As a first
application of Theorem 3.1 we describe the symbols of 2-dimensional bracket
generating distributions of infinite type.

Using Theorem 3.1, it is easy to prove that in each dimension n ≥ 2 there
exists a unique (up to isomorphism) GNLA m with dim m−1 = 2. It turns out
to coincide with the symbol of the canonical contact system on the jet space
Jn−2(R, R).

Indeed, by Theorem 3.1 any such GNLA must be a special extension of
a certain GNLA n with dim n−1 = 1. But then n = R is a one-dimensional
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commutative Lie algebra, and all its special extensions are trivial. In each dimen-
sion there is exactly one such extension. It can be described as a Lie algebra m

with a basis 〈X, Z1, . . . , Zn−1〉 and the only non-zero Lie brackets [X,Zi] = Zi+1 ,
i = 1, . . . , n − 2. Here deg X = −1 and deg Zi = −i , i = 1, . . . , n − 1. It is
easy to see that the contact system on Jn−2(R, R) is equivalent to the standard
distribution of type m .

4.2. Symbols of 3-dimensional distributions of infinite type. In case of
dim m−1 = 3 we already get a lot of various examples, including the examples of
non-trivial special extension of GNLA. As above, any GNLA m of infinite type
with dim m−1 = 3 is a special extension of a certain GNLA n with dim n−1 = 2.
Note that n itself does not need to be of infinite type. As the classification of
all such GNLA unknown at the moment, it makes also impossible to classify all
infinite type GNLA with dim m−1 = 3.

As an example, let us describe all special extensions in case, when n is a
three-dimensional Heisenberg algebra. Then all trivial special extensions of n can
be described as:

m = 〈X, Z1, Z2, Y1, . . . , Yk〉,

where deg X = −1, deg Yi = −i , i = 1, . . . , k , deg Zj = −j , j = 1, 2. All non-
zero Lie brackets are [X, Z1] = Z2 and [X, Yi] = Yi+1 , i = 1, . . . , k − 1. The
Lie algebra m is a semidirect product of its subalgebra n = 〈X, Z1, Z2〉 and the
commutative ideal V = 〈Y1, . . . , Yk〉 . Geometrically the standard distribution of
type m can be described as a canonical contact system on the mixed jet bundle
J1,k−1(R, R2).

Any non-trivial special extension of n can be obtained by adding non-trivial
Lie brackets of the form:

[X, Z1] = Z2 + aY2;

[X, Z2] = bY3;

[Z1, Z2] = cY3.

By changing Z1 to Z1− aY1 and Z2 to Z2− bY2 we can always obtain a = b = 0.
If a 6= 0, then the Jacobi identity is satisfied only if k = 3. In this case we can
always scale a to 1. Thus, we see that up to the isomorphism there exists exactly
one non-trivial special extension of the three-dimensional Heisenberg Lie algebra.
It is given by:

m = 〈X,Z1, Z2, Y1, Y2, Y3〉,

where non-zero Lie brackets are given by:

[X, Y1] = Y2, [X, Y2] = Y3;

[X, Z1] = Z2;

[Z1, Z2] = Y3.

Direct computation shows (see [11], Lie algebra m6 3 4 in terms of this paper)
that an arbitrary symmetry of the standard distribution of type m is infinite-
dimensional and depends on 4 functions of 1 variable.
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4.3. Metabelian Lie algebras. Let m = m−1 ⊕ m−2 be a GNLA of depth 2.
The structure of this Lie algebra is completely determined by the skew-symmetric
map: S : ∧2 m−1 → m−2 defined as a restriction of the Lie bracket to m−1 . Below
we assume that m is non-degenerate.

Consider the dual map S∗ : m∗
−2 → ∧2m∗

−1 . Since m is generated by m−1 ,
the map S∗ is injective. Thus, up to the isomorphism the structure of m is
determined by the subspace Im S∗ ⊂ ∧2m∗

−1 . This subspace is considered up to
the natural action of the group GL(m−1) on ∧2m∗

−1 .

To simplify the notation, let V = m−1 , n = dim V , and let P = Im S∗ ⊂
∧2V ∗ , m = dim P . If we fix a basis in V , then ∧2V ∗ can be identified with a space
of all skew-symmetric n by n matrices, P is spanned by m matrices B1, . . . , Bm

and the action of GL(V ) on ∧2V ∗ is given by:

X.B = X tBX, X ∈ GL(V ), B ∈ ∧2V ∗.

Let y be an arbitrary element in m−1 = V . It is easy to see that the rank
of ad y is the maximal number of linearly independent skew-symmetric matrices
B in P , such that iyB 6= 0. In more detail, let Py be a subspace in P defined as:

Py = {B ∈ P | iyB = 0}.

Then rank of ad y is equal to to codimension of Py in P .

Theorem 4.1. Let m = m−1 ⊕ m−2 be a 2-step complex graded nilpotent Lie
algebra with dim m−2 = 2. Then Tanaka prolongation of m is infinite-dimensional.

Proof. Since the dimension of the Tanaka prolongation is preserved under
extension of the base field, we can assume that our base field is algebraically
closed. Then according to Theorem 3.1 m is of infinite type if and only if there
exists a non-zero element y ∈ m−1 = V such that Py is one-dimensional. Let B1 ,
B2 be the basis of P . Then the condition dim Py = 1 is equivalent to the existence
of such λ1, λ2 that:

(λ1B1 + λ2B2)y = 0.

It is clear that this is equivalent to det(λ1B1 + λ2B2) = 0, which always has
non-trivial solutions in case of algebraically closed field.

Note that pencils of skew-symmetric matrices over an algebraically closed
field can be effectively classified using Kronecker results on pencils of matrices.
This has been done in the work of M. Gauger [6]. Namely, any pair (A, B) of
skew-symmetric matrices can be written as one matrix P = µA + λB , whose
entries are linear forms in λ and µ . Such matrices are classified by the following
data:

• minimal indices 0 ≤ m1 ≤ m2 ≤ mp , p ≥ 0 (in particular, the set of minimal
indices can be empty);

• elementary divisors (µ + a1λ)e1 , . . . , (µ + aqλ)er , (λ)f1 , . . . , (λ)fs (each of
these divisors appears twice).
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The canonical form of the pencil P for this data is:

P =



Mm1

. . .

Mmp

Ee1(a1)
. . .

Eer(ar)
Ff1

. . .

Ffs


(4)

where

Mm =

(
0 Mm

−M t
m 0

)
, (2m + 1)× (2m + 1),M0 = (0);

En(a) =

(
0 En(a)

−En(a)t 0

)
, (2n)× (2n);

Fn =

(
0 Fn

−F t
n 0

)
, (2n)× (2n);

and

Mm =



λ
λ µ

· µ
· ·

· ·
λ ·

λ µ
µ


, (m + 1)×m;

En(a) =



µ + aλ
· λ

·
· ·
·

µ + aλ ·
µ + aλ λ


, n× n;

Fn =



λ
· µ

·
· ·
·

λ ·
λ µ


, n× n;
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In addition, the elementary divisors are considered up to non-degenerate linear
transformations of (λ, µ).

Note also, that the pencil P above corresponds to a non-degenerate 2-step
nilpotent Lie algebra if and only if there are no minimal indices 0 among the set
of minimal indices m1, . . . ,mp . As we assume that these indices are ordered, this
is equivalent to the condition m1 > 0.

Define the following subgroups in GL(V ) and the corresponding subalge-
bras in gl(V ):

Aut(P ) = {X ∈ GL(V ) | X tBX ⊂ P for any B ∈ P},
H0 = {X ∈ GL(V ) | X tBX = B for any B ∈ P},

Der(P ) = {X ∈ gl(V ) | X tB + BX ⊂ P for any B ∈ P},
h0 = {X ∈ gl(V ) | X tB + BX = 0 for any B ∈ P}.

It is clear that:

• Der(P ) and h0 are subalgebras in gl(V ) corresponding to the subgroups
Aut(P ) and H0 respectively;

• H0 is a subgroup in Aut(P ), h0 is a subalgebra in Der(P );

• Aut(P ) is naturally identified with the the group Aut0(m) of all grading-
preserving automorphisms of the Lie algebra m and Der(P ) is identified with
the Lie algebra Der0(m) of all grading-preserving derivations of m ;

• h0 can be identified with all elements in Der0(m) that act trivially on m−2 .

Let us show explicitly that h0 always contains a rank 1 element. This will
give another proof that the standard prolongation of h0 is infinite-dimensional.

Let Q be any of blocks that appear on the diagonal in the canonical form (4)
of the pencil P . That is Q is one of the following matrices: Mm for m ≥ 0, Ee(a)
for e ≥ 1, or Ff , f ≥ 1. We shall call Q an elementary subpencil of the pencil P
and denote by h0(Q) the Lie algebra

h0(Q) = {X ∈ gl(k, C) | X tB + BX = 0 for all B ∈ Q}.

It is easy to see that h0(Q) can be embedded as a subalgebra into h0 .

So, to prove the theorem it is sufficient to show that h0(Q) contains rank 1
element for each elementary subpencil. Moreover, since elementary divisors are
considered up to linear transformations of (λ, µ), we can restrict ourselves only to
elementary pencils Mm , m ≥ 1 and Fr , r ≥ 1.

In both these cases the subalgebra h0(Q) is easily computed. Namely,
denote by Sk,l(C) the set of k × l matrices (aij) such that aij = ai+1,j+1 for
any 1 ≤ i < k , 1 ≤ j < l . Denote also by Tk(C) the set of all k × k upper
triangular matrices that also lie in Sk,k(C). Note that both Sk,l(C) and Tk(C)
contain elements of rank 1 (for example, in the upper right corner).
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We have:

h0(Mm) =

{(
xEm+1 Y

0 −xEm

) ∣∣∣∣ x ∈ C, Y ∈ Sm+1,m(C)

}
;

h0(Fr) =

{(
Y11 Y12

Y21 −Y11

) ∣∣∣∣ Y11, Y12, Y21 ∈ Tr(C)

}
;

As we see, in both cases h0(Q) contains a nilpotent element of rank 1.

4.4. Remarks. 1. It follows form the proof of Theorem 4.1 that h0 contains
the block diagonal subalgebra, where each block consists of all elements in h0(Q)
for the primitive subpencils Q . However, h0 can be larger than this direct sum.
For example, this happens in the case when there no minimal indices and the set
of (λ) and (µ) where each of these divisors appears with multiplicity 2p and 2q
respectively. In this case m is isomorphic to the direct sum of two Heisenberg
lie algebras of dimension 2p + 1 and 2q + 1. The subalgebra h0 is isomorphic to
sp(2p, C)⊕ sp(2q, C), while h0(Q) for each primitive Q is just sl(2, C).

2. It is well-known that there exist 2-step nilpotent Lie algebras with 3-
dimensional center, whose Tanaka prolongation is finite-dimensional. The simplest
example is a free 2-step nilpotent Lie algebra with 3-dimensional set of generators
and the 3-dimensional center:

m−1 = 〈X1, X2, X3〉,
m−2 = 〈X12, X13, X23〉,

where [Xi, Xj] = Xij for 1 ≤ i < j ≤ 3. Its Tanaka prolongation is 21-dimensional
and is isomorphic to so(7, C). In this case the subalgebra h0 is trivial.

We can also generalize this example for arbitrary number of generators.
Namely, let:

m−1 = 〈X1, X2, . . . , Xk〉,
m−2 = 〈Y1, Y2, Y3〉,

where all non-zero Lie brackets have the form:

[X1, Xk] = [X2, Xk−1] = · · · = Y1;

[X1, Xk−1] = [X2, Xk−2] = · · · = Y2;

[X2, Xk] = [X3, Xk−1] = · · · = Y3.

Direct computation shows that Tanaka prolongation g(m) of m has the form:

• for k = 3, g(m) ≡ so(7, C);

• for k = 4, g(m) ≡ sp(6, C);

• for k = 5, g(m) = m ⊕ g0 , where g0 ≡ gl(2, C) and g0 -module g−1 is
irreducible;

• for k ≥ 6 and even, g(m) = m ⊕ g0 , where g0 ≡ gl(2, C) × C and g0 -
module g−1 splits into the sum of k/2 gl(2, C)-modules 〈Xi, Xk/2+i〉 , i =
1, . . . , k/2− 1;
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• for k ≥ 7 and odd, g(m) = m⊕ g0 , where g0 = C2 and the action of g0 on
g−1 diagonalizes in the basis {X1, X2, . . . , Xn} .

The above example of 2-step nilpotent Lie algebra with 3-dimensional center shows
that the subalgebra h0 is trivial for generic 2-step nilpotent Lie algebras with
dim m−2 ≥ 3. In particular, a generic GNLA of depth 2 with at least 3-dimensional
center is of finite type. However, it is still an open problem to classify all 2-step
nilpotent Lie algebras with infinite-dimensional Tanaka prolongation.

3. Let D be a vector distribution of codimension 2 on a smooth manifold
M , such that D2 = TM . Then Theorem 4.1 implies that the symbol m(x) of
D is of infinite type for each x ∈ M . However, this does not imply that such
distributions always have infinite-dimensional symmetry algebras.

For example, let D be a generic 3-dimensional distribution on a 5-dimension-
al space. This case was treated in a historical paper of E. Cartan [3]. The symbol
algebra of D is equivalent to the symbol algebra of the canonical contact system
on J1(R, R2) and, thus, is of infinite type. Let D′ be a subdistribution of D gen-
erated by all weak characteristics of D . Then D′ has rank 2. In generic case we
have D = [D′, D′] and, therefore, the symmetry algebras of D and D′ coincide.
As described in Example 3.8, the symbol of a generic rank 2 distribution on a
5-dimensional manifold is of finite type and, in particular, the symmetry algebra
of D is finite-dimensional.

More general examples of distributions with the symbol corresponding to
the pencil Mm are treated in [10]. It is proved that if a subbundle D′ generated by
all weak characteristics of D is bracket generating, then the symmetry algebra of
D is finite-dimensional. Note that in case of the standard distribution D of type
m , where m corresponds to the pencil Mm , the subdistribution D′ is completely
integrable.
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