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Abstract. The only basic scalar invariant in the general equiaffine geom-
etry is the determinant of the Ricci tensor. For special equiaffine geometries,
more scalar invariants can emerge. In this paper, we first investigate invariants
of torsion-less connections with constant Christoffel symbols in R2 . For this
aim, we calculate invariants of the corresponding representation of the group
SL(2, R) on the space R6 of Christoffel symbols. As a result, we find three
bi-quadratic polynomials forming a Hilbert basis of this representation. An in-
teresting phenomenon (rational involutive maps of higher degree) appears during
the calculation. We also study representation of SL(2, R) on the 9-dimensional
space of special equiaffine connections in R3 and corresponding invariants.
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1. Introduction

Let (M,∇) be a torsion-free affine manifold. The affine connection ∇ is said to be
equiaffine if there exists a nonvanishing n-form ω which is parallel with respect to
∇ . It is well-known that ω is determined up to a constant multiplication. Further,
a simply connected manifold (M,∇) is equiaffine if and only if the Ricci tensor
Ric∇ is symmetric ([7]).

If we fix a parallel n-form ω , then all bases {E1, . . . En} of the tangent space
TpM at p ∈ M which satisfy ω(E1, . . . , En) = 1 are related by transofrmations
from the group SL(n, R). Any polynomial created from the Christoffel symbols of
the equiaffine connection ∇ will be equiaffine invariant if it is invariant with respect
to the group SL(n, R). In a general situation, the only well-known polynomial with
this property is the determinant of the Ricci tensor.

In the previous works [3] and [4], the present author, O. Kowalski and
Z. Vlášek studied homogeneous geodesics for special homogeneous equiaffine con-
nections in dimensions 2 and 3 and they found new equiaffine invariants. Hence
we are motivated to look for the full classification of all invariants in these situ-
ations, which are, in fact, invariants of the corresponding representations of the
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group SL(2, R) on the spaces of Christoffel symbols. These results go beyond the
framework of equiaffine differential geometry, to the representation theory, but the
representation theory is not our main objective. During our study, also remark-
able involutive maps related to representations of the group SL(2, R) appear, we
describe them in Section 3 and at the end of Section 6.

The following classification of homogeneous connections on 2-dimensional
manifolds was obtained T. Arias-Marco and O. Kowalski in [2]. It is the refinement
of the classification by B. Opozda in [9].

Theorem 1.1. Let ∇ be a locally homogeneous affine connection with arbitrary
torsion on a 2-dimensional manifold M . Then, in a neighborhood U of each point
m ∈ M , either ∇ is locally a Levi-Civita connection of the unit sphere or, there is
a system (u, v) of local coordinates and constants A, B, C,D, E, F, G, H such that
∇ is expressed in U by one of the following formulas:

typeA : ∇∂u∂u = A ∂u + B ∂v, ∇∂u∂v = C ∂u + D ∂v,
∇∂v∂u = E ∂u + F ∂v, ∇∂v∂v = G ∂u + H ∂v,

typeB : ∇∂u∂u = A
u

∂u + B
u

∂v, ∇∂u∂v = C
u

∂u + D
u

∂v,

∇∂v∂u = E
u

∂u + F
u

∂v, ∇∂v∂v = G
u

∂u + H
u

∂v.

Let H denote the 6-dimensional space of torsion-free affine connections
of type A defined on the 2-dimensional Euclidean plane R2[u, v] . The Christoffel
symbols Γi

jk of ∇ are calculated using the basis of coordinate vector fields {∂u, ∂v} .
We change the standard notation of Christoffel symbols to a simplified one:

Γ1
11 = A1, Γ2

11 = A2,
Γ1

22 = B1, Γ2
22 = B2,

Γ1
12 = Γ1

21 = E1, Γ2
12 = Γ2

21 = E2. (1)

We obtain for the corresponding Ricci matrix with respect to the standard basis
{∂u, ∂v} the expression

Ric =

(
−A1E2 − A2B2 + A2E1 + E2

2 A2B1 − E1E2

A2B1 − E1E2 −A1B1 + B1E2 −B2E1 + E2
1

)
. (2)

We can see directly that each connection from H is equiaffine. Namely, it can be
verified that the corresponding parallel 2-form is given by the formula

ω = exp
(
(A1 + E2)u + (E1 + B2)v + const

)
· du ∧ dv.

Let us define the natural representation ρ of the group SL(2, R) on the space H .
For each matrix

A =

(
a b

c d

)
∈ SL(2, R) (3)
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and each connection ∇ ∈ H with the Christoffel symbols A1, A2, . . . , E2 , the
corresponding connection ∇̄ = ρ(A)(∇) will be defined as follows: Choose the
new Cartesian coordinates ū, v̄ in R2 by the formula(

ū

v̄

)
= A ·

(
u

v

)
.

Then the Christoffel symbols Ā1, Ā2, . . . , Ē2 of ∇̄ with respect to the standard
basis {∂u, ∂v} are calculated as the Christoffel symbols of ∇ with respect to the
new vector basis {∂ū, ∂v̄} The representation ρ is herewith uniquely determined.
There is an obvious transformation rule

∂u = a∂ū + c∂v̄,
∂v = b∂ū + d∂v̄.

We use the relations

∇∂u∂u = A1∂u + A2∂v = (aA1 + bA2)∂ū + (cA1 + dA2)∂v̄,
∇∂u∂v = E1∂u + E2∂v = (aE1 + bE2)∂ū + (cE1 + dE2)∂v̄,
∇∂v∂v = B1∂u + B2∂v = (aB1 + bB2)∂ū + (cB1 + dB2)∂v̄

and the relations

∇∂u∂u = a2∇∂ū∂ū + 2ac∇∂ū∂v̄ + c2∇∂v̄∂v̄,
∇∂u∂v = ab∇∂ū∂ū + (ad + bc)∇∂ū∂v̄ + cd∇∂v̄∂v̄,
∇∂v∂u = b2∇∂ū∂ū + 2bd∇∂ū∂v̄ + d2∇∂v̄∂v̄.

Using these two systems of equations we express the covariant derivatives
∇∂ū∂ū,∇∂ū∂v̄,∇∂v̄∂v̄ with respect to the vector fields ∂ū, ∂v̄ and hence we obtain
the Christoffel symbols Āi, B̄i, Ēi expressed through Ai, Bi, Ei and a, b, c, d in the
form

Ā1 = ad2A1 + bd2A2 + ac2B1 + bc2B2 − 2 acdE1 − 2 bcdE2,
Ā2 = cd2A1 + d3A2 + c3B1 + c2dB2 − 2 c2dE1 − 2 cd2E2,
B̄1 = ab2A1 + b3A2 + a3B1 + a2bB2 − 2 a2bE1 − 2 ab2E2,
B̄2 = b2cA1 + b2dA2 + a2cB1 + a2dB2 − 2 abcE1 − 2 abdE2,
Ē1 = −abdA1 − b2dA2 − a2cB1 − abcB2 + a(bc + ad)E1 + b(bc + ad)E2,
Ē2 = −bcdA1 − bd2A2 − ac2B1 − acdB2 + c(bc + ad)E1 + d(bc + ad)E2. (4)

In fact, the right-hand sides in a general form are all divided by the factor (ad−bc)2 ,
but we can use here the identity ad− bc = 1 for each matrix A as in formula (3).

The first scalar invariant of this representation is the determinant of the
Ricci matrix in formula (2). It is the polynomial

I1 = I1(Ai, Bi, Ei) =
= (−A1E2 − A2B2 + A2E1 + E2

2)(−A1B1 + B1E2 −B2E1 + E2
1)

−(A2B1 − E1E2)
2. (5)

We denote Ī1 = I1(Āi, B̄i, Ēi) and by the straightforward check using (4) we can
verify that Ī1 = I1 .
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To find another invariant is not so obvious. In [3], the authors investigated,
among others, homogeneous geodesics of homogeneous affine connections defined
on R2[u, v] . Here a homogeneous geodesic is a (possibly reparametrized) geodesic
which is an orbit of a 1-parameter group of affine transformations, i.e., γ(t) =
exp(tW )(p), where W 6= 0 is an element of the Lie algebra of the of the group of
all affine diffeomorphisms and p ∈ M is a fixed point. Each connection ∇ ∈ H
is invariant with respect to all translations of the plane and hence it admits a 2-
dimensional space of affine Killing vector fields of the form X = x∂u + y∂v , where
x, y are arbitrary parameters. In this situation, a Killing vector field X = x∂u+y∂v

is a geodesic vector field (i.e., every integral curve of X is homogeneous geodesic)
if and only if the equation ∇XX = kX is satisfied, where k is a constant. This
equation leads to the system of equations

A1x
2 + B1y

2 + 2E1xy = kx,
A2x

2 + B2y
2 + 2E2xy = ky. (6)

If we put k = 0, these equations characterize the existence of a geodesic Killing
field whose integral curves are homogeneous geodesics which do not require a
reparametrization. We can calculate the resultant of these equations in the variable
x and the resultant in the variable y . These resultants are y4I2 and x4I2 ,
respectively, where

I2 = I2(Ai, Bi, Ei) =
= 4(A1E2 − A2E1)(B1E2 −B2E1) + (A1B2 − A2B1)

2. (7)

The polynomial I2 is an invariant of the group SL(2, R) again. Indeed, denote
by Ī2 the polynomial I2(Āi, B̄i, Ēi) and by the computer check we easily verify
Ī2 = I2 .

We see that both polynomials I1 and I2 are invariants with respect to
the representation ρ of the group SL(2, R). We are going to investigate general
invariants of this representation in Section 5.

2. Infinitesimal transformations
for the representation ρ

Let us identify the space H of connections with the space
R6[A1, A2, B1, B2, E1, E2] under the condition that the Christoffel symbols are
calculated with respect to the original Cartesian coordinate system (u, v). Let
the 1-parameter group gt of transformations be acting on R6 by

gt · (A1, A2, . . . , E2) = (A1(t), A2(t), . . . , E2(t)). (8)

The corresponding Killing vector field is

X = A′
1(0)

∂

∂A1

+ A′
2(0)

∂

∂A2

+ . . . + E ′
2(0)

∂

∂E2

. (9)

Consider the following generating 1-dimensional subgroups of the group SL(2, R):

g1(t) =

(
et 0

0 e−t

)
, g2(t) =

(
1 0

t 1

)
, g3(t) =

(
1 t

0 1

)
. (10)
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For these 1-dimensional subgroups gi(t), i = 1, 2, 3, we obtain, by a routine calcu-
lations, the following infinitesimal transformations (left-invariant vector fields) on
H = R6[A1, A2, B1, B2, E1, E2] corresponding to the representation ρ of the group
SL(2, R)

X1 = −A1
∂

∂A1

− 3A2
∂

∂A2

+ 3B1
∂

∂B1

+ B2
∂

∂B2

+ E1
∂

∂E1

− E2
∂

∂E2

,

X2 = −2E1
∂

∂A1

+ (A1 − 2E2)
∂

∂A2

+B1
∂

∂B2

−B1
∂

∂E1

+ (−B2 + E1)
∂

∂E2

,

X3 = A2
∂

∂A1

+ (B2 − 2E1)
∂

∂B1

−2E2
∂

∂B2

+ (−A1 + E2)
∂

∂E1

− A2
∂

∂E2

. (11)

By the straightforward check, it can be verified that the polynomials I1 and I2

satisfy Xi(I1) = Xi(I2) = 0 for all the operators X1, X2, X3 given by (11). Also
by the straightforward calculation, it can be verified that the Lie bracket of these
operators satisfy the standard relations for the algebra sl(2, R)

[X1, X2] = 2X2,
[X1, X3] = −2X3,
[X2, X3] = X1. (12)

Using Maple program for each of the operators X1, X2, X3 , we find always imme-
diately a basis of invariants consisting of 5 polynomials in the Christoffel symbols.
Some of these invariants are obvious and most of them can be calculated by hand.
For the operator X1 , the invariants are

w1 = A1B2, w2 = A2B1, w3 = A1E1, w4 = B2E2, w5 = A3
1B1, (13)

for the operator X2 , we have

u1 = B1, u2 = B2 + E1, u3 = A1B1 − E2
1 , u4 = B1E2 −B2E1,

u5 = B1(A2B1 − A1B2) + 2E1(B2E1 −B1E2) (14)

and for the operator X3 we have

v1 = A2, v2 = A1 + E2, v3 = A2B2 − E2
2 , v4 = A2E1 − A1E2,

v5 = A2(A2B1 − A1B2) + 2E2(A1E2 − A2E1). (15)

Seemingly, it would be more advantageous to calculate the invariants of the oper-
ators X2 + X3 and X2 −X3 . Yet, in such cases, Maple program gives no answer.
This is an indication that a systematic calculation of the invariants of the repre-
sentation ρ of SL(2, R) might be a hard problem. This was really the case, as we
shall see later.
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3. A remarkable involutive map

We put further

u6 = E1, v6 = E2 (16)

and consider ui , or vi , respectively, as the new coordinates. We can express the
Christoffel symbols A1, . . . , E2 in ui or in vi . We get the inverse transformation to
the transformation given by the formulas (14) and (16), or to the transformation
given by (15) and (16), respectively, in the forms

A1 = (u3 + u2
6)/u1,

A2 = (u2u3 + u2u
2
6 − u3u6 + 2u4u6 + u5 − u3

6)/u
2
1,

B1 = u1,
B2 = u2 − u6,
E1 = u6,
E2 = (u2u6 + u4 − u2

6)/u1 (17)

and

A1 = v2 − v6,
A2 = v1,
B1 = (v2v3 + v2v

2
6 − v3v6 + 2v4v6 + v5 − v3

6)/v
2
1,

B2 = (v3 + v2
6)/v1,

E1 = (v2v6 + v4 − v2
6)/v1,

E2 = v6. (18)

Using these formulas under the conditions u1 = B1 6= 0, v1 = A2 6= 0, we can
express ui in vi or vice versa. We obtain the formulas

u1 =
v2v3 + v2v

2
6 − v3v6 + 2v4v6 + v5 − v3

6

v2
1

,

u2 =
v2v6 + v3 + v4

v1

,

u3 =
v2

2v3 − 2v2v3v6 + v2v5 + v3v
2
6 − v2

4 − v5v6

v2
1

,

u4 =
−v3v4 + v4v

2
6 + v5v6

v2
1

,

u5 = [4v2v3v4v6 + v2v3v5 − v2v5v
2
6 + 2v3v

2
4 − 4v3v4v

2
6 − v3v5v6

+2v2
4v

2
6 + 2v4v5v6 + v2

5 + v5v
3
6]/v

3
1,

u6 =
v2v6 + v4 − v2

6

v1

(19)

and

v1 =
u2u3 + u2u

2
6 − u3u6 + 2u4u6 + u5 − u3

6

u2
1

,

v2 =
u2u6 + u3 + u4

u1

,

v3 =
u2

2u3 − 2u2u3u6 + u2u5 + u3u
2
6 − u2

4 − u5u6

u2
1

,
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v4 =
−u3u4 + u4u

2
6 + u5u6

u2
1

,

v5 = [4u2u3u4u6 + u2u3u5 − u2u5u
2
6 + 2u3u

2
4 − 4u3u4u

2
6 − u3u5u6

+2u2
4u

2
6 + 2u4u5u6 + u2

5 + u5u
3
6]/u

3
1,

v6 =
u2u6 + u4 − u2

6

u1

. (20)

We see that these transformations are involutive and they map the set H+ =
{(A1, A2, B1, B2, E1, E2) ∈ R6, A2 6= 0, B1 6= 0} onto itself.

Involutive transformations play an important role in integrable dynamical
systems. See e.g. [1], [5], [6], [10] and the references inside. Unfortunately, all the
works known to the present author investigate in general, or apply to dynamics,
involutive automorphisms of the type R2 → R2 or involutive transformations of
the real projective plane. Probably, no systematic studies in higher dimensions
are known.

4. Structure of orbits

Let us fix a matrix

W =

(
X Y

Z −X

)
∈ sl(2, R) (21)

and consider the action of exp(tW ) on H . We are going to investigate the orbits
of this action and thus we start with the calculation of its isotropy subgroups at
points of H . The Taylor polynomial of the first order of the group exp(tW ) is the
1-parameter system of matrices

g(t) =

(
1 + tX tY

tZ 1− tX

)
⊂ GL(2, R). (22)

We will act by the matrices g(t) and use the equations (4), whose right-hand sides
must be divided by (ad − bc)2 for g(t) ⊂ GL(2, R), to write down explicitly the
conditions

Ā1 = A1, B̄1 = B1, Ē1 = E1,
Ā2 = A2, B̄2 = B2, Ē2 = E2. (23)

Each of these equalities splits into four equalities corresponding to the coefficients
at t, t2, t3 and t4 . We will consider only the coefficients at t , which give the
conditions

−A1X + A2Y − 2E1Z = 0,
−3A2X + (A1 − 2E2)Z = 0,

3B1X + (B2 − 2E1)Y = 0,
B2X − 2E2Y + B1Z = 0,

E1X + (E2 − A1)Y −B1Z = 0,
−E2X − A2Y + (E1 −B2)Z = 0. (24)
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The same relations remain valid if we start with any Taylor polynomial of higher
degree because all contributions of higher degree terms belong to the class O(t2).
Now we will consider the system of equations (24) for fixed coefficients X, Y, Z
and look for the Christoffel symbols A1, A2, . . . , E2 which satisfy it. The matrix
of this homogeneous system of equations is

M =



−X Y 0 0 −2Z 0

Z −3X 0 0 0 −2Z

0 0 3X Y −2Y 0

0 0 Z X 0 −2Y

−Y 0 −Z 0 X Y

0 −Y 0 −Z Z −X


. (25)

The determinant of this matrix is equal to

D = det(M) = −9 (X2 + Y Z)3. (26)

Lemma 4.1. The unique connection with 3-dimensional isotropy group is the
standard Euclidean connection.

Proof. If some connection has 3-dimensional isotropy group, then the corre-
sponing Christoffel symbols A1, A2, . . . , E2 must satisfy the system of equations
given by the matrix M in (25) for any X, Y, Z . It is clear that, in the generic case
X2 + Y Z 6= 0, the matrix M is regular and the solution is only the connection
with zero Christoffel symbols.

Theorem 4.2. The 1-dimensional isotropy groups are generated by the matrices
W ∈ sl(2, R) given by (21) for the triplets (X, Y, Z) 6= (0, 0, 0) which satisfy
X2 +Y Z = 0. For each such triplet, there is a 2-parameter system of connections
whose isotropy group is generated by the corresponding matrix W . The set M̄ of
connections whose isotropy group depends at least on one parameter is closed in
H and the set U = H \ M̄ is a smooth manifold.

Proof. Each triplet (X, Y, Z) such that X 6= 0 can be normalized so that we
put X = 1 and Y = −1/Z . Thus we consider the isotropy group

gZ(t) =

(
1 + t −t/Z

tZ 1− t

)
(27)

for a fixed Z 6= 0 and let it act on H . Either calculating by hand or using
Maple program to the homogeneous system of equations (24) whose matrix is M ,
with X = 1 and Y = −1/Z , we obtain the following family of relations for the
Christoffel symbols

A1 = −B1Z
2 − 2E1Z,

A2 = B1Z
3,
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B2 = 3B1Z + 2E1,
E2 = −2B1Z

2 − E1Z. (28)

It determines a 2-dimensional subspace M(Z) of H . (It can be checked that this
system of connections satisfies also the conditions corresponding to the coefficients
at t2, t3 and t4 in the equalities (23).) We are now looking for the topological
closure of the set M =

⋃
Z 6=0M(Z) in the space H = R6[A1, A2, . . . , E2] . The

limit case for Z → 0 in (28) gives the 2-dimensional subspace M(0) given by the
conditions

A1 = A2 = E2 = 0, B2 = 2E1, (29)

which is obviously that with the isotropy group g2(t). There is still a problem how
to manage correctly the limit cases Z →∞ and Z → −∞ . We shall describe this
procedure. Let us substitute Z = −1/Y into the formulas (28) and remove all
denominators. We are left with the system

B1 = −A1Y
2 + 2E1Y,

B1 = −A2Y
3,

3B1 = (2E1 −B2)Y,
2B1 = E1Y − E2Y

2. (30)

Now we will express the variables A1, B1, B2, E1 in A2, E2 and Y . We keep the
equation (302) and substitute it into (304). We obtain

B1 = −A2Y
3,

E1 = −2A2Y
2 + E2Y. (31)

Further, we substitute both equations (31) into (301) and (303). After the
simplification, we obtain

A1 = −3A2Y + 2E2,
B2 = −A2Y

2 + 2E2Y. (32)

Summarizing, formulas (31) and (32) describe each set M(Z) through the variable
Y = −1/Z . This system of equations now enables to study the limits Z → ∞
and Z → −∞ in a smart form. Indeed, putting Y = 0 in (31) and (32), we get
the special 2-dimensional subspace M(∞) given by the conditions

B1 = B2 = E1 = 0, A1 = 2E2, (33)

which is obviously that with the isotropy group g3(t). We deduce that the closure
of M consists of all connections which admit at least 1-dimensional isotropy group.
Hence, H \ M̄ is an open set in H , thus a smooth manifold, which is composed
of 3-dimensional orbits with respect to the representation ρ .

Remark 4.3. The standard Euclidean connection also belongs to the 3-parameter
system of connections described by the formulas (28).
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5. Complete set of invariants

According to [8], a representation of a Lie group is called semi-regular if all orbits
have the same dimension.

Theorem 5.1 ([8]). Let a Lie group G act semi-regularly on the n-dimensional
manifold M with s-dimensional orbits. At each point x ∈ M , there exist m − s
functionally independent local invariants I1, . . . , In−s , defined on a neighbourhood
of x.

According to Theorem 5.1 and Theorem 4.2, our representation ρ of SL(2, R)
on U admits (locally) 3 independent invariants. The present author have made
much effort to determine the third local invariant I3 , in addition to I1 given
by the formula (5) and I2 given by the formula (7), by a direct mathematical
way, using partial invariants (14) and (15). This lead to a difficult problem of
“separation of variables”: find all pairs of functions f, g of 5 variables such that
f(u1, . . . , u5) = g(v1, . . . , v5). Unfortunately, solving this particular problem by
this method was not successfull. Finally, let us use two reasonable assumptions
and the computer force.

We notice that the known invariants I1 and I2 can be written in terms of
particular invariants ui in the form

I1 = −u2
2u3u4 + u2u3u5 + u2u4u5 − u2

3u4 + 2u3u
2
4 − u3

4 + u2
5

u2
1

,

I2 =
4u3u

2
4 + u2

5

u2
1

(34)

and we will assume that the invariant I3 can be also written in the form

I3 =
P (u2, . . . , u5)

u2
1

. (35)

When we explore carefully the formulas (34), we see that both numerators written
in variables u2, . . . , u5 are, after substitution from formulas (14), homogeneous
polynomials in A1, . . . , E2 of degree 6. Both numerators are divisible by u2

1 and
after this division we obtain a polynomial of degree 4 in variables A1, . . . , E2 (see
formulas (5) and (7)). We will look for the numerator P (u2, . . . , u5) in the invariant
I3 in the same form. There are 14 monomials in u2, . . . , u5 which have degree 6
in A1, . . . , E2 . These are

u6
2, u

4
2u3, u

4
2u4, u

3
2u5, u

2
2u

2
3, u

2
2u3u4, u

2
2u

4
4,

u2u3u5, u2u4u5, u
3
3, u

2
3u4, u3u

2
4, u

3
4, u

2
5. (36)

The polynomial P from (35) must be a linear combination with constant coeffi-
cients of these monomials. Let us further assume that the coefficients by these
monomials are not too high. When we admit only the coefficients 0, 1,−1, 2, we
need to check 414 possible polynomials. With the contemporary personal com-
puter and Maple, this would take approximately one month. Fortunately, we had
good luck earlier and we found the invariant
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I3 = [u4
2u3 + u3

2u5 + 2u2
2u

2
3 + 2u2

2u3u4 − u2
2u

2
4 + u2u3u5

+u2u4u5 + u3
3 + 2u2

3u4 + u3u
2
4]/u

2
1 =

= (A2
1 + A1E2 + A2B2 + A2E1)(A1B1 + B1E2 + B2

2 + B2E1)
−(A1E1 + B2E2 + 2E1E2)

2. (37)

It can be checked directly that I3 satisfies differential equations Xi(I3) = 0, where
Xi are given by the equations (11), and also the condition Ī3 = I3 . The question
about the geometrical meaning of this invariant remains open.

Theorem 5.2. Polynomials I1, I2, I3 form a Hilbert basis of global scalar in-
variants of the representation ρ of SL(2, R) on U .

Proof. It remains to check the functional independence of the invariants
I1, I2, I3 . The independence of I1 and I2 is clear. We put A1 = B1 = E1 = E2 = 0
and we easily see that I1 = I2 = 0 and I3 = A2B

3
2 . We see that also I3 is inde-

pendent of I1 and I2 .

6. Representation of SL(2, R) on R9

Let us now consider the space of torsion-free affine connections with constant
Christoffel symbols on R3[u, v, w] . We denote

Γi
11 = Ai, Γi

22 = Bi, Γi
33 = Ci,

Γi
12 = Γi

21 = Ei, Γi
13 = Γi

31 = Fi, Γi
23 = Γi

32 = Gi. (38)

Geodesic Killing vector fields and homogeneous geodesics of these connections were
investigated among others in [4]. The equations which characterize the condition
that the Killing vector field X = x∂u + y∂v + z∂w satisfies ∇XX = kX and it is
a geodesic vector field are now of the form

x2A1 + y2B1 + z2C1 + 2 xyE1 + 2 xzF1 + 2 yzG1 = kx
x2A2 + y2B2 + z2C2 + 2 xyE2 + 2 xzF2 + 2 yzG2 = ky
x2A3 + y2B3 + z2C3 + 2 xyE3 + 2 xzF3 + 2 yzG3 = kz. (39)

We now put z = 0 and restrict ourselves on the plane R2[u, v] . The equations
(39) are in the form

x2A1 + y2B1 + 2 xyE1 = kx
x2A2 + y2B2 + 2 xyE2 = ky
x2A3 + y2B3 + 2 xyE3 = 0, (40)

where k ∈ R . If we assume y 6= 0, we may normalize y = 1, express the parameter
k from the second equation and substitute it into the first one. We obtain

A2 x3 + (2 E2 − A1) x2 + (B2 − 2 E1) x−B1 = 0,
A3 x2 + 2 E3 x + B3 = 0. (41)
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If we assume that A2 6= 0 6= A3 , the resultant of the polynomials in (41) is

I4 = A1
2A3 B3

2 + A2
2B3

3 + A3
3B1

2

+A1

(
2 A2 B3

2E3 − 2 A3
2B1 B3

+A3

(
4 B1 E3

2 + 2 B2 B3 E3 − 4 B3
2E2 − 4 B3 E1 E3

))
+A2

(
A3

(
−6 B1 B3 E3 − 2 B2 B3

2 + 4 B3
2E1

)
+8 B1 E3

3 + 4 B2 B3 E3
2 − 4 B3

2E2 E3 − 8 B3 E1 E3
2
)

+A3
2
(
2B1 (B2 E3 + 2 B3 E2 − 2 E1 E3)

+B2
2B3 − 4 B2 B3 E1 + 4 B3 E1

2
)

+A3

(
−8 B1 E2 E3

2 − 4 B2 B3 E2 E3 + 4 B3
2E2

2 + 8 B3 E1 E2 E3

)
. (42)

This resultant is an invariant of the following representation ρ′ of the group
SL(2, R). We denote by H′ the space R9[Ai, Bi, Ei] of constant Christoffel symbols
corresponding to the covariant differentiations in the coordinate plane R2[u, v] of
R3[u, v, w] . We will call the elements of this family relative connections on R2[u, v]
with respect to R3[u, v, w] . We define the representation ρ′ in the similar way as
in the first section. Now we use the matrices of the form

A =


a b 0

c d 0

0 0 1

 ∈ SL(2, R). (43)

We have the obvious transformation rule

∂u = a∂ū + c∂v̄,
∂v = b∂ū + d∂v̄,
∂w = ∂w̄ (44)

and in the analogous way, we calculate the new Christoffel symbols in the new
basis {∂ū, ∂v̄, ∂w̄} in the form

Ā1 = ad2A1 + bd2A2 + ac2B1 + bc2B2 − 2 acdE1 − 2 bcdE2,
Ā2 = cd2A1 + d3A2 + c3B1 + c2dB2 − 2 c2dE1 − 2 cd2E2,
Ā3 = d2A3 + c2B3 − 2 cdE3,
B̄1 = ab2A1 + b3A2 + a3B1 + a2bB2 − 2 a2bE1 − 2 ab2E2,
B̄2 = b2cA1 + b2dA2 + a2cB1 + a2dB2 − 2 abcE1 − 2 abdE2,
B̄3 = b2A3 + a2B3 − 2 abE3,
Ē1 = −abdA1 − b2dA2 − a2cB1 − abcB2 + a(bc + ad)E1 + b(bc + ad)E2,
Ē2 = −bcdA1 − bd2A2 − ac2B1 − acdB2 + c(bc + ad)E1 + d(bc + ad)E2,
Ē3 = −bdA3 − acB3 + (ad + bc) E3. (45)

Again, the right-hand sides in a general form are all divided by the factor (ad−bc)2 ,
but we can use the identity ad− bc = 1 for each matrix A as in formula (3). The
relations between C̄i, F̄i, Ḡi and Ci, Fi, Gi can be also derived, but they are not
necessary here. The computer check verifies easily the relation Ī4 = I4 .
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From the formulas (45) it can be easily seen that the representation space
H′ = R9[Ai, Bi, Ei] of ρ′ decomposes as a direct sum R6[A1, A2, B1, B2, E1, E2] ⊕
R3[A3, B3, E3] = H⊕H̃ , where ρ′ |H= ρ (see formulas (4)). Let us denote ρ̃ = ρ′ | eH
and investigate this subrepresentation in the same way as the representation ρ
before.

We easily derive the infinitesimal generators

X̃1 = −2A3
∂

∂A3

+ 2B3
∂

∂B3

,

X̃2 = −2E3
∂

∂A3

−B3
∂

∂E3

,

X̃3 = −2E3
∂

∂B3

− A3
∂

∂E3

(46)

and the invariants of each of them, which are (in the similar notation as for ρ)

w̃1 = A3B3, w̃2 = E3,
ũ1 = B3, ũ2 = A3B3 − E2

3 ,
ṽ1 = A3, ṽ2 = A3B3 − E2

3 . (47)

We see at once that

I5 = A3B3 − E2
3 (48)

is an invariant of the representation ρ̃ . The equality Ī5 = I5 can be checked also
easily. If we denote further u3 = E3 and v3 = E3 , we obtain (in the same way as

for ρ) another involutive map of the set H̃+ = {(A3, B3, E3) ∈ R3, A3 6= 0, B3 6= 0}
onto itself. This map is given by the formulas

v1 =
u2 + u2

3

u1

, v2 = u2, v3 = u3 (49)

and

u1 =
v2 + v2

3

v1

, u2 = v2, u3 = v3. (50)

Problem 6.1. Does every representation of the group SL, R) on a space Rn

give rise to a rational involutive mapping of Rn\D onto itself, where D is a subset
of measure zero?

Let us now investigate the structure of orbits. We act again by the Taylor
polynomial of the first order of the 1-parameter group exp(tW ) on (A3, B3, E3).
The conditions Ā3 = A3, B̄3 = B3, Ē3 = E3 give now the system of equations

A3X + E3Z = 0,
B3X − E3Y = 0,
A3Y + B3Z = 0 (51)

(which is analogous to the system (24) for the representation ρ). We see im-
mediately that the solution of this system is (X, Y, Z) = (E3, B3,−A3). We
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conclude that any 1-parameter subgroup generated by the triple (X, Y, Z) pre-

serves the element (A3, B3, E3) = (−Z, Y,X) of H̃ and, conversely, any ele-

ment (A3, B3, E3) of H̃ is preserved by the 1-parameter subgroup generated by
(X, Y, Z) = (E3, B3,−A3). Consequently, dimension of each orbit is equal to two
and there is just one invariant with respect to the representation ρ̃ , namely the
invariant I5 given by the formula (48).

Now we return to the representation ρ′ on R9 . The general dimension
of orbits is equal to max{2, 3} = 3 and there exist 6 independent invariants. We
know the invariants I1, . . . , I5 and it is easy to check their functional independence.
Finding the last invariant of this representation and its geometrical meaning re-
mains an open problem.

Acknowledgements

The author was supported by the research project MSM 6198959214 of the Czech
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