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Abstract. We prove a ‘superversion’ of Shanks and Pursell’s classical result
stating that any isomorphism of the Lie algebras of compactly supported vector
fields is implemented by a diffeomorphism of underlying manifolds. We thus
provide a Lie algebraic characterization of supermanifolds and describe explicitly
isomorphisms of the Lie superalgebras of supervector fields on supermanifolds.
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1. Introduction

Algebraic characterization of space can be traced back to Gel’fand and Kolmogo-
roff, who proved in 1939 that two compact topological spaces are homeomorphic if
and only if the algebras of continuous functions growing on them are isomorphic.
A similar result for second countable smooth manifolds and the algebras of smooth
functions is also regarded as classical (for the general case see [4, 8]).

In 1954, Pursell and Shanks [9] substituted the Lie algebra of compactly
supported vector fields of a manifold for the commutative associative algebra of
smooth functions that any isomorphism of the Lie algebras of compactly supported
vector fields is implemented by a diffeomorphism of underlying manifolds. This
classical upshot triggered a multitude of papers on similar issues by many different
authors, which we extensively depicted in our previous works. In 2004, two of us
proved Pursell-Shanks type results for the Lie algebra of differential operators of
a manifold, and for the Poisson-Lie algebra of smooth functions on the cotangent
bundle that are polynomial along the fibers. Our results indicate once more a “no-
go” theorem for the Dirac quantization problem, as they imply that the preceding
Lie algebras are not isomorphic – since they have nonisomorphic automorphism
groups. Let us mention, hoping that the remark might instigate further progress,
that the last observation is tightly related to the Kanel-Kontsevich conjecture that
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maintains that the automorphism groups of the Weyl algebra – modelled on the
algebra of differential operators with polynomial coefficients – and of the standard
Poisson algebra of polynomials are isomorphic!

Another landmark in the field of algebraization of space is the Gel’fand-
Naimark theorem, 1943, which states that any C∗ -algebra is isometrically ∗-
isomorphic to a C∗ -algebra of bounded operators on a Hilbert space. This result is
usually viewed as the starting point of noncommutative geometry: the basic idea
of this branch is to treat certain noncommutative algebraic structures that arise
in Physics as if they were related to some “noncommutative spaces”, although
there are no such spaces in the usual sense of the word. It is well-known that
algebraically defined noncommutative space is an important tool in quantization of
gravity, i.e. in the attempt to unify the contradictory concepts of gravity (which
makes no sense at 0-distance) and quantum theory (which precisely concerns the
“0-distance”). Indeed, one of the ways out of this conflicting situations consists in
replacing at small distance the usual commutative space by noncommutative space.
Another possible remedy, which allows dealing with the mentioned singularities,
is the replacement of points by extended geometric objects or strings, viewed as
the fundamental constituents of reality. The effort to incorporate fermions, the
building blocks of matter, in the spectrum of string theory led to supersymmetry
and superspace (resp. Z-graded space) – a particular type of noncommutative
space: a supermanifold (resp. Z-graded manifold) is a sheaf of supercommutative
(resp. Z-graded commutative) associative algebras that is locally isomorphic with
a free Grassmann algebra with coefficients in the functions of Euclidean space.

In the present note, we combine the two aforementioned aspects of alge-
braization of space – algebraic characterization of usual space and algebraically
defined noncommutative space. More precisely, we prove that two Lie superal-
gebras of supervector fields are isomorphic if and only if the underlying smooth
supermanifolds are diffeomorphic as sheafs of supercommutative algebras and de-
scribe explicitly automorphism groups of the super Lie algebras of super vector
fields. This can be viewed as a ‘superversion’ of the Shanks and Pursell’s classical
result and solves an open problem in the geometry of supermanifolds.

The paper is organized as follows. In section 2, we recall that every (smooth)
supermanifold M is (noncanonically) diffeomorphic to the total space of some
vector bundle V with reversed parity in the fibres [2], which we denote by ΠV
and which is actually the prototype of a Z-graded manifold. Further, we show
that the super Lie algebra of vector fields of M admits a canonical Lie-algebraic
filtration, such that the corresponding quotient is isomorphic to the Z-graded Lie
algebra of vector fields of ΠV , whatever diffeomorphism is chosen. In section 3,
we prove the aforementioned superversion of Shanks and Pursell’s classical result
in the case of Z-graded manifolds ΠV , and finally, in section 4, we use the results
of section 2 to deduce the supercase from the preceding Z-graded case.

2. The Lie algebra of supervector fields

Let M be a smooth supermanifold of dimension (s, r) over the body M . Here
we understand the supermanifold as a ringed space: the standard manifold M
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of dimension s is equipped with a sheaf OM of superalgebras which is locally
isomorphic to C∞(Rs)⊗Λ•(ξ1, . . . , ξr). Sections of this sheaf form a superalgebra
A = A0 ⊕A1 of smooth functions on the supermanifold M .

An important result of smooth supergeometry [2] (see also [7]) asserts that
there exists a vector bundle V of rank r over M , such that M is diffeomorphic as
a supermanifold to ΠV , that is, to the total space of V with the reversed parity
of fibres. This implies that the algebra of smooth functions on M is isomorphic
(as a commutative superalgebra) to the algebra of functions on ΠV , which is
canonically identified with Γ(Λ•V ∗). This isomorphism is not canonical but it
gives us an identification

A = A0 ⊕A1 ' Γ(Λ•V ∗) , (2.1)

with

A0 =
⊕
i≥0

A2i , A1 =
⊕
i≥0

A2i+1 , whereAk ' Γ(ΛkV ∗) . (2.2)

The choice of an isomorphism (2.1) provides therefore an additional Z−grading
in A which is compatible with the given super-structure. Such a grading uniquely
determines the Euler vector field, that is, an operator ε satisfying the following
property (the definition of ε implements the Leibnitz rule):

Ak = {a ∈ A | ε(a) = ka} . (2.3)

Denote with g the super Lie algebra of vector fields on M , the even and odd parts
of which are g0 and g1 , respectively,

g = g0 ⊕ g1 .

To the end of this section an isomorphism 2.1 is chosen. Moreover, we will assume
that the rank r of the vector bundle V is at least 1, otherwise we are in the
standard purely even situation.

Proposition 2.1. The adjoint action of the Euler vector field supplies g with
a Z-grading compatible with the Lie super structure such that

g0 =
⊕
i≥0

g2i , g1 =
⊕
i≥−1

g2i+1 , where gk : = {X ∈ g | [ε,X] = kX} . (2.4)

Any super vector field X admits a unique homogeneous decomposition X =∑
m≥−1

Xm with respect to the Euler vector field, [ε,Xm] = mXm . In local coor-

dinates this decomposition is given by the polynomial degree of ξa :

Xm :=
∑

a1<...<am

∑
i

f i
a1...am

(x)ξa1 . . . ξam
∂

∂xi
+ (2.5)

+
∑

b1<...<bm+1

∑
c

gc
b1...bm+1

(x)ξb1 . . . ξbm+1
∂

∂ξc
.

Here f i
b1...br

(x) and gb
a1...ar

(x) are smooth functions of x.
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Proof. Suppose we are given a local trivialization of V over M , that is, an open
cover by coordinate charts {Uα, x

i} together with a local frame of the restriction
of V to each Uα , denoted by (ea), where a = 1, . . . , r . Combining these data, we
obtain a local coordinate description of M : {Uα, x

i, ξa} , where ξa are dual to ea

thought of as odd coordinates. By construction of the trivialization, the change
of coordinates over double overlaps is linear with respect to odd coordinates, so
the aforementioned Euler vector field is well defined, and in any coordinate system
reads

ε =
∑

a

ξa ∂

∂ξa
. (2.6)

It is now a standard task in local coordinates to write any vector field in the form
(2.5).

Remark 2.2. Apparently, each vector field of degree -1 can be identified with
a section of V , thus g−1 is naturally isomorphic to Γ(V ) which acts on A by
contractions, provided we identify A with Γ(Λ•V ∗). On the other hand, a super
vector field of degree 0, which can be written as

X =
∑

i

f i(x)
∂

∂xi
+
∑
a,b

gb
a(x)ξ

a ∂

∂ξb
, (2.7)

defines a general infinitesimal automorphism of the vector bundle V . The vector
fields from g0 can be therefore identified with the sections of the Lie algebroid
of infinitesimal automorphism of V , called sometimes the Atiyah algebroid of V .
This identification respects the bracket, i.e. is a Lie algebra isomorphism. The
corresponding anchor map ρ : g0 → X (M) from the Lie algebra g0 of the Atiyah
algebroid into the Lie algebra X (M) of vector fields on M in local coordinates
reads

ρ(X) = ρ

(∑
i

f i(x)
∂

∂xi
+
∑
a,b

gb
a(x)ξ

a ∂

∂ξb

)
=
∑

i

f i(x)
∂

∂xi
(2.8)

and is also a Lie algebra homomorphism.

Suppose we are given a maximal ideal of g0 , denoted by g′ , the elements of which
act as ad-nilpotent operators in g , that is, for each X ∈ g′ there exists a non-
negative integer m , such that adm

X(Y ) = 0 for all Y ∈ g .

Proposition 2.3. The ideal g′ is related to the Z−grading by the formula:

g′ =
⊕
i>0

g2i . (2.9)

Since the ideal g′ is defined in purely super Lie algebraic terms, the latter space in
fact does no depend on the introduced Z−graduation.
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Proof. Let us consider the image of g′ under the projection

π0 : g0 → g0/⊕i>0 g2i ' g0 ,

which is fixed by the choice of an isomorphism M' ΠV (2.1). Apparently, π0(g
′)

is a maximal ad−nilpotent ideal of g0 . Let us apply the anchor map ρ to this
ideal. For each X ∈ π0(g

′), the vector field ρ(X) has to be ad−nilpotent as well.
It is easy to see that such a vector field is necessarily zero, as any vector field on a
standard (even) manifold can be written locally as the coordinate vector field ∂x1

in a neighborhood of any point at which it does not vanish.

Hence we conclude that π0(g
′) ⊂ Kerρ . But Kerρ is the bundle of Lie algebras

over M , the fiber of which is isomorphic to gl(Vz) at any z ∈ M . Thus π0(g
′)

evaluated at z is necessarily a subset of the ideal of scalar operators, the only ideal
of gl(Vz), which implies that π0(g

′) ⊂ Aε . Here ε is the Euler vector field and
A : = A0 is the algebra of functions on M .

Let us assume that X ∈ g0 , then π0(X) = fε for some smooth function f ∈ A .
Therefore X = fε+ terms of order ≥ 2. On the other hand, [fε, Y ] = −fY for
each f ∈ A and Y ∈ g−1 , hence adm

X(Y ) = (−f)mY+ terms of order ≥ 1. Thus
we conclude that X is ad−nilpotent if and only if f = 0, therefore π0(X) = 0
and g′ ⊂ Kerπ0 . The kernel of π0 is an ideal of g0 , consisting of ad−nilpotent
elements; but g′ has to be maximal, which immediately implements the identity
g′ = Kerπ0 .

There is an additional conclusion drawn from the above proof which we formulate
as a separate proposition that we will use later.

Proposition 2.4. The maximal Lie ideal in g0 of elements acting ad-nilpotently
on g0 consists of vector fields of the form fε with f ∈ A being a smooth function
on the body M .

Let us introduce (inductively) the following subspaces:

g(p+2) : = [g′, g(p)] , where g(−1) : = g1 , g(0) : = g0 . (2.10)

Proposition 2.5. Let us assume that r = rkV > 2 or dimM > 0 and rkV > 1
Then

g(p) =
⊕
i≥0

gp+2i . (2.11)

independently on the choice of the isomorphism (2.1).

Proof. It follows from the equality [gp, gq] = gp+q , which is true for all p, q
(except for p = q = 0 in the pure odd case when M is a point). Indeed, let X
be a super vector field of degree p + q , then given a local cover {Uα} of M , we
decompose X into a sum of Xα , such that suppXα ⊂M . It is enough to find Y k

α ,
Zk

α of the degree p and q , respectively, with the support in Uα for each α , such
that Xα =

∑
k[Y

k
α , Z

k
α] . Now we use the local representation (2.5) of X .
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We still make the assumption that r = rkV > 2 or dimM > 0 and rkV > 1,
leaving the low rank cases, for which the next two corollaries fail, to separate
considerations.

Corollary 2.6. The filtration of g by g(p) respects the super Lie algebra struc-
ture, i.e. [g(p), g(q)] ⊂ g(p+q) . The graded Lie superalgebra ggr , associated with the
given filtration,

ggr =
⊕
p≥−1

(ggr)p , where (ggr)p = g(p)/g(p+2) ,

equipped with the bracket naturally induced by the bracket in g, is isomorphic to g

as a Z−graded superalgebra, independently on the choice of (2.1).

Since the filtration g(p) is canonical, thus preserved by any automorphism
of g , any automorphism ψ of the Lie superalgebra g induces an automorphism
p(ψ) of the graded Lie algebra ggr by

p(ψ)([X]) = [ψ(X)] , (2.12)

where [X] is the coset of X ∈ g(p) .

Corollary 2.7. The formula (2.12) defines a group homomorphism

p: AutZ2(g) → AutZ(ggr) , (2.13)

where the former and the latter groups consist of all automorphisms preserving Z2

on g and Z−grading on ggr , respectively.

3. Lie algebras of Z-graded manifolds associated with vector bundles

Let M = ΠV and N = ΠW be Z-graded manifolds associated with vec-
tor bundles V → M and W → N respectively. Let A = ⊕i≥0Γ(ΛiV ∗) and
B = ⊕i≥0Γ(ΛiW ∗) be the graded algebras of smooth functions on M and N
(Grassmann algebras of multi-sections of dual bundles), respectively. Let g and
h be the corresponding Z-graded Lie algebras of vector fields. Let us also assume
that dimM and dimN are non-zero or the ranks rkV and rkW are both positive
and different from 2.

Theorem 3.1. For any isomorphism ψ : g → h of the Z-graded Lie algebras of
vector fields on ΠV and ΠW , respectively, there exists an isomorphism of vector
bundles φ : V → W such that ψ(X) = (φ∗)−1 ◦X ◦ φ∗ , where φ∗ : B → A is the
isomorphism of the Z-graded algebras of smooth functions (multi-sections of the
dual bundles) induced by φ.

Proof. Let us restrict the isomorphism ψ to g0 . According to proposition 2.4,
the subspaces Aε and Bε , where A and B are the algebras of functions on M
and N , respectively, are the (uniquely determined) maximal ideals of g0 and h0
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acting nilpotently on g0 and h0 respectively, therefore Bε = ψ(Aε). Of course,
here we identify the two Euler vector fields in our bundles as uniquely determined
by the Z−graduation. This implies the existence of a bijective map ψ̃ : B → A ,
such that

ψ(fε) = ψ̃−1(f)ε , ∀f ∈ A . (3.1)

Taking into account that [X, fε] = ρ(X)(f)ε , where ρ(X) is the anchor of X ∈ g0 ,
we immediately obtain the following property

ρ(ψ(X)) = ψ̃−1ρ(X)ψ̃ , (3.2)

which implies that the conjugation by ψ̃ induces a Lie algebra isomorphism
ρ(g0) → ρ(h0). On the other hand, these Lie algebras consist of all vector fields
on M and N , correspondingly. Using the classical result on the Lie algebras of
vector fields [3] (see also [9, 1]), we conclude that the conjugation by ψ̃ coincides
with the conjugation by some diffeomorphism h : M → N . One can also conclude
the latter fact from a theorem in [5] applied directly to the Atiyah algebroid g0 .
Any operator, acting on smooth functions and commuting with all vector fields, is
necessarily a constant, which implies that ψ̃(h∗)−1 is the operator of multiplica-

tion by a non-zero constant λ , and thus ψ̃ = λh∗ . But the Euler vector fields are
uniquely defined, so they are associated by the isomorphism which yields λ = 1.

Now we restrict the automorphism ψ to g−1 ; thus we obtain a non-degenerate
linear map Γ(V ) → Γ(W ). If we proved that for each s ∈ Γ(V ) and f ∈ A , the
following property holds: ψ(fs) = (h∗)−1(f)ψ(s), the restriction of ψ would have
been induced by a bundle map V → W covering h . Indeed, fs = [s, fε] . On the

other hand, ψ(fε) = ψ̃−1(f)ε , so that

ψ(fs) = ψ[s, fε] = [ψ(s), ψ(fε)] = [ψ(s), ψ̃−1(f)ε] = ψ̃−1(f)ψ(s) .

Since ψ̃ is an automorphism of the algebra of functions, ψ(fs) = (h∗)−1(f)ψ(s).
The bundle map V → W , induced by the restriction of ψ to g−1 , can be uniquely
extended to a diffeomorphism φ of M over Z . The uniqueness follows from
the isomorphism (2.1) because the algebras of functions on M and N are freely
generated by Γ(V ∗) and Γ(W ∗), respectively. Taking into account that the
representation of g0 on the space of sections of V is faithful, we immediately
obtain the required property of Theorem 3.1 for g0 ⊕ g−1 .

The last step is proving that the extension of the restriction of ψ to g0 ⊕ g−1

is unique. Suppose there exists another Lie algebra morphism ψ′ , satisfying the
property

ψ(X) = ψ′(X) , ∀X ∈ g0 ⊕ g−1 . (3.3)

Then for each Z ∈ gk , where k ≥ 0, and Xi ∈ g−1 , i = 1, . . . , k , we have

[X1, . . . , [Xk, Z] . . . ] ∈ g0 .
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We use (3.3) to show that ψ ([X1, . . . , [Xl, Z] . . . ]) = ψ′ ([X1, . . . , [Xk, Z]). On the
other hand ψ(Xi) = ψ′(Xi) and ψ is an invertible map, therefore

[X1, . . . , [Xk, ψ(Z)− ψ′(Z)] . . . ] = 0 .

But it is easy to see in local coordinates that [g−1, Z] = 0 for Z ∈ gk , k > 0,
implies Z = 0, so we get inductively ψ(Z) = ψ′(Z).

4. Lie algebras of supermanifolds: General case

Let M and N be smooth supermanifolds, A and B the algebras of functions
on M and N , respectively, and g and h the corresponding super Lie algebras
of vector fields. Suppose that the supermanifolds are supplied with a compatible
Z−grading as in (2.1), which means that there exist vector bundles V → M and
W → N , such that M ' ΠV and N ' ΠW in the category of Z−graded
manifolds. Let us also assume that dimM and dimN are non-zero and the rank
of the corresponding bundles is greater than 1 or rkV and rkW are both greater
than 2.

Theorem 4.1. For any isomorphism ψ : g → h of the super Lie algebras of
vector fields on M and N respectively there exists a diffeomorphism φ : M→N
such that ψ(X) = (φ∗)−1◦X◦φ∗ , where φ∗ is the isomorphism of the corresponding
superalgebras of smooth functions functions induced by φ.

Proof. Taking into account that the isomorphism of super vector fields ψ
preserves the canonical filtration in g and h , determined by the correspondent
maximal ad-nilpotent ideals, we obtain a unique bundle map V → W as in
Theorem 3.1. This bundle map induces an isomorphism χ of super Lie algebras
g → h , which is also an isomorphism of the corresponding Z−graded Lie algebras,
associated to the filtration, such that ψ−1χ : g → g has a trivial coset.

Now we use the result of Corollary 2.7. It is sufficient to prove that the kernel of
p : AutZ2(g) → AutZ(ggr) consists of automorphisms induced by super diffeomor-
phisms. Assume that ψ belongs to the kernel of p, that is, for each X ∈ gk ,

ψ(X) = X + ψ2(X) + ψ4(X) + . . . , where ψ2m(X) ∈ gk+2m . (4.1)

Let us denote ψ2(ε) by Y , then for each X ∈ gk the following identity holds,

[ψ(ε), ψ(X)] = [ε+ Y + . . . , X + ψ2(X) + . . .] = kX + [ε, ψ2(X)] + [Y,X] + . . . ,(4.2)

where ”...” are the higher degree terms. On the other hand,

ψ[ε,X] = kψ(X) = kX + kψ2(X) + . . .

and [ε, ψ2(X)] = (k+2)ψ2(X), therefore ψ2(X) = −1
2
[Y,X] . We exponentiate 1

2
Y

to a super automorphism of A by use of the exponential series, which obviously
converges because of the nilpotency of Y . Then the new automorphism ψ(1) : =
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ψ ◦ Ad(exp 1
2
Y ) is equal to the identity up to the 2d order, i.e. for each X of the

degree k ,

ψ(1)(X)−X ∈ g(k+4) .

Let us repeat this procedure by induction (the number of steps will be certainly
finite because the Lie algebra ggr is finitely-graded). Finally we obtain a decom-
position of ψ into a (finite) product of Ad(expYj) for vector fields Yj of degree
2j , which implies that ψ is induced by a the pullback of super diffeomorpism of
M .

5. Lie algebras of supermanifolds: Exceptional low rank cases

Now let us consider the exceptional case, when rkV = 1 or dimM = 0 and
rkV ≤ 2. Whatever isomorphism of the form (2.1) is chosen, g0 = g0 , g1 = g−1⊕g1

such that g±1 can be identified with the spaces of smooth sections of certain vector
bundles over M . In particular, g−1 is always isomorphic to Γ(V ) and

g1 '
{

Γ(V ∗ ⊗ TM) , if rkV = 1
Γ(Λ2V ∗ ⊗ V ) , if dimM = 0 , rkV = 2

(5.1)

Only in this situation the canonical ideal g′ is zero, thus if g is isomorphic to the
super Lie algebra h of vector fields on another supermanifold N , the manifold N
has to satisfy the same conditions if the ranks are concerned.

Lemma 5.1. The vector fields ±ε are the only elements of the form fε, where
f is a smooth function on M , the restriction of the adjoint action of which to g1

has only eigenvalues ±1.

Proof. Indeed, for each Y ∈ g±1 one has [fε, Y ] = ±Y . It is obviously true for
g−1 , whatever the base manifold M is taken, and for g1 in the case of dimM = 0.
Let us consider the remaining case of g1 when dimM > 0 and rkV = 1. Suppose
we are given a local coordinate chart with coordinates {xi, ξ} where the only ξ
is odd. Then the restriction of fε and Y to the local chart is f(x)ξ∂ξ and ξZ ,
respectively, where Z is a local vector field on M . Now the simple computation
gives

[fε, Y ] = [fε, ξZ] = fξZ + ξ2[fε, Z] = fY ,

which finishes the proof of lemma.

Proposition 5.2. Let ψ : g → h be a Z2−graded isomorphism of the Lie
algebras of vector fields on ΠV and ΠW , respectively. Then ψ is the composition
of two isomorphisms, ψ = φ∗ ◦ ψ0 , where φ∗ is induced by an isomorphism of
vector bundles φ : V → W (as in Theorem 3.1) and

• ψ0 is uniquely determined by a bundle isomorphism V → V ∗ ⊗ TM , if
rkV = 1;
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• ψ0 is uniquely determined by a bundle isomorphism V → Λ2V ∗ ⊗ V , if
dimM = 0 and rkV = 2;

• ψ0 = id in the other cases.

Proof. Apparently, ψ(g0) = g0 . Following the similar ideas as in Theorem 3.1,
we immediately prove that ψ(fε) = λ(h∗)−1(f)ε for each smooth function f on
M where λ is some non-zero constant and h : M → N is a diffeomorphism. Using
Lemma 5.1, we get λ = ±1.

If λ = 1 then we are in the situation of Theorem 3.1, which means that ψ is
implemented by a bundle isomorphism V → W .

Suppose λ = −1, then ψ exchanges g±1 and h∓1 . Applying the same argument
as in Theorem 3.1, we conclude that the restriction of ψ to g−1 is induced by a
bundle map covering the diffeomorphism h . In particular, if rkV = 1 then the
restriction of ψ to g−1 is induced by a bundle isomorphism V → W ∗ ⊗ TN ,
which implements the dimension property dimN = dimM = 1 because of the
rank argument. If rkV = 2 and dimM = 0, we obtain (in the same way) a
non-degenerate linear map V → Λ2W ∗ ⊗W .

In both acceptable cases, when dimM equals to 1 or 0, g1 and g−1 are isomorphic
as vector bundles on M . Combining any bundle isomorphism g−1 → g1 , which
covers the identity diffeomorphism M →M , with ψ , we get a bundle isomorphism
φ : V → W which covers h . In particular, this implies that M and N are
diffeomorphic as smooth supermanifolds. Now we can decompose ψ as φ∗ ◦ ψ0

where φ∗ is the isomorphism of vector fields induced by the diffeomorphism φ and
ψ0 is an automorphism of g which replaces ε with −ε , thus g1 with g−1 .

As we have seen above, ψ0 inspires a bundle map V → V ∗ ⊗ TM if dimM = 1
and V → Λ2V ∗ ⊗ V if dimM = 0. Since the representation of g0 in sections of
V is faithful and any bundle isomorphism V → V , commuting with the adjoint
action of all sections of g0 , is the identity, we conclude that ψ0 is uniquely fixed
by its restriction to g−1 or by a non-degenerate section of either (V ∗)⊗2 ⊗ TM or
Λ2V ∗ ⊗ V ∗ ⊗ V (depending on the dimension of M ).

A general corollary independent on the rank of the bundles in question is now the
following.

Corollary 5.3. Two supermanifolds are diffeomorphic if and only if their super
Lie algebras of vector fields are isomorphic.
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