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Abstract. In this paper, we find sharp conditions on X, Y ∈ a for the
existence of the density of the measure δ\

eX ? δ\
eY intervening in the product

formula for the spherical functions on the symmetric spaces of noncompact type
X = SL(n,F)/SU(n,F) where F = R , C or H . Our results also apply to the
symmetric space E6/F4 .
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1. Introduction

Let G be a semisimple noncompact connected Lie group with finite centre, K a
maximal compact subgroup of G and X = G/K the corresponding Riemannian
symmetric space of noncompact type.

We have a Cartan decomposition g = k+p and we choose a maximal Abelian
subalgebra a of p . In what follows, Σ corresponds to the root system of the pair
(g, a) and Σ+ to a choice of positive roots. This implies that we have chosen a set
of simple positive roots α1 , . . . , αr where r = dim a is the rank of the symmetric
space. We have the root space decomposition g = g0 +

∑
α∈Σ gα . Recall that k ,

the Lie algebra of K , can be described as

k = span {Xα + θXα : Xα ∈ gα, α ∈ Σ+ ∪ {0}}

where θ is the Cartan involution. Let n =
∑

α∈Σ+ gα and denote the groups
corresponding to the Lie algebras a and n by A and N respectively.

Let W = M ′/M be the Weyl group (M ′ ⊂ K is the normalizer of a in
K i.e. k ∈ M ′ if Ad(k) a ⊂ a while M ⊂ K is its centralizer i.e. k ∈ M if
Ad(k) H = H for all H ∈ a).

When appropriate we will not distinguish between w ∈ W and w ∈ M ′ ⊂
K . On the other hand, to denote the action of w on X ∈ a , we will write w ·X .
We then have ew·X = Ad(w) eX ([6, Chapter VII, Proposition 2.2]).
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Let a+ = {H ∈ a : α(H) > 0 ∀ α ∈ Σ+} and A+ = exp(a+). For any g ∈ G ,
g = k1 ea(g) k2 (Cartan decomposition) where a(g) ∈ a+ is uniquely determined
by g . Note that a(k1 g k2) = a(g) for all ki ∈ K and all g ∈ G . We also have
g = k eH(g) n (Iwasawa decomposition).

If λ is a complex-valued linear form on a , the corresponding spherical
function is

φλ(e
H) =

∫
K

e(i λ−ρ)(H(eH k)) dk (1)

where ρ = (1/2)
∑

α∈Σ+ mα α (mα denotes the multiplicity of the root α). A
spherical function, like any K -biinvariant function, can also be considered as a
K -invariant function on the Riemannian symmetric space of noncompact type
X = G/K . Naturally, such a function is completely determined by its values on
A (or on A+ ). The books [6, 7] constitute a standard reference on these topics.

In [7, (32), page 480], Helgason shows that, given X, Y ∈ a , a Weyl-invariant
measure µX,Y exists on the Lie algebra a such that

φλ(e
X) φλ(e

Y ) =

∫
a

φλ(e
H) dµX,Y (H).

It is known [7] that

φλ(e
X) φλ(e

Y ) =

∫
K

φλ(e
X k eY ) dk.

Consequently, the measure µX,Y satisfies∫
K

f(a(eX k eY )) dk =

∫
a

f(H) dµX,Y (H) (2)

for all continuous functions f on a which are invariant under the action of W .

We define the kernel k(H, X, Y ) in the product formula via the equation

φλ(e
X) φλ(e

Y ) =

∫
a+

φλ(e
H) k(H, X, Y ) δ(H) dH (3)

where δ is the density of the invariant measure on a in polar coordinates, i.e.,∫
G

h(g) dg =

∫
a+

h(eH) δ(H) dH

for any K -biinvariant function h integrable on G . The existence of this kernel,
i.e. the absolute continuity of the measure µX,Y with respect to the Lebesgue
measure, has been shown previously ([1] in rank one case, [2] in the complex case
and [3] in the general case) provided that X , Y ∈ a+ .

Let mK denote the Haar measure of the group K and let ? be the con-
volution on the group G . For X ∈ a we define δ\

eX = mK ? δeX ? mK . Then

mX,Y = δ\
eX ? δ\

eY is a K -biinvariant measure on G such that its transport mea-

sure on a+ by the map g 7→ a(g) is µX,Y

∣∣
a+ , multiplied by |W | for the sake of

normalization.
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Remark 1.1.

1. The density k(H, X, Y ) exists if and only if SX,Y = a(eX K eY ), the support
of the measure µX,Y

∣∣
a+ , has nonempty interior (refer to [2, 3]). Since the

problem is clearly symmetric in X and Y , we note that a(eX K eY ) =
a(eY K eX).

2. The existence of the density of the measure µX,Y on a is equivalent to
the existence of the density of mX,Y on G , with respect to the invariant
measure dg . The density of the measure mX,Y exists if and only if its
support KeXKeY K has nonempty interior.

In [3], we prove that µX,Y is absolutely continuous with respect to the
Lebesgue measure on a provided X , Y ∈ a+ . We were able to relax these
conditions somewhat; for example, we show that µX,Y is absolutely continuous
provided one of X or Y is in a+ as long as the other is nonzero.

Except in the rank one case (see [1]) and in the complex case (see [2]), little
was known about the properties of the density of µX,Y . The articles [4, 5] provide
more information about the density k(H, X, Y ).

The objective of this paper is to give sharp conditions on X and Y for
the existence of the density k(H, X, Y ) in the case of the symmetric spaces
SL(n,F)/SU(n,F) where F = R , C or H (real, complex or quaternion num-
bers); in other words, in the case of the root system An−1 .

In this setup, the Weyl group is the symmetric group Sn . The vector
space a is the space of diagonal real matrices with trace 0 and is common for
the three cases F = R , C , H . If X = diag[X1, . . . , Xn] and σ ∈ Sn then
σ ·X = diag[Xσ(1), . . . , Xσ(n)] .

From the examples of [3], it emerges that the further away (in a heuristic
sense) we are from X and Y to belong to a+ , the least likely it is that the density
k will exist. This observation is consistent with the Definition 1.3 below.

We will show that in the case of the symmetric spaces of noncompact type
SL(n,F)/SU(n,F), the definitive criterion for the existence of the density k is
given by the following definition of eligible X and Y :

Definition 1.2. We say that p = [p1, p2, . . . , pr] is a partition of n if p1 ≥ p2 ≥

· · · ≥ pr > 0 and
∑

pi = n . We also write the partition 1n = [

n︷ ︸︸ ︷
1, . . . , 1].

For any X ∈ a , there exists σ ∈ Sn such that

σ ·X = diag[

p1︷ ︸︸ ︷
x1, . . . , x1,

p2︷ ︸︸ ︷
x2, . . . , x2, . . . ,

pr︷ ︸︸ ︷
xr, . . . , xr ]

and p1 ≥ p2 ≥ · · · ≥ pr (we suppose that the xi ’s are real and distinct; naturally,
pi ≥ 1 for all i). The partition p = [p1, p2, . . . , pr] will be said to be associated to
X . We then say that p is the configuration of X and that X is a realization of
the configuration p .
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Definition 1.3. Let G = SL(n,F) and let X , Y ∈ a . Let p , respectively q ,
be the partitions associated to X and Y . We say that X and Y are eligible if

p1 + q1 ≤ n (4)

and, if n > 2,

p2 + q2 ≤ n− 1. (5)

Remark 1.4. Conditions (4) and (5) are equivalent to (4) together with the
condition:

for n > 2 even, X and Y are not both associated to the partition [n/2, n/2].

This means that if X and Y are both in the Weyl orbit of elements such as

a

[
In/2 0
0 −In/2

]
, n > 2, then they are not eligible.

Remark 1.5. X and Y are clearly eligible if one of X or Y belongs to a+ and
the other is nonzero. Note that when n = 2 and a , b 6= 0 then

X =

[
a 0
0 −a

]
and Y =

[
b 0
0 −b

]
are eligible.

The main result of this paper is the following:

Theorem 1.6. Let G = SL(n,F) where F = R, C or H and let X , Y ∈ a.
Then the measure µX,Y is absolutely continuous if and only if X and Y are eligible.

Remark 1.7. Our result also applies to the symmetric space E6/F4 which can
be realized as SL(3,O)/SU(3,O) where O corresponds to the octonions.

The theorem is proven in Proposition 2.2 (necessity of the eligibility condi-
tion) and in Theorem 3.5 (sufficiency of the eligibility condition).

One can hope that the configurations and the eligibility property can be
rephrased in terms of more general notions common for all Riemannian symmetric
spaces, e.g. facets or parabolic root sub-systems. This would be useful in view of
a possible generalization of Theorem 1.6 to other symmetric spaces.

2. A necessary condition for the existence of the density

In this section, we will show (Proposition 2.2) that if X and Y are not eligible then
µX,Y does not have a density with respect to the Lebesgue measure. The heuristic
behind the proof is simple: when we decompose properly the factor K which
appears in a(eX K eY ), a good portion may commute with either eX or eY if X or
Y have blocks of repeated diagonal values (noting that a(k g) = a(g) = a(g k) for
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every k ∈ K ). Indeed, what is left may not be enough to ensure that a(eX K eY )
has dimension equal to the rank n− 1.

We will therefore decompose K in two ways; one that is justified by Lemma
2.1 and one that corresponds to the Cartan decomposition of K = SU(n,F) (see
equation (9)).

Lemma 2.1. Suppose that 1 < q < n. We have SU(n,F) = K1 K2 K3 where

K1 =

{[
k

′
1 0
0 Iq−1

]
: k

′

1 ∈ SU(n + 1− q,F)

}
, (6)

K2 =

{[
1 0
0 k

′
2

]
: k

′

2 ∈ SU(n− 1,F)

}
, (7)

K3 =

{[
k

′
3 0
0 In−q

]
: k

′

3 ∈ SU(q,F)

}
. (8)

Proof. Let k ∈ SU(n,F). For i ≥ q + 1, let vi = k ei where ei is the i-th

vector of the standard basis. There exists k1 =

[
k

′
1 0
0 Iq−1

]
∈ K1 such that

k1 [vq+1, . . . ,vn] =

[
01,n−q

C
(1)
n−1,n−q

]
where the notation Mi,j means that the matrix

M is of size i × j . Indeed, it suffices that the first row of k
′
1 be a unitary vector

in Fn+1−q perpendicular to the n− q vectors v
′
i, i ≥ q + 1, where v

′
i contains the

first n + 1− q entries of vi .

We can then find k
(1)
2 =

[
1 0
0 k

′
2

]
∈ K2 such that k

(1)
2 k1 [vq+1, . . . ,vn] =[

02,n−q

C
(2)
n−2,n−q

]
. Indeed, it suffices that the first row of k

′
2 be a unitary vector

perpendicular to all the columns in C(1) . In the same fashion, we can find

k
(2)
2 =

[
I2 0
0 k

′′
2

]
∈ K2 such that k

(2)
2 k

(1)
2 k1 [vq+1, . . . ,vn] =

[
03,n−q

C
(3)
n−3,n−q

]
(the

first row of k
′′
2 being perpendicular to the columns of C(2) ).

Finally, we obtain

k2︷ ︸︸ ︷
k

(q−1)
2 . . . k

(1)
2

with k
(i)
2 ∈K2

k1 [vq+1, . . . ,vn] =

[
0q,n−q

C
(q)
n−q,n−q

]

that is, k2 k1 k [eq+1, . . . , en] =

[
0
C

]
, where C = C(q) .

Hence, k2 k1 k =

[
A 0
B C

]
=

[
A 0
0 C

]
=

[
I 0
0 C

] [
A 0
0 I

]
since

k2k1k ∈ SU(n,F). This means that k2 k1 k ∈ K2 K3 and the lemma follows.

We now prove a necessary condition for the existence of the density of the
measure µX,Y :
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Proposition 2.2. If X and Y are not eligible (Definition 1.3) then the measure
µX,Y is not absolutely continuous with respect to the Lebesgue measure on a.

Proof. If one of X or Y is zero then SX,Y = X + Y and the density does not
exist. If n = 2 then X and Y are eligible if and only if they are nonzero. In this
case, the result is clear. We can therefore assume that n > 2 and that X and Y
are nonzero.

Suppose first that n > 2 is even and that X = a

[
In/2 0
0 −In/2

]
, Y =

b

[
In/2 0
0 −In/2

]
. For k ∈ SU(n,F), we have the Cartan decomposition of

SU(p + q,F)/S(U(p,F)×U(q,F)) with p = q = n/2 (refer to [7, Page 518])

k =

[
A1 0
0 A2

]
e

24 0 R
−R 0

35 [
A3 0
0 A4

]
(9)

where R is a real diagonal matrix of size (n/2) × (n/2) and Ai ∈ SU(n/2,F),
i = 1, . . . 4.

Therefore, with X, Y as above, we have

a(eXk eY ) = a

eX

[
A1 0
0 A2

]
e

24 0 R
−R 0

35 [
A3 0
0 A4

]
eY


= a

[
A1 0
0 A2

]
eXe

24 0 R
−R 0

35
eY

[
A3 0
0 A4

]
= a

eXe

24 0 R
−R 0

35
eY

 .

As R varies along all real diagonal matrices of size (n/2) × (n/2), we can only
obtain a set of dimension at most n/2 < n− 1. Hence, the interior of a

(
eX K eY

)
is empty.

Suppose now that pi + qj > n for some i and j . We can assume that
1 ≤ pi ≤ qj (from Remark 1.1). Choose w1 , w2 ∈ W such that the first pi

diagonal entries of w1 · X are Xi and the first qj diagonal entries of w2 · Y are
Yj . By applying Lemma 2.1 to the matrix k̃ below, we have

a
(
eXkeY

)
= a

w−1
1 ew1·X

ek︷ ︸︸ ︷
w1kw−1

2 ew2·Y w2

 = a
(
ew1·X k̃ew2·Y

)

= a

(
ew1·X

[
A1 0
0 Iqj−1

] [
1 0
0 A2

] [
A3 0
0 In−qj

]
ew2·Y

)
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(with A1 ∈ SU(n + 1− qj,F), A2 ∈ SU(n− 1,F) and A3 ∈ SU(qj,F))

= a

([
A1 0
0 Iqj−1

]
ew1·X

[
1 0
0 A2

]
ew2·Y

[
A3 0
0 In−qj

])
(10)

= a

(
ew1·X

[
1 0
0 A2

]
ew2·Y

)
. (11)

In (10), we used the fact that n + 1 − qj ≤ pi and therefore that

[
A1 0
0 Iqj−1

]
commutes with ew1·X . Similarly,

[
A3 0
0 In−qj

]
commutes with ew2·Y . The for-

mula (11) implies that all the elements H ∈ a
(
eXKeY

)
have a diagonal entry

equal to Xi + Yj and therefore that a
(
eXKeY

)
has empty interior.

3. Sufficiency of the eligibility condition

We will first discuss how proving the case F = R will suffice. Let SF
X,Y =

a(eX SU(n,F) eY ). The inclusions

SO(n) = SU(n,R) ⊂ SU(n) = SU(n,C) ⊂ SU(n,H)

imply that

SR
X,Y ⊂ SC

X,Y ⊂ SH
X,Y ⊂ a+.

By Remark 1.1, if we show that for eligible X, Y ∈ a , the set SR
X,Y has a nonempty

interior, it follows that the measure µX,Y is absolutely continuous in all three cases
m = 1, 2, 4.

Remark 3.1. In [5, Remark 2.15], we argued that the three sets SF
X,Y are

actually equal. An important ingredient in that result was the convexity of the
set a(eX K eY ), a consequence of [9, Theorem 1.3]. The equality of the three sets
SF

X,Y also follows from [9, Theorem 1.2].

From now on, we consider the symmetric spaces SL(n,R)/SO(n). Let Ei,j

be the matrix of size n × n which is zero everywhere except for the entry (i, j)
where it is 1. Define

UX = so(n) + eX
so(n) e−X

VX = span{Ei,j : Xi 6= Xj}, if X = diag[X1, . . . , Xn].

Lemma 3.2. The following inclusion holds:

VX ⊂ UX .

Proof. Let i 6= j . Then Ei,j − Ej,i ∈ so(n) and eX(Ei,j − Ej,i)e
−X =

eXi−XjEi,j − eXj−XiEj,i . It follows that when Xi 6= Xj , we have Ei,j ∈ UX .
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We will also need the following property:

Lemma 3.3. Let w ∈ W . Then

Ad(w)VX = Vw·X .

Proof. The proof is clear using the fact that VX =
⊕

α∈Σ,α(X) 6=0

gα .

Proposition 3.4. If there exists k ∈ SO(n) such that

WX,Y (k) := so(n) + VX + Ad(k) VY = sl(n,R) (12)

then the measure µX,Y is absolutely continuous with respect to the Lebesgue mea-
sure on a.

Proof. Consider the analytic map T : K ×K ×K → SL(n,R) defined by

T (k1, k2, k3) = k1 eX k2 eY k3.

Observe that T (K × K × K) is equal to the support of the measure
mX,Y = δ\

eX ? δ\
eY . We want to show that the derivative of T is surjective for

some choice of k = (k1, k2, k3). The existence of k ensures that T (K ×K ×K)
contains a nonempty open set (refer to [7, p. 479]), and it follows that mX,Y and
µX,Y are absolutely continuous (see part 2. of Remark 1.1).

Let A, B, C ∈ so(n). The derivative of T at k in the direction of (A, B, C)
equals

dTk(A, B, C) =
d

dt

∣∣
t=0

etAk1 eX etBk2 eY etCk3

= A k1 eX k2 eY k3 + k1 eX B k2 eY k3 + k1 eX k2 eY C k3. (13)

We now transform the space of all matrices of the form (13) without mod-
ifying its dimension:

dim{A k1 eX k2 eY k3 + k1 eX B k2 eY k3 + k1 eX k2 eY C k3 : A, B, C ∈ so(n)}
= dim{k−1

1 A k1 eX k2 eY + eX B k2 eY + eX k2 eY C : A, B, C ∈ so(n)}
= dim{A eX k2 eY + eX B k2 eY + eX k2 eY C : A, B, C ∈ so(n)}
= dim{e−X A eX + B + k2 eY C e−Y k−1

2 : A, B, C ∈ so(n)}.

The vector space in the last line equals
e−X so(n) eX + so(n) + k2 eY so(n) e−Y k−1

2 = U−X + Ad(k2)UY .

Note that UX = U−X , so our problem is equivalent to showing that
UX + Ad(k)UY = sl(n,R) for some k ∈ K .

By Lemma 3.2, the result follows from (12).

The following theorem is the crucial result of this section:
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Theorem 3.5. Let G = SL(n,R) and let X , Y ∈ a. If X and Y are eligible
then there exists a matrix k ∈ SO(n) such that WX,Y (k) = so(n)+VX+Ad(k) VY =
sl(n,R).

Before we proceed with the proof of Theorem 3.5, we point out a few useful
reductions to the problem.

Reductions

1. The result of Theorem 3.5 only depends on the configurations of X and Y ,
i.e., on the partitions p and q associated to X and Y .

Indeed, suppose that we have (12) for X and Y fixed. Let w1, w2 ∈ W .
Then, using Lemma 3.3, we get

Ad(w1)so(n) + Vw1·X + Ad(w1kw−1
2 )Vw2·Y = Ad(w1)sl(n,R)

which gives Ww1·X,w2·Y (w1kw−1
2 ) = sl(n,R).

2. Suppose that WX,Y (k) = sl(n,R) for some k and that X has the configura-
tion p = [p1, . . . , pr] . Suppose that X̃ has the configuration

p = [p1, . . . , p
′
i, p

′′
i , . . . , pr]

where pi = p′i + p′′i . Then WX̃,Y (k) = sl(n,R). This is a consequence of the
inclusion VX ⊂ VX̃ . The same observation holds for Y .

3. Without loss of generality, we may assume that p1 ≤ q1 (see part 1. of
Remark 1.1).

4. We can always assume that the configuration of Y consists of two blocks.
Indeed, suppose that X and Y corresponding to partitions p and q are
eligible and that p1 ≤ q1 . Then p1 + q2 + · · · + qs ≤ q1 + q2 + · · · + qs = n .
Therefore, using the reduction 2 above, we can consider instead of p and q ,
the partitions p and q′ = [q1, n − q1] if q1 ≥ n − q1 or q′ = [n − q1, q1] if
q1 < n− q1 , which are also eligible, except in the case

p = [n/2, n/2], q = [n/2, q2, . . . , qs], s ≥ 3.

In that situation, we will exchange the roles of X and Y .

5. In order to simplify the proof, it is convenient to consider symmetrized
matrices Ei,j . Let ES

i,j = Ei,j + Ej,i if i 6= j and let ES
i,i = Ei,i . We

shall denote by V S
X the subspace of symmetric matrices in VX

V S
X = span{ES

i,j : Xi 6= Xj}, if X = diag[X1, . . . , Xn].

Similarly we define V S
Y and slS(n,R) (the space of real symmetric matrices

of trace 0). If we show that

W S
X,Y (k) := V S

X + Ad(k) V S
Y = sl

S(n,R)

then (12) follows by V S
X ⊂ VX , V S

Y ⊂ VY , so(n) ⊂ WX,Y (k) and so(n) ⊕
slS(n,R) = k⊕ p = sl(n,R).
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Taking into account all the reductions we will prove by induction the following
result:

Theorem 3.6. Let G = SL(n,R) and let X , Y ∈ a with respective configura-
tions p and q , where q = [q1, q2] and p1 ≤ q1 . If X and Y are eligible then there
exists a matrix k ∈ SO(n) such that

V S
X + Ad(k) V S

Y = sl
S(n,R). (14)

In the proof we will use the following definition and properties of total
matrices and technical Lemma 3.10:

Definition 3.7. We will say that the n × n matrix A is total if all the
submatrices

AI = (aij)i,j∈I , ∅ 6= I ⊂ {1, 2, . . . , n}

are nonsingular.

Proposition 3.8. The matrices which are total in K = SO(n) form an open
dense subset of K with Haar measure 1.

Proof. Let I ⊂ {1, 2, . . . , n} . We define fI(A) = det AI and f(A) =
∏

I fI(A).
Then f : SO(n) 7→ R is a non-vanishing analytic function (f(In) = 1). The zeros
of f form a closed set of zero Haar measure in K (refer to [3, Proposition 2.2]).

Lemma 3.9. Let 1 ≤ r < n and S = span{ES
1,r+1, . . . , E

S
1,n}. Denote

πS : slS(n,R) 7→ S the orthogonal projection. If k =

[
1 0
0 k′

]
∈ K where

k′ ∈ SO(n− 1) is total then

πS(Ad(k)S) = S.

Proof. Let k =

 1 0 0
0 Ar−1,r−1 Br−1,n−r

0 Cn−r,r−1 Dn−r,n−r

 and s =

 0 0 U1,n−r

0 0 0
UT

1,n−r 0 0

 ∈

S .

Then we compute easily that

πS(kskt) =

 0 0 U DT

0 0 0
D UT 0 0

 .

Since k′ is total, we have det(D) 6= 0 and therefore the rank of πS equals n−r .

For i 6= j , let ei,j(θ) ∈ SO(n) be defined as

ei,j(θ) = cos θ (Ei,i + Ej,j) + sin θ (Ej,i − Ei,j) +
∑
k 6=i,j

Ek,k.

Note that ei,j(θ) = ej,i(−θ).
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Lemma 3.10. The following formulas hold (different letters are assumed to
represent different values):

Ad(ei,j(θ)) ES
k,l = ES

k,l,

Ad(ei,j(θ)) ES
j,l = − sin θ ES

i,l + cos θ ES
j,l,

Ad(ei,j(θ)) ES
i,l = cos θ ES

i,l + sin θ ES
j,l,

Ad(ei,j(θ)) ES
i,j = − sin(2 θ) (Ei,i − Ej,j) + cos(2 θ) ES

i,j,

Ad(ei,j(θ)) Ei,i = cos2 θ Ei,i + sin2 θ Ej,j +
1

2
sin(2 θ) ES

i,j,

Ad(ei,j(θ)) Ej,j = sin2 θ Ei,i + cos2 θ Ej,j −
1

2
sin(2 θ) ES

i,j.

Proof. The formulas of the lemma follow by direct elementary computations.

Proof of Theorem 3.6: We will show a slightly more general version of the
formulas (12) and (14). We will not suppose that the traces tr X and tr Y are
zero. Let Diag(n) ≡ Rn denote the space of all diagonal n × n real matrices.
For any X, Y ∈ Diag(n), the definition of eligibility, of the spaces VX , VY , the
statement of Lemma 3.3 and all the preceding reductions remain valid.

We will prove the following statement:

For all eligible X, Y ∈ Diag(n), there exists k ∈ SO(n) such that

V S
X + Ad(k) V S

Y = sl
S(n,R) (15)

using induction with respect to n ≥ 2. In particular, this provides a new proof for
the cases X, Y ∈ a+ , X ∈ a+ and Y 6= 0 or X 6= 0 and Y ∈ a+ , a result that is
known for all Riemannian symmetric spaces from [3].

Case n = 2. The configurations of eligible X and Y are p = q = [1, 1]. We
then have VX = VY = span{ES

1,2} . By Lemma 3.10, if we take k = e1,2(θ) with
θ ∈ (0, π/2), we have

WX,Y (k) = span{ES
1,2, E1,1 − E2,2} = sl

S(2,R).

Choice of predecessors X ′, Y ′ for eligible X,Y ∈ Diag(n). Suppose that X, Y
have configurations p = [p1, p2, . . . , pr], q = [q1, q2] respectively, with p1 ≤ q1 .
Denote by xi the pi equal diagonal components of X , i = 1, . . . , r , and by yi the
qi equal diagonal components of Y , i = 1, 2. We will prove the formula (15) for
the following orderings of elements of X and Y :

X = diag[x1, x2, . . . , xr,

p1−1︷ ︸︸ ︷
x1, . . . , x1], Y = diag[

q1︷ ︸︸ ︷
y1, y1, . . . , y1,

n−q1︷ ︸︸ ︷
y2, . . . , y2]. (16)

We define X ′, Y ′ ∈ Diag(n− 1) by suppressing the first elements of X and
Y

X ′ = diag[x2, . . . , xr,

p1−1︷ ︸︸ ︷
x1, . . . , x1], Y ′ = diag[

q1−1︷ ︸︸ ︷
y1, . . . , y1,

n−q1︷ ︸︸ ︷
y2, . . . , y2].
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We apply this procedure as long as p1 > 1, q1 > 1 and n ≥ 2. It can be described
as the shortening by 1 of the longest blocks of X and Y . After a finite number
of such shortenings, one or both of reduced vectors will have a configuration 1m ,
m ≥ 2. Shortening of 1m then leads to 1m−1 . In the last step of the reductions,
we will end up with the configurations [1, 1] and [1, 1] for X and Y , considered
in the first step of the induction.

X ′ and Y ′ are eligible. In order to show this, we consider several possible cases.
We call p′ and q′ the configurations of X ′ and Y ′ and p′1 , q′1 their maximal
elements.

• If p1 > p2 and q1 > q2 , then p′1 = p1 − 1 and q′1 = q1 − 1. We have
p′1 + q′1 = p1 + q1 − 2 ≤ n − 2. The last inequality guarantees that p′ =
[(n− 1)/2, (n− 1)/2] = q′ does not happen.

• If p1 > p2 and q1 = q2 = n/2 then p′1 = p1 − 1 and q′1 = q2 = n/2. The
sum p′1 + q′1 = p1 + q1 − 1 ≤ n − 1. Note that we then have configuration
q′ = [n/2, (n/2)− 1] 6= [(n− 1)/2, (n− 1)/2].

• If p1 = p2 and q1 > q2 , then p′1 = p2 = p1 and q′1 = q1 − 1. We get
p′1+q′1 = p1+q1−1 ≤ n−1. If p1 > 1, then the configuration p′ contains two
different bloc lengths p2−1 and p2 , so it is not equal to [(n−1)/2, (n−1)/2].
If p1 = 1, then p = 1n and p′ = 1n−1 or n = 2.

• If p1 = p2 and q1 = q2 = n/2 then p1 < n/2 unless n = 2. We have
p′1 + q′1 = p1 + q1 < n and q′ 6= [(n− 1)/2, (n− 1)/2].

From sl(n−1,R) to sl(n,R). The induction hypothesis can be applied to X ′ and
Y ′ . Let k′ ∈ SO(n− 1) be such that

V S
X′ + Ad(k′)V S

Y ′ = sl
S(n− 1,R). (17)

It is easy to see that (17) remains true in an open neighbourhood containing
k′ . Using Proposition 3.8, this allows to assume that k′ is total.

Recall that X = diag[x1, X
′] and Y = diag[y1, Y

′] . We “shift” and embed
the spaces V S

X′ and V S
Y ′ in slS(n,R) in the following way:

Ṽ S
X′=span{ES

i+1,j+1 ∈ sl(n,R):X ′
i 6=X ′

j}, Ṽ S
Y ′=span{ES

i+1,j+1∈sl(n,R):Y ′
i 6=Y ′

j },

and we define k0 ∈ SO(n) by

k0 =

[
1 01,n−1

0n−1,1 k′

]
.

Then (17) implies that

Ṽ S
X′ + Ad(k0)Ṽ

S
Y ′ =

[
0 01,n−1

0n−1,1 slS(n− 1,R)

]
. (18)

New elements in VX and VY . In order to prove (15), we must now use the elements
of V S

X and V S
Y which do not come from Ṽ S

X′ or Ṽ S
Y ′ . We define

NX = {ES
1,2, . . . , E

S
1,n−p1+1}, NY = {ES

1,q1+1, . . . , E
S
1,n}.
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We have V S
X = span(NX) ⊕ Ṽ S

X′ and V S
Y = span(NY ) ⊕ Ṽ S

Y ′ . Let P = NX ∩ NY .
Observe that n− p1 + 1 ≥ q1 + 1, since n ≥ p1 + q1 , thus E1,q1+1 ∈ P . Note that
(NX \ P ) ∪NY = {ES

1,2, . . . , E
S
1,n} . Define

V ′
X := span(NX \ P )⊕ Ṽ S

X′ .

We shall prove (15) in three steps.

Step 1. We have

V ′
X + Ad(k0)V

S
Y =

[
0 Rn−1

Rn−1 slS(n− 1,R)

]
∩ sl

S(n,R). (19)

Proof of Step 1. By matrix multiplication we check that

Ad(k0)NY ⊂
[

0 Rn−1

Rn−1 0n−1,n−1

]
. (20)

We use Lemma 3.9 with r = q1 and S = span(NY ). Given that {ES
1,2, . . . , E

S
1,q1
} ⊂

V ′
X , it follows that

S = πS(Ad(k0)S) ⊂ span{ES
1,2, . . . , E

S
1,q1
}+ Ad(k0)S ⊂ V ′

X + Ad(k0)V
S
Y .

and the equation (18) gives (19).

Step 2. For θ > 0 sufficiently small, we have

Ad(e1,q1+1(θ))V
′
X + Ad(k0)V

S
Y =

[
0 Rn−1

Rn−1 slS(n− 1,R)

]
∩ sl

S(n,R). (21)

Proof of Step 2. The formula (21) holds for θ = 0 by (19). By Lemma 3.10 and
by (20), for any θ we have the inclusion

Ad(e1,q1+1(θ))V
′
X + Ad(k0)V

S
Y ⊂

[
0 Rn−1

Rn−1 slS(n− 1,R)

]
∩ sl

S(n,R). (22)

Let d(θ) := dim(Ad(e1,q1+1(θ))V
′
X + Ad(k0)V

S
Y ).

We have d(0) = n−1+dim(slS(n−1,R)). The equality d(θ) = d(0) is equivalent
to non-nullity of an appropriate determinant continuous in θ . Thus d(θ) =
n − 1 + dim(slS(n − 1,R) holds for θ in a neighborhood of 0. Together with
(22), this implies that formula (21) holds for θ small enough.

Step 3. Fix θ ∈ (0, π/2) for which formula (21) holds and denote k1 = e1,q1+1(θ).
Then

Ad(k1)V
S
X + Ad(k0)V

S
Y = sl(n,R). (23)

Proof of Step 3. Recall that E1,q1+1 ∈ P ⊂ NX ⊂ V S
X . By Lemma 3.10,

Ad(k1)E
S
1,q1+1 = − sin(2 θ) (E1,1 − Eq1+1,q1+1) + cos(2 θ) ES

1,q1+1,

so the following inclusion deduced from (21) is strict:[
0 Rn−1

Rn−1 slS(n− 1,R)

]
∩ sl

S(n,R) ⊂ Ad(k1)V
S
X + Ad(k0)V

S
Y .
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Consequently,

dim

([
0 Rn−1

Rn−1 slS(n− 1,R)

]
∩ sl

S(n,R)

)
< dim(Ad(k1)V

S
X + Ad(k0)V

S
Y ).

This implies that dim(Ad(k1)V
S
X + Ad(k0)V

S
Y ) = dim(slS(n,R)) and the

formula (23) follows.

Proof of (15). From the formula (23) we get

V S
X + Ad(k−1

1 k0)V
S
Y = sl

S(n,R),

thus (15) is true for k−1
1 k0 . This ends the proof of Theorem 3.6. Together with

the necessity condition proved in Section 2, the proof of the main Theorem 1.6 is
completed.

We illustrate the proof with an example.

Example 3.11. Let n = 5. Consider X and Y with configurations [2, 2, 1] and
[3, 1, 1] respectively. The vectors X and Y are eligible. By reduction 2, we can
suppose that the configurations of X and Y are [2, 2, 1] and [3, 2] respectively.
We order X and Y in the following way:

X = diag[x1, x2, x2, x3, x1], Y = diag[y1, y1, y1, y2, y2].

The predecessors of X and Y in the induction procedure are

X ′ = diag[x2, x2, x3, x1], Y ′ = diag[y1, y1, y2, y2]

and their configurations are [2, 1, 1] and [2, 2] respectively.

Using induction, we know that there exists k′ ∈ SO(4) which can be chosen
to be total such that

V S
X′ + Ad(k′) V S

Y ′ = sl
S(4,R).

Define k0 =

[
1 0
0 k′

]
. We shift the spaces V S

X′ and V S
Y ′

Ṽ S
X′ = span{ES

2,4, E
S
2,5, E

S
3,4, E

S
3,5, E

S
4,5}, Ṽ S

Y ′ = span{ES
2,4, E

S
2,5, E

S
3,4, E

S
3,5}

and we deduce from the induction hypothesis the analogue of the formula (18),
namely

Ṽ S
X′ + Ad(k0)Ṽ

S
Y ′ =

[
0 0
0 slS(4,R)

]
.

The “new” elements in VX and VY are

NX = {E1,2, E1,3, E1,4}, NY = {E1,4, E1,5}

and their intersection P = NX ∩NY = {E14} . The space V ′
X is defined by

V ′
X := span{E1,2, E1,3} ⊕ Ṽ S

X′ .
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In Step 1 of the proof of Theorem 3.6 we show that

V ′
X + Ad(k0) V S

Y =




0 a b c d
a
b
c slS(4,R)
d

 : a, b, c, d ∈ R

 .

In Step 2, we justify the fact that acting with e1,4(θ) on V ′
X does not affect the

last equality if θ is small enough

Ad(e1,4(θ))V
′
X + Ad(k0) V S

Y =




0 a b c d
a
b
c slS(4,R)
d

 : a, b, c, d ∈ R

 .

Finally, in the Step 3, we adjoin the element E1,4 to V ′
X . Observing that

Ad(e1,4(θ))E
S
1,4 = − sin(2 θ) (E1,1 − E4,4) + cos(2 θ) ES

1,4,

we justify the fact that a diagonal element missing in Ad(e1,4(θ))V
′
X +Ad(k0) V S

Y to
make it equal to slS(5,R) is now generated in Ad(e1,4(θ))V

S
X +Ad(k0) V S

Y . Finally
we get

V S
X + Ad(e1,4(−θ)k0) V S

Y = sl
S(5,R)

for the vectors X = diag[x1, x2, x2, x3, x1] and Y = diag[y1, y1, y1, y2, y2] . If we
want X to be ordered X̃ = [x1, x1, x2, x2, x3] , we use w1 ∈ W exchanging the first
and the fifth coordinates when acting on X . We can write w1 as the following
matrix of SO(5):

w1 = e1,2(π/2) e2,3(π/2) e3,4(π/2) e4,5(π/2).

Finally

V S
X̃

+ Ad(w−1
1 e1,4(−θ)k0) V S

Y = sl
S(5,R).

If we go deeper in this induction procedure, in order to get the case X ′ and
Y ′ , we order their components as follows

diag[x2, x3, x1, x2] and diag[y1, y1, y2, y2]
and we boil down to

X ′′ = diag[x3, x1, x2] and Y ′′ = diag[y1, y2, y2]

with configurations [1, 1, 1] and [2, 1]. One more reduction of ′′ and ′′ with their
components ordered as diag[x1, x2, x3] and diag[y2, y2, y1] leads to the initial case
with configurations p = q = [1, 1].

If we go forward in the induction procedure, the case of configurations
[2, 2, 1], [3, 2] that we have proved, implies Theorem 3.6 for configurations [3, 2, 1]
and [3, 3], etc.
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