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Abstract. Let S̃p(n, R) be the universal covering of the symplectic group.
In this paper, we study the restrictions of the degenerate unitary principal
series I(ε, t) of S̃p(n, R) onto S̃p(p, R)S̃p(n − p, R). We prove that if n ≥ 2p ,
I(ε, t)|fSp(p,R)fSp(n−p,R)

is unitarily equivalent to an L2 -space of sections of a

homogeneous line bundle L2(S̃p(n − p, R) ×gGL(n−2p)N
Cε,t+ρ) (see Theorem

1.1). We further study the restriction of complementary series C(ε, t) onto
Ũ(n − p)S̃p(p, R). We prove that this restriction is unitarily equivalent to
I(ε, t)|

Ũ(n−p)fSp(p,R)
for t ∈ iR . Our results suggest that the direct integral

decomposition of C(ε, t)|fSp(p,R)fSp(n−p,R)
will produce certain complementary

series for S̃p(n− p, R) ([He09]).
Mathematics Subject Classification 2000: 22E45, 43A85.
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1. Introduction

Let S̃p(n, R) be the universal covering of Sp(n, R). S̃p(n, R) is a central extension
of Sp(n, R):

1 → C → S̃p(n, R) → Sp(n, R) → 1,

where C ∼= Z . The unitary dual of C is parametrized by a torus T . For each
κ ∈ T , denote the corresponding unitary character of C by χκ . We say that a
representation π of S̃p(n, R) is of class κ if π|C = χκ . Since C commutes with

S̃p(n, R), for any irreducible representation π of S̃p(n, R), π|C = χκ for some κ .

Denote the projection S̃p(n, R) → Sp(n, R) by p . For any subgroup H of
Sp(n, R), denote the full inverse image p−1(H) by H̃ . We adopt the notation
from [Sa]. Let P be the Siegel parabolic subgroup of Sp(n, R). One dimensional
characters of P̃ can be parametrized by (ε, t) where ε ∈ T and t ∈ C . Let I(ε, t)

be the representation of S̃p(n, R) induced from the one dimensional character Cε,t
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parametrized by (ε, t) of P̃ . If t ∈ iR and t 6= 0, I(ε, t) is unitary and irreducible.
I(ε, t) is called unitary degenerate principal series. If t is real, then I(ε, t) has a
nontrivial invariant Hermitian form. Sahi gives a classification of all irreducible
unitarizable I(ε, t). If I(ε, 0) is irreducible, there are complementary series C(ε, t)
for t in a suitable interval ([Sa]). Some of these complementary series are ob-
tained by Kudla-Rallis [KR], Østed-Zhang [OZ], Branson-Østed-Olafsson [BOO],
Lee [Lee]. Strictly speaking C(ε, t) should be called degenerate complementary
series because there are complementary series associated with the principal series,
which should be called complementary series ([Kos], [ABPTV]). Throughout this
paper, complementary series will mean C(ε, t).

Let (Sp(p, R), Sp(n − p, R)) be a pair of symplectic groups diagonally embed-
ded in Sp(n, R) (see Definition 5.1). Let U(n) be a maximal compact subgroup
such that Sp(n − p, R) ∩ U(n) and Sp(p, R) ∩ U(n) are maximal compact sub-
groups of Sp(n− p, R) and Sp(p, R) respectively. Denote Sp(n− p, R)∩U(n) by
U(n − p) and Sp(p, R) ∩ U(n) by U(p). The main results of this paper can be
stated as follows.

Theorem 1.1. Suppose p ≤ n − p and t ∈ iR. Let Pp,n−2p be a maximal
parabolic subgroup of Sp(n− p, R) with Langlands decomposition Sp(p, R)GL(n−
2p)Np,n−2p . Let Mε,t be the homogeneous line bundle

S̃p(n− p, R)×gGL(n−2p)Np,n−2p
Cε,t+ρ → Sp(n− p, R)/GL(n− 2p)Np,n−2p

(∼= Sp(p, R)U(n− p)/U(p)O(n− 2p)),
(1)

where ρ = n+1
2

. Let dg1d[k2] be an Sp(p, R)U(n− p)-invariant measure. Then

I(ε, t)|fSp(p,R)fSp(n−p,R)
∼= L2(Mε,t, dg1d[k2]),

on which S̃p(n− p, R) acts from the left and S̃p(p, R) acts from the right.

Theorem 1.2. Let C(ε, t) be a complementary series representation. Suppose
that p ≤ n− p. Then

C(ε, t)|Ũ(n−p)eSp(p,R)
∼= I(ε, 0)|Ũ(n−p)eSp(p,R)

∼= I(ε, iλ)|Ũ(n−p)eSp(p,R) (λ ∈ R).

p = [n
2
] is the best possible value for such a statement. In particular, for

S̃p(2m + 1, R)
I(ε, 0)|fSp(m+1,R) � C(ε, t)|fSp(m+1,R).

To see this, let L2(S̃p(n, R))κ be the set of functions with

f(zg) = χκ(z)f(g) (z ∈ C, g ∈ S̃p(n, R));

‖f‖2 =

∫
Sp(n,R)

|f(g)|2d[g] < ∞ (g ∈ S̃p(n, R), [g] ∈ Sp(n, R)).
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We say that a representation of class κ is tempered if it is weakly contained in
L2(S̃p(n, R))κ . By studying the leading exponents of I(ε, 0) and C(ε, t), it can
be shown that I(ε, 0)|fSp(m+1,R) is tempered and C(ε, t)|fSp(m+1,R) is not tempered.
Therefore

I(ε, 0)|fSp(m+1,R) � C(ε, t)|fSp(m+1,R).

The author would like to thank Professors G. Olafsson and J. Lawson for very
helpful discussions.

2. A Lemma on Friedrichs Extension

Let S be a semibounded densely defined symmetric operator on a Hilbert space
H . S is said to be positive if (Su, u) > 0 for every nonzero u ∈ D(S). Suppose
that S is positive. For u, v ∈ D(S), define

(u, v)S = (u, Sv),

‖u‖2
S = (u, Su).

Let HS be the completion of D(S) under the norm ‖ ‖S . Clearly HS+I ⊆ H and
HS+I ⊆ HS .

The operator S+I has a unique self-adjoint extension (S+I)0 in H , the Friedrichs
extension. (S + I)0 has the following properties

• D(S) ⊆ D((S + I)0) ⊆ HS+I ⊆ H ;
• (u, v)S+I = (u, (S + I)0v) for all u ∈ HS+I and v ∈ D((S + I)0)

(see Theorem in Page 335 [RS]). Now consider (S + I)0 − I . It is an self-adjoint
extension of S . It is nonnegative. By the spectral decomposition and functional
calculus, (S + I)0 − I has a unique square root T (See Pg. 127. 128. [RS]).

Lemma 2.1. Let S be a positive densely defined symmetric operator. Then the
square root of (S + I)0 − I extends to an isometry from HS into H .

Proof. Clearly, the spectrum of T is contained in the nonnegative part of the
real line. By spectral decomposition D((S + I)0 − I) = D((S + I)0) ⊆ D(T ) and
TT = (S + I)0 − I . In addition for any u, v ∈ D(S) ⊆ D((S + I)0),

(Tu, Tv) = (u, TTv) = (u, (S + I)0v − v) = (u, Sv) = (u, v)S.

So T is an isometry from D(S) into H . Since D(S) is dense in HS , T extends
to an isometry from HS into H .

3. Degenerate Principal Series of S̃p(n, R)

Fix the Lie algebra:

sp(n, R) = {
(

X Y
Z −X t

)
| Y t = Y, Zt = Z}
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and the Siegel parabolic algebra:

p = {
(

X Y
0 −X t

)
| Y t = Y }.

Fix the Levi decomposition p = l⊕ n with

l = {
(

X 0
0 −X t

)
| X ∈ gl(n, R)}, n = {

(
0 Y
0 0

)
| Y t = Y }.

Fix a Cartan subalgebra

a = {diag(H1, H2, . . . , Hn,−H1,−H2 . . . ,−Hn) | Hi ∈ R}.

Let Sp(n, R) be the symplectic group and P be the Siegel parabolic subgroup.
Set U(n) = Sp(n, R)∩O(2n) where O(2n) is the standard orthogonal group. Let
LN be the Levi decomposition of P and A be the analytic group generated by
the Lie algebra a . Clearly, L ∼= GL(n, R) and L∩U(n) ∼= O(n). On the covering
group, we have L̃ ∩ Ũ(n) = Õ(n). Recall that

Ũ(n) = {(x, g) | g ∈ U(n), exp 2πix = det g, x ∈ R}.

Therefore
Õ(n) = {(x, g) | g ∈ O(n), exp 2πix = det g, x ∈ R}.

Notice that for g ∈ O(n), det g = ±1 and x ∈ 1
2
Z . We have the following exact

sequence

1 → SO(n) → Õ(n) → 1

2
Z → 1.

Consequently, we have

1 → GL0(n, R) → L̃ → 1

2
Z → 1.

In fact,

L̃ = {(x, g) | g ∈ L, exp 2πix =
det g

| det g|
, x ∈ R}.

The one dimensional unitary characters of 1
2
Z are parametrized by the one dimen-

sional torus T . Identify T with [0, 1). Let µε be the character of 1
2
Z corresponding

to ε ∈ [0, 1) Now each character µε yields a character of L̃ , which in turn, yields
a character of P̃ . For simplicity, we retain µε to denote the character on L̃ and
P̃ . Let ν be the det-character on L̃0 , i.e.,

ν(x, g) = | det g| (x, g) ∈ L̃. (2)

Let
I(ε, t) = Ind

fSp(n,R)

P̃
µε ⊗ νt

be the normalized induced representation with ε ∈ [0, 1) and t ∈ C . This is
Sahi’s notation in the case of the universal covering of the symplectic group ([Sa]).
I(ε, t) is a degenerate principal series representation. Clearly, I(ε, t) is unitary
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when t ∈ iR .

When t is real and I(ε, t) is unitarizable, the unitary representation, often denoted
by C(ε, t), is called a complementary series representation. Various complemen-
tary series of Sp(n, R) and its metaplectic covering was determined explicitly or
implicitly by Kudla-Rallis, Ørsted-Zhang, Brason-Olafsson-Ørsted and others. See
[KR], [BOO], [OZ] and the references therein. The complete classification of the
complementary series of the universal covering is due to Sahi.

Theorem 3.1 (Thm A, [Sa]). Suppose that t is real. For n even, I(ε, t) is
irreducible and unitarizable if and only if 0 < |t| < |1

2
− |2ε− 1||. For n odd and

n > 1, I(ε, t) is irreducible and unitarizable if and only if 0 < |t| < 1
2
−|1

2
−|2ε−1||.

One can easily check that the complementary series exist if ε 6= 0, 1
2

for
n odd and n > 1 ; if ε 6= 1

4
, 3

4
for n even. It is interesting to note that com-

plementary series always exist unless I(ε, t) descends into a representation of the
metaplectic group. For the metaplectic group Mp(2n + 1, R), there are two com-
plementary series I(1

4
, t)(0 < t < 1

2
) and I(3

4
, t)(0 < t < 1

2
). For the metaplectic

group Mp(2n, R), there are two complementary series I(0, t)(0 < t < 1
2
) and

I(1
2
, t)(0 < t < 1

2
). These four complementary series are the “longest ”.

For n = 1, the situation is quite different. The difference was pointed out in
[KR]. For example, there are Bargmann’s complementary series representation for

I(0, t) (t ∈ (0, 1
2
)). The classification of the complementary series of S̃p(1, R) can

be found in [Bar], [Puk], [Howe].

Since our restriction theorem only makes sense for n ≥ 2, we will assume n ≥ 2
from now on. The parameters for the complementary series of S̃p(n, R) are
illustrated in Fig. 1.

4. The generalized compact model and The Intertwining Operator

Recall that

I∞(ε, t) ={f ∈ C∞(S̃p(n, R)) | f(gln) = (µε ⊗ νt+ρ)(l−1)f(g),

(g ∈ S̃p(n, R), l ∈ L̃, n ∈ N)}
(3)

where ρ = n+1
2

. Let X = S̃p(n, R)/P̃ . Then I∞(ε, t) consists of smooth sections
of the homogeneous line bundle Lε,t

S̃p(n, R)×P̃ Cµε⊗νt+ρ → X.

Since X ∼= Ũ(n)/Õ(n), Ũ(n) acts transitively on X . The function f ∈ I∞(ε, t) is
uniquely determined by f |Ũ(n) and vice versa. Moreover, the homogeneous vector
bundle Lε,t can be identified with Kε,t

Ũ(n)×Õ(n) Cµε⊗νt+ρ|Õ(n) → X
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Figure 1: Complementary Parameters (E, t)

naturally. Notice that the homogeneous line bundle Kε,t does not depend on the
parameter t . We denote this line bundle by Kε . The representation I∞(ε, t) can
then be modeled on smooth sections of Kε . This model will be called the general-
ized compact model.

Let d[k] be the normalized Ũ(n)-invariant measure on X . The generalized com-
pact model equips the smooth sections of Kε,t with a natural pre-Hilbert structure

(f1, f2)X =

∫
[k]∈X

f1(k)f2(k)d[k],

where k ∈ Ũ(n) and [k] ∈ X . It is easy to verify that f1(k)f2(k) is a function of
[k] and it does not depend on any particular choice of k . Notice that our situation
is different from the compact model since Ũ(n) is not compact. We denote the
completion of I∞ with respect to ( , )X by IX(ε, t).

Secondly, the action of Ũ(n) on Kε induces an orthogonal decomposition of
IX(ε, t):

IX(ε, t) = ⊕̂α∈2ZnV (α + ε(2, 2, . . . , 2)),

where V (α + ε(2, 2, . . . , 2)) is an irreducible finite dimensional representation of
Ũ(n) with highest weight α + ε(2, 2, . . . , 2) and α satisfies

α1 ≥ α2 ≥ . . . ≥ αn.

This is essentially a consequence of Helgason’s theorem. Let

V (ε, t) = ⊕α∈2ZnV (α + ε(2, 2, . . . , 2)).
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V (ε, t) possesses an action of the Lie algebra sp(n, R). It is the Harish-Chandra
module of I(ε, t). Clearly, V (ε, t) ⊂ I∞(ε, t) ⊂ IX(ε, t).

For each t , there is an S̃p(n, R)-invariant sesquilinear pairing of IX(ε, t) and
IX(ε,−t), namely,

(f1, f2) =

∫
X

f1(k)f2(k)d[k],

where f1 ∈ IX(ε, t) and f2 ∈ IX(ε,−t). If t ∈ iR , we obtain a S̃p(n, R)-invariant
Hermitian form which is exactly ( , )X . Since ( , )X is positive definite, IX(ε, t) is

a unitary representation of S̃p(n, R).

For each real t , the form ( , ) gives an sp(n, R)-invariant sesquilinear pairing of
V (ε, t) and V (ε,−t). In addition, there is an intertwining operator

A(ε, t) : V (ε, t) → V (ε,−t)

which preserves the action of sp(n, R) (see for example [BOO]). Define a Hermitian
structure ( , )ε,t on V (ε, t) by

(u, v)ε,t = (A(ε, t)u, v), (u, v ∈ V (ε, t)).

Clearly, ( , )ε,t is sp(n, R)-invariant. So A(ε, t) induces an invariant Hermitian
form on V (ε, t).

Now A(ε, t) can also be realized as an unbounded operator on IX(ε, t) as fol-
lows. For each f ∈ V (ε, t), define AX(ε, t)f to be the unique section of Lε,t such
that

(AX(ε, t)f)|Ũ(n) = (A(ε, t)f)|Ũ(n).

Notice that AX(ε, t)f ∈ I(ε, t) and A(ε, t)f ∈ I(ε,−t). They differ by a multiplier.

Now AX(ε, t) is an unbounded operator on the Hilbert space IX(ε, t). The follow-
ing fact is well-known in many different forms. I state it in a way that is convenient
for later use.

Lemma 4.1. Let t ∈ R. I(ε, t) is unitarizable if and only if AX(ε, t) extends
to a self-adjoint operator on IX(ε, t) with spectrum on the nonnegative part of the
real axis.

The spectrum of AX(ε, t) was computed in [BOO] and [OZ] explicitly for
special cases and in [Sa] implicitly. In particular, AX(ε, t) restricted onto each
Ũ(n)-type is a scalar multiplication and the scalar is bounded by a polynomial on
the highest weight. We obtain

Lemma 4.2 ([WV]). AX(ε, t) extends to an unbounded operator from I∞(ε, t)
to I∞(ε, t).
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This lemma follows from a standard argument that the norm of each Ũ(n)-
component in the Peter-Weyl expansion of any smooth section of Kε decays rapidly
with respect to the highest weight. It is true in general (see [WV]).

5. Actions of S̃p(p, R)S̃p(q, R)

Suppose that p + q = n and p ≤ q . Fix a standard basis

{e1, e2, . . . , ep; e
∗
1, e

∗
2, . . . e

∗
p}

for the symplectic form Ωp on R2p . Fix a standard basis

{f1, f2, . . . , fq; f
∗
1 , f∗2 , . . . , f ∗q }

for the symplect form Ωq on R2q .

Definition 5.1. Let Sp(p, R) be the symplectic group preserving Ωp and
Sp(q, R) be the symplectic group preserving Ωq . Let

Ω = Ωp − Ωq

and Sp(n, R) be the symplectic group preserving Ω. We say that the pair
(Sp(p, R), Sp(q, R)) is diagonally embedded in Sp(n, R).

We shall make a remark here. In [Henu], Ω = Ωp + Ωq . Sp(p, R)Sp(q, R) is em-
bedded differently there. The effect of this difference is an involution τ on the
representation level.

Let Pp,q−p be the subgroup of Sp(q, R) that preserves the linear span of
{fp+1, . . . , fq} . Choose the Levi factor GL(q − p)Sp(p, R) to be the subgroup of
Pp,q−p that preserves the span of
{f ∗p+1, . . . , f

∗
q } . In particular the Sp(p, R) factor can be identified with the sym-

plectic group of
span{f1, . . . , fp; f

∗
1 , . . . f∗p},

which will be identified with the standard Sp(p, R). More precisely, for x ∈
Sp(p, R), by identify ei with fi and e∗i with f ∗i and extending x trivially on
fp+1, . . . fq; f

∗
p+1, . . . , f

∗
q , we obtain the identification

x ∈ Sp(p, R) → ẋ ∈ Sp(q, R). (4)

Now fix a Lagrangian Grassmanian

x0 = span{e1 + f1, . . . , ep + fp, e
∗
1 + f ∗1 , . . . , e∗p + f ∗p , fp+1, . . . fq}.

Then the stabilizer Sp(q, R)x0 = GL(q− p)Np,q−p where Np,q−p is the nilradical of
Pp,q−p . Put

∆(Sp(p, R)) = {(u, u̇) | u ∈ Sp(p, R)} ⊆ Sp(p, R)Sp(q, R)}

and
H = ∆(Sp(p, R))GL(q − p)Np,q−p.
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Lemma 5.2 ([Henu]). Let p ≤ q and p + q = n. Let X0 be the Sp(p, R) ×
Sp(q, R)-orbit generated by x0 . Then X0 is open and dense in X and

[Sp(p, R)Sp(q, R)]x0 = H .

Notice here that X0 depends on (p, q). Let P = Sp(n, R)x0 . The smooth
representation I∞(ε, t) consists of smooth sections of Lε,t :

S̃p(n, R)×P̃ Cµε⊗νt+ρ → X.

Consider the subgroup S̃p(p, R)S̃p(q, R) in S̃p(n, R). Notice that S̃p(p, R) ∩
S̃p(q, R) ∼= Z . So S̃p(p, R)S̃p(q, R) is not a direct product, but rather the product
of the two groups as sets.

Definition 5.3. For any f ∈ IX(ε, t), define

fX0 = f |fSp(p,R)fSp(q,R).

Let I∞c,X0
(ε, t) be the set of smooth sections of Lε,t that are compactly supported

in X0 .

Clearly fX0 is a smooth section of

S̃p(p, R)S̃p(q, R)×H̃ Cµε⊗νt+ρ → X0.

Notice that ∆(Sp(p, R)) sits inside of SL(n, R) ⊆ GL(n, R) ⊆ P . The universal
covering of Sp(n, R) splits over SL(n, R) ⊆ P . Similarly the universal covering of
Sp(q, R) also splits over Np,q−p . So we have

H̃ ∼= ∆(Sp(p, R))G̃L(q − p)Np,q−p,

where G̃L(q−p)Np,q−p ⊆ S̃p(q, R). In particular, µε⊗νt+ρ|∆(Sp(p,R))Np,q−p is trivial

and µε ⊗ νt+ρ|gGL(q−p) is essentially the restriction from G̃L(p + q) to G̃L(q − p).

If p = q , then GL(0) will be the identity element. So G̃L(0) is just C . We have

Lemma 5.4. The identification (4)

x ∈ Sp(p, R) → ẋSp(q, R)

lifts naturally to S̃p(p, R) → S̃p(q, R). Let φ ∈ I∞(ε, t). Then

φ(g1, g2) = φ(1, g2ġ1
−1) (g1 ∈ S̃p(p, R), g2 ∈ S̃p(q, R)).

In addition

φ(1, g2h) = µε ⊗ νt+ρ(h−1)φ(1, g2) (h ∈ G̃L(q − p)Np,q−p).

Now let us consider the action of S̃p(p, R) and S̃p(q, R) on I(ε, t). By
Lemma 5.4, we obtain
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Lemma 5.5. Let φ ∈ I∞(ε, t) and h1 ∈ S̃p(p, R) and g2 ∈ S̃p(q, R) . Then

[I(ε, t)(h1)φ](1, g2) = f(1, g2ḣ1).

In particular the restriction map

φ ∈ I∞(ε, t) → φ|fSp(q,R) ∈ C∞(S̃p(q, R)×gGL(q−p)Np,q−p
Cµε⊗νt+ρ)

intertwines the left regular action of S̃p(p, R) on I∞(ε, t) with the right regular

action of S̃p(p, R) on C∞(S̃p(q, R)×gGL(q−p)Np,q−p
Cµε⊗νt+ρ).

Obviously, the restriction map also intertwines the left regular actions of
S̃p(q, R).

6. Mixed Model

Now fix complex structures on R2p and R2q and inner products ( , )p , ( , )q such
that

Ωp = =( , )p, Ωq = −=( , )q.

Let U(p) and U(q) be the unitary groups preserving ( , )p and ( , )q respectively.
U(p) and U(q) are maximal compact subgroups of Sp(p, R) and Sp(q, R). Let
U(n) be the unitary group preserving ( , )p + ( , )q . Then U(n) is a maximal
compact subgroup of Sp(n, R). In addition,

U(p) = Sp(p, R) ∩ U(n) U(q) = Sp(q, R) ∩ U(n).

Identify U(q) ∩ Pp,q−p with O(q − p)U(p). Recall that X0
∼= Sp(q, R)/GL(q −

p)Np,q−p . The group Sp(p, R) acts on X0 freely from the right. We obtain a
principal fibration

Sp(p, R) → X0 → Sp(q, R)/Pp,q−p
∼= U(q)/O(q − p)U(p).

This fibration allows us to visualize the action of S̃p(p, R)S̃p(q, R) on I∞(ε, t). Let
dg1 be a Haar measure on Sp(p, R) and d[k2] be an invariant probability measure
on U(q)/ O(q−p)U(p). Then dg1d[k2] defines an U(q)Sp(p, R) invariant measure
on X0 .

Definition 6.1. Let M = Sp(p, R)U(q) ⊂ Sp(p, R)Sp(q, R) ⊂ Sp(n, R). El-
ements in X0 are parametrized by a pair (g1, [k2]) for (g1, k2) ∈ M . For each

g ∈ S̃p(n, R), write g = ũ(g)p(g) where ũ(g) ∈ Ũ(n) and p(g) ∈ P0 , the identity

component of P̃ . For each (g1, k2) ∈ (S̃p(p, R), Ũ(q)), we have

g1k2 = ũ(g1k2)p(g1k2) = k2ũ(g1)p(g1).

The component ũ defines a map from M̃ to Ũ(n). In particular, ũ induces a map
from M̃/Õ(q − p)Ũ(p) to Ũ(n)/Õ(n) which will be denoted by j . The map j
parametrizes the open dense subset X0 in X by

([g1], [k2]) ∈ S̃p(p, R)/C × Ũ(q)/Õ(q − p)Ũ(p).
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Change the variables on X0 from M̃/Õ(q−p)Ũ(p) to Ũ(n)/Õ(n). Let J([g1], [k2])
be the Jacobian:

dj([g1], [k2])

d[g1]d[k2]
.

J can be regarded as a function on Sp(p, R)U(q) or Sp(p, R)U(q)/U(p)O(q − p),
even though it is defined as a function on the covering. Denote the line bundle

S̃p(q, R)×gGL(q−p)Np,q−p
Cµε⊗νt+ρ → X0.

by Mε,t . Denote the line bundle

M̃ ×Õ(q−p)Ũ(p) Cµε → M̃/Õ(q − p)Ũ(p) ∼= X0.

by Mε .

Clearly, I∞c,X0
(ε, t) ⊂ I∞(ε, t). Consider the restriction of ( , )X onto I∞c,X0

(ε, t).

We are interested in expressing ( , )X as an integral on M̃/Õ(q − p)Ũ(p). This
boils down to a change of variables from Ũ(n)/Õ(n) to M̃/Õ(q−p)Ũ(p). We have

Lemma 6.2. Let ∆t(g1, k2) = ν(p(g1))
t+t+2ρJ([g1], [k2]) (see Equ.(2)). Then

for every f1, f2 ∈ I∞(ε, t) we have

(f1, f2)X =

∫
M̃/Õ(q−p)Ũ(p)

f1(g1k2)f2(g1k2)∆t(g1, k2)d[g1]d[k2]

where g1 ∈ S̃p(p, R), k2 ∈ Ũ(q), [g1] ∈ Sp(p, R) and [k2] ∈ Ũ(q)/Õ(q − p)Ũ(p).
Furthermore, ∆t(g1, k2) is a nonnegative right Õ(q − p)Ũ(p)-invariant function

on M̃ .

Proof. We compute∫
M̃/Õ(q−p)Ũ(p)

f1(g1k2)f2(g1k2)∆t(g1, k2)d[g1]d[k2]

=

∫
M̃/Õ(q−p)Ũ(p)

f1(ũ(g1k2))f2(ũ(g1k2))ν(p(g1))
−t−t−2ρ∆t(g1, k2)d[g1]d[k2]

=

∫
M̃/Õ(q−p)Ũ(p)

f1(ũ(g1k2))f2(ũ(g1k2))ν(p(g1))
−t−t−2ρ∆t(g1, k2)J

−1(g1, k2)dj([g1], [k2])

=

∫
X0

f1(ũ)f2(ũ)d[ũ] = (f1, f2)X .

(5)

Since ν(p(g1) and J([g1], [k2]) remain the same when we multiply k2 on the right by
Õ(q−p)Ũ(p), ∆t(g1, k2) is a nonnegative right Õ(q−p)Ũ(p)-invariant function.

Combining with Lemma 5.5, we obtain

Corollary 6.3. As representations of S̃p(p, R)S̃p(q, R),

IX(ε, t) ∼= L2(Mε,t, ∆td[g1]d[k2]).
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For each f1, f2 ∈ I∞c,X0
(ε, t), define

(f1, f2)M,t =

∫
M̃/Õ(q−p)Ũ(p)

f1(g1k2)f2(g1k2)∆t(g1k2)d[g1]d[k2],

(f1, f2)M =

∫
M̃/Õ(q−p)Ũ(p)

f1(g1, k2)f2(g1k2)d[g1]d[k2].

The completion of I∞c,X0
(ε, t) under ( , )M,t is L2(Mε,t, ∆td[g1]d[k2]). We call

L2(Mε,t, ∆td[g1]d[k2]), the mixed model. We denote it by IM(ε, t). On IM(ε, t),

the actions of S̃p(p, R) and S̃p(q, R) are easy to manipulate.

7. Mixed Model for Unitary Principal Series

Lemma 7.1. If t ∈ iR, then ∆t(g1, k2) is a constant and ( , )M,t is a constant
multiple of ( , )M .

Proof. Let t ∈ iR . Let f1, f2 ∈ I∞(ε, t) and h ∈ S̃p(p, R). Recall that X0

is parametrized by a pair [g1] ∈ S̃p(p, R)/C and [k2] ∈ Ũ(q)/Õ(q − p)Ũ(p). By
Lemma 6.2, we have

(I(ε, t)(h)f1, I(ε, t)(h)f2)X

=

∫
X0

f1(h
−1g1k2)f2(h−1g1k2)∆t(g1, k2)d[g1]d[k2]

=

∫
X0

f1(g1k2)f2(g1, k2)∆t(hg1, k2)d[g1]d[k2]

(6)

Since I(ε, t) is unitary, (I(ε, t)(h)f1, I(ε, t)(h)f2)X = (f1, f2)X . We have∫
X0

f1(g1k2)f2(g1k2)∆t(hg1, k2)d[g1]d[k2] =

∫
X0

f1(g1k2)f2(g1k2)∆t(g1, k2)d[g1]d[k2].

It follows that ∆t(hg1, k2) = ∆t(g1, k2) for any h ∈ S̃p(p, R). Similarly, we obtain
∆t(g1, kk2) = ∆(g1, k2) for any k ∈ Ũ(q). Hence, ∆t(g1, k2) is a constant for
purely imaginary t .

Combining with Corollary. 6.3, we obtain

Theorem 7.2. Let t ∈ iR. The restriction map f → fX0 induces an isometry
between I(ε, t) and L2(Mε,t, d[g1]d[k2]). In addition, this isometry intertwines the

actions of S̃p(p, R)S̃p(q, R). So as S̃p(p, R)S̃p(q, R) representations,

I(ε, t) ∼= L2(Mε,t, d[g1]d[k2]);

and as S̃p(p, R)Ũ(q) representations,

I(ε, t) ∼= L2(Mε, d[g1]d[k2]).
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Notice thatL2(Mε, d[g1]d[k2]) does not depend on the parameter t . The
following corollary is automatical.

Corollary 7.3. Suppose that p + q = n and p ≤ q . For t real,

I(ε, it)|fSp(p,R)Ũ(q)
∼= I(ε, 0)|fSp(p,R)Ũ(q)

∼= L2(Mε, d[g1]d[k2]).

For t a nonzero real number, ∆t(g, k) is not a constant. So C(ε, t) cannot
be modeled naturally on L2(Mε,t, d[g1]d[k2]). Nevertheless, we have

Theorem 7.4 (Main Theorem). Suppose that p + q = n and p ≤ q . Given a
complementary series representation C(ε, t),

C(ε, t)|fSp(p,R)Ũ(q)
∼= I(ε, 0)|fSp(p,R)Ũ(q)

∼= L2(Mε, d[g1]d[k2]).

In other words, there is an isometry between C(ε, t) and I(ε, 0) that intertwines

the actions of Ũ(q) and of S̃p(p, R).

We shall postpone the proof of this theorem to the next section. We will
first derive some corollaries from Lemma 7.1 concerning ∆ and ν(g1).

Corollary 7.5. J([g1], [k2]) = cν(p(g1))
−2ρ for a constant c and ∆t(g1, k2) =

cν(p(g1))
t+t . So both ∆t and J([g1], [k2]) do not depend on k2 . Furthermore,

I(ε, t) ∼= L2(Mε,t, ν(p(g1))
t+td[g1]d[k2]) = IM(ε, t). (7)

ν(p(g1)) is a function on S̃p(p, R)/C . So it can be regarded as a function
on Sp(p, R).

Corollary 7.6. ν(p(g1))
−ρ ∈ L2(Sp(p, R)) and ν(p(g1))

−1 is a bounded posi-
tive function.

Proof. Since X is compact,∫
Sp(p,R)

ν(p(g1))
−2ρdg1=C

∫
M̃/Õ(q−p)Ũ(p)

J([g1], [k2])d[g1]d[k2]=C

∫
Ũ(n)/Õ(n)

1d[k]<∞.

So ν(p(g1))
−ρ ∈ L2(Sp(p, R)). Now we need to compute ν(g1). Recall that P is

defined to be the stabilizer of

x0 = span{e1 + f1, . . . , ep + fp, e
∗
1 + f ∗1 , . . . , e∗p + f ∗p , fp+1, . . . fq}.

So j(g1, 1) is the following Lagrangian

span{g1e1 + f1, . . . , g1ep + fp, g1e
∗
1 + f ∗1 , . . . , g1e

∗
p + f ∗p , fp+1, . . . fq}.

The action of Ũ(n) will not change the volume of the n-dimensional cube spanned
by the basis above. So ν(p(g1)), as the determinant character, is equal to the
volume of the n-dimensional cube, up to a constant. Hence

ν(p(g1)) = [2−n det(g1g
t
1 + I)]

1
2 .

Clearly, ν(p(g1))
−1 is bounded and positive.
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This corollary is easy to understand in terms of compactification. Notice
that the map j , without the covering,

Sp(p, R)U(q)/U(p)O(q − p) → U(n)/O(n)

is an analytic compactification. Hence the Jacobian J(g1, [k2]) should be posi-
tive and bounded above. Since J(g1, [k2]) = cν(p(g1))

−2ρ , ν(p(g1))
−1 must also

be positive and bounded above. The situation here is similar to [He02] (see Ap-
pendix) and [He06] (Theorem 2.3). It is not clear that j(g1, 1) gets mapped onto
U(2p)/O(2p) though.

If f ∈ IM(ε, t1) and h > 0, by Cor. 7.6 and Equation (7), we have ‖f‖M,t1−h ≤
C‖f‖M,t1 . So IM(ε, t1) ⊂ IM(ε, t1 − h).

Corollary 7.7. Suppose that h > 0. Then IM(ε, t1) ⊂ IM(ε, t1 − h).

8. “Square Root ”of the Intertwining Operator

Suppose from now on t ∈ R . For f ∈ I∞(ε, t)|M̃ , define a function on M̃ ,

(AM(ε, t)f)(g1k2) = A(ε, t)f(g1k2) (g1 ∈ S̃p(p, R), k2 ∈ Ũ(q)).

So AM(ε, t) is the “restriction ”of A(ε, t) onto M̃ . AM(ε, t) is not yet an un-
bounded operator on IM(ε, t). In fact, for t > 0, AM(ε, t) does not behave well
and it is not clear whether AM(ε, t) can be realized as an unbounded operator on
IM(ε, t). The function AM(ε, t)f differs from AX(ε, t)f .

Lemma 8.1. For t ∈ R and f ∈ I∞(ε, t),

(AM(ε, t)f |M̃)(g1k2) = (AX(ε, t)f)(g1k2)ν(p(g1))
2t = (AX(ε, t)f)(g1k2)∆t(g1, k2).

This Lemma is due to the fact that AX(ε, t)f ∈ I(ε, t) but A(ε, t)f ∈ I(ε,−t).

Let f ∈ I∞(ε, t). In terms of the mixed model, the invariant Hermitian form
( , )ε,t can be written as follows:

(f, f)ε,t = (AX(ε, t)f, f)X =

∫
M̃/ eO(q−p)U(p)

AM(ε, t) f |M̃ f |M̃d[g1]d[k2].

This follows from Lemma 8.1 and Lemma 6.2. We obtain

Lemma 8.2. For f1, f2 ∈ I∞(ε, t), (f1, f2)ε,t = (AM(ε, t)f1|M̃ , f2|M̃)M .

Theorem 8.3. If t < 0 and C(ε, t) is a complementary series representation,
then AM(ε, t) is a positive and densely defined symmetric operator. Its self-adjoint-
extension (AM(ε, t)+I)0−I has a unique square root which extends to an isometry
from C(ε, t) onto

L2(Mε, d[g1]d[k2]).
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Proof. Let t < 0. Put

H = L2(Mε, d[g1]d[k2]).

Let f ∈ I∞(ε, t). Then AM(ε, t)(f |M̃)(g1k2) = ν(p(g1))
2tAX(ε, t)f(g1k2). By

Lemma8.1, Cor. 7.6 and Lemma6.2, we have∫
M̃/ eO(q−p)Ũ(p)

AM(ε, t)(f |M̃)AM(ε, t)(f |M̃)d[g1]d[k2]

=

∫
M̃/ eO(q−p)Ũ(p)

ν(p(g1))
2t|(AX(ε, t)f)(g1k2)|2ν(p(g1))

2td[g1]d[k2]

=

∫
M̃/ eO(q−p)Ũ(p)

ν(p(g1))
2t|(AX(ε, t)f)(g1k2)|2∆t(g1, k2)d[g1]d[k2]

≤C

∫
M̃/ eO(q−p)Ũ(p)

|AX(ε, t)f(g1k2)|2∆t(g1, k2)d[g1]d[k2]

=C(AX(ε, t)f, AX(ε, t)f)X < ∞.

(8)

Therefore, AM(ε, t)(f |M̃) ∈ H . Let D = I∞(ε, t)|M̃ . Clearly, D is dense in H . So
AM(ε, t) is a densely defined unbounded operator. It is positive and symmetric by
Lemma 8.2.

Definition 8.4. Define U(ε, t) = ((AM(ε, t) + I)0 − I)
1
2 .

Now (f, g)ε,t = (AM(ε, t)f |M̃ , g|M̃)M for any f, g ∈ I∞(ε, t). So C(ε, t) =
HAM (ε,t) . By Lemma 2.1, U(ε, t), mapping from C(ε, t) into H , is an isometry.

Suppose that U(ε, t) is not onto. Let f ∈ H such that for any u ∈ D(U(ε, t)),

(f,U(ε, t)u)M = 0.

Notice that
I∞(ε, t)|M̃ ⊂ D((AM(ε, t) + I)0 − I) ⊂ D(U(ε, t)),

and
U(ε, t)U(ε, t) = (AM(ε, t) + I)0 − I.

In particular,
U(ε, t)I∞(ε, t)|M̃ ⊂ D(U(ε, t)).

It follows that

(f, AM(ε, t)I∞(ε, t)|M̃)M

=(f, ((AM(ε, t) + I)0 − I)I∞(ε, t)|M̃)M

=(f,U(ε, t)U(ε, t)I∞(ε, t)|M̃)M

=0.

(9)

Let fε,t be a function such that fε,t|M̃ = f and

fε,t(gln) = (µε ⊗ νt+ρ)(l−1)fε,t(g) (l ∈ L̃, n ∈ N).
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By Lemma 8.2, ∀ u ∈ V (ε, t),

0 = (f, AM(ε, t)(u|M̃))M = (fε,t, AX(ε, t)u)X = (fε,t, u)ε,t.

This equality is to be interpreted as an equality of integrals according to the
definitions of ( , )M and ( , )X . Since AX(ε, t) acts on Ũ(n)-types in V (ε, t) as
scalars, AX(ε, t)V (ε, t) = V (ε, t). We now have

(fε,t, V (ε, t))X = 0.

In particular, fε,t|Ũ(n) ∈ L1(X). By Peter-Weyl Theorem, fε,t = 0. We see that

U(ε, t) is an isometry from C(ε, t) onto L2(Mε, d[g1]d[k2]) .

The Hilbert space L2(Mε, d[g1]d[k2]) is the mixed model for I(ε, 0) re-
stricted to M̃ . We now obtain an isometry from C(ε, t) onto I(ε, 0). Within the
mixed model, the action of I(ε, t)(g1k2) is simply the left regular action and it is
independent of t . We obtain

Lemma 8.5. Suppose t < 0. Let g ∈ Ũ(q). Let L(g) be the left regular
action on L2(Mε, d[g1]d[k2]). As an operator on I∞(ε, t)|M̃ , L(g) commutes with
AM(ε, t). Furthermore, L(g) commutes with (AM(ε, t)+I)0−I . Similar statement

holds for g ∈ S̃p(p, R).

Proof. Let g ∈ M̃ . Both AM(ε, t) and L(g) are well-defined operator on
I∞(ε, t)|M̃ . Regarding A(ε, t)I(ε, t)(g) = I(ε,−t)(g)A(ε, t) as operators on the
mixed model L2(Mε, d[g1]d[k2]), we have

AM(ε, t)L(g) = L(g)AM(ε, t).

It follows that

L(g)−1(AM(ε, t) + I)L(g) = (AM(ε, t) + I).

Since L(g) is unitary, L(g)−1(AM(ε, t) + I)0L(g) = (AM(ε, t) + I)0. In fact,
(AM(ε, t) + I)0 can be defined as the inverse of (AM(ε, t) + I)−1 , which exists and
is bounded. So L(g) commutes with both (AM(ε, t)+I)−1 and (AM(ε, t)+I)0 .

Lemma 8.6. We have, for g ∈ M̃ , U(ε, t)I(ε, t)(g) = I(ε, 0)(g)U(ε, t).

Proof. Recall from Theorem 7.2 that the action of M̃ on the mixed model is
independent of t . It suffices to show that on the mixed model, U(ε, t) commutes
with L(g) for any g ∈ M̃ . By Lemma8.5,

L(g)−1[(AM(ε, t) + I)0 − I]L(g) = (AM(ε, t) + I)0 − I.

Since L(g) is unitary on L2(Mε, d[g1]d[k2]), both sides are positive self-adjoint
operators. Taking square roots, we obtain L(g)−1U(ε, t)L(g) = U(ε, t).

Theorem 7.2 is proved.
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