
Journal of Lie Theory
Volume 20 (2010) 665–672
c© 2010 Heldermann Verlag

A Lie-Trotter Formula for Riemannian Manifolds and
Applications

Jimmie Lawson and Yongdo Lim

Communicated by K. H. Hofmann

Abstract. In this paper we derive a Lie-Trotter formula for general Rieman-
nian manifolds based on the local existence of a midpoint operation and given
in terms of that operation. As a corollary one obtains that continuous maps
between Riemannian manifolds that preserve the local midpoint structure are
smooth. In particular, this is true for (local) isometries.
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1. Introduction

The Lie-Trotter product formula

eA+B = lim
n→∞

(
eA/neB/n

)n

first formulated by Sophus Lie for square matrices A and B is of great utility and
generalizes to various settings such as semigroups of (unbounded) operators (see
e.g. Trotter [7]) and Lie theory. For an elementary derivation and basic applications
of the formula in the setting of Lie theory, we refer the reader to [4]. In this paper
we derive a variant for general Riemannian manifolds based not on multiplication,
but on a midpoint operation that always exists locally on Riemannian manifolds. A
midpoint version of the Lie-Trotter formua for the special case of positive operators
on a Hilbert space together with applications of the formula in that context may
be found in [1].

Midpoint formulas are of interest since many geometric concepts can be
captured from the midpoint concept, e.g., (geodesically) convex sets, convex func-
tions, nonpositive curvature, etc. In his metric approach to geometry, Busemann
typically included an axiom of “between points” [2], of which midpoints are a
special case. In [6] midpoints play a prominent role in the metric treatment of
symmetric spaces.
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One formulation of the famous fifth problem of Hilbert asked whether a
locally euclidean topological group had a differentiable multiplication, i.e., was a
Lie group. A related problem is finding general conditions for a continuous function
to be smooth. In the last section we apply our Lie-Trotter formula to show this
is true for continuous functions between Riemannian manifolds preserving the
midpoint operation, in particular for isometries of Riemannian manifolds.

2. Background

Let (M, g) be a connected Riemannian manifold, a smooth connected manifold
M with a smooth section g of the positive-definite quadratic forms on the tangent
bundle giving each tangent space the structure of a Hilbert space. We recall some
basic standard material about Riemannian manifolds (see, for example, Chapters
VII-IX of [5] or Chapter II of [3]). Any piecewise smooth curve α on M can be

assigned an arc length L(α) by integrating the length ‖α′(t)‖ = 〈α′(t), α′(t)〉1/2
α(t)

of the tangent vector over the domain of α . The g -distance or simply distance δ
is defined by setting δ(x, y) equal to the infimum over the lengths of all piecewise
smooth curves from x to y . The distance function δ is indeed a metric, and
the corresponding metric topology agrees with the original topology on M ([5,
Proposition VII-6.1]).

Any Riemannian manifold M has a unique connection associated with the
metric g , called the Levi-Civita connection or the canonical connection. This
connection is typically used to define the geodesics of the manifold, although Lang
alternatively (but equivalently) defines them from the canonical spray [5, Section
VII-7]. Given x ∈ M and v ∈ TxM , the tangent space at x , there exists a
unique maximal geodesic βv defined on an open interval containing 0 and satisfying
x = βv(0), v = βv

′(0). Then exp(v) is defined if and only if βv(1) is, and in this
case exp(v) = βv(1). The domain of the exponential map is an open subset Ω
such that {0x : x ∈ M} ⊆ Ω ⊆ TM , where 0x is the 0-vector in the tangent space
TxM at x . Geodesics then have the alternative description t 7→ exp(tv), tv ∈ Ω,
the unique maximal geodesic that runs through x = exp(0x) = π(v) at t = 0 with
velocity v ∈ TxM , where π : TM → M is the tangent bundle map. For v ∈ TxM ,
the geodesic t 7→ exp(tv) has constant speed ‖v‖ , and hence for v ∈ Ω, this
geodesic restricted to [0, 1] has length ‖v‖ . The exponential map exp : Ω → M
is a smooth map and the map expx : TxM ∩ Ω → M is a diffeomorphism on
sufficiently small neighborhoods of 0x .

Let β : [a, b] → M be a geodesic with β(a) = x , β(b) = y . We may
reparametrize to obtain a geodesic on [0, 1]by setting γ(t) = β(a + t(b − a))
for 0 ≤ t ≤ 1. Then as in the preceding paragraph we may rewrite γ as
γ(t) = expx(tv) where v = γ′(0). This gives us a convenient parametrization
of a geodesic stretching between two points.

A geodesic β : [a, b] → M is a minimal geodesic if L(β) ≤ L(α) for
every piecewise smooth path joining β(a) to β(b). This is equivalent to L(β) =
δ(β(a), β(b)). Since the geodesic β has some constant speed σ , we have

δ(β(a), β(b)) = L(β) = σ(b− a).

It is straightforward to see that the restriction of β to any closed subinterval of
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[a, b] will again be a minimal geodesic.

An open subset U of M is said to be convex if given y, z ∈ U , there exists
a unique minimal geodesic from y to z and this geodesic is contained in U , where
uniqueness means unique up to reparametrization. The following is a form of
Whitehead’s theorem (see [5, Theorem VII-5.8]).

Theorem 2.1. Let (M, g) be a Riemannian manifold, let p ∈ M . Then there
exists ε > 0 such that the following are satisfied:

1. For 0 < r ≤ ε, the open neighborhood Bδ(p, r) = expp Bg(0p, r) (where the
second ball is taken in TpM in the norm arising from gp ).

2. Each Bδ(p, r) is convex, 0 < r ≤ ε.

3. The map expp restricted to Bg(0p, ε) is a diffeomorphism.

4. For 0 < r ≤ ε, the mapping (x, y) 7→ v , where v ∈ TxM and t 7→
expx(tv) (0 ≤ t ≤ 1) is the minimal geodesic joining x and y , is a dif-
feomorphism from Bδ(p, r)×Bδ(p, r) onto an open subset of Ω, the domain
of exp.

5. For any v ∈ Bg(0p, ε), the mapping tv 7→ exp(tv) for 0 ≤ t ≤ 1 is an
isometry.

6. For 0 < r ≤ ε/2, x, y ∈ Bδ(p, r), there is exactly one midpoint between x
and y .

Proof. Items (1) and (2) follow from [5, Theorem VII-5.8]. Items (3) and (4)
follow from [5, Corollary VII-5.3] applied to the canonical spray for a Riemannian
metric.

For (5), let 0 ≤ s < r ≤ 1 and let v ∈ Bg(0p, ε). It follows from the
convexity of Bδ(p, ε) that the geodesic t 7→ exp(tv), 0 ≤ t ≤ 1 is a minimal
geodesic. Set α(t) = exp(tv) for s ≤ t ≤ r . Thus δ(exp(sv), exp(rv)) = L(α) =
‖v‖(r − s). Since also ‖rv − sv‖ = |r − s|‖v‖ , we conclude that tv 7→ exp(tv) for
0 ≤ t ≤ 1 is an isometry.

For (6), we can always find exactly one midpoint on the unique minimal
geodesic connecting them (see the beginning of the next section). Suppose m were
another. Then δ(x, m) = (1/2)δ(x, y) ≤ (1/2)(δ(x, p) + δ(p, y)) < (1/2)(2r) = r .
Thus δ(m, p) ≤ δ(m,x) + δ(x, p) < r + r = 2r ≤ ε . Since Bδ(p, ε) is convex, there
exist minimal geodesics from x to m and from y to m , each of length (1/2)δ(x, y).
Their piecewise combination will have length δ(x, y). By [5, Theorem VII-6.2]
some reparametrization of this curve must be the unique minimal geodesic. But
this contradicts the fact that m did not belong to this geodesic.

We call the balls Bδ(x, r) = expx Bg(0x, r) and Bg(0x, r) that satisfy (1)-(6)
normal balls.
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3. Midpoints

For a Riemannian manifold (M, g) we may define midpoints in the same way that
it is done for general metric spaces: m is a midpoint for x, y if δ(x, m) = δ(m, y) =
δ(x, y)/2. In general points x, y may have no, one, or multiple midpoints. How-
ever, there is a distinguished one in the case that there exists a unique minimal
geodesic stretching from x to y . Indeed let β a parametrization of this minimal
geodesic with domain [a, b] and speed σ . Then for c = (a + b)/2,

δ(a, c) = L(β|[a,c]) = σ(c− a) =
1

2
σ(b− a) =

1

2
δ(a, b),

and similarly δ(c, b) = (1/2)δ(a, b) and no other point on the geodesic is a mid-
point. We denote this uniquely determined midpoint for those pairs (x, y) that
lie on a unique minimal geodesic by x#y . Note that x#y = y#x and trivially
x#x = x .

We restrict our study of the midpoint operation x#y to normal balls. Since
these are convex, we have that x#y is defined and back in the ball for all points
x, y in the ball. By Theorem 2.1(6) x#y is the unique midpoint between x and
y . Our Trotter formula will be derived in terms of this operation.

It is frequently convenient to think of a Riemannian manifold M as pointed
by fixing some ε ∈ M .

Lemma 3.1. Let B = Bδ(ε, r) = expε Bg(0ε, r) be a normal ball around ε ∈ M .
The operation # : B ×B → B is smooth.

Proof. For x, y ∈ B , let v(x, y) ∈ TxM be chosen so that expx

(
v(x, y)

)
= y .

By Theorem 2.1(4), the map v exists and is smooth from B × B into TM . We
claim x#y = exp((1/2)v(x, y)), which will establish the smoothness of #, since
the right hand side is a composition of smooth maps.

Consider the geodesic β(t) = exp(tv(x, y)) for 0 ≤ t ≤ 1. By Theorem
2.1(4), β is the unique minimal geodesic joining x, y in B . Hence by our previous
discussion x#y is the image of the midpoint 1/2 of [0, 1], i.e., x#y = β(1/2) =
exp((1/2)v(x, y)).

In the following theorem and proof, we work in a pointed Riemannian man-
ifold (M, g, ε) and denote expε as simply exp. For further notational convenience,
we restrict to normal balls of 0 = 0ε in TεM and ε in M . Set log to be the inverse
of exp on these neighborhoods.

Theorem 3.2 (Lie-Trotter product formula). Let u, v ∈ Tε , where (M, g, ε) is
a pointed Riemannian manifold. Then for u, v ∈ TεM ,

u + v = lim
n→∞

n log
(
exp(2u/n)# exp(2v/n)

)
= lim

t→0+

1

t
log

(
exp(2tu#2tv)

)
.

Proof. Set E := TεM . Define for 2u, 2v ∈ Bg(0ε, r) ⊆ E , a normal ball,
u ∗ v = log

(
exp(2u)# exp(2v)

)
. Then from Lemma 3.1 the binary operation ∗ is

differentiable.
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We compute u ∗ 0. The map β(t) = exp(2ut), 0 ≤ t ≤ 1, is a geodesic in
Bδ(ε, r) from ε to exp(2u) and hence must be the minimal geodesic. It carries 1/2
to exp(u), and so exp(u) = ε# exp(2u). Thus u ∗ 0 = log(exp(u)) = u . Similarly
0 ∗ v = 0. Thus the partials of (u, v) 7→ u ∗ v at (0, 0) are given by the projections
π1, π2 : E × E → E . Since the derivative is the sum of the partials, we have
d ∗(0,0) (u, v) = u + v , which also gives the directional derivative of ∗ : E ×E → E
at (0, 0), in the direction (u, v). But this directional derivative computed directly
as a limit is given by the right side of the equation in the theorem.

We note that a proof analogous to the preceding is a way of deriving the
Lie-Trotter formula in the theory of Lie groups.

4. Continuity implies differentiability

In this section we show that continuous maps locally preserving the operation
# are smooth in quite general circumstances. We first need to develop some
machinery associated with the study of midpoint-preserving maps.

Lemma 4.1. Let A be a subset of [0, 1] containing {0, 1} and closed under the
operation of taking midpoint. The A contains all dyadic rationals and if closed, is
equal to [0, 1].

Proof. By hypothesis A contains all dyadic rationals between 0 and 1 with
denominator 20 and contains all those with denominator 2n+1 if it contains those
with denominator 2n . By induction A contains all dyadic rationals, is thus dense,
and hence all of [0, 1] if closed.

Lemma 4.2. Let γ : [0, b] → E , b > 0 be a continuous, midpoint preserving
map with γ(0) = 0 into a topological vector space E . Then there exists v ∈ E
such γ(t) = tv is a linear extension of γ to all of R.

Proof. Suppose b = 1. Let v = γ(1). We consider the set A of all t ∈ [0, 1]
such that γ(t) = tv . Clearly 0, 1 ∈ A . If a, b ∈ A , then

γ
(
(a + b)/2

)
= (1/2)

(
γ(a) + γ(b)

)
= (1/2)(av + bv) = (1/2)(a + b)v.

Thus A is closed under taking midpoints. By Lemma 4.1, A = [0, 1], since A is
easily seen to be closed.

In case b 6= 1, we first scale by 1/b from [0, 1] to [0, b] and apply the
preceding paragraph to the composition of γ with the scaling.

For two Riemannian manifolds M, N , we say that f : M → N is locally
midpoint preserving if for each x ∈ M , there exists an open set U containing x
such that f(y#z) = f(y)#f(z) for all y, z ∈ U .

Theorem 4.3. Let X, Y be Riemannian manifolds and let σ : X → Y be a
continuous and locally midpoint preserving map. Then σ is smooth. Furthermore,
if the exponential maps for X, Y are analytic, then σ is analytic.
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Proof. We choose a distinguished point ε ∈ X , take σ(ε) for the distinguished
point of Y , and define σ̃ locally near 0ε ∈ TεX by σ̃ = logσ(ε) ◦σ ◦ expε .

X
σ−−−→ Y

expε

x xexpσ(ε)

TεX
σ̃−−−→ TσεY.

“Locally” means choosing a normal ball B = Bδ(ε, r) = expε(Bg(0ε, r)) such that
σ(B) is contained in a normal ball around σ(ε), so that log can be defined as
the inverse of expσ(ε) . We note that σ̃ is the composition of smooth maps, hence
smooth on Bg(0ε, r). We proceed in steps.

(1) We show for u ∈ Bg(0ε, r), there exists w ∈ Tσ(ε) such that σ̃(tu) =
tw for t ∈ [0, 1]. The mapping t 7→ expε(tu) resp. tu 7→ expε(tu), 0 ≤ t ≤ 1 is
a mimimal geodesic resp. an isometry by Theorem 2.1, and hence is midpoint
preserving from {tu : 0 ≤ t ≤ 1} to {expε(tu) : 0 ≤ t ≤ 1} . Let x =
exp(u), let y = σ(x), and let v = logσ(ε)(y). Then also t 7→ exp(tv) resp.
tv 7→ exp(tv), 0 ≤ t ≤ 1 defines a minimal geodesic resp. an isometry from
[0, 1]v to exp([0, 1]v). It follows that exp([0, 1]v) is closed under the midpoint
operation # and that logσ(ε) is midpoint-preserving from exp([0, 1]v) to [0, 1]v .
The map t → tu → exp(tu) → σ(exp(tu)) from [0, 1] into Y is a composition
of midpoint preserving maps, hence midpoint preserving. Since it carries 0ε to
σ(ε) and u to y = expσ(ε)(v), one argues directly from Lemma 4.1 that all
dyadic rationals are carried into expσ(ε)([0, 1]v), and hence all of [0, 1] is, since
expσ(ε)([0, 1]v) is compact and the composition is continuous. It follows directly
that σ(expε([0, 1]u) ⊆ expσ(ε)([0, 1]v). Combining all this information together,
we conclude that σ̃ = logσ(ε) ◦σ ◦ expε restricted to [0, 1]u is midpoint preserving.
Thus t 7→ σ̃(tu) is continuous, midpoint preserving, and carries 0ε to 0σ(ε) . By
Lemma 4.2 there exists w ∈ Tσ(ε) such that σ̃(tu) = tw for all t ∈ [0, 1].

(2) We show that we can uniquely extend σ̃ so that σ̃ is globally defined,
continuous, and positively homogeneous, namely σ̃(u) = mσ̃(u/m), m >> 0.
Indeed let u ∈ TεX and choose 0 < m < n such that u/m, u/n ∈ Bg(0ε, r). Then
u/n = s(u/m) for s = m/n < 1. By Step 1, there exists w ∈ Tσ(ε) such that
σ̃(t(u/m)) = tw for all t ∈ [0, 1]. It follows that

nσ̃(u/n) = (m/s)σ̃(su/m) = (m/s)sw = mw = mσ̃(u/m).

Thus definition of σ̃(u) = mσ̃(u/m) is independent of the real number m > 0, as
long as m is sufficiently large so that ‖u/m‖ < r .

For u ∈ TεM , fix m > 0 such that ‖u/m‖ < r . Then there is an open
neighborhood Q of u such that ‖v/m‖ < r for v ∈ V . Then on Q the extension
of σ̃ is given by v 7→ mσ̃(u/m), which is continuous.

For u ∈ TεM and s > 0, pick m > s such that ‖su/m‖ < r . Then

σ̃(su) = mσ̃(su/m) = m(s/m)σ̃(u) = sσ̃(u).

Thus s is positively homogeneous.
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(3) We use the Trotter formula to show that σ̃ is additive. We temporarily
abbreviate the exponential functions expε and expσ(ε) by exp, distinguishing them
by context, and the corresponding log functions by log. We first use the positive
homogeneity and the local equality σ̃ = log ◦σ ◦ exp in various equivalent forms
to calculate for u, v ∈ TεX and n large:

σ̃
(
n log

(
exp(2u/n)# exp(2v/n)

))
= n(σ̃ ◦ log)

(
exp(2u/n)# exp(2v/n)

)
= n(log ◦σ)

(
exp(2u/n)# exp(2v/n)

)
= n log

(
σ(exp(2u/n))#σ(exp(2v/n))

)
= n log

(
exp(σ̃(2u/n))# exp(σ̃(2v/n))

)
= n log

(
exp((2/n)σ̃(u))# exp((2/n)σ̃(v))

)
.

We thus have by the Trotter formula for u, v ∈ TεX :

σ̃(u + v) = σ̃
(

lim
n→∞

n log
(
exp(2u/n)# exp(2v/n)

))
= lim

n→∞
σ̃
(
n log

(
exp(2u/n)# exp(2v/n)

))
= lim

n→∞
n log

(
exp((2/n)σ̃(u))# exp((2/n)σ̃(v))

)
= σ̃(u) + σ̃(v).

(4) Since σ̃ is continuous, additive, and homogeneous for positive scalars,
it follows easily that it is a continuous linear mapping, hence smooth. Near ε ,
σ = exp ◦σ̃ ◦ log and is thus smooth. Since ε was an arbitrary choice for the
distinguished point, the map σ is smooth in a neighborhood of every point, hence
smooth. If each exponential map expx is analytic, then the local inverse log is also
analytic since the derivative at 0x is invertible (indeed, it is the identity). Thus
the composition σ = exp ◦σ̃ ◦ log is locally analytic, hence analytic.

Since local isometries are locally midpoint preserving (since locally the
midpoints are unique by Theorem 2.1(6)), we have immediately:

Corollary 4.4. A local isometry, in particular an isometry, between Rieman-
nian manifolds is smooth.
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