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1. Introduction

Let G be a reductive algebraic group over the field C , g its Lie algebra, h a
reductive algebraic subalgebra of g and H̃ = NG(h) the normalizer of h in the
group G .

Let n be a positive integer. One has the diagonal actions G : gn, H̃ : hn .
Consider a subalgebra of C[hn] whose elements are restrictions of elements of

C[gn]G to hn . We denote this algebra by C[hn]G . Clearly, C[hn]G ⊂ C[hn]
eH . It is

interesting to ask how different these two algebras can be.

It is more convenient to translate this question into geometric language.
As usual, we denote by hn//H̃ the categorical quotient for the action H̃ : hn . In

other words, hn//H̃ = Spec(C[hn]
eH). Put hn//G = Spec(C[hn]G). The inclusion

C[hn]G ↪→ C[hn]
eH induces a morphism of algebraic varieties ψn : hn//H → hn//G .

The aim of this paper is to answer the following questions: is ψn an isomorphism
or a birational (or a bijective, or a finite) morphism?

The starting point for our work is E.B. Vinberg’s paper [8], where a mor-

phism Ψn : Hn//H̃ → Hn//G defined analogously to ψn was studied (here H
is a reductive subgroup of G). The main result of that paper is that Ψn is the
morphism of normalization for n > 2.

Now we list our main results.

At first, the morphism ψn is always finite (Proposition 3.2). If n > 1 it is
also birational (Proposition 3.5). Therefore, ψn is the morphism of normalization
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for n > 1. In general, ψ1 is not birational. However, the following statement holds

Theorem 1.1. Suppose that G = GLn and h is a simple Lie algebra different
from so9, sp8, so16, sl8, sl9 . Then ψ1 is birational. If h is one of the five algebras
listed above, then for some positive integer m there exists an embedding h ↪→ glm
such that the corresponding morphism ψ1 is not birational.

If ψn is bijective, then ψ1 is also bijective. For some G and h the converse
is true. To describe such pairs we need the following definition:

Definition 1.2. Let H be a reductive algebraic group and h be its Lie algebra.
Suppose that h does not contain simple ideals isomorphic to E6, E7, E8 . Further,
suppose that for every ideal h1 ⊂ h isomorphic to so2k, k > 3, there exists h ∈ H
such that the restriction of Ad(h) to a simple ideal h2 ⊂ h is an outer involutory
automorphism of h2 if h2 = h1 and the identity otherwise (the claim of Ad(h)|h1

being an involution is essential only for h1
∼= so8 ). Then we say that H is a group

of type I.

Put H = H̃/ZG(h).

Theorem 1.3. If H is a group of type I and ψ1 is bijective, then so is ψn .

However, in some cases ψ2 is not bijective.

Proposition 1.4. If G is a group of type I, h is a simple algebra and H is not
a group of type I, then ψn is not bijective for n > 1.

In fact, the condition that h is simple can be omitted, but we do not prove
the corresponding result.

Suppose now that G = GLm . It is known from classical invariant theory
that the algebra C[gn]G is generated by polynomials of the form f(X1, . . . , Xn) =
tr(Xi1Xi2 . . . Xim). Clearly, if ψn is an isomorphism, then ψ1 is an isomorphism
too. In some cases the converse is also true.

Proposition 1.5. The algebra C[hn]G is generated by elements of the form
f(L), where f ∈ C[h]G and L is a Lie polynomial on X1, . . . , Xn .

Using Proposition 1.5 one can prove that ψn is isomorphism if so is ψ1

for h = sp2m , h = so2m+1 , h = so2m with H ∼= Ad(O2m), h = slm with
H = Ad(SLm).

The author is grateful to E. B. Vinberg for his constant attention to this
work and to A. N. Minchenko for useful discussions. Also I would like to thank
the referee for his useful comments that allowed to improve the exposition.
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2. Index of notation

∼G the orbit equivalence relation for an action of a group G.
dP : h → g the tangent homomorphism of a homomorphism P : H → G of

algebraic groups.
Gx the stabilizer of a point x under an action of a group G.
gα the root subspace of a reductive Lie algebra g corresponding to a

root α.
H◦ the connected component of an algebraic group H.
NG(H) the normalizer of a subgroup H of a group G.
NG(h) the normalizer of a subalgebra h ⊂ g, where g is the Lie algebra

of G.
R(h) the set of equivalence classes of representations of a reductive Lie

algebra h (see conventions on homomorphisms of reductive Lie al-
gebras below).

R(λ) the representation of a semisimple Lie algebra with highest weight λ.
XG the set of fixed points for an action G : X.
X//G the categorical quotient for an action of a reductive group G on an

affine variety X.
Y the closure (with respect to the Zariski topology) of a subset Y of

some algebraic variety.
ZG(H) the centralizer of a subgroup H of a group G.
ZG(h) the centralizer of a subalgebra h ⊂ g.
zg(h) the centralizer of a subalgebra h in a Lie algebra g.
z(g) := zg(g).
∆(g) the root system of a reductive Lie algebra g.

All homomorphisms of reductive Lie algebras are assumed to be differentials of
some homomorphisms of some reductive algebraic groups.

All topological terms refer to the Zariski topology.

3. Finiteness and birationality of ψn in general case

Let G, g, h, H̃ be as above and n be a positive integer. A natural morphism
Φn : hn → gn//G is constant on H̃ -orbits. Therefore there is a natural morphism

ψn : hn//H̃ → gn//G . The closure of ψn(hn//H̃) coincides with hn//G .

The following proposition is due to Richardson [7].

Proposition 3.1. Let G be a reductive group, g its Lie algebra and n a
positive integer. Consider the action G : gn as above. The orbit of an n-tuple
x = (x1, . . . , xn) ∈ gn is closed (resp. contains 0 in its closure) if and only if the
algebraic subalgebra of g generated by x1, . . . , xn is reductive (resp. consists of
nilpotent elements).

Proposition 3.2. The morphism ψn is finite.
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Proof. Denote by NG (resp. N eH ) the null-cone for the action G : gn (resp.

H̃ : hn ). It follows from Proposition 3.1, that NG ∩ hn = N eH . Now our statement
follows from a version of the Nullstellensatz (see [4], Ch.2, S. 4.3, Thm. 8).

The following statement is an easy corollary of Propositions 3.1,3.2.

Corollary 3.3. The image of hn//H̃ in gn//G is closed and so coincides with

hn//G. Further, hn//H̃ (respectively, hn//G) can be identified with a set of equiv-
alence classes of n-tuples (x1, . . . , xn) ∈ hn generating a reductive subalgebra of h

modulo H̃ - (respectively, G-) conjugacy.

Lemma 3.4. Any reductive algebraic Lie algebra h can be generated by two
elements (as an algebraic algebra). If h is commutative, then it can be generated
by one element.

Proof. The proof is completely analogous to the proof of Proposition 2 in [8].

Proposition 3.5. Suppose n > 1. Then ψn is birational.

Proof. The proof is completely analogous to the proof of Theorem 2 in [8].

Corollary 3.6. Suppose n > 1. Then ψn is a normalization.

Proof. Since hn//H̃ is normal, this is a direct consequence of Propositions 3.5,
3.2.

4. Birationality of ψ1 for G = GLn and a simple Lie algebra h

In this section we prove Theorem 1.1. Here we assume that h is a simple Lie
algebra of rank r . Denote by α1, . . . , αr simple roots of h , by π1, . . . , πr the
corresponding fundamental weights and by P and Q the weight and the root
lattices of h , respectively.

Lemma 4.1. Let ∆ be an irreducible root system in a real vector space V ,
W its Weyl group, Q the lattice generated by ∆. Denote by (·, ·) a W -invariant
scalar product on V . Let g ∈ Aut(Q) be an orthogonal linear operator. If ∆ 6= C4 ,
then g ∈ Aut(∆).

Proof. It follows from the construction of root systems (see, for example, [1],
Chapter 6) that if ∆ 6= Cl , then the elements of ∆ are all elements of Q satisfying
some conditions on their length. For ∆ = Cl the same is true for roots of minimal
length. Suppose now that ∆ = Cl and l 6= 4. Let g be an element of O(V ) such
that the set of elements of ∆ of minimal length is invariant under g . Then g ∈ W
and we are done.

Proof of Theorem 1.1. Denote by t a Cartan subalgebra of h . The points
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of h//H̃ ∼= h//H (respectively, h//G) are in one-to-one correspondence with
equivalence classes of semisimple elements of h modulo H - (respectively G-)
conjugacy (see Corollary 3.3). If t is an element of t in general position, then
gt ∈ t for some g ∈ G implies g ∈ NG(t). Thus, ψ1 is birational if and only if
NG(t)/ZG(t) = NH(t)/ZH(t).

Suppose that h 6= sp8, so9, sl8, sl9, so16 . Denote by ϕ an embedding of h

into glm . We identify h and ϕ(h). Denote by N the image of NG(t) in GL(t)
under a natural homomorphism. It is clear that N contains the Weyl group of h .
We now prove that N ⊂ Aut(∆).

For x, y ∈ glm put (x, y) = tr(xy). The restriction of (, ) to t is an N -
invariant non-degenerate symmetric bilinear form. Its restriction to t(R) is a scalar
product. Further, we notice that the lattice X generated by the weights of ϕ is
invariant under the action of N .

Obviously, Q ⊂ X ⊂ P . It follows from Lemma 4.1, that if X = Q and
N 6⊂ Aut(∆), then ∆ = C4 . Suppose now that X = P . Then the dual root
lattice Q∨ is invariant under the action of N on t . Lemma 4.1 implies that if
N 6⊂ Aut(∆), then ∆ = B4 .

Suppose now that X 6= Q,P . Then the group P/Q is not prime. Tables
in [5] imply that ∆ = Al , where l+1 is not prime, or ∆ = Dl . If ∆ 6= A7, A8, D8 ,
then every element of P , whose length is equal to the length of a root, is a root
itself. Indeed, the set of all such elements forms a root system, whose rank equals
that of ∆. It remains to notice that Al is not a subsystem in Dl for l > 3. So if
∆ 6= A7, A8, D8 , then N ⊂ Aut(∆).

The system of weights of the representation ϕ is invariant under N ⊂
Aut(∆). Thus, N coincides with the image of N eH(t) in GL(t∗). So we are done.

Now we construct embeddings of h = sp8, so9, sl8, sl9, so16 , for which ψ1 is
not birational.

Suppose h = sp8 . Let ϕ : h → gl14 be the irreducible representation with
highest weight π2 . Let us choose the an orthonormal basis ε1, . . . , ε4 ∈ t , so that
αi = εi − εi+1, i = 1, 2, 3, α4 = 2ε4 . The weights of ϕ are εi + εj, i 6= j, with
multiplicity 1 and 0 with multiplicity 2. The stabilizer of this weight system in
GL(t∗) is just Aut(D4). Therefore, NG(t)/ZG(t) ∼= Aut(D4), while NH(t)/ZH(t)
is the Weyl group of ∆ and has index 3 in NG(t)/ZG(t).

The algebras h = so9, sl8, sl9, so16 can be embedded into the exceptional
algebras f = F4, E7, E8, E8 , respectively, as regular subalgebras. Suppose that
ϕ : h ↪→ gln is the composition of this embedding and some embedding ρ : f ↪→ gln .
Analogously to the case h = sp8 one can show that NH(t)/ZH(t) is not equal to
NG(t)/ZG(t), because the latter group is the Weyl group of f . This completes the
proof of the theorem.

5. The algebra C[h]H

It is known (see [1], Chapter 8,§8) that for a connected semisimple group H the
vector space C[h]H is generated by polynomials tr(ρ(x)n), where ρ runs over the
set of all representations of h . In this section we generalize this result for arbitrary
reductive groups H .



22 Losev

Proposition 5.1. Let H be an arbitrary reductive group. The vector space
C[h]H is generated by tr(ρ(x)n), where ρ runs over the set of all representations
of H .

Proof. The proof from [1] for a semisimple connected group H quoted above
can be generalized to the case when H is connected but not necessarily semisimple
in a straightforward way. The generalization is straightforward.

Now we consider the general case. We have

C[h]H = {
∑

h∈H/H◦

h.f | f ∈ C[h]H
◦}.

Therefore, the vector space C[h]H is generated by elements of the form∑
h∈H/H◦

h. tr(ρ(x)n), (1)

where ρ is a representation of H◦ . Denote by ρ̃ the representation of H induced
from ρ . The corresponding representation of h is given by ρ̃ =

∑
h∈H/H◦ h.ρ . The

polynomial (1) is just tr(ρ̃(x)n).

Let I be a set of representations of H . Denote by C[hn]I the subalgebra
of C[hn]H generated by polynomials of the form tr(ρ(x)m), where ρ ∈ I . When
I = {ρ} , we write C[hn]ρ instead of C[hn]{ρ} .

It is known from the classical invariant theory (see, for example, [6]) that
if H = GLm, SLm,Om, Sp2m , then C[hn]H = C[hn]ρ , where ρ is the tautological
representation of the group H . Now let H be one of the exceptional simple groups
G2, F4, E6, E7, E8 and ρ be the simplest (=non-trivial irreducible of minimal di-
mension) representation of the group H . It was shown by several authors (see [2]
for references) that C[h]H = C[h]ρ .

6. Linear equivalence of embeddings

Let G,H be reductive algebraic groups and g, h be the Lie algebras of G and H ,
respectively. We say that two homomorphisms P1, P2 : H → G are equivalent (or,
more precisely, G-equivalent) if there exists g ∈ G such that gP1(x)g

−1 = P2(x)
for all x ∈ H◦ . Further, we say that P1, P2 are linearly equivalent (or linearly
G-equivalent) if for every representation P : G → GL(V ) the representations
P ◦P1, P ◦P2 are GL(V )-equivalent. It is obvious that equivalent homomorphisms
are linearly equivalent. Homomorphisms ρ1, ρ2 : h → g are said to be G-equivalent
(resp., linearly G-equivalent) if the exist equivalent (resp., linearly equivalent)
homomorphisms P1, P2 : H → G with dP1 = ρ1, dP2 = ρ2 .

Let P : H → G be a homomorphism, ρ : h → g its tangent homomorphism.
Denote by ψρ

n the natural morphism from hn//H to ρ(h)n//G .

The set ρ(h)n//G can be identified with the set of equivalence classes
(ρ(x1), . . . , ρ(xn)), where x1, . . . , xn generate a reductive subalgebra of h , modulo
G-conjugacy. Therefore, Lemma 3.4 implies that ψρ

n, n > 1, is bijective if and only
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if for every reductive Lie algebra f and embeddings ρ1, ρ2 : f → h the following
condition is fulfilled:

if ρ ◦ ρ1, ρ ◦ ρ2 are G-equivalent, then ρ1, ρ2 are H -equivalent.

Similarly, we get the following

Proposition 6.1. Let H,G, h, g, ρ be as above. The following conditions are
equivalent:

(i) The map ψρ
1 is injective.

(ii) For every pair (x1, x2) of semisimple elements of h if ρ(x1) ∼G ρ(x2), then
x1 ∼H x2 .

(iii) For any diagonalizable Lie algebra t and embeddings ρ1, ρ2 : t ↪→ h if ρ1, ρ2

are H -equivalent, then ρ ◦ ρ1, ρ ◦ ρ2 are G-equivalent.

The following proposition is a generalization of Theorem 1.1. from [3].

Proposition 6.2. Let G, h, g be as above, t ⊂ h be a Cartan subalgebra,
P1, P2 : H → G be some homomorphisms, ρ1 = dP1, ρ2 = dP2 . The following
conditions are equivalent

(i) ρ1 and ρ2 are linearly G-equivalent.

(ii) ρ1|t and ρ2|t are G-equivalent.

Proof. (ii) ⇒ (i). Replacing ρ1 with Ad(g) ◦ ρ1, g ∈ G, if necessary, we
may assume that ρ1|t = ρ2|t . The required result follows from the fact that a
representation of h is uniquely determined by the collection of its weights and
their multiplicities.

(i) ⇒ (ii). We may assume that h = t . By Proposition 6.1 it is enough to
prove the following statement:

Let x1, x2 be semisimple elements of g such that for every representation
P : G→ GL(V ) matrices ρ(x1), ρ(x2) are conjugate, where ρ = dP . Then x1, x2

are conjugate (with respect to the adjoint action of G).

We see that tr(ρ(x1)
n) = tr(ρ(x2)

n) for all P : G → GL(V ). It follows
from Proposition 5.1 that f(x1) = f(x2) for any f ∈ C[g]G . Since x1, x2 are
semisimple, we have x1 ∼G x2 .

Remark 6.3. Let I be a set of representations of G such that polynomials
tr(dP (x)n), P ∈ I, generate the algebra C[g]G . It follows from the previous proof
that ρ1|t, ρ2|t are H -equivalent if and only if the representations dP ◦ ρ1, dP ◦ ρ2

are GL(V )-equivalent for any representation P ∈ I .

Proposition 6.4. Let G, g, H, h be such as in Proposition 6.1, P : H → G a
homomorphism, ρ = dP , f a reductive Lie algebra, and ρ1, ρ2 : f → h embeddings.
Suppose that the equivalent conditions of Proposition 6.1 are fulfilled and ρ1, ρ2

are G-equivalent. If f = sl2 or ρ1(f), ρ2(f) are regular subalgebras of h, then ρ1

and ρ2 are H -equivalent.
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Proof. Suppose f = sl2 . Let (e, h, f) be a standard basis of f , i.e. [h, e] =
2e, [h, f ] = −2f, [e, f ] = h . Since ρ1(h) ∼G ρ2(h) we see that ρ1(h) ∼H ρ2(h).
We may assume that ρ1(h) = ρ2(h). There exists g ∈ ZH(ρ1(h)) such that
Ad(g) ◦ ρ1 = ρ2 (see, for example, [1], Ch.8, §11).

Now suppose that ρ1(f) and ρ2(f) are regular subalgebras of h . Denote by
s, t Cartan subalgebras of f, h , respectively. There exists an element h ∈ H such
that Ad(h)ρ1|s = ρ2|s . Therefore, the proof reduces to the case when ρ1|s = ρ2|s .
Since all Cartan subalgebras of zg(ρ1(s)) are ZG(ρ1(s))-conjugate one also may
assume that t normalizes ρ1(f), ρ2(f). Let α ∈ ∆(f) and eα ∈ fα be nonzero.
Since ρ1(f), ρ2(f) are regular subalgebras we have ρ1(eα) = cαρ2(eα). There exists
t ∈ ρ1(s) such that exp(ad t) ◦ ρ1 = ρ2 , see [1], Ch.8,§5.

7. Bijectivity of ψ2 : h2//H → h2//G

Theorem 7.1. Let h be a simple Lie algebra, H an algebraic group with Lie
algebra h. The following conditions are equivalent:

(i) h = sln, sp2n, so2n+1, G2, F4 or h = so2n, n > 3, and the group Ad(H)
contains an involutive outer automorphism of the algebra h.

(ii) For any reductive algebraic Lie algebra f and any pair of linearly H -equivalnent
homomorhisms ρ1, ρ2 : f → h the homomorphisms ρ1 and ρ2 are H -
equivalent.

Theorem 7.1 is proved in Sections 8-11.

Proof of Theorem 1.3. It is enough to prove that for every reductive Lie
algebra f and every embeddings ρ1, ρ2 : f → h if ρ1, ρ2 are G-equivalent then they
are H -equivalent.

It follows from the bijectivity of ψ1 that ρ1|t, ρ2|t are H -equivalent. It is
enough to prove that the latter implies ρ1, ρ2 are H -equivalent. One may assume
that ρ1|t = ρ2|t . Let h = z(h)⊕ h1⊕ . . . . . .⊕ hk , where hi, i = 1, . . . , k, is a simple
noncommutative ideal. Now it is enough to consider the case H = H1× . . .×Hk ,
where Hi = O2m if hi = so2m,m > 3, Hi = Int(hi) otherwise. Denote by πi the
projection from h to hi . It is enough to prove that there is an element hk ∈ Hk such
that Ad(hk)◦πk ◦ρ1 = πk ◦ρ2 . By Proposition 6.2, homomorphisms πk ◦ρ1, πk ◦ρ2

are linearly H -equivalent. It remains to use Theorem 7.1.

Proposition 7.2. Let G be a reductive algebraic group, g the Lie algebra of G.
There exists a representation P : G→ GL(V ) such that ρ = dP is an embedding
and ψρ

1 : g//G→ ρ(g)//GL(V ) is injective.

Proof. We need the following lemma

Lemma 7.3. Let ρ1 : g → gl(U1), ρ2 : g → gl(U2) be representations, n =
dimU1 + 1. Put U = U1 ⊕ nU2 , ρ = ρ1 + nρ2 . For any two semisimple elements
x, y ∈ g if the matrices ρ(x), ρ(y) are similar, then for i = 1, 2 the matrices
ρi(x), ρi(y) are similar.
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Proof of Lemma 7.3. Denote by λ1, . . . , λk the different eigenvalues of ma-
trices ρ(x), ρ(y) and by m1, . . . ,mk their multiplicities. Both ρ1(x) and ρ1(y) (re-
spectively, ρ2(x), ρ2(y)) have eigenvalues λ1, . . . , λk with multiplicities
n{m1

n
}, . . . , n{mk

n
} (respectively, [m1

n
], . . . , [mk

n
]). Therefore, ρi(x), ρi(y) are similar

for i = 1, 2.

It follows from Proposition 5.1 that there exist representations Pi : G →
GL(Ui), i = 1, . . . ,m, such that the algebra C[g]G is generated by polynomials of
the form tr(dPi(x)

n).

For i = 1, . . . ,m we define a positive integer ni , a vector space Ũi and
representation P̃i : G→ GL(Ũi) by formulas

n1 = 1, Ũ1 = U1, P̃1 = P1.

ni = dim Ũi−1 + 1, Ũi = Ũi−1 ⊕ niUi, P̃i = P̃i−1 + niPi.

By Lemma 7.3, for any semisimple x, y ∈ g if the matrices dP̃m(x), dP̃m(y)
are similar, then for i = 1, . . . ,m the matrices dPi(x), dPi(y) are similar. Thus,
f(x) = f(y) for all f ∈ C[g]G and so x ∼G y . It follows from Proposition 6.1 that
ψdPm

1 is bijective.

Proof. First, suppose that G = GLm . Let f be a reductive Lie algebra,
ρ1, ρ2 : f ↪→ h linearly H -equivalent but not equivalent embeddings. Such ρ1, ρ2

exist by Theorem 7.1. If ψ2 is bijective, then ρ1, ρ2 are H -equivalent. Contradic-
tion.

Now we consider the general case. By Proposition 7.2, there exists a
homomorphism P : G → GL(V ) such that ρ = dP is an embedding and ψρ

1

is bijective. Since ψρ
1 is injective, it follows that G := NGL(V )(ρ(g))/ZGL(V )(ρ(g))

is a group of type I. Therefore, by Theorem 1.3, ψρ
2 : g2//G → g2//GL(V ) is

bijective. Denote by ρ̃ the embedding h ↪→ g . Since ψρ
2 is bijective, the group

NGL(V )(ρ(h))/ZGL(V )(ρ(h)) ⊂ Aut(h) coincides with H . Now it follows from the

first part of the proof that the map ψρ◦eρ
2 is not bijective. But ψρ◦eρ

2 = ψρ
2 ◦ ψ2 .

Therefore, ψ2 is not bijective.

8. Cases h = sln, sp2n, so2n+1

We show that linearly H -equivalent reductive embeddings are H -equivalent for
every group H with Lie algebra h .

Let f be a reductive Lie algebra and ρ1, ρ2 : f ↪→ h be linearly H -equivalent
embeddings. We must prove that ρ1, ρ2 are H -equivalent. By Proposition 6.2, we
may assume that ρ1|t = ρ2|t , where t is a Cartan subalgebra of f . Now it is enough
to show that ρ1, ρ2 are H◦ -equivalent. Denote by ρ the tautological representation
of h . Recall that C[h2]ρ = C[h2]H

◦
. It follows that the embeddings ρ1 and ρ2 are

H◦ -equivalent.

9. Case h = so2n, n > 3

First suppose that Ad(H) contains an involutive outer automorphism of h . Then
linearly H -equivalent reductive embeddings are H -equivalent. One can prove this
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analogously to the previous section using the fact that C[hn]ρ = C[hn]H , where ρ
is the tautological representation of h , H = O2n .

Now suppose that Ad(H) = Int(h). Denote by τ the tautological represen-
tation of h and by θ any outer involutive automorphism of h . For the proof of
the next proposition see [3], Theorem 1.4.

Proposition 9.1. Let f be a reductive Lie algebra and ρ : f → h be an
embedding. Suppose that

1. The representation τ ◦ ρ : f → gl2n has zero weight.

2. All irreducible components of τ ◦ ρ have even dimension.

Then the embeddings ρ, θ ◦ ρ are linearly H -equivalent but not equivalent.

Now it is enough to construct an embedding ρ : f ↪→ h (or representation
τ ◦ ρ) satisfying both conditions of Proposition 9.1. Denote by ρ1 the adjoint
representation of sl3 (of dimension 8), by ρ2 the exterior square of the tautological
representation of so5 (of dimension 10) and by ρ0 the tautological representation
of so4 . For n = 2k we put f = sl3⊕ sok−4

4 , τ ◦ ρ = ρ1⊕ (k− 4)ρ0 . For n = 2k+ 1
put f = so5 ⊕ sok−4

4 , τ ◦ ρ = ρ2 ⊕ (k − 4)ρ0 .

It remains to consider the case h = so8, |Ad(H)/ Int(h)| = 3. It is enough
to prove that ρ1, θ ◦ ρ1 : sl3 ↪→ so8 are not equivalent.

Assume the converse. There exists an h ∈ H such that (Ad(h)θ) ◦ ρ1 = ρ1 .
The order of the image of Ad(h)θ in the group Aut(h)/ Int(h) is 2. This contradicts
Proposition 9.1.

10. Case h = El, l = 6, 7, 8

There exists a Levi subalgebra l ⊂ h isomorphic to so10×Cl−5 . Put f = so5×Cl−5 .
Let ρ1, ρ2 be embeddings of f into l satisfying the following conditions

1. ρ1|z(f) = ρ2|z(f) is an isomorphism of z(f) and z(l).

2. ρ1|so5 = ρ2, ρ
2|so5 = θ ◦ρ2 , where ρ2 is the exterior square of the tautological

representation of so5 , θ is an involutive outer automorphism of so10 .

Since ρ2, θ ◦ ρ2 : so5 ↪→ so10 are linearly SO10 -equivalent, we see that ρ1, ρ2

are linearly Int(h)-equivalent.

Assume that there exists h ∈ Ad(H) such that h ◦ ρ1 = ρ2 . Denote by
L′ the connected subgroup of H with Lie algebra [l, l] . It is well known that
the centralizer of an algebraic subtorus in a connected reductive algebraic group
is connected. By Proposition 9.1, h|[l,l] 6∈ Ad(L′). Since h ∈ ZH(z(l)), we have
h 6∈ Int(h). Thus, h = E6,Ad(H) = Aut(h).

Denote by t a Cartan subalgebra of l . One may assume that t ∩ [l, l] is
θ -invariant and that θ acts on t ∩ [l, l] by a reflection. The centralizer of ρ2(so5)
in SO10 coincides with the center of SO10 . Hence, Ad(h)|[l,l] = θ and Ad(h)|t is a
reflection. The subgroup of NH(t) generated by all reflections is the Weyl group
of h . Therefore, h ∈ Int(h). Contradiction.
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11. Cases h = G2, F4

Since the algebra h has no outer automorphisms, one may assume that H is
connected.

If h = G2 the statement of Theorem 7.1 follows from Proposition 6.4. In
the sequel we consider the case h = F4 .

Let f be a reductive Lie algebra, ρ1, ρ2 : f ↪→ h linearly H -equivalent
embeddings. We must prove that ρ1, ρ2 are equivalent.

Assume the converse. It follows from Proposition 6.4 that rank f < 4.

Lemma 11.1. Let H be a reductive algebraic group, f a reductive Lie algebra
such that f ∼= s ⊕ f1 , where s, f1 are ideals of f and rank s = 1. Suppose
ρ1, ρ2 : f → h are linearly H -equivalent embeddings.

(1) Then there exists an h ∈ H such that Ad(h) ◦ ρ1 and ρ2 coincide on s.

(2) Suppose that ρ1, ρ2 coincide on s. Then ρ1|f1 , ρ2|f1 are linearly ZH(ρ1(s))-
equivalent.

(3) Under the assumptions of (2) ρ1, ρ2 are H -equivalent if and only if ρ1|f1 , ρ2|f2
are ZH(ρ1(s))-equivalent.

Proof. The assertion of part (3) is obvious. Propositions 6.2 and 6.4 imply the
statements (1),(2) for s ∼= C and the statement (1) for s = sl2 , respectively.

Now one may assume that s ∼= sl2 and ρ1|s = ρ2|s . Denote by x a general
semisimple element of f1 . By Proposition 6.2, it is enough to show that there exists
a g ∈ ZH(ρ1(s)) such that Ad(g)ρ1(x) = ρ2(x). Denote by e, h, f a standard basis
of ρ1(s). Since ρ1, ρ2 are linearly H -equivalent, there exists a g1 ∈ ZH(h) such
that Ad(g1)ρ1(x) = ρ2(x). Analogously to the proof of Proposition 6.4, there
exists a g2 ∈ ZH(ρ2(x)) such that Ad(g2) Ad(g1)ρ1, ρ2 coincide on s . The element
g = g2g1 has the required properties.

Suppose that f is not simple. Then f satisfies the conditions of Lemma 11.1.
It is easy to see that ZH(ρ1(s)) is a group of type I. The rank of the semisimple
part of ZH(ρ1(s)) is less then 4. It follows from results of Sections 8,9, that if ρ1, ρ2

are linearly equivalent, then they are equivalent (see the proof of Theorem 1.3) .
So, we may assume that f is simple. Proposition 6.4 implies that rank f > 1.

Now we prove that neither of the subalgebras ρ1(f), ρ2(f) ⊂ h is regular.
Assume the converse. To be definite, let ρ1(f) be a regular subalgebra of h . By
Proposition 6.4, ρ2(f) is not regular. Since the representations ad ◦ρ1, ad ◦ρ2 are
equivalent, we obtain that dim zh(ρ2(f)) = dim zh(ρ1(f)) > 4 − rank f . Since for
any reductive Lie algebra s the number dim s − rank s is even, rank zh(ρ2(f)) 6
rank zh(ρ1(f))− 2. Therefore, rank zh(ρ2(f)) = 0. Contradiction.

It follows from [3], Table 25, that every simple subalgebra in h of rank
greater then 1 is contained in a maximal regular subalgebra. There are three
maximal regular subalgebras h1, h2, h3 ⊂ h , h1

∼= so9, h2
∼= sp6× sl2, h3

∼= sl3× sl3 .
See, for example, [3], Table 12, (there is a mistake in this table: the subalgebra of
F4 isomorphic to sl4× sl2 is not maximal, it is contained in h1 ). One may assume
that h1, h2, h3 contain a Cartan subalgebra t ⊂ h .
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All simple subalgebras of rank greater then 1 in sp6 are regular. All
embeddings ρ : f ↪→ h1 such that the subalgebra ρ(f) is not regular are listed
up to Int(h1)-conjugacy in the following table:

f ρ
sl4 R(π2)⊕ 3R(0)
so7 R(π3)⊕R(0)
G2 R(π1)⊕ 2R(0)
so5 R(π2)⊕R(π2)⊕R(0)
sl3 ad⊕R(0)

In the second column we list the linear representations in C9 corresponding
to ρ . They determine ρ up to Int(h1)-conjugacy.

Since all simple subalgebras of rank greater then 1 in h3 are isomorphic
to sl3 , we see that f ∼= sl3 . Denote by ρ1 the embedding of sl3 into so9 listed
in the table. It follows from Table 25 in [3] that the restriction of the simplest
representation of h to ρ1(f) is isomorphic to 3 ad⊕2R(0).

It is easy to see that NH(h3)/NH(h3)
◦ is a group of order 2. The group

NH(h3) contains an outer automorphism of h3 which acts on t by multiplication
by -1.

Now we introduce some notation. Let t be a Cartan subalgebra of h ,
εi, i = 1, . . . , 4, its orthonormal basis, so that

∆(h) =
{
± εi ± εj, i 6= j,±εi,

±ε1 ± ε2 ± ε3 ± ε4

2

}
.

Put α1 = (ε1− ε2− ε3− ε4)/2, α2 = ε4, α3 = ε3− ε4, α4 = ε2− ε3 . This is a set of
simple roots of h . Denote by h1, h2 simple coroots of f .

A set of simple roots for h3 is (ε1 + ε2 + ε3 + ε4)/2, α1, α3, α4 . Highest
weights for the restriction of the simplest representation of h into h3 are ε1 ,
(ε1 + ε2 − ε3 − ε4)/2, (ε1 + ε2 + ε3 − ε4)/2.

There are two equivalence classes of the embeddings of sl3 into h3 up to
NH(h3)-conjugation. Only one of these embeddings is GL26 -equivalent to ρ1 ,
namely the one with h1 7→ ε1 + 2ε2 + ε4, h2 7→ ε1 − ε2 − 2ε4 . We denote this
embedding by ρ2 .

It remains to prove that ρ1, ρ2 : f ↪→ h are H -equivalent. Since an outer
automorphism of f is contained in both NH(ρ1(f)), NH(ρ2(f)), it is enough to show
that the subalgebras ρ1(f), ρ2(f) are H -conjugate.

Denote by h4 the regular subalgebra of h corresponding to the set of roots
of maximal length. The subalgebra h4 is isomorphic to so8 and is contained in
h1 . One may assume that ρ1(f) ⊂ h4 . It is clear that NH(t) ⊂ NH(h4). Therefore
Ad(NH(h4)) = Aut(h4). It follows from the description of automorphisms of finite
order of simple Lie algebras (see, for example, [5], Ch. 4, §4) that there exists
a t ∈ NH(h4) such that Adh4 t is an element of order 3 and ht

4 = ρ1(f). The
centralizer ZH(h4) is a finite group of order 2. Since t3 ∈ ZH(h4), it follows that
Ad(t) has finite order (3 or 6). ht is a regular subalgebra of rank 4 in h and
contains ρ1(h). Thus ht is not contained in a subalgebra conjugate to h2 .
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Let us note that every proper subalgebra of h1 containing ρ1(f) coincides

with h4 or ρ1(f). Indeed, let f̃ be such a subalgebra. Since the centralizer of f in

so9 is trivial, we obtain that f̃ is semisimple. The algebra so9 does not contain
a subalgebra isomorphic to sl3 × sl3 . Hence f is simple. If f is not conjugate to
so8 , then f is not regular. It follows from the previous table that f̃ ∼= so7 or f . A
subalgebra of so7 isomorphic to sl3 is unique up to conjugation and its centralizer
is non-trivial. It follows that f̃ = f .

Since the order of t is divisible by 3, ht is not conjugate to h4 . Thus, ht is
not contained in a subalgebra conjugate to h1 .

It follows that ρ1(f) is contained in a subalgebra conjugate to h3 . This
completes the proof.

12. The algebra C[hn]GLm

Proof of Proposition 1.5. It is known from the classical invariant theory
that the algebra C[hn]G is generated by the polynomials tr(Xi1Xi2 . . . Xik). Denote
by A the subalgebra of the tensor algebra Th∗ generated by the elements of the
form

g(L1, . . . , Ld), (2)

where g ∈ Sd(h∗)G , Li are Lie polynomials in X1, . . . , Xk .

Put fk = tr(X1 . . . Xk). Using the polarization, we reduce the required
statement to the following one:

fk ∈ A for every positive integer k .

The proof of the last statement is by induction on k . The case k = 1 is
trivial. Now assume that we are done for k < l .

The symmetric group Sl acts on the space (h∗)⊗l by permuting the factors
in a tensor product. It is clear that A ∩ (h∗)⊗l is invariant under this action. For
every transposition σi = (i, i+ 1) one has

(σifl)(X1, . . . , Xl)− fl(X1, . . . , Xl) = tr(X1 . . . [Xi, Xi+1] . . . Xk).

Therefore, σifl − fl ∈ A . It follows that fl − σfl ∈ A for every σ ∈ Sl .
Hence, fl ∈ A if and only if

1

l!

∑
σ∈Sl

σfl ∈ A.

But the latter is an element of Sl(h∗)G and lies in A by definition.

Corollary 12.1. Let G = GLm , h be a subalgebra of g = glm ,
H = NG(h)/ZG(h). Suppose that ψ1 : C[h]G → C[h]H is an isomorphism and
(h, H) is one of the following pairs: (slk,Ad(SLk)), (sok,Ad(Ok)), (sp2k,Ad(Sp2k)).
Then ψn is an isomorphism.

Proof. Let ρ be a representation h ↪→ g and ι be the tautological represen-
tation of h . Proposition 1.5 implies C[hn]ρ = C[hn]ι . It follows from the classical

invariant theory that C[hn]ι = C[hn]H and we are done.
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