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Locally Precompact Groups:
(Local) Realcompactness and Connectedness

W. W. Comfort1 and Gábor Lukács2
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Abstract. A theorem of A. Weil asserts that a topological group embeds as
a (dense) subgroup of a locally compact group if and only if it contains a non-
empty precompact open set; such groups are called locally precompact. Within
the class of locally precompact groups, the authors classify those groups with
the following topological properties:

(a) Dieudonné completeness;
(b) local realcompactness;
(c) realcompactness;
(d) hereditary realcompactness;
(e) connectedness;
(f) local connectedness;
(g) zero-dimensionality.

They also prove that an abelian locally precompact group occurs as the
quasi-component of a topological group if and only if it is precompactly generated,
that is, it is generated algebraically by a precompact subset.
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cally precompact group, Weil completion, Dieudonné complete group, locally
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0. Introduction

A subset X of a topological group G is precompact if for every neighborhood U of
the identity in G, there is a finite S⊆X such that X⊆(SU)∩(US). It is easily seen
that every subgroup (indeed, every subset) of a compact group is precompact. The
local version of that statement, and its converse, are the content of a theorem of
A. Weil: A topological group G embeds as a (dense) subgroup of a locally compact

group G̃ if and only if G is locally precompact in the sense that some non-empty
open subset of G is precompact (cf. [63]). For such a group G, the Weil completion

1 The first author gratefully acknowledges generous hospitality from the University of Mani-
toba in January 2008.

2 The second author gratefully acknowledges the generous financial support received from
NSERC and the University of Manitoba, which enabled him to do this research.

ISSN 0949–5932 / $2.50 c© Heldermann Verlag



348 Comfort and Lukács

G̃ is unique in the obvious sense, and it coincides with the two-sided completion
introduced by Răıkov in 1946 (cf. [48]). For background on these completions, see
[49], [63], [48], [31, (4.11)-(4.15)], and [42, Section 1.3].

As the bibliographies in the monographs [31], [32], [34], and [42] attest, there
is a huge literature devoted to the study and characterization of the locally compact
groups that enjoy additional special topological properties. We work here in a par-
allel vein, but now in the class of locally precompact groups. Most of our results,
when restricted back to the locally compact case, will be unsurprising, and in some
cases familiar, to the reader.

The paper is organized as follows. After introductory material in §1, we
characterize in §2 those locally precompact groups that are locally realcompact
(Theorem 2.22); they are the Dieudonné complete groups, or equivalently, the
groups that are Gδ -closed in their completions. In §3, we find internal (intrinsic)
characterizations of those locally precompact groups that are hereditarily realcom-
pact (Theorems 3.5), while in §4 we address the relations among connectedness
properties of locally precompact groups (emphasizing the locally pseudocompact
case) and their completions; here, the principal result is that a locally pseudo-
compact group is locally connected if and only if its completion is locally con-
nected (Theorem 4.15). §5 is devoted to proving that within the class of locally
precompact abelian groups, the groups A that are topologically isomorphic to
a group of the form (G̃)0∩G with G locally pseudocompact are exactly the pre-
compactly generated groups (Theorem 5.6); thus, in particular, every connected
precompact abelian group A is topologically isomorphic to the connected compo-
nent of a pseudocompact group. That theorem was established in [7, 7.6] when A
in addition is torsion-free, and was developed further in [12, 3.6].

1. Definitions, notations, and preliminaries

All topological spaces here are assumed to be Tychonoff. Except when specifically
noted, no algebraic assumptions are imposed on the groups; in particular, our
groups are not necessarily abelian. A “neighborhood” of a point means an open set
containing the point. The collection of neighborhoods of the identity in a topologi-
cal group G is denoted by N (G). The next theorem explains the origin of the term
precompact, and relates it to the completion.

Theorem 1.1 ([42, 3.5]). Let G be a topological group, and X⊆G a subset.
Then X is precompact if and only if cl eGX is compact.

For a space X, we denote by βX and υX its Stone-Čech compactification
and Hewitt realcompactification, respectively (cf. [22, 6.5, 8.4] and [21, 3.6.1,
3.11.16]). A Gδ -subset of a space (X, T ) is a set of the form

⋂
n<ω

Un with each

Un ∈ T . The Gδ -topology on X is the topology generated by the Gδ -subsets of
(X, T ). A subset of X is Gδ -open (respectively, Gδ -closed, Gδ -dense) if it is open
(respectively, closed, dense) in the Gδ -topology on G.

Definition 1.2. A space X is pseudocompact if it satisfies the following equiv-
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alent conditions:

(i) every continuous real-valued map on X has bounded range;

(ii) every locally finite family of non-empty open subsets of X is finite;

(iii) X is Gδ -dense in βX.

Definition 1.2(i) was introduced by Hewitt, who established the equivalence
of (i) and (iii) (cf. [30] and [22, 1.4]). The equivalence of conditions (i) and (ii)
was shown by Glicksberg (cf. [23, Theorem 2] and [21, 3.10.22]).

Definition 1.3. A topological group G is said to be locally pseudocompact if
there is U∈N (G) such that clG U is pseudocompact.

Since every pseudocompact subset of a topological group is precompact
(cf. [9, 1.1] and [10, 1.11]), every locally pseudocompact group is locally precom-
pact. Numerous equivalent definitions of local pseudocompactness are provided in
Theorem 1.4 below, which summarizes the main results of [10]. (The paper [10]
generalizes to the local context the results of [9].)

Theorem 1.4 ([10]). Let G be a topological group. The following statements
are equivalent:

(i) G is locally pseudocompact;

(ii) for every V ∈N (G), there is U∈N (G) such that clG U is pseudocompact and
clG U⊆V ;

(iii) there is U∈N (G) such that β(clG U)= cl eG U ;

(iv) G is locally precompact, and β(clG U)= cl eGU for every precompact U∈N (G);

(v) G is locally precompact, and βG=βG̃;

(vi) G is locally precompact, and υG=υG̃;

(vii) G is locally precompact, and Gδ -dense in G̃.

Next, for the sake of completeness, we recall a well-known technical lemma
concerning open subgroups of dense subgroups, which will be used several times in
this paper. We denote by H(G) the set of open subgroups of a topological group G,
and we set o(G) :=

⋂
H(G). We note for emphasis that in Lemma 1.5, no normality

conditions are imposed on any subgroups.

Lemma 1.5. Let G be a topological group, and D a dense subgroup. Then:

(a) the maps

Φ: H(G) −→ H(D) Ψ: H(D) −→ H(G)

M 7−→M ∩D H 7−→ clGH

satisfy Ψ ◦ Φ = idH(G) and Φ ◦Ψ = idH(D) , and thus they are order-preserving
bijections;

(b) for every M ∈ H(G), one has |G/M | = |D/(M ∩D)|;
(c) for every H ∈ H(D), one has |G/ clGH| = |D/H|;
(d) o(D)=o(G)∩D.
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2. Local and global realcompactness and Dieudonné completeness

Definition 2.1.

(a) A space is realcompact if it is homeomorphic to a closed subspace of Rλ for
some cardinal λ .

(b) A space is Dieudonné complete if it is homeomorphic to a closed subspace of
a space of the form

∏
α∈I

Mα with each Mα metrizable.

Remark 2.2.

(a) It is clear from Definition 2.1 that every realcompact space is Dieudonné com-
plete. For limitations concerning the converse statement, see Discussion 2.6
and Corollary 2.9 below.

(b) Responding to a question posed in the fundamental memoire of Weil [63],
Dieudonné proved that a space has a compatible complete uniformity if and
only if it is (in our terminology) Dieudonné complete (cf. [11, p. 286]). For
this reason, many authors prefer to call such spaces topologically complete
(cf. [22] and [8]). The class has been studied broadly, for example, by Kelley
(cf. [39, Chapter 15]) and Isbell (cf. [37, I.10-22]).

(c) It is obvious from the definitions that a product of realcompact (respectively,
Dieudonné complete) spaces is realcompact (respectively, Dieudonné com-
plete), and that a closed subspace of a realcompact (respectively, Dieudonné
complete) space is realcompact (respectively, Dieudonné complete). Since the
intersection

⋂
α∈I

Aα of subspaces of any (fixed) space is homeomorphic to

a closed subspace of
∏
α∈I

Aα , it is further immediate from the definitions that

in any space Y , each subspace of the form
⋂

α∈I

Aα with each Aα a realcom-

pact (respectively, Dieudonné complete) subspace of Y is itself realcompact
(respectively, Dieudonné complete).

The statements given in the next theorems, which are all basic in the study of
realcompact spaces and of Dieudonné complete spaces, are less obvious; we will
rely on these properties in what follows.

Theorem 2.3.

(a) ([5, 2.3]) Every Gδ -closed subspace of a realcompact (respectively Dieudonné
complete) space is realcompact (respectively, Dieudonné complete).

(b) ([22, 8.2], [21, 3.11.12]) Every Lindelöf space is realcompact.

(c) ([5, 3.6]) Every locally compact topological group is Dieudonné complete.

Notation 2.4. With each space X are associated spaces υX and γX defined
as follows:

υX := {p∈βX | each continuous map from X to R extends continuously to p};
γX := {p∈βX | each continuous map from X to a metric space

extends continuously to p}.
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Theorem 2.5 ([22, Chapter 8], [21, 3.11.16, 8.5.13], and [8, pp. 1-20]). Let X
be a space. Then:

(a) υX is realcompact and υX=
⋂
{X ′ | X⊆X ′⊆βX, X ′ is realcompact};

(b) γX is Dieudonné complete and

γX=
⋂
{X ′ | X⊆X ′⊆βX, X ′ is Dieudonné complete}.

Realcompact spaces (under the name of Q-spaces) as well as the space υX
were introduced by Hewitt (cf. [30, Definition 12, Theorems 56-60]). Accordingly,
the space υX is called the Hewitt realcompactification of X . Similarly, honoring
Dieudonné, the space γX is called the Dieudonné completion of X (cf. [11]).

The definitions of realcompactness and Dieudonné completeness are similar,
yet different. The distinction is best described by using the set-theoretic notion of
Ulam-measurable cardinals. A cardinal number λ is said to be Ulam-measurable
if there is a non-atomic countably additive measure µ : P(λ) → {0, 1} such that
µ(λ)= 1. Ulam-measurable cardinals are called measurable in the text [22], but we
follow standard procedure in reserving that term for cardinals λ with a measure
µ : P(λ) � {0, 1} that is <λ-additive in the sense that every A⊆λ with |A|<λ
satisfies µ(A)= 0.

Discussion 2.6. The existence of Ulam-measurable cardinals cannot be proven
in ZFC—that is, their non-existence is consistent with the axioms of ZFC (cf. [40,
IV.6.9, VI.4.13]). Most set theorists (appear to) believe that the existence of an
Ulam-measurable cardinal is consistent with the axioms of ZFC, but that has
not been established (cf. [40]). It is known that an Ulam-measurable cardinal
exists if and only if an uncountable measurable cardinal exists. Indeed, the first
Ulam-measurable cardinal m (if it exists) is measurable (cf. [59], [56], and [22,
12.5(ii)]). Henceforth, we write λ<m instead of “λ is not Ulam-measurable.” Such
statements are to be read with some good will: If no Ulam-measurable cardinal
exists, then the expression λ<m is vacuously true for every cardinal λ .

The relevance of Ulam-measurable cardinals to our work is given by the
following consequence of a theorem of Mackey (cf. [44]).

Theorem 2.7 ([22, 12.2]). A discrete space D is realcompact if and only if
|D|<m.

Recall that a cellular family in a space X is a collection of non-empty,
pairwise disjoint open subsets of X . The cellularity of X is defined by the relation

c(X) := sup{|U| : U is a cellular family in X}.

The following consequence of a theorem of Shirota (cf. [53]) provides a sufficient
condition for Dieudonné complete spaces to be realcompact.

Theorem 2.8 ([22, 15.20]). If X is Dieudonné complete and c(X)<m, then
X is realcompact.
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It is easily seen that a metrizable space of Ulam-measurable cardinality
contains a closed, discrete subspace of Ulam-measurable cardinality (cf. [8, 6.2]).
Thus, combining Theorems 2.7 and 2.8 yields the following useful result.

Corollary 2.9 ([22], [8]). The following statements are equivalent:

(i) there is no Ulam-measurable cardinal;

(ii) the class of realcompact spaces coincides with the class of Dieudonné complete
spaces.

It is well known that a space is compact if and only if it is pseudocom-
pact and realcompact (cf. [30, Theorem 54] and [21, 3.11.1]). Thus, the notion
of realcompactness is a natural complement to that of pseudocompactness. While
Theorem 1.4 provides a complete “internal” characterization of locally pseudo-
compact groups, we are aware of no parallel intrinsic characterization of (locally)
realcompact groups. In this section, we remedy this deficiency for locally pre-
compact groups. Since every Lindelöf space is realcompact (cf. [22, 8.2] and [21,
3.11.12]), a complete description of realcompact groups is beyond the scope of this
paper. Our approach is based on an argument that was used in [5, Section 4],
which we formulate here explicitly.

For a topological space X , a zero-set in X is a set of the form f−1(0), where
f is a real-valued continuous function on X. A subset Y ⊆X is z -embedded in X if
for every zero-set Z in Y , there is a zero-set W in X such that Z=W∩Y . (To our
best knowledge, this concept was first introduced into the literature by Isbell [36],
and explicitly by Henriksen and Johnson [28]; see also Hager [27] for additional
citations and applications.) One says that X is an Oz -space if every open subset
of X is z -embedded (cf. [3]). Recall that a subset F ⊆X is regular-closed if
F = clX(intXF ), or equivalently, if F = clXU for an open subset U⊆X. Blair has
characterized Oz -spaces in several ways.

Theorem 2.10 ([3, 5.1]). For every space X , the following statements are
equivalent:

(i) X is an Oz -space;

(ii) every dense subset of X is z -embedded in X;

(iii) every regular-closed subset of X is a zero-set in X.

Theorem 2.11.

(a) ([3, 5.3]) If X is an Oz -space and S⊆X is dense or open or regular-closed,
then S is an Oz -space.

(b) ([4, 1.1(b)]) If Y is z -embedded in X, then υY is the Gδ -closure of Y in υX;
hence, υY ⊆υX.

A key component of our treatment of locally compact groups (and their
subgroups) is the following consequence of a result of Ross and Stromberg:

Theorem 2.12 ([50, 1.3, 1.6], [10, 1.10]). Every locally compact group is an
Oz -space.
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Since every locally precompact group is a dense subgroup of a locally
compact group, Theorems 2.12 and 2.11(a) yield:

Corollary 2.13 ([10, 1.10]). Every locally precompact group is an Oz -space.

Lemma 2.14. Let G be a locally precompact group, and U⊆G an open subset.
Put F := clG U and K := cl eG U. Then F is z -embedded in K, and υF is the
Gδ -closure of F in υK.

Proof. Since U is open in G , there is an open subset V ⊆G̃ such that
U=V ∩G. Thus, one has K= cl eG U= cl eG(V ∩G)= cl eG V , because G is dense in G̃.

Therefore, K is a regular-closed subset of the Oz -space G̃ (cf. Theorem 2.12), and
by Theorem 2.11(a), K is an Oz -space. So, by Theorem 2.10, every dense subset
of K is z -embedded in K. In particular, F is z -embedded in K. Hence, by The-
orem 2.11(b), υF is the Gδ -closure of F in υK.

Remark 2.15. In developing our proof of Lemma 2.14, we have followed the
authors of [10, 2.3] in relying on the results cited from [50], [4], and [3]. We note
that alternative sources for equivalent statements are available in the literature:
The fact that every locally compact group is (in our terminology) an Oz -space
follows immediately from Ščepin’s results (cf. [51] and [52]); Tkachenko has shown
that every Gδ -dense subspace of an Oz -space is C -embedded (cf. [57, Theorem 2]).

A topological space X is said to be locally realcompact (respectively, locally
Dieudonné complete) if for every x∈X, there is a neighborhood U of x such that
clXU is realcompact (respectively, Dieudonné complete). Since our spaces are Ty-
chonoff, and the properties in question are inherited by closed subspaces, it is clear
that a space X is locally realcompact (respectively, locally Dieudonné complete) if
and only if for each x∈X and neighborhood U of x there is a neighborhood V of x
such that clXV is realcompact (respectively, Dieudonné complete) and clXV ⊆U.
Echoing the relationship between a locally compact space and its Stone-Čech com-
pactification, a space X is locally realcompact (respectively, locally Dieudonné
complete) if and only if X is open in its Hewitt realcompactification υX (respec-
tively, in its Dieudonné completion γX ) (cf. [43, 2.11]).

In order to characterize global and local realcompactness and Dieudonné
completeness in the class of locally precompact groups, one introduces a cardinal
invariant.

Definition 2.16. Let τ be an infinite cardinal, and G a topological group.

(a) A subset X of G is said to be τ -precompact if for every U∈N (G), there is
S⊆X that satisfies |S|≤τ and X⊆(SU)∩(US) (cf. “τ -bounded” in [26]).

(b) The precompactness index ip(X) of a subset X of G is the least infinite car-
dinal τ such that X is τ -precompact (cf. “index of boundedness” in [58]).

Remark 2.17. We note that the precompactness index is not a topological
invariant of a space X, but rather of the way a space X is placed in G. Indeed,
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homeomorphic subspaces of a given group G may have different precompactness
indices, as the following example shows: Let λ>ω be a cardinal, E a discrete group
of cardinality λ , put G :=(Z/2Z)λ×E , and let D be a discrete subset of cardinality
λ of (Z/2Z)λ. (For instance, one can take D to be the set of elements with precisely
one non-zero coordinate.) Then D×{e} and {e}×E are homeomorphic, but D is
precompact, and so ip(D×{e})= ω, while ip({e}×E)= λ . Nevertheless, if H is
a subgroup of G that contains X, then X has the same precompactness index in
H and in G (cf. [42, 2.24(d)]).

In what follows, we need the following elementary properties of the precom-
pactness index. (Theorem 2.18 below has an obvious analogue for cardinals λ≥ω ,
but we require only the case λ=ω .)

Theorem 2.18 ([42, 1.29]). For every locally compact group L, the following
statements are equivalent:

(i) L is ω -precompact;

(ii) L is σ -compact;

(iii) L is Lindelöf.

Theorem 2.19. Let G be a topological group, and X a subset of G.

(a) ([42, 2.24(a)]) If Y ⊆X, then ip(Y )≤ ip(X).

(b) ([20, 3.2], [42, 2.24(c)]) ip(clGX)= ip(X).

(c) ([42, 2.30]) ip(〈X〉)= ip(X).

In [5], the authors used the compact covering number κ(X) (i.e., the smallest
number of compact subsets of X that cover X ) to characterize realcompactness
in the context of locally compact groups. It is easily seen that ip(L)=ω · κ(L) for
every infinite locally compact group L . Theorem 2.19(b) indicates that for locally
precompact groups, the precompactness index is the correct cardinal invariant to
consider.

Theorem 2.20. Let G be a locally precompact group, and U⊆G an open subset.
Then:

(a) c(U)≤ ip(U);

(b) if clGU is Dieudonné complete and ip(U)<m, then clGU is realcompact.

Proof. (a) Since ip(U) is independent of the ambient group G , by replacing the
group G with the subgroup 〈U〉 generated by U if necessary, we may assume that

G=〈U〉. Thus, by Theorem 2.19, ip(G̃)= ip(G)= ip(U). Since G is locally precom-

pact, its completion G̃ is locally compact, and so ip(G̃)=ω · κ(G̃). Therefore, by

a theorem of Tkachenko, c(G̃)≤ω · κ(G̃)= ip(G̃) (cf. [58, 4.8]). Hence,

c(U) ≤ c(G) = c(G̃) ≤ ip(G̃) = ip(U).

(b) By (a), c(clGU)= c(U)≤ ip(U) <m . Thus, the statement follows by
Theorem 2.8.
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Remark 2.21. The hypothesis in Theorem 2.20(a) that G is locally precompact
cannot be omitted: Indeed, put G :=

⊕
ω1

Z/2Z , and equip G with the group topol-

ogy whose base at zero consists of subgroups Hα := {x∈ G | xβ =0 for all β<α} ,
where α<ω1 . Since the quotient G/Hα is countable for every α<ω1 , it follows
that ip(G)= ω , and thus, by Theorem 2.19(a), ip(U)= ω for every open subset U

of G. On the other hand, if e(γ)∈G is such that e
(γ)
β =1 if and only if γ=β , then

{Hγ + e(γ)}α≤γ<ω1 is a pairwise disjoint family of open subsets of Hα . Therefore,
c(Hα)=ω1 for every α<ω1 , and hence ip(U)<c(U)=ω1 for every non-empty open
subset of G. (The group G was defined and considered in [9, 3.2] for a different,
but related, purpose.)

We now turn to identifying locally realcompact groups within the class of
locally precompact groups. Unexpectedly, these prove to be exactly the (locally)
Dieudonné complete groups in the class. Therefore, Theorem 2.22 below provides
a positive answer to a special case of a problem of Arhangel ′ skĭı and Tkachenko
(cf. [2, 3.2.2]), who asked whether every locally Dieudonné complete topological
group is Dieudonné complete.

Theorem 2.22. Let G be a locally precompact group. The following statements
are equivalent:

(i) G is Dieudonné complete;

(ii) G is locally Dieudonné complete;

(iii) G is locally realcompact;

(iv) G is Gδ -closed in G̃;

(v) every open subgroup of G is Gδ -closed in G̃;

(vi) G contains an open subgroup that is Gδ -closed in G̃;

(vii) every ω -precompact open subgroup of G is realcompact;

(viii) G contains a realcompact open subgroup;

(ix) G contains a Dieudonné complete open subgroup.

Proof. The logical scheme of the proof is as follows:

(vi) (iv)+3(vi)

(v)

KS

(v)

(iv)

w�

vvvvvvv

vvvvvvv

(iv) (i)+3 (i) (vii)+3(iv)

(iii)

KS
(vii)

(viii)
�'HH

HH
HH

H

HH
HH

HH
H

(iii) (ii)ks (ix) (viii)ks(ii) (ix)ks

The implications (iv) ⇒ (v) ⇒ (vi), and (viii) ⇒ (ix) are obvious.

(vi) ⇒ (iv): Let H be an open subgroup of G that is Gδ -closed in G̃. By

Lemma 1.5(a), M := cl eGH is an open subgroup of G̃. Thus, G and G̃ are homeo-

morphic (as topological spaces) to H×(G/H) and M×(G̃/M), respectively, where

both G/H and G̃/M are discrete (cf. [31, 5.26]). By Lemma 1.5(c), one has

|G/H|= |G̃/M |. Therefore, we obtain the following commutative diagram with the
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horizontal arrows representing homeomorphisms (as topological spaces):

G̃ M × (G̃/M)∼ //

G

G̃

G H × (G/H)∼ // H × (G/H)

M × (G̃/M)G̃

� _

��

M × (G̃/M)

� _

��

Hence, the statement follows from the fact that H is Gδ -closed in M.

(iv) ⇒ (i): Since G is locally precompact, G̃ is locally compact, and by The-

orem 2.3(c), G̃ is Dieudonné complete. Thus, by Theorem 2.3(a), G is Dieudonné

complete, being Gδ -closed in G̃.

(i) ⇒ (vii): Let H be an ω -precompact open subgroup of G. Then H is
closed in G, and so by Remark 2.2(c), H is Dieudonné complete. As ip(H)≤ω, by
Theorem 2.20(b), H is realcompact.

(vii) ⇒ (viii): Since G is locally precompact, there exists U∈N (G) such
that U is precompact. Then ip(U)≤ω , and so by Theorem 2.19(c), one has
ip(〈U〉)= ip(U)≤ω. Therefore, H :=〈U〉 is an ω -precompact open subgroup of G.
Hence, by (vii), H is realcompact.

(ix) ⇒ (ii): Let H be a Dieudonné complete open subgroup of G. Then H
is closed, and thus G is locally Dieudonné complete.

(ii) ⇒ (iii): Let U∈N (G) be such that clGU is Dieudonné complete.
Since G is locally precompact, there is V ∈N (G) such that V is precompact.
Put W :=U∩V . By Theorem 2.19(a), one has ip(W )≤ ip(V )≤ω<m . By Re-
mark 2.2(c), clGW is Dieudonné complete, being a closed subspace of clGU. There-
fore, by Theorem 2.20, clGW is realcompact. Hence, G is locally realcompact.

(iii) ⇒ (iv): Let U∈N (G) be such that F := clG U is realcompact. By
replacing U with U∩U−1 if necessary, we may assume that U is symmetric (i.e.,
U=U−1 ). Put K := cl eG U and V := int eGK. Since U is symmetric, so are K and V .
By Lemma 2.14, F =υF is the Gδ -closure of F in υK. In particular, F is
Gδ-closed in K. Let x∈G̃\G . We may pick g∈(V x)∩G, because G is dense

in G̃ ; one has x∈Vg , as V is symmetric. Since Fg⊆G and x 6∈G, clearly x 6∈Fg .
Thus, there is a Gδ -set A′ in G̃ such that x∈A′ and A′∩Fg= ∅ , because Kg is
closed in G̃ and Fg is Gδ -closed in Kg . Therefore, A :=A′∩(Vg) is a Gδ -set in G̃
that contains x , and it satisfies

A ∩G = A′ ∩ (V g) ∩G = A′ ∩ ((V ∩G)g) ⊆ A′ ∩ ((K ∩G)g) = A′ ∩ (Fg) = ∅.

Hence, G is Gδ -closed in G̃, as desired.

The next theorem was inspired by [5, 3.8].

Theorem 2.23. Let G be a locally precompact group. The following statements
are equivalent:

(i) G is locally realcompact, and ip(G)<m;

(ii) G is Dieudonné complete, and ip(G)<m;

(iii) G is locally Dieudonné complete, and ip(G)<m;
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(iv) G is Gδ -closed in G̃, and ip(G)<m;

(v) G̃ is realcompact, and G is Gδ -closed in G̃;

(vi) G is realcompact.

Proof. The equivalences (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) follow by Theorem 2.22. We
note that the implication (ii) ⇒ (vi) can also be obtained as a consequence of
Theorem 2.20(b).

(iv) ⇒ (v): Let H be an ω -precompact open subgroup of G, and put
M := cl eGH. (The existence of such a subgroup H follows from the local precom-
pactness of G ; see the proof of Theorem 2.22.) By Theorem 2.19(b), M is ω-pre-
compact, and so by Theorem 2.18, M is Lindelöf. Therefore, by Theorem 2.3(b),

M is realcompact. Furthermore, by Theorem 2.19(b), |G̃/M |≤ ip(G̃)= ip(G), as

M∈H(G̃). Thus, |G̃/M |<m , and so by Theorem 2.7,the discrete space G̃/M is

realcompact. On the other hand, by Lemma 1.5(a), M∈H(G̃), and so G̃ is home-

omorphic (as a topological space) to M×(G̃/M). Hence, by Remark 2.2(c), G̃ is
realcompact, being homeomorphic to a product of realcompact spaces.

(v) ⇒ (vi): By Lemma 2.14, υG is the Gδ -closure of G in υG̃=G̃. Thus,
υG=G.

(vi) ⇒ (i): Since G is realcompact, in particular, it is locally realcompact. In
order to show that ip(G)<m , let V ∈N (G). Pick an ω -precompact open subgroup
H of G. (The existence of such a subgroup H follows from the local precompact-
ness of G, as in the proof of Theorem 2.22.) Then H can be covered by countably
many translates of V , and so G can be covered by at most ω · |G/H|-many trans-
lates of V . Thus, one has ip(G)≤ω|G/H| , and it suffices to show that |G/H|<m .
Let X be a set of representatives for G/H, that is, |X∩(Hg)|=1 for every g∈G.
Then X is discrete and closed in G (because each Hg is open), and consequently,
X is a discrete realcompact space. Hence, by Theorem 2.7, |X|= |G/H|<m , as
desired.

Remark 2.24.

(a) Suppose that Ulam-measurable cardinals exist, and put G := (Z/2Z)m , where
G is equipped with the product topology. Since G is compact, it is realcom-
pact and ω -precompact, and thus G satisfies all conditions of Theorem 2.23,
but |G|=2m>m . This example shows that

(i ′ ) G is locally realcompact, and |G| <m

cannot be added to the equivalent conditions listed in Theorem 2.23.

(b) We note in passing the availability of an alternative proof for the implication
(vi) ⇒ (i) in Theorem 2.23: If ip(G)≥m , then there are U∈N (G) and
a (recursively defined) m-sequence X= {xη | η<m} in G such that x0 =e
and xη /∈

⋃
ξ<η

xξU. Then for V ∈N (G) chosen such that V =V −1 and V 2⊆U,

one has |gV ∩X| ≤ 1 for every g∈G . Therefore, X is discrete and closed in G,
and of non-Ulam-measurable cardinality, contrary to (vi).
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3. Hereditary realcompactness

A topological space X is hereditarily realcompact if every subspace of X is realcom-
pact. In this section, we characterize hereditary realcompactness in the class of
locally precompact groups with a “well-behaved” conjugation structure. We rely in
this section on the following properties of hereditary realcompactness.

Theorem 3.1 ([22, 8.18]). If the space X admits a coarser hereditarily real-
compact topology, then X is hereditarily realcompact.

Recall that a topological space X has countable pseudocharacter if every
singleton in X is a Gδ -set (cf. [42, 2.1]).

Theorem 3.2 ([22, 8.15]). If a space X is realcompact and has countable
pseudocharacter, then X is hereditarily realcompact.

Clearly, if X admits a coarser first-countable topology, then every singleton
in X is the intersection of countably many open subsets, and thus X has countable
pseudocharacter. For locally precompact groups, the converse is also true.

Theorem 3.3. Let G be a locally precompact group. Then G has countable
pseudocharacter if and only if G admits a coarser homogeneous metrizable topology.
Moreover, in this case, the metric can be taken to be left invariant.

In order to prove Theorem 3.3, we use the following classic result (see also
the paragraph following the proof of the theorem).

Theorem 3.4 ([31, 8.14(d)]). Let L be a topological group, and M a compact
subgroup of L. Then the coset space L/M is metrizable if and only if it is first-
countable. Moreover, in this case, the metric can be taken to be left invariant.

Proof of Theorem 3.3. Since necessity is clear, we focus on sufficiency of
the condition. Put L := G̃, and suppose that G has countable pseudocharacter,
that is, G is discrete in the Gδ-topology. Then there is a Gδ -set A in L such that

A∩G={e} ; there exist Un∈N (L) such that A=
∞⋂

n=1

Un . Since G is locally pre-

compact, its completion L is locally compact. Let V0∈N (L) be such that
clLV0 is compact. For each n≥1, we pick recursively Vn∈N (L) that satisfies

VnVn⊆Vn−1∩Un and Vn=V −1
n . Set M=

∞⋂
n=1

Vn . It is easily seen that M is a closed

subgroup; it is compact, because M⊆ clLV0 . We turn our attention to the coset

space L/M. It follows from the construction that M=
∞⋂

n=1

(VnM), and so L/M has

countable pseudocharacter. Since L is locally compact and the canonical projec-
tion π : L→ L/M is open, L/M is locally compact too (cf. [31, 5.22]). Therefore,
L/M is first-countable, because every locally compact space of countable pseu-
docharacter is first-countable (cf. [21, 3.3.4]). By Theorem 3.4, this implies that
L/M is metrizable, and its metric can be taken to be left invariant (under the ac-
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tion of L). Finally, it follows from property (ii) that M⊆A , and so M∩G={e} .
Hence, the restriction π|G is injective; its image is metrizable and homogeneous,
because G acts on it continuously (and transitively) from the left. This com-
pletes the proof, because the topology of π(G) is the desired coarser homogeneous
topology generated by a left invariant metric.

We do not know whether every locally precompact group G with countable
pseudocharacter admits a coarser metrizable group topology. The answer is clearly
affirmative if the subgroup M constructed in the proof of Theorem 3.3 is normal
in L , because then the quotient L/M is itself a metrizable topological group. This
is obviously the case when G is abelian. The same conclusion can also be achieved
by using a Kakutani-Kodaira style argument when G is a (not necessarily abelian)
ω-precompact group. Indeed, in the latter case, by Theorems 2.19(b) and 2.18, the
completion L of G is locally compact and σ -compact. (For the Kakutani-Kodaira
theorem, we refer the reader to the second edition of [31, 8.7].)

Theorem 3.5. Let G be a locally precompact group. The following statements
are equivalent:

(i) G is hereditarily realcompact;

(ii) G has countable pseudocharacter, and |G|<m;

(iii) G has countable pseudocharacter, and ip(G)<m;

(iv) G admits a coarser homogeneous metrizable topology, and |G|<m;

(v) G admits a coarser homogeneous metrizable topology, and ip(G)<m.

Proof. The equivalences (ii) ⇔ (iv) and (iii) ⇔ (v) follow by Theorem 3.3,
while (ii) ⇒ (iii) is clear, because ip(G)≤|G| .

(i) ⇒ (ii): If G is discrete, then clearly it has countable pseudocharacter,
and so we may assume without loss of generality that G is not discrete. Let g∈G,
and put X :=G\{g}. Since G is not discrete, X is dense in G. By Corollary 2.13,
G is an Oz -space, and thus by Theorem 2.10, X is z -embedded in G. Therefore,
by Theorem 2.11(b), υX is the Gδ -closure of X in υG. By (i), both X and G are
realcompact, and so X is Gδ -closed in G. Hence, G\X={g} is Gδ -open. Since
every Gδ -open singleton is a Gδ -set, the group G has countable pseudocharacter.

The Gδ -topology on G is finer than the topology of G , and so by Theo-
rem 3.1, the Gδ-topology on G is hereditarily realcompact. On the other hand,
since G has countable pseudocharacter, the Gδ -topology is discrete on G. There-
fore, by Theorem 2.7, |G|<m , as desired.

(iii) ⇒ (i): The group G equipped with the Gδ -topology is discrete, because

it has countable pseudocharacter. Thus, G is Gδ -closed in G̃, since (in every
topological group) every discrete subgroup is closed (cf. [42, 1.51]). Therefore,
by Theorem 2.23, G is realcompact. Hence, by Theorem 3.2, G is hereditarily
realcompact.

If D is a discrete space such that ω< |D|<m , then the Alexandroff one-
point compactification of D is compact, hereditarily realcompact (by Theorem 2.7),
but not metrizable. It follows from Corollary 3.6(b) below that no such example
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exists among topological groups. Since every locally compact space of countable
pseudocharacter is first-countable (cf. [21, 3.3.4]), every locally compact group of
countable pseudocharacter is metrizable (cf. [42, 1.23]). Thus, Theorem 3.5 has
the following consequence:

Corollary 3.6. Let L be a locally compact group. Then:

(a) L is hereditarily realcompact if and only if it is metrizable and |L|<m;

(b) if L is Lindelöf, then L is hereditarily realcompact if and only if it is metriz-
able.

Theorem 3.5 guarantees only the existence of a coarser homogeneous metriz-
able topology, but falls short of providing a coarser metrizable group topology. So
far as we are aware, such a group topology is available only under some additional
assumptions on the algebraic and topological structure of the group.

A topological group G is said to be ω -balanced if for every U∈N (G), there
is VU ⊆N (G) such that for every x∈G , there is V ∈VU that satisfies x−1V x⊆U,
and |VU |≤ω (cf. [42, 2.7]). The class of ω -balanced groups was introduced by
Kac (under the name of groups with a quasi-invariant basis), who also proved that
a group is ω -balanced if and only if it embeds as a topological group into a product
of metrizable groups (cf. [38] and [42, 2.18]). (For the sake of correct historical
presentation, we note that questions related to embedding of topological groups
into the product of groups of a certain class were first studied by Graev [24]; Kac’s
results were generalized later by Arhangel’skǐı [1] and Guran [26].) Thanks to
the following theorem due to Kac, ω -balanced groups lend themselves to a more
elegant characterization of hereditary realcompactness.

Theorem 3.7 ([38], [42, 2.19]). Let G be an ω -balanced topological group. Then
G has countable pseudocharacter if and only if G admits a coarser metrizable group
topology.

Discussion 3.8. The class of ω -balanced groups contains all abelian groups,
metrizable groups, ω-precompact groups (cf. [42, 2.27]), and also the so-called
balanced groups (i.e., groups whose left and right uniform structures coincide;
cf. [42, 1.25]). By Theorem 3.7, if G is an ω -balanced locally precompact group,
then the conditions

(iv ′ ) G admits a coarser metrizable group topology, and |G|<m , and

(v ′ ) G admits a coarser metrizable group topology, and ip(G)<m ,

may be added to the equivalent conditions listed in Theorem 3.5.

Since every metrizable precompact group has cardinality at most c , The-
orem 3.5 can be stated in a simple form for precompact groups, and it implies
portions of [5, 4.6] and [29, 3.3].

Corollary 3.9. For every precompact group G, the following statements are
equivalent:

(i) G is hereditarily realcompact;
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(ii) G has countable pseudocharacter;

(iii) G admits a coarser metrizable group topology, and |G|≤c.

4. Connectedness properties

With Theorems 4.2 and 4.3 below in mind as motivation, we investigate in this
section the relationship between connectedness properties of locally precompact
(or locally pseudocompact) groups and their completions.

Notation 4.1. With each topological group G are associated functorial sub-
groups related to connectedness properties of G, defined as follows (cf. [15, 1.1.1]):

(a) G0 denotes the connected component of the identity;

(b) q(G) denotes the quasi-component of the identity, that is, the intersection of
all clopen sets containing the identity;

(c) o(G) :=
⋂
H(G), the intersection of all open subgroups of G.

It is well known and easily seen that all three of these subgroups are closed and
normal (cf. [31, 7.1], [16, 2.2], and [42, 1.32(b)]). Clearly, G0⊆q(G)⊆o(G), and for
locally compact groups, all three are equal:

Theorem 4.2 ([31, 7.8]). Let L be a locally compact group. Then

L0 =q(L)=o(L).

Following many authors, we say that a space is zero-dimensional if it has
a base consisting of clopen (open-and-closed) sets. It is clear that a zero-dimen-
sional (Hausdorff) group G satisfies q(G)={e} .

Theorem 4.3 ([31, 3.5, 7.13]). Let L be a locally compact group, and N a closed
normal subgroup. Then the following statements are equivalent:

(i) L/N is zero-dimensional;

(ii) (L/N)0 ={N};
(iii) L0⊆N.

One may wonder whether the conclusions of Theorems 4.2 and 4.3 hold
for locally precompact groups. Examples 4.4(a)-(e) provide a negative answer
to this question. Moreover, as Example 4.4(d) and Theorem 5.6 indicate, the
relation G0 =q(G) fails for some pseudocompact abelian groups. When G and
H are topological groups, we use the symbol G∼=H to indicate that G and H
are topologically isomorphic, that is, there is a bijection from G onto H that is
simultaneously an algebraic isomorphism and a topological homeomorphism.

Examples 4.4.

(a) Comfort and van Mill showed that there exists a pseudocompact abelian group
G such that G0 = q(G)={0} , but G is not zero-dimensional (cf. [7, 7.7]).
Thus, Theorem 4.3 fails not only for locally precompact groups (or locally
pseudocompact ones), but even for pseudocompact groups. Nevertheless, it is
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possible to characterize zero-dimensional quotients of locally pseudocompact
groups (Theorem 4.9).

(b) Ursul showed that there is a subgroup G of the group R2 in its usual topology
such that G0 ={0} and q(G)∼=Z (cf. [60]). Thus, the equality G0 =q(G) in
Theorem 4.2 fails for the (locally precompact) group G.

(c) Put G=Q/Z . It is obvious (and also follows from Theorem 4.6 below) that G
has no proper open subgroups, and so o(G)=G. On the other hand, like every
Tychonoff space of cardinality less than continuum, G is zero-dimensional (the
argument given in [21, 6.2.8] suffices to show this); in particular, q(G)={0}.
Therefore, the equality q(G)=o(G) in Theorem 4.2 fails for the (precompact)
group G.

(d) By Theorem 5.6(b) below, there is a pseudocompact abelian group G such
that q(G)∼=Z/2Z . Since G0⊆q(G) and q(G) is discrete, it follows that
G0 ={0}. Thus, the equality G0 =q(G) in Theorem 4.2 fails even for some
pseudocompact abelian groups.

(e) The iterated quasi-components q(G), q(q(G)), . . . , qα(G) of a topological group
G define a descending chain of normal subgroups of G indexed by ordinals.
Dikranjan showed that for every ordinal α , there is a pseudocompact abelian
group H such that H0 = qα(H), but H0 ( qβ(H) for every β<α (cf. [13,
Theorem 11] and [15, 1.4.10]). Dikranjan’s construction is the most striking
illustration known to the authors of how big the gap between G0 and q(G)
can be.

We show now that the equality q(G)=o(G) in Theorem 4.2 does hold for
locally pseudocompact groups. The following theorem generalizes [12, 1.4], which
treats the same property in the case of pseudocompact groups.

Theorem 4.5. Let G be a locally pseudocompact group. Then:

(a) q(G)=q(G̃)∩G;

(b) q(G)=(G̃)0∩G;

(c) q(G)=o(G).

Proof. (a) For every Tychonoff space X, the quasi-component of x∈X is equal
to the trace on X of the quasi-component of x in βX (cf. [17, 2.1]). By the

implication (i) ⇒ (v) of Theorem 1.4, one has βG=βG̃, and the statement follows.

(b) As G̃ is locally compact, by Theorem 4.2, q(G̃)=(G̃)0 . Thus, the
statement follows by (a).

(c) Since G̃ is locally compact, one has q(G̃)=o(G̃) by Theorem 4.2. By (a)
and Lemma 1.5(d),

q(G) = q(G̃) ∩G = o(G̃) ∩G = o(G),

as desired.

Theorem 4.6. Let G be a locally precompact group, and consider the following
statements:
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(i) G is connected;

(ii) G has no proper open subgroups;

(iii) G̃ is connected.

Then (i) ⇒ (ii) ⇔ (iii). Furthermore, if G is locally pseudocompact, then all three
conditions are equivalent.

In order to prove Theorem 4.6, we rely on a well-known relationship between
the connectedness of a space and its Stone-Čech compactification:

Theorem 4.7 ([22, 6L.1]). A Tychonoff space X is connected if and only if βX
is connected.

Proof of Theorem 4.6. The implication (i) ⇒ (ii) is obvious, because every
open subgroup is closed.

(ii) ⇒ (iii): If G has no proper open subgroups, then o(G)=G. Conse-

quently, G⊆o(G̃) by Lemma 1.5(d), and so G⊆(G̃)0 by Theorem 4.2. Since G is

dense in G̃ and (G̃)0 is a closed subgroup, this implies that (G̃)0 = G̃.

(iii) ⇒ (ii): If G̃ is connected, then by Theorem 4.2, o(G̃)= G̃, and so by
Lemma 1.5(d), o(G)=G.

(i) ⇐⇒ (iii): If G is locally pseudocompact, then by the implication

(i) ⇒ (v) of Theorem 1.4, one has βG=βG̃, and thus the statement follows by
Theorem 4.7.

Connectedness is not the only property that holds for a locally pseudocom-
pact group if and only if it holds for its completion. The same is true for the other
extreme, namely, zero-dimensionality.

Theorem 4.8. Let G be a locally pseudocompact group. Then G is zero-dimen-
sional if and only if G̃ is zero-dimensional.

Proof. Suppose that G is zero-dimensional. Then its topology has a clopen
base at e, and thus βG has a clopen base at e (cf. [22, 6L.2]). Since G is locally

pseudocompact, by the implication (i) ⇒ (v) of Theorem 1.4, one has βG=βG̃.

Therefore, G̃ admits a clopen base at e. This shows that G̃ is zero-dimensional.
Since G is a subspace of G̃, the converse is obvious.

In connection with the proof of Theorem 4.8, it is well to recognize that
although the zero-dimensional property is inherited by all subspaces, there are
zero-dimensional spaces X for which βX is not zero-dimensional (cf. [21, 6.2.20]
and [22, 16P.3]). In particular, a zero-dimensional space in our terminology need
not have Lebesgue covering dimension zero.

We already noted in Example 4.4(a) that the conclusion of Theorem 4.3
fails for certain (locally) pseudocompact groups. Nevertheless, it is possible to
obtain a meaningful characterization of zero-dimensional quotients of such groups.
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Theorem 4.9. Let G be a locally pseudocompact group, and M a closed normal
subgroup. Then G/M is zero-dimensional if and only if (G̃)0⊆ cl eGM.

In the proof of Theorem 4.9, we rely on the following lemma, which is
a variant on a theorem of Sulley that was extended to the non-abelian case by
Grant (cf. [55] and [25, 1.3]).

Lemma 4.10 ([42, 1.19]). Let G be a topological group, D a dense subgroup, and
M a closed normal subgroup of D. Then N= clGM is a normal subgroup of G,
and the canonical homomorphism π̄|D : D/M → DN/N is a topological isomor-
phism.

Proof of Theorem 4.9. Put N= cl eGM. By Lemma 4.10, with G̃ and G re-
placing G and D, respectively, there is a topological isomorphism ϕ from G/M

onto a dense subgroup of the locally compact group G̃/N. Thus, G̃/N is the
completion of ϕ(G/M). By the implication (i) ⇒ (vii) of Theorem 1.4, G is

Gδ -dense in G̃. Consequently, the image ϕ(G/M) is Gδ -dense in G̃/N, and so
by Theorem 1.4, ϕ(G/M) is also locally pseudocompact. Therefore, by Theo-

rem 4.8, ϕ(G/M) is zero-dimensional if and only if G̃/N is zero-dimensional. By

Theorem 4.3, the latter holds if and only if (G̃)0⊆N.

Corollary 4.11. Let G be a locally pseudocompact group. Then:

(a) G/q(G) is zero-dimensional if and only if q(G) is dense in (G̃)0 ;

(b) G/G0 is zero-dimensional if and only if G0 is dense in (G̃)0 , in which case
G0 = q(G).

Discussion 4.12. Theorems 4.8 and 4.9 were inspired by the work of Dikranjan
(cf. [14]), and Corollary 4.11 generalizes [14, 1.7]. Dikranjan showed that if every
closed subgroup of G is pseudocompact, then G/G0 is zero-dimensional and G0

is dense in (G̃)0 . (cf. [14, 1.2]). It is natural to ask whether a similar statement is
true if one replaces “pseudocompact” with “locally pseudocompact.”

Problem 4.13. Let G be a topological group such that every closed subgroup
of G is locally pseudocompact. Is G/G0 zero-dimensional? Equivalently, is G0

dense in (G̃)0?

After the present manuscript was submitted, Dikranjan and Lukács pro-
vided a positive answer to Problem 4.13 (cf. [18, Theorem A]).

We turn now to connectedness in the local context. Recall that a space X
is locally connected if each connected component of every open subspace of X is
open. The proof of the following easy lemma is omitted.

Lemma 4.14. Let G be a topological group, and D a dense subgroup. If D is
locally connected, then so is G.
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Theorem 4.15. Let G be a locally pseudocompact group. Then G is locally
connected if and only if G̃ is locally connected.

Proof. Lemma 4.14 proves the implication ⇒ . For ⇐ , let V ∈N (G). There is

W ∈N (G) such that clGW ⊆V and W is precompact. Then there is W ′∈N (G̃)
such that W=W ′∩G, and thus

W ′ ⊆ cl eGW ′ = cl eG(W ′ ∩G) = cl eGW.
Let C denote the connected component of the identity in W ′. Since G̃ is locally
connected, one has C∈N (G̃). Consequently,

U=C∩G∈N (G), and U⊆W ′∩G=W.

In particular, U is precompact. Since G is locally pseudocompact, using Theo-
rem 1.4, we obtain that

β(clG U) = cl eG U = cl eG(C ∩G) = cl eGC,
which is connected, being a closure of the connected set C . Therefore, by The-
orem 4.7, clG U is connected. Finally, observe that e∈U⊆ clG U⊆ clGW ⊆V , as
desired.

Example 4.16. Let G = Q/Z . Clearly, G̃ = R/Z is compact, connected, and
locally connected; in particular, G is precompact. It is obvious (and also follows
from Theorem 4.6) that the group G has no proper open subgroups. However,
G is zero-dimensional (cf. [21, 6.2.8]). This shows that the assumption of local
pseudocompactness in Theorems 4.6 (the implication (ii) ⇒ (i)) and 4.15 cannot
be omitted even for precompact groups.

5. Which locally precompact abelian groups occur as
a quasi-component?

In order to answer the question in the title of this section, some further terminology
is required. Recall that a topological group is compactly generated if it is generated
algebraically by some compact subset. Since every connected group is generated by
every neighborhood of its identity (cf. [42, 1.30]), every connected locally compact
group is compactly generated.

We use additive notation for abelian topological groups. We put T= R/Z ,
which is the circle group written additively. Recall that if p is a prime number,
then the group Zp of p-adic integers is the (projective) limit of the quotients
Z/pnZ . The group Zp is compact, zero-dimensional, and {pnZp}n∈N is a base of
open subgroups for the topology at zero (cf. [31, §10] and [19, §3.5]).

Definition 5.1. A topological group G is precompactly generated if there is
a precompact set X⊆G such that G=〈X〉.

Lemma 5.2. Let G be a locally precompact group. Then G is precompactly
generated if and only if G̃ is compactly generated.
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Proof. Let X⊆G be a precompact set such that G=〈X〉 . Then, by The-

orem 1.1, Y := cl eGX is compact. Since G is locally precompact, G̃ is locally

compact, and so there is V ∈N (G̃) such that cl eG V is compact. It is easy to see

that the compact set K := (cl eG V )Y generates G̃.

Conversely, suppose that G̃ is compactly generated, that is, G̃=〈K〉 , where

K is compact. Since G is locally precompact, its completion G̃ is locally compact,
and so there is V ∈N (G̃) such that cl eG V is compact. Put U :=(V K)∩G. As V K

is open in G̃, the set U is open in G. The set U is precompact, because it is
contained in the compact set cl eG(V K)= (cl eG V )K. It is easily seen that U gener-
ates G.

For a topological space X, we denote by w(X) the weight of X, that is, the
smallest possible cardinality of a base for the topology of X.

Theorem 5.3. Let G be a locally precompact abelian group. The following
statements are equivalent:

(i) G is precompactly generated;

(ii) G is topologically isomorphic to a subgroup of a connected locally compact
abelian group C.

Furthermore,
(a) if G is infinite, then the group C in (ii) may be chosen such that w(C)=w(G);

(b) if G is precompact, then the group C in (ii) may be chosen to be compact.

Theorem 5.3 is a generalization to locally precompact groups of the state-
ment that every compactly generated locally compact abelian group is a topolog-
ical subgroup of a connected locally compact abelian group (cf. [31, 9.8] and [54,
23.11]).

In order to prove Theorem 5.3, we rely on the following known, albeit
perhaps not sufficiently well-known, result of Morris. We are grateful to Kenneth
A. Ross for directing us to the cited references.

Theorem 5.4 ([45, Corollary 2], [46], [47, p. 93, Exercise 1], and [54, 23.13]).
Every closed subgroup of a compactly generated locally compact abelian group is
compactly generated.

Remark 5.5. A recent result of K. H. Hofmann and K.-H. Neeb, which gener-
alizes Morris’s theorem, states that closed (almost) soluble subgroups of (almost)
connected locally compact groups are compactly generated (cf. [35]). However,
without such extra assumptions, statements parallel to Theorems 5.3 and 5.4 may
fail for non-abelian groups:

(a) The semidirect product (Z/2Z)Z o Z , where Z acts by shifts, is locally com-
pact, but is not pro-Lie (cf. [33]). Thus, it cannot be a (closed) topological
subgroup of a connected locally compact group, as every connected locally
compact group is pro-Lie (cf. [64, Theorem 5’]).

(b) The commutator subgroup of the (discrete) free group on n>1 generators is
a free group of countable rank (cf. [41, Vol. II, p. 36, Theorem I]).
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Proof of Theorem 5.3. (i) ⇒ (ii): Lemma 5.2, G̃ is compactly generated.

Thus, by replacing G with G̃ , we may assume that G itself is locally compact and
compactly generated. (Since w(G)=w(G̃), doing so does not affect the statement
concerning equality of weights.) Consequently, G∼=M×Ra×Zc, where M is the
maximal compact subgroup of G, and a, c∈N (cf. [31, 9.8] and [54, 23.11]). Since
M is a subgroup of G , one has w(M)≤w(G), and so M is topologically isomorphic
to a subgroup of Tw(G). The group Zc is a subgroup of Rc. Therefore, M×Ra×Zc

is topologically isomorphic to a subgroup of the connected group C := Tw(G)×Ra+c.

(a) If G is infinite, then w(G) is infinite, and hence w(C)=w(Tw(G))=w(G).

(b) If G is precompact, then G̃ is compact, and so a=c=0. Thus, the
group C := Tw(G) is compact, and G is topologically isomorphic to a subgroup
of C.

(ii) ⇒ (i): Suppose that G∼=S, where S is a subgroup of C. Since C is
connected, it is compactly generated. Thus, by Theorem 5.4, clC S is compactly
generated too, and so G̃ is compactly generated, because it is topologically iso-
morphic to clC S. Hence, by Lemma 5.2, G is precompactly generated.

We are now ready to answer the question in the title of the section.

Theorem 5.6. Let A be a locally precompact abelian group. The following
statements are equivalent:

(a) A is precompactly generated;

(b) there is a locally pseudocompact abelian group G such that

A∼= q(G)= (G̃)0∩G.

Furthermore,

(i) if w(A)≥ω1 and (i) holds, then the group G in (ii) may be chosen so that
w(G)=w(A);

(ii) if A is precompact, then the group G in (ii) may be chosen to be pseudocom-
pact; and

(iii) if A is connected, then A∼=G0 =q(G).

Theorem 5.6 follows the pattern of a number of known “embedding” results,
which state that certain (locally) precompact groups embed into (locally) pseudo-
compact groups as a particular (e.g., functorial) closed subgroup (cf. [6, 2.1], [61],
[7, 7.6], [62], and [12, 3.6]). We are grateful to Dikran Dikranjan for suggesting
that Theorem 5.6 might also hold for locally precompact abelian groups (rather
than simply for precompact abelian groups, as it appeared in an early version of
this manuscript), and for drawing our attention to the possibility of choosing G so
that w(G)=w(A). In the proof of Theorem 5.6, we rely on a well-known theorem
and a technical lemma that are presented below.

Theorem 5.7 ([31, 9.14 and 24.25], [54, 23.27]). Every connected locally com-
pact abelian group is divisible.
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In order to distinguish continuous homomorphisms from those that are not
subject to topological assumptions, we refer to the latter as group homomorphisms.

Lemma 5.8. Let E be a divisible abelian group, and λ an infinite cardinal such
that |E|≤2λ. Then for every (fixed) prime p, there is a group homomorphism
ϕ : Zω1×λ

p → E such that:
(a) ϕ−1(x) is Gδ -dense in Zω1×λ

p for every x ∈ E ;
(b) for every abelian topological group C and group homomorphism ψ : C → E,

the pullback

Zω1×λ
p ×E C := {(x, c) ∈ Zω1×λ

p × C | ϕ(x) = ψ(c)}

is Gδ -dense in Zω1×λ
p ×C.

Proof. Since the free rank of Zp is 2ω, the free rank of Zλ
p is 2λ. Thus,

Zλ
p contains a free abelian subgroup F of rank 2λ. By our assumption, |E|≤2λ,

and so there exists a surjective group homomorphism ϕ0 : F → E . One can extend
ϕ0 to a surjective group homomorphism ϕ1 : Zλ

p → E , because E is divisible. Let
ϕ2 :

⊕
ω1

Zλ
p → E denote the group homomorphism

⊕
ω1

ϕ1 . Since
⊕
ω1

Zλ
p is naturally

isomorphic to a subgroup of (Zλ
p)

ω1 =Zω1×λ
p and E is divisible, ϕ2 extends to

a group homomorphism ϕ : Zω1×λ
p → E . We show that ϕ satisfies the stated

properties.

(a) Since translation in Zω1×λ
p is a homeomorphism, it suffices to show

that each non-empty Gδ-subset of Zω1×λ
p meets ϕ−1(0E). Let B be a non-empty

Gδ-subset, and let z∈B . There exists K⊆ω1×λ such that

N(z,K) := {y ∈ Zω1×λ
p | ∀(γ, δ) ∈ K, yγ,δ = zγ,δ} ⊆ B,

and |K|≤ω . If K∩({α}×λ) 6= ∅ for every α∈ω1, then |K|≥ω1>ω , contrary to
the assumption that K is countable. Thus, there is α0∈ω1 such that

K∩({α0}×λ)= ∅.

Since ϕ1 is surjective, there is w=(wβ)β∈λ∈Zλ
p such that ϕ1(w)=ϕ(z). Let

r∈Zω1×λ
p denote the element defined by

rα,β =

{
wβ if α = α0

0 otherwise.

Since r∈
⊕
ω1

Zλ
p , one has ϕ(r)=ϕ2(r)=ϕ1(w)=ϕ(z), and therefore ϕ(z − r)=0.

To conclude, observe that z− r∈N(z,K), because z and z− r differ only at
coordinates of the form (α0, β), and α0 was chosen such that K∩({α0}×λ)= ∅ .
Hence, z − r∈N(z,K)∩ϕ−1(0E) 6= ∅ , as desired.

(b) By (a), the set ϕ−1(ψ(c))×{c} is Gδ -dense in Zω1×λ
p ×{c} for every

c∈C. Consequently,

Zω1×λ
p ×E C =

⋃
c∈C

(ϕ−1(ψ(c))× {c})

is Gδ -dense in Zω1×λ
p ×C.
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Proof of Theorem 5.6. (i) ⇒ (ii): By Theorem 5.3, there is a connected
locally compact abelian group C such that A is topologically isomorphic to a sub-
group of C. Without loss of generality, we may assume that A is actually a sub-
group of C. Put E :=C/A and λ=w(C), and let ψ : C → E denote the canonical
projection. (Unless A is locally compact, this quotient is not Hausdorff, but we
are interested in E only as an abstract group, and ignore its topological prop-
erties.) By Theorem 5.7, C is divisible, and thus E is divisible as well. Since
|E|≤|C|≤2w(C) =2λ, the subgroup G := Zω1×λ

p ×E C of the group L := Zω1×λ
p ×C

provided by Lemma 5.8(b) is Gδ -dense in L . Being a product of a compact and

a locally compact group, L is locally compact, and consequently L=G̃. Therefore,
G is locally precompact, and by (the implication (vii) ⇒ (i) of) Theorem 1.4, G is
locally pseudocompact. One has L0 ={0}×C , because Zp is zero-dimensional.
Hence,

L0 ∩G = {(x, c) ∈ Zω1×λ
p × C | ϕ(x) = ψ(c), x = 0} (1)

= {(0, c) ∈ Zω1×λ
p × C | ψ(c) = 0} = {0} × kerψ = {0} × A, (2)

where ϕ is the homomorphism constructed in Lemma 5.8.

(a) If w(A)≥ω1 , then A is infinite, and therefore by Lemma 5.3(a), C may
be chosen such that w(C)=w(A). Hence,

w(G) = w(L) = ω1 · λ · w(C) = w(C) = w(A), (3)

as required.

(b) If A is precompact, then by Lemma 5.3(b), C may be chosen to be
compact. Thus, the group L is compact, being a product of two compact groups.
Therefore, the Gδ -dense subgroup G of L is pseudocompact (cf. [9]).

(c) If A is connected and G is the group provided by (ii), then q(G) is
connected, and therefore G0 =q(G). Hence, the statement follows by (ii).

(ii) ⇒ (i): Since G is locally pseudocompact, its completion G̃ is locally

compact, and thus (G̃)0 is a connected locally compact abelian group. By our

assumption, A is topologically isomorphic to a subgroup of (G̃)0 , specifically, to

(G̃)0∩G. Hence, by Theorem 5.3, A is precompactly generated.

Remark 5.9. We note that when A is metrizable, the indicated equivalence
of Theorem 5.6 holds, but the choice of G with w(G)=w(A) may be impossible.
Indeed, if A is metrizable and precompactly generated, then w(A)= ω . Conse-
quently, if G is a locally pseudocompact group such that w(G)=w(A), then G is
locally compact. Thus, q(G) is locally compact (being a closed subgroup of G),
and by Theorem 4.2, q(G) is connected. Hence, A can be topologically isomorphic
to q(G) only if A itself is connected and locally compact; in that case, one can
take G=A . In particular, for A :=Q , no locally pseudocompact G can satisfy
both (ii) of Theorem 5.6 and w(G)=w(A).
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(1939), 277–291.

[12] Dikranjan, D., Connectedness and disconnectedness in pseudocompact groups,
Rend. Accad. Naz. Sci. XL Mem. Mat. (5), 16 (1992), 211–221.

[13] —, Dimension and connectedness in pseudo-compact groups, C. R. Acad. Sci.
Paris Sér. I Math. 316 (1993), 309–314.



Comfort and Lukács 371
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